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For classification problems with significant class imbalance, subsam-

pling can reduce computational costs at the price of inflated variance in esti-

mating model parameters. We propose a method for subsampling efficiently

for logistic regression by adjusting the class balance locally in feature space

via an accept–reject scheme. Our method generalizes standard case-control

sampling, using a pilot estimate to preferentially select examples whose re-

sponses are conditionally rare given their features. The biased subsampling is

corrected by a post-hoc analytic adjustment to the parameters. The method is

simple and requires one parallelizable scan over the full data set.

Standard case-control sampling is inconsistent under model misspecifi-

cation for the population risk-minimizing coefficients θ∗. By contrast, our

estimator is consistent for θ∗ provided that the pilot estimate is. Moreover,

under correct specification and with a consistent, independent pilot estimate,

our estimator has exactly twice the asymptotic variance of the full-sample

MLE—even if the selected subsample comprises a miniscule fraction of the

full data set, as happens when the original data are severely imbalanced.

The factor of two improves to 1 + 1
c if we multiply the baseline acceptance

probabilities by c > 1 (and weight points with acceptance probability greater

than 1), taking roughly 1+c
2

times as many data points into the subsample.

Experiments on simulated and real data show that our method can substan-

tially outperform standard case-control subsampling.

1. Introduction. In recent years, statisticians, scientists and engineers are in-

creasingly analyzing enormous data sets. When data sets grow sufficiently large,

computational costs may play a major role in the analysis, potentially constraining

our choice of methodology or the number of data points we can afford to process.

Computational savings can translate directly to statistical gains if they:

(1) enable us to experiment with and prototype a variety of models, instead of

trying only one or two,

(2) allow us to refit our models more often to adapt to changing conditions,

(3) allow for cross-validation, bagging, boosting, bootstrapping or other com-

putationally intensive statistical procedures or
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(4) open the door to using more sophisticated statistical techniques on a com-

pressed data set.

Bottou and Bousquet (2008) discuss the tradeoffs arising when we adopt this point

of view. One simple manifestation of these tradeoffs is that we may run out of

computing resources before we run out of data, in effect making the sample size n

a function of the efficiency of our fitting method.

1.1. Imbalanced data sets. Class imbalance is pervasive in modern classifica-

tion problems and has received a great deal of attention in the machine learning

literature [Chawla, Japkowicz and Kotcz (2004)]. It can come in two forms:

Marginal imbalance. One of the classes is quite rare; for instance, P(Y = 1) ≈ 0.

Such imbalance typically occurs in data sets for predicting click-through rates

in online advertising, detecting fraud or diagnosing rare diseases.

Conditional imbalance. For most values of the features X, the response Y is very

easy to predict; for instance, P(Y = 1|X = 0) ≈ 0 but P(Y = 1|X = 1) ≈ 1. For

example, such imbalance might arise in the context of email spam filtering,

where well-trained classifiers typically make very few mistakes.

Both or neither of the above may occur in any given data set. The machine learning

literature on class imbalance usually focuses on the first type, but the second type

is also common.

If, for example, our data set contains one thousand or one million negative ex-

amples for each positive example, then many of the negative data points are in

some sense redundant. Typically in such problems, the statistical noise is primar-

ily driven by the number of representatives of the rare class, whereas the total size

of the sample determines the computational cost. If so, we might hope to finesse

our computational constraints by subsampling the original data set in a way that

enriches for the rare class. Such a strategy must be implemented with care if our

ultimate inferences are to be valid for the full data set.

This article proposes one such data reduction scheme, local case-control sam-

pling, for use in fitting logistic regression models. The method requires one paral-

lelizable scan over the full data set and yields a potentially much smaller subsample

containing roughly half of the information found in the original data set.

1.2. Subsampling. The simplest way to reduce the computational cost of a

procedure is to subsample the data before doing anything else. However, uniform

subsampling from an imbalanced data set is inefficient since it fails to exploit the

unequal importance of the data points.

Case-control sampling—sampling uniformly from each class but adjusting the

mixture of the classes—is a more promising approach. This procedure originated

in epidemiology, where the positive examples (cases) are typically diseased pa-

tients and negative examples (controls) are disease-free [Mantel and Haenszel
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(1959)]. Often, an equal number of cases and controls are sampled, resulting in

a subsample with no marginal imbalance, and costly measurements of predictor

variables are only made for selected patients [Breslow, Day et al. (1980)]. This

method is useful in our context as well, since a logistic regression model fitted on

the subsample can be converted to a valid model for the original population via a

simple adjustment to the intercept [Anderson (1972), Prentice and Pyke (1979)].

However, standard case-control sampling still may not make most efficient use

of the data. For instance, it does nothing to exploit conditional imbalance in a data

set that is marginally balanced. Even with some marginal imbalance, a control that

looks similar to the cases is often more useful for discrimination purposes than one

that is obviously not a case.

We propose a method, local case-control sampling, which attempts to remedy

imbalance locally throughout the feature space. Given a pilot estimate (α̃, β̃) of

the logistic regression parameters, local case-control sampling preferentially keeps

data points for which Y is surprising given X. Specifically, if p̃(x) = eα̃+β̃′x

1+eα̃+β̃′x , we

accept (xi, yi) with probability |yi − p̃(xi)|, the ℓ1 residual of the pilot model. In

the presence of extreme marginal or conditional imbalance, these errors will gen-

erally be quite small and the subsample can be many orders of magnitude smaller

than the full data set.

Just as with case-control sampling, we can fit our model to the subsample and

make an equally simple correction to obtain an estimate for the original data set.

When the logistic regression model is correctly specified and the pilot is consis-

tent and independent of the data, the asymptotic variance of the local case-control

estimate is exactly twice the variance of a logistic regression fit on the (poten-

tially much larger) full data set. This factor of two improves to 1 + 1
c

if we ac-

cept with probability c|yi − p̃(xi)| ∧ 1 and weight accepted points by a factor of

c|yi − p̃(xi)| ∨ 1. For example, if c = 5 then the variance of the subsampled esti-

mate is only 20% greater than the variance of the full-sample MLE. The subsample

we take with c > 1 is no more than c times larger than the subsample for c = 1,

and for data sets with large imbalance is roughly 1+c
2

times as large.

Local case-control sampling also improves on the bias of standard case-control

sampling. When the logistic regression model is misspecified, case-control sam-

pling is in general inconsistent for the risk minimizer in the original population.

By contrast, local case-control sampling is always consistent given a consistent pi-

lot, and is also asymptotically unbiased when the pilot is. Sections 5 and 6 present

empirical results demonstrating the advantages of our approach in simulations and

on the Yahoo! webspam data set.

1.3. Notation and problem setting. Our setting is that of predictive classifi-

cation: we are given n independent and identically distributed observations, each

consisting of predictors xi ∈ X and a binary response yi ∈ {0,1}, with joint prob-

ability measure P. For our purposes, we assume the predictors are mapped into
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some real covariate vector space, so that X ⊆R
p Our aim is to learn the function

p(x) = P(Y = 1|X = x)(1)

or equivalently to learn

f (x) = logit
(
p(x)

)
= log

p(x)

1 − p(x)
(2)

which could be infinite for some x.

A linear logistic regression model assumes f is linear in x; that is,

fθ (x) = fα,β(x) = α + β ′x,(3)

where θ = (α,β) ∈ R
p+1. This is less of a restriction than it might seem, since x

may represent a very large basis expansion of some smaller set of “raw” features.

Nevertheless, in the real world, f is unlikely to satisfy our parametric model

for any given basis x. When the model is misspecified, we can still view logistic

regression as an M-estimator with convex loss equal to the negative log-likelihood

for a single data set:

ρ(θ;x, y) = −y
(
α + β ′x

)
+ log

(
1 + eα+β ′x)

.(4)

As an M-estimator, under general conditions logistic regression in large samples

will converge to the minimizer of the population risk R(θ) = Eρ(θ;X,Y ) [Huber

(2011)]. That is, θ converges to the population maximizer of the expected log-

likelihood

θ∗ = arg min
θ

Eρ(θ;X,Y )(5)

= arg min
θ

E
[
−Y

(
α + β ′X

)
+ log

(
1 + eα+β ′X)]

.(6)

If f = fθ0
for some θ0, then θ∗ = θ0; otherwise fθ∗ is the best linear approx-

imation to f in the sense of (5). For a misspecified model, f
θ̂

cannot possibly

converge to f no matter what sampling scheme or estimation procedure we use,

or how much data we obtain. Consistency, then, will mean that θ̂
p→ θ∗.

Model misspecification is ubiquitous in real-world applications of regression

methods. For reasons of exposition, the misspecification always takes a simple

form in our simulations, for example, in Example 1 there are two binary predictors,

and we would have correct specification if only we added one interaction—but in

the real world it usually is neither possible nor even desirable to expand the feature

basis until the model is correctly specified. For instance, if p = 1000, then there are(p+1
2

)
= 500,500 quadratic terms. Even if we included all those terms as features,

we would still be missing cubic terms, quartic terms, and so on.

Some kinds of misspecification are milder than others, and some are easier

to find and fix than others. Seeking better-specified models (without adding too
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much model complexity) is a worthy goal, but realistically perfect specification is

unattainable.

