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LOCAL BOUNDARY REPRESENTATIONS OF LOCALLY
C*-ALGEBRAS

ARUNKUMAR C.S.

Abstract. We initiate a study of non-commutative Choquet boundary for
spaces of unbounded operators. We define the notion of local boundary repre-
sentations for local operator systems in locally C∗-algebras and prove that local
boundary representations provide an intrinsic invariant for a particular class
of local operator systems. An appropriate analog of purity of local completely
positive maps on local operator systems is used to characterize local boundary
representations for local operator systems in Frechet locally C∗-algebras.

1. Introduction

The notion of locally C∗-algebras was introduced by Atushi Inoue [15] to study
algebras of unbounded operators on a Hilbert space. In the literature, locally
C∗-algebra have been studied by several authors under different names like pro-
C∗-algebras, O∗-algebras, LCM∗-algebras, and multinormed C∗-algebras. Effros
and Webster [12] initiated a study of the locally convex version of operator spaces
called the local operator spaces. In 2008, A. Dosiev [11] realized local operator
spaces as subspaces of the locally C∗-algebra C∗

E(D) of unbounded operators on a
quantized domain E with its union space D. Also, Dosiev introduced local oper-
ator systems as the unital self adjoint subspaces of C∗

E(D). Based upon the local
positivity concept in locally C∗-algebra, Dosiev [11] proved Stinespring represen-
tation theorem for local completely positive maps and Arveson extension theorem
for local completely positive maps on Frechet local operator systems. Recently,
the minimality of Stinespring representation was identified by Bhat, Anindya,
and Santhoshkumar [8], and showed that minimal Stinespring’s representation is
unique up to unitary equivalence.

The extremal theory concerning Choquet boundary of subalgebras of function
algebras play an important role in numerous areas of classical analysis. Let X
be a locally compact Hausdorff space and C(X) be the algebra of all continuous
functions on X . Given a uniform algebra U ⊆ C(X) and a point x0 ∈ X . If
the evaluation functional corresponds to x0 admits a unique completely positive
extension from U to C(X), then we say that the point x0 is in the Choquet
boundary [7] of U . The non-commutative analog of this notion called the boundary
representations of linear subspaces in C∗-algebras was introduced by Arveson [2]
and studied extensively by him in [4, 5]. The objects boundary representations
are intrinsic invariants for operator systems(and operator algebras), and provide
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a context for showing the existence of non-commutative Silov boundary. The
articles [9, 10, 14, 18] are also worth mentioning in this context. There is plenty
of literature on generalizing the notion of boundary representations to different
contexts [1, 13, 19]. This article initiate a study of non-commutative Choquet
boundary in the context of locally C∗-algebras and a related extremal notion of
purity of local completely positive maps.

This paper is organized as follows. In section 2, we recall necessary back-
ground material and results that are required throughout. Section 3 deals with
certain elementary results on local completely contractive(local CC) maps and
local completely positive(local CP) maps. We obtain a locally convex version of
the Arveson extension theorem for unital local CC-maps. That is, a unital local
CC-map from a subspace M of a locally C∗-algebra A can be extended to a local
CP-map on A. In Section 4, a suitable notion of irreducible representations of
locally C∗-algebras is introduced using the idea of commutants. We show that an
irreducible Stinespring representation of a Frechet locally C∗-algebra is minimal.
The concept of pure local CP-maps on local operator systems are introduced and
proved that a local CP-map on a locally C∗-algebra is a pure local CP-map if
and only if its minimal Stinespring representation is irreducible. In Section 5,
we introduce local boundary representations of locally C∗-algebras and prove that
local boundary representations provide an intrinsic invariant for local operator
systems. In the case of Frechet locally C∗-algebras, we characterize local bound-
ary representations using the notions of pure local CP-maps and a couple of other
new notions.

2. Preliminaries

2.1. Locally C*-algebras. Let A be a unital ∗-algebra with unit 1A. A semi-
norm p on A is said to be sub-multiplicative, if p(1A) = 1 and p(ab) ≤ p(a)p(b)
for every a, b ∈ A. A sub-multiplicative seminorm p satisfies the condition
p(a∗a) = p(a)2 for every a ∈ A, is called a C∗-seminorm. Let (Λ,≤) be a di-
rected poset. A family of seminorms P = {pα : α ∈ Λ} on A is called an upward
filtered family, if α ≤ β in Λ, then pα(a) ≤ pβ(a) for every a ∈ A. A locally C∗-
algebra A is a ∗-algebra together with an upward filtered family of C∗-seminorms
P on A such that A is complete with respect to the locally convex topology
generated by the family P.

Throughout this article, A always denote a locally C∗-algebra with a prescribed
family of C∗seminorms {pα : α ∈ Λ}. Let Iα = {a ∈ A : pα(a) = 0} and
Aα be the quotient C∗-algebra A/Iα with the C∗-norm induced by pα. Denote
the cannonical quotient ∗-homomorphism from A to Aα by πα. Note that for
α ≤ β in Λ, there is a cannonical ∗-homomorphism παβ : Aβ → Aα where
παβ(a + Iβ) = a + Iα and that satisfies παβπβ = πα. Then one can identify A as
the the inverse limit of the projective system {Aα, πα,β : α, β ∈ Λ} of C∗-algebras
[21].

2.2. Local positve elements. Anar Dosiev [11] introduced the notions of local
hermitian and local positivity in locally C∗-algebras. An element a ∈ A is called
local hermitian if a = a∗ + x for some x ∈ A such that pα(x) = 0 for some α ∈ Λ
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and an element a ∈ A is called local positive if a = b∗b + x for some b, x ∈ A
such that pα(x) = 0 for some α ∈ Λ. In this case, we call a is α-hermition
(and α-positive, respectively). We use a ≥α 0 to denote a is α-positive. A direct
computation shows that a ≥α 0 in A if and only if the πα(a) ≥ 0 in the C∗-algebra
Aα.

