62. Local Boundedness of Monotone-type Operators^{*}

By P. M. FITZPATRICK,**' P. HESS,***' and Tosio KATO***'

(Comm. by Kôsaku Yosida, M. J. A., May 12, 1972)

In this note we give a simple proof that certain monotone-type operators are locally bounded in the interior of their domains, thus generalizing a result of [1]. As special cases, we obtain the local boundedness for monotone operators from a Fréchet space to its dual and for accretive operators in a Banach space with a uniformly convex dual.

In what follows let X, Y be metrizable linear topological spaces. Further assume that Y is locally convex and complete (Fréchet space). We denote by \langle , \rangle the pairing between Y and its dual Y*. We introduce a metric in X and denote by B_r the open ball in X with center 0 and radius r > 0.

Let T be a mapping of X into 2^{Y^*} , with domain $D(T) = \{x \in X : Tx \neq \emptyset\}$ and graph $G(T) = \{(x, f) \in X \times Y^*; f \in Tx\}$. Let F be a function on X to Y. Slightly generalizing a definition used in [1], we say T is Fmonotone if $\langle F(x_1-x_2), f_1-f_2 \rangle \ge 0$ for $(x_j, f_j) \in G(T), j=1, 2$.

Theorem. Assume that there is $r_0 > 0$ such that

(i) F is uniformly continuous on B_{r_0} to Y.

(ii) For each $r < r_0$, $F(B_r)$ is absorbing in Y.

(iii) For each $u \in X$, the set $\{F(z-u) - Fz; z \in B_{r_0}\}$ is bounded in Y. If $T: X \rightarrow 2^{Y^*}$ is F-monotone, then T is locally bounded at each interior point x_0 of D(T), in the following sense: for each sequence $\{(x_n, f_n)\}$ in G(T) with $x_n \rightarrow x_0, \{f_n\}$ is equicontinuous.

Examples. 1. Let Y=X and F=identity map in X. Then Fmonotonicity means monotonicity in the sense of Minty-Browder. Conditions (i) to (iii) are trivially satisfied, and the theorem shows that a monotone operator from a Fréchet space X to X^* is locally bounded in the interior of its domain (cf. [2], [3]).

2. Let X be a Banach space with X^* uniformly convex, and let $Y=X^*$ so that $Y^*=X^{**}=X$. Let F be the (normalized) duality map of X to X^* . Then F-monotonicity means accretiveness in the usual sense. It is known that F is onto X^* and uniformly continuous on any bounded set in X. Thus (i) to (iii) are satisfied, and the theorem shows

^{*)} This work was partly supported by NSF Grants GP-27719 and GP-29369X.

^{**)} Courant Institute of Math. Sciences, New York University, U.S.A.

^{***)} Department of Math., University of California, Berkeley, U. S. A.

that an accretive operator in such a space X is locally bounded in the interior of its domain (cf. [4], Section 3, where a similar result is proved under a slightly stronger assumption).

The proof of the theorem is based on the following lemma.

Lemma. Let $\{u_n\}$ and $\{f_n\}$ be sequences in X and Y*, respectively. Suppose $u_n \rightarrow 0$ but $\{f_n\}$ is not equicontinuous. Then for each $r < r_0$, r > 0, there exists $z_0 \in B_r$ such that $\langle F(z_0 - u_n), f_n \rangle \rightarrow \infty$ along a subsequence of $\{n\}$.

Proof of Lemma. For $z \in X$ set $H_n z = F(z - u_n) - Fz$. Since $u_n \to 0$ and F is uniformly continuous on B_{r_0} , we have

(1) $H_n z \rightarrow 0$ uniformly for $z \in B_r$. Set

$$(2) g_n = f_n/a_n, \quad a_n = \max(1, b_n), \quad b_n = \sup_{n \in \mathbb{Z}} |\langle H_n z, f_n \rangle|.$$

Note that b_n is finite for each fixed n, since $H_n(B_r)$ is a bounded set in Y by (iii) (see [5], p. 44). We claim that $\{g_n\}$ is not equicontinuous. This is obvious if $b_n \leq 1$ for almost all n so that $g_n = f_n$. If $b_n > 1$ for infinitely many n, on the other hand, we can choose $z_n \in B_r$ such that $|\langle H_n z_n, f_n \rangle| > b_n/2$ for those n. Then $a_n = b_n$ and $|\langle H_n z_n, g_n \rangle| > 1/2$. Since $H_n z_n \to 0$ by (1), we see that $\{g_n\}$ is not equicontinuous.

According to the uniform boundedness theorem (see [5], p. 68), it follows that there is $y_0 \in Y$ such that $\langle y_0, g_n \rangle \to \infty$ along a subsequence of $\{n\}$. Since $F(B_r)$ is absorbing by (ii), there is $z_0 \in B_r$ with $Fz_0 = cy_0$, c > 0. Hence $\langle Fz_0, g_n \rangle \to \infty$. On the other hand $|\langle H_n z_0, g_n \rangle|$ $= |\langle H_n z_0, f_n \rangle|/a_n \le b_n/a_n \le 1$. Since $a_n \ge 1$, it follows that $\langle F(z_0 - u_n), f_n \rangle$ $= a_n \langle Fz_0 + H_n z_0, g_n \rangle \to \infty$.

Proof of Theorem. Suppose $\{f_n\}$ is not equicontinuous. Choose r > 0 so small that $x_0 + B_r \subset D(T)$. According to the lemma, there exists $z_0 \in B_r$ such that

(3) $\langle F(z_0-(x_n-x_0)), f_n \rangle \rightarrow \infty, \quad n \rightarrow \infty,$ after going over to a subsequence if necessary.

Set $u_0 = x_0 + z_0 \in D(T)$ and let $h \in Tu_0$. The *F*-monotonicity of *T* implies $\langle F(u_0 - x_n), h - f_n \rangle \ge 0$. Since *F* is continuous at z_0 , it follows that $\limsup_{n \to \infty} \langle F(u_0 - x_n), f_n \rangle \le \langle Fz_0, h \rangle < \infty$, a contradiction to (3). This proves the theorem.

References

- T. Kato: Demicontinuity, hemicontinuity and monotonicity. II. Bull. Amer. Math. Soc., 73, 886-889 (1967).
- [2] R. T. Rockafellar: Local boundedness of nonlinear, monotone operators. Michigan Math. J., 16, 397-407 (1969).
- [3] F. E. Browder: Nonlinear monotone and accretive operators in Banach spaces. Proc. Nat. Acad. Sci., 61, 388-393 (1968).

- [4] F. E. Browder: Nonlinear operators and nonlinear equations of evolution in Banach spaces, to appear in the Proceedings of the Symposium on Nonlinear Functional Analysis, Amer. Math. Soc. April, 1968, in Chicago.
- [5] K. Yosida: Functional Analysis (third edition). Springer (1971).