Our goal, then, is to speed up computation while still obtaining a good estimate

of θ∗, the population logistic regression parameters. As we will see, standard case-

control sampling achieves the first goal, but may fail at the second.

1.4. Related work. Recent years have seen substantial work on classification

in imbalanced data sets. See Chawla, Japkowicz and Kotcz (2004) and He and

Garcia (2009) for surveys of machine learning efforts on this problem. Many of

the methods proposed involve some form of undersampling the majority class,

oversampling the minority class, or both. Owen (2007) examined the limit of

marginally imbalanced logistic regression and proved it is equivalent to fitting an

exponential family model to the minority class.

One recurring theme is to preferentially sample negative examples that lie near

positive examples in feature space. For example, Mani and Zhang (2003) propose

selecting majority-class examples whose average distance to its three nearest mi-

nority examples is smallest. Our method has a similar flavor since the probability

of sampling a negative example (x,0) is p̃(x), which is large when the features x

are similar to those characteristic of positive examples.

Our proposal lies more in the tradition of the epidemiological case-control

sampling literature. In particular, case-control sampling within several categorical

strata has been studied by Breslow and Cain (1988), Fears and Brown (1986), Scott

and Wild (1991), Weinberg and Wacholder (1990). Typically, the strata are based

on easy-to-measure screening variables available for a wide population, with more

laborious-to-collect variables being measured on the sampled subjects. Lumley,

Shaw and Dai (2011) discuss survey calibration methods for efficient regression in

two-stage sampling schemes, which are interesting but too computationally inten-

sive for our purposes here.

2. Case-control subsampling. Case-control sampling is commonly carried

out by taking all the cases and exactly c times as many controls for some fixed c

(e.g., c = 1,2,5). However, for our purposes it will be simpler to consider a nearly

equivalent procedure based on accept–reject sampling.

Define some acceptance probability function a(y) and let b = log a(1)
a(0)

, the log-

selection bias. Consider the following algorithm:

(1) Generate independent zi ∼ Bernoulli(a(yi)).

(2) Fit a logistic regression to the subsample S = {(xi, yi) : zi = 1}, obtaining

unadjusted estimates θ̂S = (α̂S, β̂S).

(3) Assign α̂ ← α̂S − b and β̂ ← β̂S .

Specifically, we could generate the zi by first generating ui ∼ U(0,1) mutually

independent of the pilot, the data, and each other, then taking zi = 1ui≤a(yi). Note
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that steps (2)–(3) are equivalent to logistic regression with offset b for each data

point.

This variant is convenient to analyze because the subsample thus obtained is an

i.i.d. sample from a new population:

PS(X,Y ) = P(X,Y |Z = 1) = a(Y )P(X,Y )

ā
(7)

with ā = a(1)P(Y = 1) + a(0)P(Y = 0), the marginal probability of Z = 1.

The estimate (α̂, β̂) is motivated by a simple application of Bayes’ rule relating

the odds of Y = 1 in P and PS . If g(x) is the true conditional log-odds function

for PS , we have

g(x) = log
P(Y = 1|X = x,Z = 1)

P(Y = 0|X = x,Z = 1)
(8)

= log
P(Y = 1|X = x)

P(Y = 0|X = x)
+ log

P(Z = 1|Y = 1,X = x)

P(Z = 1|Y = 0,X = x)
(9)

= f (x) + b.(10)

That is, the log-odds g(x) in our biased population is simply a vertical shift by b

of the log-odds f (x) in the original population, so given an estimate of g we can

subtract b to estimate f . If the model is correctly specified, logistic regression on

the subsample yields a consistent estimate for the function g(x), so the estimate

for f (x) is also consistent.

Note that the derivation (8)–(10) is equally valid if the sampling bias b depends

on x, in which case we have g(x) = f (x) + b(x). Local case-control sampling

exploits this more general identity.

2.1. Conditional probability and the logit loss. If X is integrable, then upon

differentiating the population risk (5) with respect to θ we obtain the population

score criterion:

0 = E

[(
Y − efθ (X)

1 + efθ (X)

)(
1

X

)]
=

∫ (
p(x) − pθ (x)

)(
1

x

)
dP(x).(11)

Informally, the best linear predictor is the one that gets the conditional probabilities

right on average. Note this is not the same as a predictor that gets the conditional

log-odds right on average.

To illustrate the difference between approximating probabilities and approxi-

mating logits, suppose that X ∼ U(0,1) and f (x) = −10 + 5x + 3 · 1x>0.5. The

left panel of Figure 1 shows f (x) as a solid line and its best linear approximation

as a dashed line. On the logit scale, the dashed line appears to be a very poor fit

to the black curve. It fits reasonably well for large x, but it appears more or less to

ignore the smaller values of x.

The right panel of Figure 1 shows why. When we transform both curves to the

probability scale, the fit looks much more reasonable. fθ∗(x) need not approximate
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FIG. 1. The best linear fit fθ∗ (x) approximates the true log-odds f (x) in the sense of matching its

implied conditional probabilities, not logits.

f (x) particularly well for small x, because in that range even a large change in

the log-odds produces a negligible change in the conditional probability p(x). By

contrast, fθ∗(x) needs to approximate f (x) well for larger x, where p(x) changes

more rapidly.

In general, logistic regression places highest priority on fitting f where
dp(x)
df (x)

is

largest: where f (x) ≈ 0 and p(x) ≈ 0.5. In this example, with its strong marginal

imbalance, the regions that matter most are those where p(x) is largest. This of-

ten makes sense in applications such as medical screening or advertising click-

through rate prediction, where accuracy is most important when the probability of

disease or click-through is nonnegligible. In Section 7, we consider how to modify

the method to obtain classifiers that prioritize correctness near some other, user-

defined level curve of p(x).

Finally, note that Figure 1 suggests the case-control sampling estimate is un-

likely to be consistent for θ∗ in general. The nature of our linear approximation

in the left panel is intimately related to the fact that f (x) < 0 everywhere in the

sample space. If f (x) were shifted upward by some constant, the response of the

dashed curve would be more complicated than a simple constant shift by b, since

the relative importance of the two segments would change. Therefore, estimating

f (x) + b and then subtracting b may not be a successful strategy.

2.2. Inconsistency of case-control under misspecification. If the linear model

is misspecified, the case-control estimate is generically not consistent for the best

linear predictor θ∗ as n → ∞ [Manski and Thompson (1989), Xie and Manski

(1989)]. The unadjusted estimate will instead converge to the best linear predictor

of g for the distribution PS , which solves the score criterion

0 =
∫ (

ef (x)+b

1 + ef (x)+b
− efθ (x)

1 + efθ (x)

)(
1

x

)
dPS(x).(12)
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Let θ∗
CC(b) be the large-sample limit of the adjusted case-control sampling esti-

mate with bias b. Then θ∗
CC(b) solves the population score criterion

0 =
∫ (

ef (x)+b

1 + ef (x)+b
− efθ (x)+b

1 + efθ (x)+b

)(
1

x

)
dPS(x)(13)

which differs from (11) in two ways. First, the integral is taken over a different

distribution for X. Second, and more importantly, the integrand is different. We

are now approximating f (x) in a different sense than we were.

In general under misspecification, θ∗
CC(b) is different for every b. If we sample

cases and controls equally, in the limit we will get a different answer than if we

sample twice as many controls; and in either case we will get a different answer

than if we use the entire data set or subsample uniformly.

These differences can be quite consequential for our inferences about β or the

predictive performance of our model, as we see next.

EXAMPLE 1 (Oatmeal and disease risk). In this fictitious example, we con-

sider estimating the effect of exposure to oatmeal on a person’s risk of developing

some rare disease. Suppose that 10% of the population has a family history of

the disease, half the population eats oatmeal (independently of family history),

and that both exposure and family history are binary predictors. Suppose further

that the true conditional log-odds function f (x) is given by the top-left panel of

Table 1.

The corresponding conditional probabilities p(x) are given in the lower-left

panel of Table 1. Notice that oatmeal increases the risk for people who are already

at risk by virtue of their family history, but has a protective effect for everyone else.

This interaction means that the additive logistic regression model is misspecified.

TABLE 1

Disease risk in the full population, and in the population created by case-control

sampling with equal numbers in each class

Original population (P)

Conditional log-odds (f )

History − History +

Oatmeal − −5 −4

Oatmeal + −10 −1

Conditional probabilities

History − History +

Oatmeal − 0.007 0.02

Oatmeal + 5E−5 0.37

Case-control population (PS )

Conditional log-odds (g)

History − History +

Oatmeal − −1.2 −0.2

Oatmeal + −6.2 2.8

Conditional probabilities

History − History +

Oatmeal − 0.24 0.46

Oatmeal + 0.002 0.94
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Because only the probabilities in the “History +” column are large enough to

matter, the fitted model for f (x) pays more attention to the at-risk population,

for whom oatmeal elevates the risk of disease. A logistic regression on a large

sample from this population estimates the coefficient for oatmeal as β∗
Oatmeal = 1.4,

implying an odds ratio of about 4.0. This is close to the marginal odds ratio of

roughly 4.3 that we would obtain if we did not control for family history.

Suppose, however, that we sampled an equal number of cases and controls. Then

the conditional log-odds of disease in our sample would reflect the top-right panel

of Table 1, with all cells increased by the same amount.