2.3. Local operator systems and local CP-maps. Let A be a locally C∗-
algebra. For a linear subspace S of A denote S∗ = {x∗ : x ∈ S}. We say S is
self adjoint if S = S∗. A local operator system in A is a unital self adjoint linear
subspace of A. An element a in a local operator system S is local positive if a
is local positive in A. Consider another locally C∗-algebra B with the associated
family of seminorms {ql : l ∈ Ω}. Let S1 and S2 be local operator systems in A
and B respectively. A linear map φ : S1 → S2 is said to be local positive, if for
each l ∈ Ω there corresponds α ∈ Λ such that φ(a) ≥l 0 whenever a ≥α 0 in S1.
The map φ is said to be local bounded, if for each l ∈ Ω there exists an α ∈ Λ and
Clα > 0 such that ql(φ(a)) ≤ Clαpα(a) for all a ∈ S1. If Clα can be chosen to be
1, then we say that φ is local contractive. For n ∈ N, let Mn(A) denotes the set
of all n × n matrices over A. Naturally Mn(A) is a locally C∗-algebra with the

defining family of seminorms {pnα : α ∈ Λ}, where pnα([aij ]) = ‖π
(n)
α ([aij ])‖α for

[aij ] in Mn(A). We use φ(n) to denote the n-amplification of the map φ, that is,
φ(n) : Mn(S1) → Mn(S2) defined by φ(n)([aij]) = [φ(aij)] for [aij ] in Mn(S1). The
map φ is called local completely bounded(local CB-map) if for each l ∈ Ω, there
exists α ∈ Λ and Clα > 0 such that qnl ([φ(aij)]) ≤ Clαp

n
l ([aij ]), for every n ∈ N.

If Clα can be chosen to be 1, then we say φ is local completely contractive(local
CC-map). The map φ is called local completely positive(local CP-map) if for each
l ∈ Ω, there exists α ∈ Λ such that φ(n)([aij ]) ≥l 0 in Mn(S2) whenever [aij ] ≥α 0
in Mn(S1).

2.4. Representations of locally C*-algebras. Let H be a complex Hilbert
space and D be a dense subspace of H . A quantized domain in H is a triple
{H, E ,D}, where E = {Hl : l ∈ Ω} is an upward filtered family of closed subspaces
of H such that the union space D =

⋃

l∈Ω

Hl is dense in H . In short, we say E is a

quantized domain in H with its union space D. A quantized doamin E is called
a quantized Frechet domain if E is a countable family.

Corresponding to a quantized domain E = {Hl : l ∈ Ω} we can associate an
upward filtered family P = {Pl : l ∈ Ω} of projections in B(H) where Pl is the
orthogonal projection of H onto the closed subspace Hl.

The space C∗
E(D). Let us denote L(D) by the set of all linear operators on the

linear subspace D. The set of all noncommutative continuous functions on a
quantized domain E is defined as

CD(E) = {T ∈ L(D) : TPl = PlTPl ∈ B(H), for all l ∈ Ω}.

Note that CD(E) is an algebra and if T ∈ L(D), then

T ∈ CD(E) if and only if T (Hl) ⊆ Hl and T |Hl
∈ B(Hl) for all l ∈ Ω.
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The ∗-algebra of all noncommutative continuous functions on a quantized domain
E is defined as

C∗
E(D) = {T ∈ CD(E) : PlT ⊆ TPl, for all l ∈ Ω}.

Note that C∗
E(D) is a unital subalgebra of CD(E). For more details about the

adjoint of operators in C∗
E(D) refer [11, Proposition 3.1]. For T ∈ L(D), it is easy

to see that T ∈ C∗
E(D) if and only if for all l ∈ Ω

T (Hl) ⊆ Hl, T |Hl
∈ B(Hl) and T (H

⊥
l ∩ D) ⊆ H⊥

l ∩ D.

Now, define ql : C
∗
E(D) → R by ql(T ) = ‖T |Hl

‖ for all T ∈ C∗
E(D). Then Q = {ql :

l ∈ Ω} is an upward filtered family of C∗-seminorms on C∗
E(D). Also, C∗

E(D) is
complete with respect to the locally convex topology generated by the family Q.
Hence C∗

E(D) is a locally C∗-algebra.
We use CPCCloc(S, C

∗
E(D)) to denotes the class of all local completely positive

and local completely contractive maps from a local operator system S to C∗
E(D).

Stinespring’s theorem for local CP-maps. A locally convex version (or an
unbounded version) of the celebrated Stinespring’s dilation theorem is appeared
in the work of A.Dosiev [11, Theorem 5.1].

Theorem 2.1. [11, Theorem 5.1] Let φ ∈ CPCCloc(A, C
∗
E(D)). Then there exists

a Hilbert space Hφ and a quantized domain Eφ = {Hφ
α : α ∈ Λ} in Hφ with

its union space Dφ, a contraction Vφ : H → Hφ, and a unital local contractive
∗-homomorphism πφ : A → C∗

Eφ(D
φ) such that

φ(a) ⊆ V ∗
φ πφ(a)Vφ and Vφ(Hα) ⊆ Hφ

α

for every a ∈ A and l ∈ Λ. Moreover, if φ(1A) = 1D, then Vφ is an isometry.

Any triple (πφ, Vφ, {H
φ; Eφ;Dφ}) that satisfies the conditions of the Theorem

2.1 is called a Stinespring representation for φ.

Minimality of Stinespring representation for local CP-maps. The mini-
mality of the Stinespring representation was introduced and studied recently by
Bhat and et al in [8]. A Stinespring representation (πφ, Vφ, {H

φ; Eφ;Dφ}) of φ

is said to be minimal, if Hφ
l = [πφVφHl], for every l ∈ Λ. They proved that

given any Stinespring represesentation of a map φ ∈ CPCCloc(A, C∗
E(D)), one

can reduce it to minimal Stinespring representation, and also any two minimal
Stinespring representations are unitarily equivalent in the following sense. Let
π1 and π2 be two representations of the locally C∗-algebra A on the quanitzed
doamins {H ; E = {Hl : l ∈ Ω};D} and {H ′; E ′ = {H ′

l : l ∈ Ω};D′}, respectively.
We say π1 and π1 are unitarily equivalent if there exists a unitary U : H ′ → H
such that U(H ′

l) ⊆ Hl and π2(a) = U∗π1(a)U |D′ for all a ∈ A and all l ∈ Ω.

3. Local positive linear maps

In this section, we prove an analog of the Arveson extension theorem for local
CC-maps on linear subspaces of C∗

E(D) for a quantized Frechet domain E . This
result is crucial in establishing a theorem in the main section. Now, let S be a
local operator system in the locally C∗-algebra A. A linear functional f : S → C
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is an α-contractive linear functional if |f(a)| ≤ pα(a) for all a ∈ S. Note that, by

Hahn-Banach extension theorem, there is an α-contractive linear map f̃ : A → C

such that f̃ |S = f and |f̃(a)| ≤ pα(a) for all a ∈ A. For a ∈ A we define the
α-spectrum of a to be the spectrum of πα(a) in the C∗-algebra Aα. We use σα(a)
to denote the α-spectrum of a.

Lemma 3.1. Let S be a local operator system in a locally C∗-algebra A and let
f : S → C be a unital α-contractive linear functional. Let f̃ be a Hahn-Banach
extension of f to A. If a = x∗x + b ∈ S is an α-positive element of A, then
0 ≤ f̃(x∗x) ≤ rα, where rα is the spectral radius of πα(a).

Proof. Assume that f̃(x∗x) /∈ [0, rα]. Since a closed interval in the real line is the
intersection of all closed disks containing it in the complex plane, there exists a
closed disk Dr(µ) centered at µ ∈ C and radius r such that |f̃(x∗x)− µ| > r and
[0, rα] ⊆ Dr(µ). Then σα(x

∗x− µ1) ⊆ Dr(0) as σα(x
∗x) ⊆ [0, rα] ⊆ Dr(µ). Since

πα(x
∗x) is a positive element of Aα, πα(x

∗x−µ1) is a normal element of Aα. The
spectral radius and norm are same for normal elements of a C∗-algebra gives us
‖πα(x

∗x− µ1)‖α ≤ r. Now using the fact f̃ is a unital α-contraction, we have

|f̃(x∗x)− µ| = |f̃(x∗x− µ1)| ≤ pα(x
∗x− µ1)

= ‖πα(x
∗x− µ1)‖α ≤ r.

This is a contradiction. Hence f̃(x∗x) ∈ [0, rα]. �

Theorem 3.2. Let S be a local operator system in a locally C∗-algebra A and E
be a quantized domain with its union space D. Let φ : S → C∗

E(D) be a unital
local contractive map. Then φ is a local positive map.

Proof. Fix l ∈ Ω. Since φ is local contractive, there exists α ∈ Λ such that
‖φ(a)‖l ≤ pα(a) for every a ∈ S. Let a ∈ S and a = x∗x+ b where x, b ∈ A and
pα(b) = 0 for some α ∈ Λ.

We will show that φ(a)|Hl
is a positive operator on Hl. Let h ∈ Hl with

‖h‖ = 1. Define fh : S → C by fh(y) = 〈φ(y)|Hl
h, h〉. Then fh(1) = 1 and

|fh(y)| ≤ ‖φ(y)‖l ≤ pα(y).

Therefore, the linear functional fh is a unital α-contraction. Let f̃h : A → C be
an α-contractive Hahn-Banach extension of fh. Then

〈φ(a)|Hl
h, h〉 = fh(a) = f̃h(a) = f̃h(x

∗x) + f̃h(b).

Note that, f̃h(b) = 0 as f̃h is an α-contraction and pα(b) = 0. Using Lemma

3.1 we conclude that f̃h(x
∗x) = 〈φ(a)|Hl

h, h〉 is positive. Therefore, φ(a) is local
positive and that completes the proof. �

Remark 3.3. We can use the above theorem to establish the following result,
which is a special case of a result in [11].

Theorem 3.4. [11, Corollary 4.1] Let S be a local operator system in a locally C∗-
algebra A and E be a quantized domain with its union space D. Let φ : S → C∗

E(D)
be a unital linear map. Then φ is a local CC-map if and only if φ is a local CP-
map.
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Proof. Let φ be a local CC-map. Fix l ∈ Ω. There exists a α ∈ Λ such that

‖φ(n)([aij ])‖l ≤ p
(n)
α ([aij]) for all [aij ] ∈Mn(S),n ∈ N. From the proof of Theorem

3.2 we have φ(n)([aij ]) ≥l 0 whenver [aij ] ≥α 0. Thus φ is a local CP-map.
Conversely, assume that φ is a local CP-map. Fix l ∈ Ω. There exists a

α ∈ Λ such that φ(n)(A) ≥l 0 whenever A ≥α 0 in A ∈ Mn(S) and n ∈ N. Let

A ∈Mn(S) such that p
(n)
α (A) ≤ 1. Then

[

1n A
A∗ 1n

]

≥α 0 in M2n(S)

Applying the map φ(2n), we have
[

In φ(n)(A)
φ(n)(A∗) In

]

≥l 0 in M2n(C
∗
E(D)).

Thus
[

In φ(n)(A)
φ(n)(A∗) In

]

∣

∣

∣

∣

Hn
l
⊕Hn

l

≥ 0 in B(Hn
l ⊕Hn

l ).

Equivalently ‖φn(A)|Hn
l
‖ ≤ 1. Hence ‖φn(A)‖l ≤ p

(n)
α (A) for every A ∈ Mn(S).

That is, φ is a local CC-map. �

Theorem 3.5. Let A be unital a locally C∗-algebra, and M be a unital subspace
of A. If φ :M → C∗

E(D) be a unital local contraction, then there is a local positive

extension φ̃ of φ to M +M∗ given by φ̃(x + y∗) = φ(x) + φ(y)∗. Moreover, φ̃ is
the only local positive extension of φ to M +M∗.

Proof. First, we will show that the map φ̃ is well-defined. Let

M∗ = {a ∈M : a∗ ∈M}.

Clearly, M∗ is a local operator system in A. Also, the map φ is a unital local
contractive map on M∗. Using Theorem 3.2 we have φ is a local positive map.
Then φ is self adjoint on M∗, thanks to [11, Lemma 4.3]. To see φ̃ is well defined,
consider a1, a2, b1, b2 ∈M with a1+b

∗
1 = a2+b

∗
2. Equivalently, a1−a2 = (b2−b1)

∗.
Thus b2 − b1 ∈M∗. Then using the fact that φ is self adjoint on M∗, we have

φ(a1 − a2) = φ((b2 − b1)
∗)

= [φ(b2 − b1)]
∗

= φ(b2)
∗ − φ(b1)

∗

φ(a1) + φ(b1)
∗ = φ(a2) + φ(b2)

∗.

Hence φ̃(a1 + b∗1) = φ̃(a2 + b∗2). That is, φ̃ is well-defined.