For large samples, the case-control estimate is β∗
CC,Oatmeal = −0.83, implying

an odds ratio of about 0.44. Using case-control sampling has reversed our inference

about the effect of oatmeal exposure, because after shifting the log-odds the left

column becomes much more important.

EXAMPLE 2 (Two-class Gaussian model). Suppose that P(Y = 1) = 1%, and

that X|Y ∼ N(μY ,�Y ). Let

μ0 = (0,0), �0 =
(

1 0

0 1

)
,(14)

μ1 = (1.5,1.5), �1 =
(

0.3 0

0 5

)
.(15)

Data simulated from this model are shown in the left panel of Figure 2. In this

example, the true log-odds f (x) is an additive quadratic function of the two coor-

dinates X1 and X2.

In this example as in the previous one, the population-optimal case-control

parameters differ substantially from the optimal parameters in the original pop-

ulation, with dramatic effects for the predictive performance of the model. The

decision boundaries for the two estimates are overlayed on the left panel of Fig-

ure 2. In the right panel, we plot the precision–recall curves resulting from each

set of parameters on a large test set.

2.3. Weighted case-control sampling. A simple alternative to standard case-

control sampling is to weight the subsampled data points by the inverse of their

probability of being sampled. We include weighted case-control sampling as

a competitor in our simulation studies in Section 5. Because it is a Horvitz–

Thompson estimator with positive sampling probabilities for any (x, y) pair, this

method is
√

n-consistent, and asymptotically normal and unbiased under general

conditions [Horvitz and Thompson (1952)].

Although weighting succeeds in removing the bias induced by the case-control

sampling, this consistency comes at a cost of increasing the variance, since the

effective sample size is reduced [Scott and Wild (1986, 2002)].

Despite its inefficiency, the weighted case-control method can be an attractive

means of obtaining a consistent pilot if another good pilot is not immediately avail-

able, and we later will use it to that end in our experiments.
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FIG. 2. At left, biased (case-control) and unbiased decision boundaries for the bivariate Gaussian

mixture model. At right, precision–recall curves for β∗ and β∗
CC.

3. Local case-control subsampling. In this section, we describe local case-

control subsampling, a generalization of standard case-control sampling that both

improves on its efficiency and resolves its problem of inconsistency. To achieve

these benefits, we require a pilot estimate, that is, a good guess θ̃ = (α̃, β̃) for the

population-optimal θ∗.

3.1. The local case-control sampling algorithm. Local case-control sampling

differs from case-control sampling only in that the acceptance probability a is

allowed to depend on x as well as y. Our criterion for selection will be the degree

of “surprise” we experience upon observing yi given xi :

a(x, y) =
∣∣y − p̃(x)

∣∣ =
{

1 − p̃(x), y = 1,

p̃(x), y = 0,
(16)

where p̃(x) = eα̃+β̃′x

1+eα̃+β̃′x is the pilot estimate of P(Y = 1|X = x). The algorithm is:

(1) Generate independent zi ∼ Bernoulli(a(xi, yi)).

(2) Fit a logistic regression to the sample S = {(xi, yi) : zi = 1} to obtain unad-

justed estimates θ̂S = (α̂S, β̂S).

(3) Assign α̂ ← α̂S + α̃ and β̂ ← β̂S + β̃ .

As before, steps (2)–(3) are equivalent to fitting a logistic regression in the subsam-

ple with offsets −α̃− β̃ ′xi . The zi are generated as in Section 2, and the adjustment

is again justified by (8)–(10), only now with the constant b replaced by

b(x) = log

(
a(x,1)

a(x,0)

)
= −α̃ − β̃ ′x.(17)

In other words, the subsample is drawn from a measure with

g(x) = f (x) − α̃ − β̃ ′x.(18)
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If f (x) is well approximated by the pilot estimate, then g(x) ≈ 0 throughout fea-

ture space. That is, conditional on selection into S, yi given xi is nearly a fair coin

toss.

To motivate this choice heuristically, recall that the Fisher information for the

log-odds of a Bernoulli random variable is maximized when the probability is 1
2
:

fair coin tosses are more informative than heavily biased ones. In effect, local

case-control sampling tilts the conditional distribution of Y given X = x to make

each yi in the subsample more informative. We then fit a logistic regression in the

more favorable sampling measure, and “tilt back” to obtain a valid estimate for the

original population.

In marginally imbalanced data sets where P(Y = 1|X = x) is small everywhere

in the predictor space, a good pilot has p̃(x) ≈ 0 for all x, and the number of cases

discarded by this algorithm will be quite small. If we wish to avoid discarding any

cases, we can always modify the algorithm so that instead of keeping (x,1) with

probability a(x,1), we keep it with probability 1 and assign weight a(x,1).

3.2. Choosing the pilot fit. In many applications, there may be a natural choice

of pilot fit θ̃ ; for instance, if we are refitting a classification model every day to

adapt to a changing world, then yesterday’s fit is a natural choice for today’s pilot.

If no pilot fit is available from such a source, we recommend an initial pass

of weighted case-control sampling (described in Section 2.3) to obtain the pilot.

Weighted case-control sampling using a fixed fraction of the original sample is

itself
√

n-consistent and asymptotically unbiased for the true parameters. Conse-

quently, if the pilot were fit using an independent data set the second-stage estimate

would enjoy consistency and asymptotic unbiasedness per the results in Section 4.

Our experiments suggest that mild inaccuracy in the pilot estimate, and using

a data-dependent pilot, do not unduly degrade the performance of the local case-

control algorithm. For example, is Simulation 2 of Section 5.2, the pilot is fifty

times less efficient than the final local case-control estimate. The main role of the

pilot fit is to guide us in discarding most of the data points for which yi is obvious

given xi while keeping those for which yi is conditionally surprising.

In our example and simulations, we use a pilot sample about the same size as the

local case-control subsample, on the principle that we can afford to spend about

as much time computing the pilot as computing the second-stage estimate. When

P(Y = 1|X) is small throughout X , this rule amounts roughly to weighted case-

control sampling using all the cases and one control per case. Although the above

rule has worked reasonably well for us, at this time we can offer no finite-sample

guarantees that any given pilot sample size is large enough.

Because standard case-control sampling amounts to local case-control sampling

with a constant-only pilot fit, we might expect that the pilot fit need not be perfect

to improve upon case-control sampling. Our experiments in Sections 5 and 6 sup-

port this intuition.
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3.3. Taking a larger or smaller sample. As we will see in Section 4.3, un-

der correct model specification, and with an independent and consistent pilot, the

baseline procedure described above has exactly twice the asymptotic variance as a

logistic regression estimated with the full sample, despite using a potentially very

small subset of the data. We can improve upon this factor of two by increasing the

size of the subsample.

One simple way to achieve this is to multiply all acceptance probabilities by

some constant c, for example, c = 5. When deciding whether to sample the point

(xi, yi), we would then generate zi ∼ Bernoulli(ca(xi, yi) ∧ 1) and assign weight

wi = ca(xi, yi) ∨ 1 to each sampled point. This amounts to a larger, weighted

subsample from PS , and we can make the same correction to the estimates from

the subsample. We see in Section 4.4 that for c > 1 the factor of two is replaced by

a factor of 1 + 1
c
.

In the case of large imbalance, most of the p̃(xi) are near 0 or 1. For c > 1, the

marginal acceptance probability at xi becomes

P(zi = 1|xi = x) = p(x)
(
c
(
1 − p̃(x)

)
∧ 1

)
+

(
1 − p(x)

)(
cp̃(x) ∧ 1

)
(19)

≈ (1 + c)p(x)
(
1 − p(x)

)
,(20)

where the approximation holds for p(x) ≈ p̃(x) ≈ 0 or 1. For c = 1, the marginal

acceptance probability is p(x)(1 − p̃(x)) + (1 − p(x))p̃(x) ≈ 2p(x)(1 − p(x)),

so for c > 1 we take roughly 1+c
2

times as many data points as for c = 1. For

example, if c = 5, the subsample accepted is roughly 3 times as large, and the

relative efficiency improves from 1/2 to 5/6.

Alternatively, if n is extremely large, even a small fraction of the full data set

may still be more than we want. In that case, we can proceed as above with c < 1,

or simply sample any desired number ns of data points uniformly from the local

case-control subsample.

4. Asymptotics of the local case-control estimate. We now turn to examin-

ing the asymptotic behavior of the local case-control estimate. We first establish

consistency, assuming a consistent pilot estimate θ̃ . We expressly do not assume

that the pilot estimate is independent of the data, since in some cases we may

recycle into the subsample some of the data we used to calculate the pilot.

By assuming independence of θ̃ and the data, we can obtain finer results about

the asymptotic distribution of θ̂ . We show it is asymptotically unbiased when θ̃ is,

and derive the asymptotic variance of the estimate. When the logistic regression

model is correctly specified, the local case-control estimate has exactly twice the

asymptotic variance of the MLE for the full data set.

4.1. Preliminaries. For better clarity of notation in this section, we will use the

letter λ in place of θ̃ to denote pilot estimates. Additionally, we drop the notation(1
x

)
and absorb the constant term into x, so that fθ (x) = θ ′x. To avoid trivialities,
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assume without loss of generality that there is no v ∈ R
p for which E|v′X| = 0 (if

not, we can discard redundant features).