To see φ̃ is local positive; fix l ∈ Ω. By local contractivity of φ, there exists
an α ∈ Λ such that ‖φ(a)‖l ≤ pα(a) for all a ∈ A. Let a + b∗ ∈ M +M∗ be

an α-positive element. We will show that φ̃(a + b∗) is local positive by showing

that φ̃(a + b∗)|Hl
is a positive operator on Hl. Let h ∈ Hl with ‖h‖ = 1. Define

f : M → C by f(y) = 〈φ(y)h, h〉. Then |f(y)| ≤ ‖φ(y)‖l ≤ pα(y) for every
y ∈ M . Using Hahn-Banach extension theorem, f extends to f1 : M +M∗ → C
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with |f1(y)| ≤ pα(y) for every y ∈ M + M∗. By Theorem 3.2 we have that

f1 is local positive. Also, 0 ≤ f1(a + b∗) = f1(a) + f1(b) = f(a) + f(b) =

〈φ(a)h, h〉+ 〈φ(b)h, h〉 = 〈φ̃(a+ b∗)h, h〉. Hence φ̃ is local positive.

To show φ̃ is unique; let ψ : M +M∗ → C be a local positive extension of φ.
The map ψ is self adjoint by [11, Lemma 4.3]. Then the following computation

shows that ψ = φ̃.

ψ(a+ b∗) = ψ(a) + ψ(b∗) = ψ(a) + ψ(b)∗

= φ(a) + φ(b)∗ = φ̃(a+ b∗).

�

Let F be a quantized Frechet domain with its union space O. A. Dosiev [11,
Theorem 8.2] proved the analog of Arveson’s extension theorem for unital local
CP-maps from local operator systems into C∗

F(O). Using the above theorem we
deduce an analog of Arvesion extension theorem for local CC-maps on subspaces
of locally C∗-algebras. A locally C∗-algebra A is called Frechet locally C∗-algebra
if there is a local isometrical ∗-homomorphism A → C∗

E(D) for some quantized
Frechet domain E with its union space D.

Theorem 3.6. Let F be a quantized Frechet domain and A be a Frechet locally
C∗-algebra. Let M be a unital linear subspace of A and φ : M → C∗

F(O) be a
unital local CC-map. Then φ has a local CP-extension to A.

Proof. Since φ is local CC-map, by Theorem 3.5 there is a local CP-map φ̃ :
M +M∗ → C∗

F(O). Then by Dosiev-Arveson extension theorem [11, Theorem

8.2] φ̃ extended to a local CP-map on A. �

4. Irreducible representations and pure local CP-maps

By a representation of a locally C∗-algebra A we always mean a local contrac-
tive ∗-homomorphism from A into C∗

E(D) for some quantized domain E .

Definition 4.1. Let π : A → C∗
E(D) be a representation. The commutant of π(A)

is denoted by π(A)′ and is defined as

π(A)′ = {T ∈ B(H) : Tπ(a) ⊆ π(a)T, for all a ∈ A}

Definition 4.2. A representation π : A → C∗
E(D) is said to be irreducible if

π(A)′ ∩ C∗
E(D) = CID

The following result is crucial in our discussions.

Theorem 4.3. Let E be a quantized Frechet domain. Let φ ∈ CPCCloc(A, C
∗
E(D))

and (π, V, {H ′; E ′;D′}) be a Stinespring representation of the map φ. If π is
irreducible, then (π, V, {H ′; E ′;D′}) is a minimal Stinespring representation for
the map φ.

Proof. If possible assume that there exists an l1 ∈ N such that [π(A)V Hl1] 6= H ′
l1
.

Since V (Hl) ⊆ H ′
l and H

′
l is invariant for π(a), for every a ∈ A, we must have

[π(A)V Hl1 ] ( H ′
l1
.



8 ARUNKUMAR C.S.

Let l0 = min{l ∈ N : π(A)V Hl] 6= H ′
l}. Take P to be the orthognal projection

of H ′ onto the closed subspace [π(A)V Hl0 ]. We claim that P ∈ π(A)′ ∩ C∗
E ′(D′).

First, we prove that P ∈ C∗
E ′(D′).

To see P (H ′
l) ⊆ H ′

l ; let l ∈ N. If l ≥ l0, then as E ′ is an upward filtered family
and P is a projection we must have P (H ′

l) ⊆ [π(A)V Hl0 ] ( H ′
l0
⊆ H ′

l . If l < l0,
then the choice of l0 gives us H ′

l = [π(A)V Hl]. Then, to show P (H ′
l) ⊆ H ′

l it is
enough to show that P (π(A)V Hl) ⊆ H ′

l . Since l < l0 and P is a projection with
range [π(A)V Hl0], we have Hl ⊆ Hl0 . Thus,

π(A)VHl ⊆ π(A)V Hl0

P (π(A)V Hl) = π(A)V Hl ⊆ H ′
l .

Hence P (H ′
l) ⊆ H ′

l for every l ∈ N.
Note that, as P (H ′

l) ⊆ H ′
l and P is a projection we have P |H′

l
∈ B(H ′

l).

Now, we show that P (H ′⊥
l ∩ D′) ⊆ H ′⊥

l ∩ D′. For x ∈ H ′⊥
l ∩ D′ and y ∈ H ′

l

we need to show that 〈Px, y〉 = 0. If l < l0, then we have H ′
l = [π(A)V Hl].

Since H ′
l = [π(A)V Hl] ⊆ [π(A)V Hl0], we have Py = y for every y ∈ H ′

l . Then it
follows that

〈Px, y〉 = 〈x, Py〉 = 〈x, y〉 = 0.

If l ≥ l0, then [π(A)V Hl0] ( H ′
l . Thus H ′⊥

l ∩ D′ ⊆ [π(A)V Hl0]
⊥. It follows

that Px = 0 for all x ∈ H ′⊥
l ∩ D′. Therefore 〈Px, y〉 = 0 for all y ∈ H ′

l . Hence
P ∈ C∗

E ′(D′).
To see P ∈ π(A)′, let a ∈ A. First, we observe that Pπ(a)h′ = π(a)h′ whenever

h′ ∈ [π(A)V Hl0]. As the restriction of π(a) to H ′
l0

is a bounded operator on
H ′

l0
, it is enough to consider h′ in the dense subspace span(π(A)V Hl0). Let

h′ =
n
∑

i=1

π(ai)V hi for some ai ∈ A, hi ∈ Hl0 and n ∈ N, i = 1, 2, · · ·n. Then,

π(a)h′ = π(a)(
n

∑

i=1

π(ai)V hi)

=
n

∑

i=1

π(aai)V hi ∈ [π(A)V Hl0].

It follows that Pπ(a)h′ = π(a)h′ whenever h′ ∈ [π(A)V Hl0].
Now, consider h′ ∈ D′. Write h′ = h′1 + h′2 where h′1 ∈ [π(A)V Hl0 ] and

h′2 ∈ [π(A)V Hl0 ]
⊥ ∩ D′. It follows that P (h′2) = 0 and Pπ(a)h′1 = π(a)h′1. Then

‖Pπ(a)h′ − π(a)Ph′‖2 = ‖Pπ(a)(h′1 + h′2)− π(a)P (h′1 + h′2)‖
2

= ‖Pπ(a)h′1 + Pπ(a)h′2 − π(a)Ph′1 + π(a)Ph′2‖
2

= ‖Pπ(a)h′2‖
2

= 〈Pπ(a)h′2, Pπ(a)h
′
2〉

= 〈π(a∗)Pπ(a)h′2, h
′
2〉.
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Let h′3 = Pπ(a)h′2 ∈ [π(A)V Hl0 ]. Then

π(a∗)h′3 = π(a∗)(

n
∑

i=1

π(ai)V hi) =

n
∑

i=1

π(a∗ai)V hi ∈ [π(A)V Hl0 ].

But h′2 ∈ [π(A)V Hl0 ]
⊥ will imply that 〈π(a∗)h′3, h

′
2〉 = 0. Hence Pπ(a)h′ =

π(a)Ph′ for every a ∈ A and h′ ∈ D′. Hence P ∈ π(A)′ ∩ C∗
E ′(D′).

But P ∈ π(A)′ ∩ C∗
E ′(D′) is a contradiction as π is irreducible, and P 6= 0 and

P 6= IH . Hence π is a minimal Stinespring representation for φ. �

Remark 4.4. It is well known that a representation θ of a C∗-algebra C is ir-
reducible if and only if the commutant of θ(C) is trivial. If we take A to be a
C∗-algebra and E = {H} in Definition 4.2, then Definition 4.2 coincides with
the usual definition of irreducible representations of C∗-algebra. Also, our def-
inition of irreducibility is motivated by the commutant considered to establish a
Radon-Nikodym type theorem for local CP-maps in [8, Theorem 4.5].

4.1. Pure maps on local operator systems. We introduce the notion of pure
local completely positive maps on local operator system and study its connection
with boundary representations for local operator systems. For this, we use the
convexity structure of the set CPCCloc(S, C

∗
E(D)).

Proposition 4.5. For a local operator system S, the set CPCCloc(S, C
∗
E(D)) is a

linear convex set.

Proof. Let φ1, φ2 ∈ CPCCloc(S, C∗
E(D)) and 0 < t < 1. Fix l ∈ Ω. There exist

αr, βr ∈ Λ, r = 1, 2, such that

φ(n)
r ([aij ]) ≥l 0 whenever [aij ] ≥αr

0 and

‖φ(n)
r ([aij ])‖l ≤ pnβr

([aij ]) for every n ∈ N.

Replace φ1 and φ2 by tφ1 and (1− t)φ2 respectively. Then, for α = max{α1, α2},
we have

tφ
(n)
1 ([aij ]) + (1− t)φ

(n)
2 ([aij]) ≥l 0 whenever [aij] ≥α 0.

Thus, tφ1+(1−t)φ2 is a local CP-map. To see its local CC, take β = max{β1, β2}.
Then for every [aij ] ∈Mn(S),

‖tφ
(n)
1 ([aij ]) + (1− t)‖φ

(n)
2 ([aij ])‖l ≤ ‖tφ

(n)
1 ([aij ])‖l + ‖(1− t)‖φ

(n)
2 ([aij ])‖l

≤ tpnβ1
([aij ]) + (1− t)pnβ2

([aij])

≤ pnβ([aij ]).

. �

Definition 4.6. A map φ ∈ CPCCloc(S, C∗
E(D)) is called pure if for any map

ψ ∈ CPCCloc(S, C∗
E(D)) such that φ − ψ ∈ CPCCloc(S, C∗

E(D)), then there is a
scalar t ∈ [0, 1] such that ψ = tφ.

Remark 4.7. A recent pre-print [17] also defines the notion of purity along sim-
ilar lines.



10 ARUNKUMAR C.S.

Theorem 4.8. A map φ ∈ CPCCloc(A, C∗
E(D)) is pure if and only if φ is of the

form φ(a) ⊆ V ∗π(a)V for all a ∈ A, where π is an irreducible representation of
A on some quantized domain E ′ with its union space D′ and V ∈ L(D,D′), V 6= 0
and V (Hl) ⊆ H ′

l for all l ∈ Ω.

Proof. Let φ ∈ CPCCloc(A, C∗
E(D)) be pure. Using [11, Theorem 5.1] we have

a unital representation π : A → C∗
E ′(D′) for some quantized domain E ′ with its

union space D′ such that φ(a) ⊆ V ∗π(a)V where V ∈ L(D,D′) and V (Hl) ⊆ H ′
l

for all l ∈ Ω. Clearly V 6= 0. Now, let T ∈ π(A)′∩C∗
E(D) with 0 ≤ T ≤ I. Taking

ψ(.) = V ∗Tπ(.)V |D in [8, Theorem 4.5] we have ψ ≤ φ. As φ is pure it follows
that ψ = tφ. Applying [8, Corollary 4.6], T = tI. Hence π is irreducible.

Conversely, let π be an irreducible representation of A on some quantized
domain E ′ with its union space D and V be a non zero operator in L(D,D′)
such that V (Hl) ⊆ H ′

l for all l ∈ Ω. To show that φ(.) ⊆ V ∗π(.)V is pure,
consider ψ ∈ CPCCloc(A, C

∗
E(D)) with ψ ≤ φ. As π is irreducible by Theorem 4.3

(π, V, {H ′, E ′,D′}) is a minimal Stinespring representation’s representation for φ.
Now, applying [8, Corollary 4.6], there exists a unique T ∈ π(A)′ ∩ C∗

E(D) such
that 0 ≤ T ≤ I and ψ(a) ⊆ V ∗Tπ(a)V for all a ∈ A. Since π is irreducible,
T = tI. It follows that ψ = tφ and hence φ is pure. �

Proposition 4.9. Let S1 and S2 be local operator systems in a locally C∗-algebra
A such that S1 ⊆ S2. Let φ : S2 → C∗

E(D) be a unital local CP-map such that its
a linear extreme point of CPCCloc(S2, C∗

E(D)). If φ|S1
is pure, then φ is a pure.