For π ∈ [0,1] define the “soft hinge” function

h(η;π) = −πη + log
(
1 + eη)

,(21)

and note that

E
[
ρ(θ;X,Y )|X = x

]
= h

(
θ ′x;p(x)

)
.(22)

As a function of η, h is positive and strictly convex, its magnitude is bounded by

1 + |η|, and it has Lipschitz constant max(π,1 − π) ≤ 1. If π < 1, h diverges as

η → ∞, and if π > 0 h diverges as η → −∞.

As a function of λ, aλ(x, y) = |y − eλ′x

1+eλ′x | ∈ (0,1) has Lipschitz constant

≤ ‖x‖. Hence, ā(λ) = Eaλ(X,Y ) ∈ (0,1) with Lipschitz constant ≤ E‖X‖. The

marginal acceptance probability given x is

âλ(x) = p̃(x)
(
1 − p(x)

)
+

(
1 − p̃(x)

)
p(x) ∈ (0,1).(23)

Given pilot λ, the local case-control subsampling scheme effectively samples

from the probability measure Pλ, where

dPλ(x, y) = aλ(x, y) dP(x, y)

ā(λ)
,(24)

and ā(λ) =
∫

aλ(x, y) dP(x, y) is the marginal probability of acceptance. Under

this measure,

logitPλ(Y = 1|X = x) = f (x) − λ′x.(25)

Because aλ(x, y) ≤ 1, if g(X,Y ) is integrable under P it is also integrable under

any Pλ.

Conditioning on X, we can write the population risk of the logistic regression

parameters θ with respect to sampling measure Pλ as

Rλ(θ) = −1

ā(λ)

∫
h

(
θ ′x; ef (x)−λ′x

1 + ef (x)−λ′x

)
âλ(x) dP(x).(26)

By Cauchy–Schwarz, the integrand in (26) is bounded by 2(1 + ‖θ‖‖x‖). If

E‖X‖ < ∞, then, we may appeal to dominated convergence and take limits with

respect to θ and λ inside the integral.

Rλ(θ) is strictly convex because the integrand is, and always has a unique pop-

ulation minimizer if there is no separating hyperplane in the population.

LEMMA 1. Assume there is no v for which

P
(
Y = 0, v′X > 0

)
= P

(
Y = 1, v′X < 0

)
= 0.(27)

Henceforth, we refer to this assumption as nonseparability. Then Rλ(θ) attains a

unique minimum for every λ ∈ R
p .
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Denote by R̂
(0)
λ (θ) the empirical risk on a local case-control subsample taken

using the pilot estimate λ. Then

R̂
(0)
λ (θ) = −

(
n∑

i=1

zi

)−1 n∑

i=1

zi

[
yiθ

′xi − log
(
1 + eθ ′xi

)]
.(28)

It will be somewhat simpler to replace the random subsample size
∑n

i=1 zi with its

expectation nā(λ). Define

R̂λ(θ) = − 1

nā(λ)

n∑

i=1

zi

[
yiθ

′xi − log
(
1 + eθ ′xi

)]
.(29)

Since minimizing (28) with respect to θ is equivalent to minimizing (29), the two

are equivalent for our purposes.

If the unadjusted parameters θ̂S minimize R̂λ, the local case-control estimate

θ̂ = θ̂S + λ is an M-estimator minimizing Q̂λ(θ) = R̂λ(θ − λ). We use analogous

notation for the population version:

Qλ(θ) = Rλ(θ − λ).(30)

For any given pilot estimate λ and large n, we expect

θ̂ ≈ arg min
θ

Qλ(θ).(31)

Define the right-hand side of (31) to be θ̄ (λ), the large-sample limit of local case-

control sampling with pilot estimate fixed at λ. The best linear predictor for the

original population corresponds to the case λ = 0 (uniform subsampling), that is,

θ∗ = θ̄ (0). Consistency means that for large n, θ̂
p→ θ∗.

Recall that if the model is correctly specified with true parameters θ0, then

θ̄ (λ) = θ0 for any fixed pilot estimate λ. Minimizing Q̂λ therefore yields a

consistent estimate. Unfortunately, in the misspecified case θ̄ (λ) �= θ̄ (0) = θ∗. In

this sense, local case-control sampling with the pilot λ held fixed is in general

not consistent for θ∗. However, we see below that it is consistent if λ = θ∗.

PROPOSITION 2. Assume E‖X‖ < ∞, that the classes are nonseparable, and

that θ∗ = θ̄ (0) is the best linear predictor for the original measure P. Then

θ∗ = arg min
θ

Qθ∗(θ) = θ̄
(
θ∗)

.(32)

In other words, if we could only choose our pilot perfectly, then the local case-

control estimate would converge to θ∗ as n → ∞.

PROOF OF PROPOSITION 2. Write p∗(x) = eθ∗′x

1+eθ∗′x . The population optimal-

ity criterion for LCC with pilot λ is

0 = −ā(λ)∇θRλ(θ − λ)(33)

= −E
[
Xρ′((θ − λ)′X;X,Y

)
aλ(X,Y )

]
.(34)
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Noting that −ρ′(0;x, y) = y − 1
2
, if we evaluate the above at λ = θ = θ∗, we

obtain

E
[
X

(
Y − 1

2

)
aλ(X,Y )

]
= 1

2
E

[
X

(
p(X)

(
1 − p∗(X)

)
−

(
1 − p(X)

)
p∗(X)

)]
(35)

= 1
2
E

[
X

(
Y − p∗(X)

)]
(36)

which is exactly half the population score (11) for the original population. Since

θ∗ optimizes the risk for the original population, this value is 0. �

There is an intuitive explanation of this result: in Pθ∗ , the acceptance proba-

bilities are p∗(X) if Y = 0 and 1 − p∗(X) if Y = 1; hence they play the same

role as the pseudoresiduals Y − p∗(X) did in the original measure P. For exam-

ple, the point (x,0) would contribute p∗(x)x to the gradient if we evaluated the

full-sample score at θ∗. Evaluating the subsample score at 0, the same point now

contributes 1
2
x to the score—but only if it is accepted, which occurs with proba-

bility exactly p∗(x). So, in essence, the subsampling stands in for the reweighting

that we otherwise would have done when fitting our logistic regression to the full

sample.

Of course, in practice we never have a perfect pilot—if we did we would not

need to estimate θ∗—but Proposition 2 suggests that if λ is near θ∗, minimizing

Q̂λ yields a good estimate. In fact, we will see that if λ
p→ θ∗ then θ̂

p→ θ∗ as well.

4.2. Consistency. For our asymptotic results, assume we have an infinite reser-

voir (x1, y1), (x2, y2), . . . of i.i.d. pairs, a sequence of i.i.d. U(0,1) variables

u1, u2, . . . for making accept–reject decisions, and a sequence of pilot estimates

λ1, λ2, . . . . The λn are possibly dependent upon the data, but the ui are assumed

to be independent of everything else.

θ̂n is the local case-control estimate, computed using pilot λn, data {(xi, yi)}ni=1,

and accept–reject decisions zi = 1ui≤aλn (xi ,yi).

The main result of this section is that if the pilot estimate λn is consistent for θ∗,

then so is θ̂n. The details are somewhat technical, especially the proof of Proposi-

tion 3, but the main idea is that if λn
p→ θ∗, then for large n

Q̂λn ≈ Qθ∗(37)

in the appropriate sense. Q̂λn is what the local case-control estimate actually min-

imizes, whereas the last function is minimized by θ∗, our ultimate target.

First, we establish pointwise convergence.

PROPOSITION 3. If E‖X‖ < ∞ and λn
p→ λ∞, then for each θ ∈ R

p ,

Q̂λn(θ)
p→ Qλ∞(θ).(38)
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Because we avoid assuming independence between the pilot λn and the data

(xi, yi), the proof is technical and is deferred to the Appendix. The proof relies on

the coupling of the acceptance decisions zi for different pilot estimates through ui .

With this coupling, two nearby pilot estimates will differ on very few accept–reject

decisions.

Because neither Q̂λn(θ) nor Qλ∞(θ) changes very fast, pointwise convergence

also implies uniform convergence on compacts.

PROPOSITION 4. If E‖X‖ < ∞ and λn
p→ λ∞, then for compact � ⊆ R

p ,

sup
θ∈�

∣∣Q̂λn(θ) − Qλ∞(θ)
∣∣ p→ 0.(39)

PROOF. Define

Fn(θ) = Q̂λn(θ) − Qλ∞(θ).(40)

By Proposition 3, Fn(θ)
p→ 0 pointwise. Next, we show it is Lipschitz. The inte-

grand in (35) is x times two factors each bounded by ±1, hence

∥∥ā(λ∞)∇θQλ∞
∥∥ ≤

∫
‖x‖dP(x) = E‖X‖.(41)

Similarly for Q̂λn , we have

∇θQ̂λn = − 1

nā(λn)

n∑

i=1

zi

(
yi − e(θ−λn)′xi

1 + e(θ−λn)′xi

)
xi(42)

so that

sup
θ

‖∇θQ̂λn‖ ≤ ā(λn)
−1 1

n

n∑

i=1

‖xi‖
p→ ā(λ∞)−1

E‖X‖.(43)

It follows that, with probability tending to 1, Fn(θ) has Lipschitz constant less than

c = 3ā(λ∞)−1
E‖X‖.