Proof. Let φ1, φ2 ∈ CPCCloc(S2, C
∗
E(D)) such that φ = φ1+φ2. Since φ|S1

is pure,
there exists t ∈ (0, 1) such that φ1|S1

= tφ|S1
and φ2|S1

= (1− t)φ|S1
. The maps

1
t
φ1 and 1

1−t
φ2 are unital local CP-map on S2. By Theorem 3.4 both the maps

are local CC-maps. It follows that 1
t
φ1,

1
1−t
φ2 ∈ CPCCloc(S2, C∗

E(D)). Then the

expression φ = t1
t
φ1+(1− t) 1

1−t
φ2 and the assumption φ is linear extreme implies

that φ is pure. �

5. Local Boundary representations

In this section, we introduce the notion of local boundary representations for
locally C∗-algebras and establish its connection with pure local CP-maps.

Definition 5.1. Let S be a linear subspace of a locally C∗-algebra A such that
S generates A. A representation π : A → C∗

E(D) is said to have local unique
extension property for S if π|S has a unique local completely positive extension to
A, namely π itself.

Remark 5.2. Let π : A → C∗
E(D) be a representation of A. Then π|S has just

one multiplicative local CP-extension to A, namely π itself, but in general, there
may exist other local CP-extensions of π|S.

Example 5.3. For a self adjoint operator T ∈ C∗
E(D), let S = span{I, T, T 2} and

B be the locally C∗-algebra generated by S in C∗
E(D). We show that the identity

representation IB of B has local unique extension property. Let φ : B → C∗
E(D)

be a local completely positive map such that φ(x) = x for all x ∈ S. Consider
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a minimal Stinespring representation (π, V, {H ′; E ′;D′}) of φ. To prove φ = IB
on B it is enough to show that V is a unitary. We claim that V (D) is invariant
for π(B). Then by minimality H ′ = [π(B)V (D)] ⊆ [V (D)] ⊆ H ′ will imply V is
a unitary. Now, to see the claim let us first show that π(T )V (D) ⊆ V (D). For
that, we show that π(T )V (Hl) ⊆ V (Hl) for every l ∈ Ω. Let l ∈ Ω and g ∈ H ′

l ,

‖(I − V V ∗)π(T )V V ∗g‖2 = 〈(I − V V ∗)π(T )V V ∗g, (I − V V ∗)π(T )V V ∗g〉

= 〈V V ∗π(T )(I − V V ∗)π(T )V V ∗g, g〉

= 〈V V ∗π(T )π(T )V V ∗g − V V ∗π(T )V V ∗π(T )V V ∗g, g〉

= 〈V φ(T 2)V ∗h′ − V φ(T )φ(T )V ∗g, g〉

= 〈V T 2V ∗g − V T 2V ∗h′, g〉

= 0.

Thus (I−V V ∗)π(T )V V ∗ = 0 on H ′
l . Since T is self adjoint, V V ∗π(T )(I−V V ∗) =

0 on H ′
l . These two observations and the facts π(T )|H′

l

∈ B(H ′
l), V|Hl

is an

isometry and π(T )V (Hl) ⊆ H ′
l will give π(T )V (Hl) ⊆ V (Hl). As l is arbitrary,

it follows that π(T )V (D) ⊆ V (D). To show π(B)V (D) ⊆ V (D), let T0 ∈ B and
BT = span{I, T, T 2, T 3, · · · }. Then T0 = limTλ, where Tλ ∈ BT . For h ∈ Hl,

‖π(Tλ)V h− π(T0)V h‖H′
l
= ‖π(Tλ − T0)V h‖H′

l

≤ pα(Tλ − T0)‖h‖Hl
,

where α corresponds to l in the local contractivity of π. As {Tλ} converges to
T0, we have pα(Tλ − T0) → 0 and hence {π(Tλ)V h} converges to π(T0)V h in H ′

l .
Therefore,

π(T0)V h ∈ [π(Tλ)V h].

As π(T ) leaves V (Hl) invariant, so is every element of BT . Then using the fact
that V Hl is a closed subspace (as V is an isometry and Hl is a closed subspace),

π(T0)V h ∈ [π(Tλ)V h] ⊆ [π(Tλ)V (Hl)] ⊆ [V (Hl)] = V (Hl).

Therefore π(B)V (Hl) ⊆ V (Hl) for every l and hence π(B)V (D) ⊆ V (D).

Example 5.4. Let K be an infinite dimensional separable complex Hilbert space
with a complete orthonormal basis {en : n ∈ N}. ConsiderKn = span{e1, e2, · · · en}
and Hn = K ⊕Kn. Then E = {Hn : n ∈ N} is a quantized domain in the Hilbert
space H = K ⊕K with union space D = ∪{Hn : n ∈ N}. Define V : H → H to
be the map V0 ⊕ 1K where V0 : K → K be the unilateral right shift operator and
1K be the identity operator on K. Note that V is an isometry but not a unitary.
Also, V (K ⊕Kn) ⊆ K ⊕Kn and

V ((K ⊕Kn)
⊥) = V (0⊕K⊥

n ) = 0⊕K⊥
n = (K ⊕Kn)

⊥.

Therefore V |D ∈ C∗
E(D).

Consider the local operator system S = span{1D, V |D, V
∗} in C∗

E(D) and let
B the locally C∗-algebra generated by S in C∗

E(D). We claim that the inclusion
map from S to C∗

E(D) have two distinct local CP-extension to B. Obviously the
inclusion representation IB : B → C∗

E(D) is a local CP-extension of the inclusion
map on S. Define ψ : B → C∗

E(D) by ψ(a) = V ∗IB(a)V |D for all a ∈ B. Clearly
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ψ is a unital local completely positive map on B. For all scalars c1, c2 and c3 we
have

ψ(c11D + c2V |D + c3V
∗) = V ∗(c11D + c2V |D + c3V

∗)V |D

= c11D + c2V |D + c3V
∗.