Now, for any ε > 0, we can cover � with finitely many Euclidean balls of radius

δ = ε/c, centered at θ1, . . . , θM(ε). Let An(ε) be the event that Fn has Lipschitz

constant less than c and

sup
1≤j≤M(ε)

∣∣Fn(θj )
∣∣ < ε.(44)

On An(ε), we have supθ∈� |Fn(θ)| < 2ε, and P(An(ε)) → 1 as n → ∞. �

Finally, we come to the main result of the section, in which we prove that the

local case-control estimate is consistent when the pilot is. Because the functions

are strictly convex, we can ignore everything but a neighborhood of θ∗.
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THEOREM 5. Assume E‖X‖ < 0 and the classes are nonseparable.

If λn
p→ θ∗ then the local case-control estimate θ̂n

p→ θ∗ as well.

PROOF. Let � ⊆ R
p be any compact set with θ∗ in its interior, and let

ε = inf
θ∈∂�

Qθ∗(θ) − Qθ∗
(
θ∗)

> 0,(45)

where the strict inequality follows from strict convexity. Uniform convergence im-

plies that with probability tending to 1,

sup
θ∈�

∣∣Q̂λn(θ) − Qθ∗(θ)
∣∣ < ε/2(46)

which implies in turn that

inf
θ∈∂�

Q̂λn(θ) > Q̂λn

(
θ∗)

.(47)

Whenever this is the case, the strictly convex function Q̂λn has a unique minimizer

in the interior of �. Since � was arbitrary, we can take its diameter to be less than

any δ > 0. Hence, θ̂n
p→ θ∗. �

4.3. Asymptotic distribution. In this section, we derive the asymptotic distri-

bution of the local case-control logistic regression estimate, in the same asymptotic

regime as the previous section. To prove our results here, we assume the pilot esti-

mate λn is independent of our data set. This would not be the case if our pilot were

based on a subsample of the data (the procedure we use for all our simulations),

but it could hold if the pilot came from a model fitted to data from an earlier time

period.

The main result of this section is that if the logistic regression model is correctly

specified and the pilot is consistent, the asymptotic covariance matrix of the local

case-control estimate for θ is exactly twice the asymptotic covariance matrix of a

logistic regression performed on the entire data set. For the results in this section,

we will need E‖X‖2 < ∞.

It will be convenient to give names to some recurring quantities. First, we have

seen that if E‖X‖ < ∞ we can differentiate Qλ(θ) inside the integral to obtain the

gradient of the population risk:

G(θ,λ) � −ā(λ)∇θQλ(θ)(48)

=
∫ (

ef (x)−λ′x

1 + ef (x)−λ′x − e(θ−λ)′x

1 + e(θ−λ)′x

)
âλ(x)x dP(x).(49)

Whereas G is the expectation of the logistic regression score with respect to Pλ,

we can also define its covariance matrix:

J (θ, λ) � Varλ

[(
Y − e(θ−λ)′X

1 + e(θ−λ)′X

)
X

]
.(50)

When E‖X‖2 < ∞, J (θ, λ) < ∞, and is continuous in θ and λ by dominated

convergence.
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Since the derivatives of the integrand in (48) are uniformly bounded by 2‖x‖2,

dominated convergence implies we can again differentiate inside the integral. Dif-

ferentiating with respect to θ we obtain

H(θ,λ) � −ā(λ)∇2
θ Qλ(θ)(51)

=
∫

e(θ−λ)′x

(1 + e(θ−λ)′x)2

(
eλ′x + ef (x)

(1 + eλ′x)(1 + ef (x))

)
xx′ dP(x).(52)

Here, the integrand is dominated by xx′, so dominated convergence again applies

and thus we see that H is continuous in θ and λ. H(θ,λ) ≻ 0 for any θ, λ since

we have assumed there is no nonzero v for which E|v′X| = 0. Finally, define the

matrix of crossed partials:

C(θ,λ) � ∇λG(θ,λ).(53)

To be concrete, Ci,j = ∂2

∂θi∂λj
Qλ(θ). Continuity of C again follows from noting

the derivative of the integrand in (48) with respect to λ is dominated by 8‖x‖2.

To begin, we consider the behavior of θ̄ (λ) for λ near θ∗. By Proposition 2,

we have G(θ∗, θ∗) = 0. Since H(θ,λ) ≻ 0, we can apply the implicit function

theorem to the relation G(θ̄(λ), λ) = 0 to obtain

θ̄ (λ) = θ∗ + H
(
θ∗, θ∗)−1

C
(
θ∗, θ∗)(

λ − θ∗)
+ o

(∥∥λ − θ∗∥∥)
.(54)

By standard M-estimator theory, if we fix λ and send n → ∞ the coefficients of

a logistic regression performed on a sample of size |S| from Pλ would be asymp-

totically normal with covariance matrix

1

|S|H
(
θ̄ (λ), λ

)−1
J

(
θ̄ (λ), λ

)
H

(
θ̄ (λ), λ

)−1
.(55)

In light of this and the fact that |S| ≈ ā(λ)n, we might predict the following.

THEOREM 6. Assume E‖X‖2 < ∞. If λn
p→ θ∗ independently of the data,

then
√

n
(
θ̂n − θ̄ (λn)

) D→ N
(
0, ā

(
θ∗)−1

�
)

(56)

with � = H(θ∗, θ∗)−1J (θ∗, θ∗)H(θ∗, θ∗)−1.

Again, we defer the proof to the Appendix. We can combine (56) with (54) to

immediately obtain the following reassuring facts.

COROLLARY 7. Assume E‖X‖2 < ∞ and λn is a sequence of pilot estimators

given independently of the data. Then:

(a) If λn is
√

n-consistent, so is θ̂n.

(b) If λn is asymptotically unbiased, so is θ̂n.
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(c) If
√

n(λn − θ∗)
D→ N(0,V ) then

√
n(θ̂n − θ∗)

D→ N(0,�) with

� = H−1(
CV C′ + ā−1J

)
H−1.(57)

In (57), we have suppressed the arguments of θ∗ in H,C, ā and J .

The first term in (57) characterizes the contribution of conditional bias

(given λn) to the overall variance, and the second is the contribution of condi-

tional variance.

In the special case where logistic regression model is correctly specified, we

have the following.

THEOREM 8. Assume the logistic regression model is correct and let 1
n
�full

be the asymptotic variance of the MLE for the full sample. Then if E‖X‖2 < ∞
and λn

p→ θ0 independently of the data, we have

√
n(θ̂n − θ0)

D→ N
(
0, a(θ0)

−1�
)
= N(0,2�full).(58)

Hence, although the size of a local case-control subsample is roughly nā(λ), the

variance of θ̂ is the same as if we took a simple random sample of size n/2 from

the full data set. In other words, each point sampled is worth about 1
2ā(λn)

points

sampled uniformly.

PROOF OF THEOREM 8. If logistic regression is correctly specified for P, it

is also for Pλ, regardless of λ, so θ̄ (λ) ≡ θ0. Furthermore, by standard maximum

likelihood theory J (θ0, λ) = H(θ0, λ)−1 for each λ. Therefore, (56) specializes to

√
n(θ̂n − θ0)

D→ N
(
0, ā(θ0)

−1H(θ0, θ0)
−1)

.(59)

But

H(θ,λ) = ā(λ)−1
∫ [

e(θ−λ)′x

(1 + e(θ−λ)′x)2

][
eλ′x + ef (x)

(1 + eλ′x)(1 + ef (x))

]
xx′ dP(x).(60)

If f (x) = θ ′
0x and λ = θ0, then (60) simplifies to

H(θ0, θ0) = ā(θ0)
−1 1

2

∫
eθ ′

0x

(1 + eθ ′
0x)2

xx′ dP(x)(61)

= ā(θ0)
−1 1

2
H(θ0,0)(62)

=
(
2ā(θ0)�full

)−1
.(63) �

This result is surprisingly simple. No characterization like Theorem 8 is avail-

able for the case-control and weighted case-control estimates, whose variances are

not simple scalar multiples of �full.
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We can offer a simple heuristic argument for Theorem 8, similar to that of

Proposition 2. In Pθ0
, the acceptance probability âλ(x) for an observation at x is

2p(x)(1 − p(x)), and given that it is accepted it contributes 1
4
xx′ to the observed

information. In the full sample, a point at x is always accepted but contributes

less, p(x)(1 − p(x))xx′, to the observed information. Again, the sampling prob-

ability stands in for the reweighting we would have done in the full sample. If

p(x)(1 − p(x)) is very small, we are discarding most of the data instead of keep-

ing all of it and assigning it a tiny weight in the fit.

The practical meaning of Theorem 8 is that local case-control sampling is most

advantageous when ā(θ0) = E(|Y − p̃(X)|) is small, that is, when Y is easy to

predict throughout much of the covariate space. This can happen as a result of

marginal or conditional imbalance, or both. Standard case-control sampling can

also improve our efficiency in the presence of marginal imbalance, but unlike local

case-control sampling, it does not exploit conditional imbalance. Hence, we would

expect local case-control to outperform standard case-control most dramatically

when the marginal imbalance is very high, as in the simulation of Section 5.2.