Therefore ψ|S = IB|S. Now the element V |DV
∗ ∈ B. But

ψ(V |DV
∗) = V ∗V |DV

∗V |D = ID 6= V |DV
∗.

That is ψ 6= IB on B. Therefore, the irreducible representation IB doesn’t have
local unique extension property for S.

Definition 5.5. Let S be a linear subspace of a local C∗-algebra A such that
S generates A. An irreducible representation π : A → C∗

E(D) is called a local
boundary representation for S if π has local unique extension property for S.

Remark 5.6. The Definition 5.1 and Definition 5.5 are meaningful for local
operator systems in arbitrary locally C∗-algebras. But the Arveson’s extension
theorem in the context of locally C∗-algebras is available only for C∗

E(D) for quan-
tized Frechet domain E and thus we restrict our studies to the context of Frechet
locally C∗-algebras.

Now, we show that the local boundary representations are intrinsic invariants
for local operator systems. Let A1 be a locally C∗-algebra and A2 = C∗

E2
(D2) be

the locally C∗-algebras of all non-commutative continuous functions on a quan-
tized Frechet domain E2 with its union space D2.

Theorem 5.7. Let S1 and S2 be linear subspaces of A1 and A2 respectively. Let
φ : S1 → S2 be a unital surjective local completely isometric linear map. Then for
every boundary representation π1 of A1 there exists a boundary representation π2
of A2 such that π2 ◦ φ(a) = π1(a) ∀ a ∈ S1.

Proof. By Theorem 3.6 we can extend φ to a local CP-map φ̃ : A1 → A2. Consider
the map ψ : S2 → C∗

E(D) given by (ψ ◦ φ)(a) = π1(a). Clearly ψ is a unital local
CC-map. Again by Theorem 3.6 there exists a local CP-extension of ψ, say π2,
where π2 : A2 → C∗

E(D) such that (π2 ◦ φ)(a) = π1(a) for every a ∈ S1. Since π1
is a boundary representation, (π2 ◦φ)(a) = π1(a) for every a ∈ A1. Note that the

locally C∗-algebra generated by φ̃(A1) is equal to A2 and π2 is continuous for the
respective topologies. Thus, to prove π2 is an algebra homomorphism it’s enough
to prove that π2(xy) = π2(x)π2(y) for every x ∈ φ̃(A1) and for all y ∈ A2. But
in view of [11, Corollary 5.5], it’s enough to prove that

π2(x)
∗π2(x) = π2(x

∗x) ∀x ∈ φ̃(A1).
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Let a ∈ A1. Then using the fact that a local positive map is positive [16, Propo-
sition 2.1], and [11, Corollary 5.5] we have, on D,

π2(φ̃(a))
∗π2(φ̃(a)) ≤ π2(φ̃(a)

∗φ̃(a)) = π2(φ̃(a
∗)φ̃(a))

≤ π2(φ̃(a
∗a))

= π1(a
∗a)

= π1(a
∗)π1(a)

= π2(φ̃(a))
∗π2(φ̃(a)).

Therefore π2(φ̃(a)
∗φ̃(a)) = π2(φ̃(a))

∗π2(φ̃(a)) on D. Thus π2 is a representation
of A2. In fact we proved that any local CP-extension of ψ = π2|S2

to A2 is
multiplicative on A2. Equivalently, π2 has local unique extension property for S2.

Now, note that π1(A1) ⊆ (π2◦φ̃)(A1) ⊆ π2(A2). Thus, for commutants we have
π2(A2)

′ ⊆ π1(A1)
′. Then the irreducibility of π2 follows from the irreducibility of

π1. This completes the proof. �

Corollary 5.8. Let S1 and S2 be local operator systems of A1 and A2 respectively.
Let φ : S1 → S2 be a unital invertible local CP-map such that φ−1 is also a local
CP-map. Then for every boundary representation π1 of A1 there exists a boundary
representation π2 of A2 such that π2 ◦ φ(a) = π1(a) ∀ a ∈ S1.

Remark 5.9. We expect the above theorem and consequently the corollary to be
true for any Frechet locally C∗-algebras in place of A2 = C∗

E2
(D2).

5.1. Characterisation of boundary representations. The following theorem
shows that the restriction of a local boundary representation to the local operator
system is a pure map.

Theorem 5.10. Let S be a local operator system in a Frechet local C∗-algebra
A such that S generates A. Let E be a quantized Frechet domain with its union
space D, and π : A → C∗

E(D) be a boundary representation for S. Then π|S is a
pure map on S.

Proof. Let π1, π2 ∈ CPCCloc(S, C
∗
E(D)) such that π|S = π1 + π2. Then by Dosiev-

Arveson extension theorem [11, Theorem 8.2], each πi extends to a local CPCC
map on A, call it π̃i, i = 1, 2. We will show that π̃1 + π̃2 ∈ CPCCloc(A, C

∗
E(D)).

For that, fix l ∈ N. Then there exists αi and βi such that π̃i(a) ≥l 0 whenever
a ≥αi

0 in A and ‖π̃i(b)‖l ≤ pβi
(b) for every b ∈ A. Take α = max{α1, α2}

and β = max{β1, β2}. Using the fact that the family of semi-norms {pn}n∈N
is an upward filtered family, we have π̃i(a) ≥l 0 whenever a ≥α 0 in A and
‖π̃i(b)‖l ≤ pβ(b) for every b ∈ A. Therefore, π̃1 + π̃2 ∈ CPCCloc(A, C

∗
E(D)).

Now, since π̃1 + π̃2|S = π1 + π2 = π|S and π is a boundary representation for
S, we must have π(a) = π̃1(a) + π̃2(a) for every a ∈ A. The irreducibility of π
and the Theorem 4.8 implies that π is a pure map. Thus, for each i, there exist
ti ∈ [0, 1] such that π̃i(a) = tiπ(a) for every a ∈ A. It follows that πi = tiπ|S.
Hence π|S is a pure map on S. �
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Now, we show that certain irreducible representations of A that are pure
CPCC-maps on S are local boundary representations. For this, we need to in-
troduce a couple of new notions. Let S be a local operator system in a local
C∗-algebra A such that A is generated by S, and let π : A → C∗

E(D) be a repre-
sentation of A. We say that π is a finite representation for S if for every isometry
V ∈ B(H) with V (Hl) ⊆ Hl for every l ∈ Λ, the condition π(x) ⊆ V ∗π(x)V for
every x ∈ S implies V is a unitary. We say that the local operator system S sep-
arates the irreducible representation π if for any irreducible representation ρ of A
on some quantized domain E ′ with its union space D′ =

⋃

l∈Λ

H ′
l and an isometry V

in B(H,H ′) that satisfies V (Hl) ⊆ H′
l for every l ∈ Λ such that π(x) ⊆ V ∗ρ(x)V

for all x ∈ S implies that π and ρ are unitarily equivalent representations of A.