For data-dependent pilots, the efficiency picture is somewhat more compli-

cated. For example, θ̄ (λ) is approximately a linear function of λ − θ∗. Thus, if

λ is unbiased but correlated with the noise in the data, we might get more or less

variance relative to (58), depending on how this correlation interacts with C. If the

model is correctly specified, it less clear whether an adversarially chosen pilot can

affect the efficiency.

Either way, we do not anticipate serious problems from nonindependence. To

stress-test our results against violations of independence, we expressly use a data-

dependent pilot for all of our experiments: namely, a weighted case-control sample

with sample points allowed to be recycled for the second-stage fit.

4.4. Variance for a larger sample. In Section 3.3, we proposed increasing the

size of the local case-control subsample by multiplying all the acceptance prob-

abilities a(x, y) by a constant c > 1 and assigning weight w = ca(x, y) when

ca(x, y) > 1. We analyze the asymptotic variance here as a function of c. To sim-

plify matters, suppose the model is correctly specified and λ is fixed at θ0.

The weighted log-likelihood for the subsample and its derivatives are then

ℓw(θ) =
n∑

i=1

ziwi

(
yiθ

′xi − log
(
1 + eθ ′xi

))
,(64)

∇θℓw(θ) =
n∑

i=1

ziwi

(
yi − pθ (xi)

)
xi,(65)

∇2
θ ℓw(θ) =

n∑

i=1

ziwipθ (xi)
(
1 − pθ (xi)

)
xix

′
i .(66)
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Conditionally on x, there is a p(x) · (c(1 − p(x)) ∧ 1) chance y = z = 1 and w =
c(1−p(x))∨1, where p(x) = pθ0

(x). Similarly, there is a (1−p(x)) · (cp(x)∧1)

chance y = 0, z = 1, and w = cp(x) ∨ 1. We immediately obtain

E(yzw|x) = cp(1 − p),

E(zw|x) = 2cp(1 − p),(67)

E
(
zw2|x

)
≤ c(c + 1)p(1 − p).

The expectation and variance of the score evaluated at 0 are

E∇θℓw(0) = n

∫
E

(
zw(y − 1/2)|x

)
x dP(x) = 0,(68)

J = Var
(
∇θℓw(0)

)
= n

∫
E

(
z2w2(y − 1/2)2|x

)
xx′ dP(x)(69)

= n

4

∫
E

(
zw2|x

)
xx′ dP(x) � c(c + 1)

4
�full(70)

and the expected Hessian is

H = E∇2
θ ℓw(0) = n

4

∫
E(zw|x)xx′ dP(x) = c

2
�−1

full.(71)

We have derived

H−1JH−1 �
(

1 + 1

c

)
�full.(72)

For c = 1, we recover the factor of two from (58), but, for example, c = 5 we only

pay 20% increased variance relative to the full sample.

5. Simulations. Here, we compare our method to standard weighted and un-

weighted case-control sampling for two-class Gaussian models like the one consid-

ered in Section 2.2. The standard case-control estimates use a 50–50 split between

the two classes.

5.1. Simulation 1: Two-class Gaussian, different variances. We begin with a

five-dimensional two-class Gaussian simulation where the classes have different

covariance matrices. If X|Y = y ∼ N(μy,�y), then

log
P(x|Y = 1)

P(x|Y = 0)
= −1

2
(x − μ1)

′�−1
1 (x − μ1)

(73)

+ 1

2
(x − μ0)

′�−1
0 (x − μ0) + const.

Equation (73) is linear if �1 = �0, and quadratic otherwise, so if the two covari-

ance matrices were the same the linear logistic model would be correctly specified.
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In this case the model is incorrectly specified, letting us compare the behavior of

the different methods under model misspecification.

Take P(Y = 1) = 1%, μ0 = 0, and μ1 = (1,1,1,1,4)′. The covariance matri-

ces are �0 = diag(1,1,1,1,9) and �1 = I5. Hence f (x) is additive, but with a

nonzero quadratic term in x5.

For our simulation, we first generate a large (n = 106) sample from the pop-

ulation described above. Second, we obtain a pilot model using the weighted

case-control method on ns = 1000 data points. Next, we take a local case-control

sample of size 1000 using that pilot model.

For comparison, we obtain standard case-control (CC) and weighted case-

control (WCC) estimates. For the comparison estimators we do not use a sample

of size 1000 again but rather use the total number of observations seen by the LCC

model or the pilot model, roughly 2000, so the LCC estimate must pay for its pilot

sample. We repeat this entire procedure 1000 times.

Table 2 shows the squared bias and variance of β̂ over the 1000 realizations

for each of the three methods. As expected, we face a bias-variance tradeoff in

choosing between the WCC and CC methods, whereas the LCC method improves

substantially on the bias of CC and the variance of WCC. Standard errors for both

bias and variance are computed via bootstrapping the 1000 realizations.

More surprising is the fact that LCC enjoys smaller bias than WCC and smaller

variance than CC, dominating the other two methods on both measures. The im-

provement in variance over the CC estimate is likely due to the conditional imbal-

ance present in the sample, while the improvement in bias over the WCC estimate

may come from the fact that the methods are only unbiased asymptotically and the

LCC estimate is closer to its asymptotic limiting behavior.

TABLE 2

Estimated bias and variance of β̂ for each sampling method. For β̂ ∈R
p , we define

Bias2 = ‖Eβ̂ − β‖2 and Var = ∑p
j=1 Var(β̂j )

Simulation 1 (�0 �= �1 ⇒ model misspecified)

B̂ias2 (s.e.) V̂ar (s.e.)

LCC 0.0049 (0.00031) 0.025 (0.00059)

WCC 0.023 (0.0022) 0.16 (0.0038)

CC 0.15 (0.0016) 0.043 (0.00096)

Simulation 2 (�0 = �1 ⇒ model correct)

B̂ias2 (s.e.) V̂ar (s.e.)

LCC 0.0037 (0.0083) 0.039 (0.00045)

WCC 0.59 (0.064) 1.7 (0.017)

CC 0.06 (0.042) 0.87 (0.0086)
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5.2. Simulation 2: Two-class Gaussian, same variance. Next, we simulate a

two-class Gaussian model with each class having the same variance, so that the

true log-odds function f is linear. We also increase the dimension to 50 for this

simulation.

Since the model is now correctly specified, all three methods are asymptoti-

cally unbiased. However, in this case we introduce more substantial conditional

imbalance, to demonstrate the variance-reduction advantages of local case-control

sampling in that setting.

For this example, P(Y = 1) = 10%, μ1 =
(125

025

)
, μ0 = 050, and �0 = �1 = I50.

We repeat the procedure from Section 5.1, now with ns = 104. Instead of generat-

ing a full sample, the full data set is implicit and we sample directly from PS .

In this example, the difference between the methods is more dramatic. Table 2

shows the squared bias and variance of the three methods. Here, local case-control

enjoys substantially better bias than the other two methods, improving on CC more

than twenty-fold. For the correct pilot model, ā(θ0) is roughly 0.005, so the local

case-control subsample size is around n/200. Since the model is correctly speci-

fied, the variance is roughly twice that of logistic regression on the full sample of

size n. In other words, local case-control subsampling is roughly 100 times more

efficient than uniform subsampling.

Asymptotically, all three methods are unbiased but it appears that LCC again

enjoys a smaller bias in finite samples.

6. Web spam data set. Relative to standard case-control sampling, local

case-control sampling is especially well-suited for data sets with significant con-

ditional imbalance, that is, data sets in which yi is easy to predict for most xi .

One such application is spam filtering. To demonstrate the advantages of local

case-control sampling and compare asymptotic predictions to actual performance,

we test our method on the Web Spam data available on the LIBSVM website3

and originally from Webb, Caverlee and Pu (2006). The data set contains 350,000

web pages, of which about 60% are labeled as “web spam,” that is, web pages

designed to manipulate search engines rather than display legitimate content. This

data set is marginally balanced, though as we will see the conditional imbalance is

considerable.

As features, we use frequency of the 99 unigrams that appeared in at least 200

documents, log-transformed with an offset so as to reduce skew in the features. In

this data set, the downsampling ratio ā is around 10%, that is, when using a good

pilot we will retain about 10% of the observations.

Since we only have a single data set, we use subsampling as a method to assess

the sampling distribution of our estimators. In each of 100 replications, we begin

by taking a uniform subsample of size n = 100,000 from the population of 350,000

3http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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documents. After obtaining 100 data sets of size n = 100,000, we use the same

procedure as we used in our two simulations with nS = 10,000.

Our asymptotic theory predicts that the variance of the local case-control sam-

pling estimate of θ should be a little more than twice the variance using the full

sample (more because the model is misspecified and our pilot has some vari-

ance). Because the full sample is close to marginally balanced, the standard case-

control sampling methods should do about as well as a uniform subsample of size

20,000—that is, they should have variance roughly 5 times that of the full sample.

Note that 20,000 is roughly twice the size of the local case-control sample, since

we are counting the pilot sample against the local case-control method. If we had

a readily available pilot model, as we would in many applications, it would be

more relevant to give the CC and WCC methods access to only 10,000 data points,

doubling their variance relative to the observed variance in this experiment.