Theorem 5.11. Let S be a local operator system in a local C∗-algebra A such
that A is generated by S. Then, an irreducible representation π : A → C∗

E(D) is a
local boundary representations for S if and only if the following conditions hold;

(i) π|S is a pure map on S
(ii) Every local CP-extension of π|S to A is a linear extreme point of

CPCCloc(A, C
∗
E(D))

(iii) π is a finite representation for S
(iv) S separates π.

Proof. Let π be an irreducible representation of A. Assume that π is a local
boundary representation for S. Then the statement (i) follows by Theorem 5.10.

(ii): Since π is a local boundary representation, there is only one local CP-
extension of π|S to A, namely π itself. Let φ1, φ2 ∈ CPCCloc(A, C∗

E(D)) such
that π = φ1 + φ2. Then π|S = φ1|S + φ2|S. But π|S is pure by statement (i).
Thus φ1|S = tπ|S and φ2|S = (1 − t)π|S for some t ∈ [0, 1]. If 0 < t < 1, then
π|S = 1

t
φ1|S and π|S = 1

1−t
φ2|S. Now the maps 1

t
φ1 and 1

1−t
φ2 on A are unital

local CP-extensions of π|S. But π is a boundary representation for S would
imply that π = 1

t
φ1 and π = 1

1−t
φ2 on A. That is, π is a linear extreme point of

CPCCloc(A, C
∗
E(D)).

(iii): Consider an isometry V on H such that π(x) ⊆ V ∗π(x)V for every x ∈ S
and V (Hl) ⊆ Hl for every l ∈ Λ. Then φ(a) := V ∗π(a)V |D for all a ∈ A is a
unital local CP-extension of π|S. As π is a local boundary representation we must
have π(a) = V ∗π(a)V |D for all a ∈ A. We claim that V ∈ π(A)′∩C∗

E(D). Clearly
V is bounded and V (Hl) ⊆ Hl ∀ l. Let x ∈ H⊥

l ∩ D. Since π is irreducible, by
Theorem 4.3 (π, V, {H, E ,D}) is a minimal Stinespring for π. Then by [8, Lemma
4.2], V x = π(1)V x ∈ H⊥

l . It follows that V x ∈ H⊥
l ∩ D as V (Hl) ⊆ Hl. Thus

V (H⊥
l ∩ D) ⊆ H⊥

l ∩ D and hence V ∈ C∗
E(D). To see V ∈ π(A)′; first note that

dom(V π(a)) = D ⊆ dom(π(a)V ) for all a ∈ A. Let h ∈ D and a ∈ A.
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‖V π(a)h− π(a)V h‖2

=〈V π(a)h− π(a)V h, V π(a)h− π(a)V h〉

=‖V π(a)h‖2 − 〈π(a)V h, V π(a)h〉 − 〈V π(a)h, π(a)V h〉+ ‖π(a)V h‖2

=‖π(a)h‖2 − 〈V ∗π(a)V h, π(a)h〉 − 〈π(a)h, V ∗π(a)V h〉+ ‖π(a)V h‖2

=‖π(a)h‖2 − 〈π(a)h, π(a)h〉 − 〈π(a)h, π(a)h〉+ ‖π(a)V h‖2

=‖π(a)V h‖2 − ‖π(a)h‖2 = 〈π(a)V h, π(a)V h〉 − 〈π(a)h, π(a)h〉

=〈V ∗π(a∗)π(a)V h, h〉 − 〈π(a)∗π(a)h, h〉

=〈π(a∗a)h, h〉 − 〈π(a∗a)h, h〉 = 0.

Therefore V π(a) ⊆ π(a)V for every a ∈ A and hence V ∈ π(A)′ ∩C∗
E(D). By the

irreducibility of π implies V = λIH , λ ∈ C. Thus, the isometry V is a unitary.
Hence π is a finite representation for S.

(iv): Assume that ρ is an irreducible representation of A on some quantized
domain E ′ with its union space D′ =

⋃

l∈Λ

H ′
l and an isometry V in B(H,H ′) that

satisfies V (Hl) ⊆ H′
l for every l ∈ Λ such that π(x) ⊆ V ∗ρ(x)V for all x ∈ S. As

π is a local boundary representation for S, it follows that π(a) ⊆ V ∗ρ(a)V for all
a ∈ A . Here π and ρ are irreducible representations of A. By Theorem 4.3 the
Stinespring representations (π, IH, {H, E ,D}) and (ρ, V, {H ′, E ′,D′}) are minimal
for π. Then [8, Theorem 3.4] will imply that π and ρ are unitarily equivalent.
Hence S separate π.

Conversely assume that the irreducible representation π satisfies all the four
conditions. Let φ : A → C∗

E(D) be a local CP-map such that φ(a) = π(a) for
every a ∈ S. By condition (ii), φ is a linear extreme point of CPCCloc(A, C

∗
E(D)).

Then statement (i) and Proposition 4.9 will imply that φ is a pure map in
CPCCloc(A, C∗

E(D)). If {ω;V ; {K,F ,O}} is a minimal Stinespring representa-
tion for φ, then by Theorem 4.8 ω is irreducible. Also,

π(a) = φ(a) = V ∗ω(a)V |D for all a ∈ S.

As π separates S, π and ω are unitarily equivalent. Let U : K → H be a unitary
such that U(O) ⊆ D and

ω(a) = U∗π(a)U |D for all a ∈ S.

Then

π(a) = V ∗U∗π(a)UV |D for all a ∈ S.

Since π is a finite representation and UV is an isometry on H , we have UV is a
unitary. Thus V = U∗(UV ) is also a unitary. Therefore φ(a) = V ∗π(a)V |D on A
is a representation of A which coincides with π on S. Therefore φ(a) = π(a) for
all a ∈ A and hence π is a local boundary representation for S. �
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