The theoretical predictions come reasonably close in this experiment, as shown

in Figure 3. The horizontal axis indexes each of the 100 coefficients to be fit (there

are 99 covariates and an intercept), and the vertical axis gives the variance of each

estimated coefficient, relative to the variance of the same coefficient in a model

fitted to the full sample.

The magnitude of our improvement over standard case-control sampling is sub-

stantial here, but could be much larger in a data set with an even stronger signal.

The key point is that standard case-control methods have no way to exploit condi-

tional imbalance, so the more there is, the more local case-control dominates the

other methods.

FIG. 3. Relative variance of coefficients for different subsampling methods. The theoretical pre-

dictions (2× variance for local case-control, 5× variance for standard) are reasonably close to the

mark, though a bit optimistic.
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7. Discussion. We have shown that in imbalanced logistic regression, we can

speed up computation by subsampling the data in a biased fashion and making a

post-hoc correction to the coefficients estimated in the subsample. Standard case-

control sampling is one such scheme, but it has two main flaws: it has no way to

exploit conditional imbalance, and when the model is misspecified it is inconsistent

for the population risk minimizer.

Local case-control sampling generalizes standard case-control sampling to ad-

dress both flaws, subsampling with a bias that is allowed to depend on both x and

y. When the pilot is consistent, our estimate is consistent even under misspecifica-

tion, and if the model is correct then local case-control sampling has exactly twice

the asymptotic variance of logistic regression on the full data set. Our simulations

suggest that local case-control performs favorably in practice.

7.1. Translating computational gains to statistical gains. In the Introduction,

we motivated our inquiry by identifying four ways that computational gains can

translate to statistical ones. Specifically, we suggested that computational savings

can:

(1) enable us to experiment with and prototype a variety of models, instead of

trying only one or two,

(2) allow us to refit our models more often to adapt to changing conditions,

(3) allow for cross-validation, bagging, boosting, bootstrapping, or other com-

putationally intensive statistical procedures or

(4) open the door to using more sophisticated statistical techniques on a com-

pressed data set.

It is relatively clear how our proposed method can help with points (1) and (2).

As for point (3), faster fitting procedures can directly speed up straightforward re-

sampling techniques like bootstrapping or cross-validation, possibly making them

feasible at scales where they previously were not. We discuss in Section 7.2 how

it can also help with boosting.

The basic method as we have described it above does not deliver on point (4),

because the pilot model and second-stage model are the same. However, an exten-

sion of our method can help, which we discuss below.

There is no reason in principle why the pilot model must be linear, or belong

to the same model class as the model we fit to the local case-control sample. We

can use any pilot predictions p̃(x) = ef̃ (x)

1+ef̃ (x)
in the sampling algorithm, and then

model the log-odds in the subsample quite flexibly—by a GAM, kernel logistic

regression, random forests or any other method—so long as we can use offsets

−f̃ (xi) in the second-stage procedure. For example, we could use as our pilot fit a

simple model with a few important variables explaining most of the response, and

in the second stage estimate more complex models refining the first.

Formally, our theoretical results may not cover this use. Suppose the second-

stage model can be written as a logistic regression after some basis expansion.
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Then consistency of the second-stage estimate requires either that the pilot be

consistent (the new variables contribute nothing to the population fit) or that the

second-stage model be correctly specified. If neither of these assumptions holds

approximately, then our estimate could be biased—though perhaps not as biased

as case-control sampling, which is a special case of local case-control with an

intercept-only pilot.

If we are prototyping, guarantees of consistency may not be a high priority.

If they are, then as with case-control sampling, we can repair the inconsistency

of the local case-control estimate by using a Horvitz–Thompson estimator with

weights aθ̃ (xi, yi)
−1. This may come at a cost of some added variance. It would be

interesting to examine the bias of local case-control and the variance of weighted

local case-control in this more general problem setting.

7.2. Extensions. This work suggests extensions in several directions, de-

scribed below.

Indifference point other than 50%. In some applications (e.g., diagnostic med-

ical screening), a false negative may be more costly than a false positive, or

vice-versa. One of the implications of the discussion in Section 2.2 is that the

Bernoulli log-likelihood implicitly places most emphasis on approximating the

log-odds well near the 0 (50% probability) level curve, which may not be appro-

priate if the decision boundary relevant to our application is at 10%. In general, we

would expect to obtain a better model in the large-n limit if we target the decision

boundary we care most about.

In a sense, the reason that standard case-control sampling performed so badly in

Example 2 of Section 2.2 is that it targeted a level curve of P(Y = 1|X = x) other

than 50%. Specifically, it targeted the level curve corresponding to 50% in the sub-

sampling population for equal-sampled case-control sampling, which corresponds

to the marginal P(Y = 1) level curve in the original population.

What happened by accident in Example 2 need not always be one, and it would

be interesting to generalize our procedure so as to target any chosen decision

threshold. More generally still, our indifference point could depend on our fea-

tures x—in online advertising, for instance, some advertisers may be willing to

pay more per click than others.

Boosting. In Section 7.1 we suggested using offsets to obtain a complex

second-stage fit. Alternatively, we can obtain any fitted log-odds function fs(x)

for the sample and simply add it to the pilot f̃ (x) to obtain an estimate for f (x).

This observation suggests the possibility of iteratively fitting a “base model” to

the subsample, then adding it to f̃ (x) to obtain a new pilot for the next iteration.

Indeed, that iterative algorithm is closely related to the AdaBoost algorithm of

Freund and Schapire (1997). Even more similarly to AdaBoost, we could weight

each point by |yi − p̃(xi)| instead of sampling it with that probability.
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Friedman, Hastie and Tibshirani (2000) show that the AdaBoost algorithm can

be thought of as fitting a logistic regression model additive in base learners. In

AdaBoost, the function FM(x) = ∑M
m=1 fm(x) simply records the number of clas-

sifiers fm classifying x as belonging to class +1 minus the number classifying it

as class −1, and Friedman et al. show that 1
2
FM(x) can be thought of as approxi-

mating the log-odds of Y = +1 given X = x.

The difference is that while AdaBoost weights the point (xi, yi) by

e(2yi−1)Fm(xi), the local case-control version would use weights

∣∣yi − pM(xi)
∣∣ = eyiFm(xi)

1 + eFm(xi)
= e(2yi−1)Fm(xi)

1 + e(2yi−1)Fm(xi)
.(74)

Operationally, this alternative weighting scheme limits the influence of “out-

liers,” that is, hard-to-classify points that can unduly drive the AdaBoost fit.

Logistic regression with regularization. In high-dimensional settings, lasso-

or ridge-penalized logistic regressions are often preferable to standard logistic re-

gression, the model considered here. One could use local case-control sampling

with a regularized version of logistic regression, but our asymptotic results might

need revisiting in such a case—especially in a high-dimensional asymptotic regime

[p ≫ n or p/n → γ ∈ (0,∞)]. Since the high-dimensional setting is important in

modern statistics and machine learning, this bears further investigation.

Other generalized linear models. One way of viewing the method is as a way

of “tilting” the conditional distribution of Y by a linear function of X in the natural

parameter space so as to enrich our subsample for more informative observations.

We could use similar tricks on other GLMs.

For instance, suppose we are given a Poisson variable with natural parameter

η = logEY . By sampling with acceptance probability proportional to eξY , we ob-

tain (conditional on acceptance) a Poisson with natural parameter η + ξ . Since

Poisson variables with larger means carry more information, this could yield a

substantial improvement over uniform subsampling.

If our data arise from a Poisson GLM with η(x) ≈ α +β ′x, we could generalize

the local case-control scheme by sampling (xi, yi) with probability proportional

to exp{(ξ0 − α − β ′xi)yi}, where the extra parameter ξ0 guarantees that we al-

ways tilt the conditional mean of yi upward. Similar generalizations may apply for

multinomial logit and survival models.

APPENDIX A: PROOF OF LEMMA 1 (UNIQUENESS OF θ∗)

Because Rλ(θ) is strictly convex, it is sufficient to show that Rλ(θ) → ∞ as

θ → ∞ in any direction.

Assume w.l.o.g. there is some neighborhood N ⊆ R
p for which

inf
x∈N

θ ′x

‖θ‖ = ε > 0, P(X ∈ N) > 0 and P(Y = 1|X ∈ N) = πN < 1.(75)
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h(η;πN ) is linear in its second argument, and is increasing for sufficiently large η.

Thus, for large enough ‖θ‖ε, the population risk for P is

R(θ) =
∫

h
(
θ ′x;p(x)

)
dP(x)(76)

≥
∫

N
h
(
‖θ‖ε;p(x)

)
dP(x)(77)

= h
(
‖θ‖ε;πN

)
P(X ∈ N) → ∞.(78)

Pλ ≫ P for any λ, so (75) holds for Pλ with the same N (but a different πN < 1).

Thus, we can repeat the same argument with P replaced by Pλ.

APPENDIX B: PROOF OF PROPOSITION 3 (POINTWISE CONVERGENCE)

Fix θ and begin by writing

ℓλ
i = yi(θ − λ)′xi − log

(
1 + e(θ−λ)′xi

)
.(79)

Let zλ
i be the Bernoulli selection decisions, generated by comparing mutually

independent ui ∼ U(0,1) to the threshold aλ(xi, yi). The zλ
i are independent con-

ditional on λ and the data. Also, write qλ
i = zλ

i ℓ
λ
i , so that Q̂λ(θ) = −1

nā(λ)

∑n
i=1 qλ

i .

By the Cauchy–Schwarz inequality, we have
∣∣ℓλ

i

∣∣ ≤ 1 + |‖θ − λ‖‖xi‖.(80)

Now, for δ > 0 define �δ = {λ :‖λ − λ∞‖ < δ}. For λ ∈ �1, we have
∣∣qλ

i

∣∣ ≤ mi � 1 +
(
‖θ − λ∞‖ + 1

)
‖xi‖(81)

which is integrable by assumption. Finally let En denote an average taken over

indices i = 1, . . . , n, that is, Enf = 1
n

∑n
i=1 fi . Then

Q̂λn(θ) − Qλ∞(θ) = ā(λn)
−1

Enq
λn − ā(λ∞)−1

Eqλ∞ .(82)

By continuity, ā(λn)
p→ ā(λ∞) > 0. Therefore, it suffices to show Enq

λn
p→

Eqλ∞ . Because Enq
λ∞ a.s.→ Eqλ∞ by the law of large numbers, it suffices equally

well to show that Enq
λn −Enq

λ∞ p→ 0.

Now fix ε > 0 and take K large enough that E(m1m>K) < ε. For λn ∈ �1 we

have
∣∣Enq

λn −Enq
λ∞

∣∣ ≤
∣∣En

(
qλn − qλ∞

)
1m≤K

∣∣ + 2Enm1m>K .(83)

With probability one the second term is eventually less than 2ε. Further, for

λn ∈ �δ , we have
∣∣qλn

i − q
λ∞
i

∣∣ = 1
2

∣∣(zλn

i − z
λ∞
i

)(
ℓ
λn

i + ℓ
λ∞
i

)
+

(
z
λn

i + z
λ∞
i

)(
ℓ
λn

i − ℓ
λ∞
i

)∣∣(84)

≤
∣∣zλn

i − z
λ∞
i

∣∣mi + δ‖xi‖.(85)
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Now, write

di =
∣∣zλn

i − z
λ∞
i

∣∣mi1mi≤K .(86)

z
λn

i �= z
λ∞
i iff ui lies between aλn(xi, yi) and aλ∞(xi, yi). Hence, conditionally

on λn and the data, the di are mutually independent nonnegative random variables

bounded by K with means

μi =
∣∣aλn(xi, yi) − aλ∞(xi, yi)

∣∣mi1mi≤K < δK2(87)

since ∇λaλ(xi, yi) ≤ ‖xi‖ < mi .

Continuing, we have

∣∣En

(
qλn − qλ∞

)
1m≤K

∣∣ ≤ En(d − μ) +Enμ + δEn‖x‖1m≤K(88)

≤ En(d − μ) + δK2 + δK.(89)

Conditioning on λ and {(xi, yi)}, the first term is a sum of independent zero-

mean random variables that are bounded in absolute value by K . By Hoeffding’s

inequality,

P

(∣∣∣∣∣
1

n

n∑

i=1

di − μi

∣∣∣∣∣ ≥ ε
∣∣∣λn,

{
(xi, yi)

}
)

≤ 2 exp
[
−nε2/

(
2K2)]

.(90)

Since this bound is deterministic, the same applies to the unconditional proba-

bility that En(d −μ) is large. Take δ = ε/(K +K2). With probability tending to 1,

λn ∈ �δ and the event in (90) holds, in which case

∣∣En

(
qλn − qλ∞

)∣∣ ≤ 4ε.(91)

Since ε was arbitrary, the proof is complete.

APPENDIX C: PROOF OF THEOREM 6 [DISTRIBUTION OF θ̂ − θ̄ (λ)]

By the mean value theorem, we have for each n

∇θQ̂λn(θ̂n) = ∇θQ̂λn

(
θ̄ (λn)

)
+ ∇2

θ Q̂λn(φn)
(
θ̂n − θ̄ (λn)

)
,(92)

where φn is some convex combination of θ̂n and θ̄ (λn). Noting that the LHS is by

definition 0 and rearranging, we obtain

√
n
(
θ̂n − θ̄ (λn)

)
= ∇2

θ Q̂λn(φn)
−1 ·

√
n∇θQ̂λn

(
θ̄ (λn)

)
.(93)

If we can show the first factor tends in probability to ∇2
θ Qθ∗(θ∗)−1 and the sec-

ond tends in distribution to N(0, ā(θ∗)−1J (θ∗, θ∗)), then by Slutsky’s theorem we

have the desired result.
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Using the Skorokhod construction define a joint probability space for λn such

that λn
a.s.→ θ∗. We will condition on the sequence λn and use a triangular array

central limit theorem for the random variables

gni = zni

ā(λn)

(
yi − e(θ̄(λn)−λn)′xi

1 + e(θ̄(λn)−λn)′xi

)
xi(94)

= zni

ā(λn)
∇θℓ(θ − λn;xi, yi)

∣∣∣
θ=θ̄ (λn)

.(95)

Because λn is independent of the data, E(f (gni)|λn, zni = 1) = Eλn(f (gni)) for

any f . The triangular array CLT applies since

E(gni |λn) = 0,(96)

Var(gni |λn) = E
[
Var(gni |λn, zni)|λn

]
(97)

= P(zni = 1|λn)ā(λn)
−2 Varλn

(
∇θℓ

(
θ̄ (λn) − λn;xni, yni

))
(98)

= ā(λn)
−1J

(
θ̄ (λn), λn

)
(99)

a.s.→ ā
(
θ∗)−1

J
(
θ∗, θ∗)

.(100)

Therefore, defining Sn = n−1/2 ∑n
i=1 gni and Z = N(0, a(θ∗)−1J (θ∗, θ∗)), the

CLT tells us P(Sn ∈ A|λn) → P(Z ∈ A) whenever λn → θ∗, which we as-

sumed occurs with probability 1. By dominated convergence, we also have

P(Sn ∈ A) → P(Z ∈ A).

Next we turn to the Hessian. We have θ̂n
p→ θ∗ by Theorem 5, so φn

p→ θ∗ as

well. Writing

h
θ,λ
i = e(θ−λ)′xi

(1 + e(θ−λ)′xi )2
xix

′
iz

λ
i(101)

we need to show that

ā(λn)
−1(

Enh
φn,λn

)−1 p→ ā
(
θ∗)−1(

Ehθ∗,θ∗)−1
.(102)

Note that ‖hθ,λ
i ‖F ≤ ‖xi‖2, which is integrable; hence Enh

θ∗,θ∗ p→ Ehθ∗,θ∗ =
H(θ∗, θ∗) ≻ 0. Since ā is continuous and strictly positive, and λn

p→ θ∗, it suf-

fices to show that

∥∥Enh
φn,λn −Enh

θ∗,θ∗∥∥
F

p→ 0.(103)

Note that h
θ∗,θ∗
i = 1

4
xix

′
i , and define wni = e(φn−λn)′xi

(1+e(φn−λn)′xi )2
.
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Following the structure of the proof of Proposition 3, take K large enough that

E‖x‖21‖x‖>K < ε and truncate the hi :

∥∥Enh
φn,λn −Enh

θ∗,θ∗∥∥
F

≤
∥∥En

(
hφn,λn − hθ∗,θ∗)

1‖x‖≤K

∥∥
F(104)

+
∥∥En

(
hφn,λn − hθ∗,θ∗)

1‖x‖>K

∥∥
F

≤ K2
En

∣∣wnz
λn
n − 1

4
zθ∗
n

∣∣1‖x‖≤K + 2En‖x‖21‖x‖>K .(105)

The second term is eventually less than 2ε. Now, wni − 1
4

is small, because
∣∣∣∣

d

dη

(
eη

(1 + eη)2

)∣∣∣∣ =
∣∣∣∣
eη(eη − 1)

(1 + eη)3

∣∣∣∣ ≤ eη

(1 + eη)2
≤ 1

4
.(106)

Hence, by Cauchy–Schwarz
∣∣wni − 1

4

∣∣ ≤ 1
4
‖φn − λn‖‖xi‖.(107)

So on the event {max‖λn − θ∗‖,‖φn − θ∗‖ < δ}, we have

En

∣∣wnz
λn
n − 1

4
zθ∗
n

∣∣1‖x‖≤K(108)

= 1
2
En

∣∣(zλn − zθ∗)(
wn + 1

4

)
+

(
zλn + zθ∗)(

wn − 1
4

)∣∣1‖x‖≤K(109)

≤ En

∣∣zλn − zθ∗ ∣∣1‖x‖≤K + δK.(110)

Finally, we can bound the first term exactly as we did in the proof of Proposition 3,

defining di = |zλn

i − zθ∗
i |K21‖xi‖≤K and μi = E(di |xi, yi, λn) ≤ δK3. The same

argument implies P(En(d −μ) ≥ ε) ≤ 2 exp[−nε2/(2K4)], so as n → ∞ we have

with probability approaching 1,
∥∥En

(
hφn,λn − hθ∗,θ∗)∥∥

F ≤ En(d − μ) +Enμ + δK3 + 2En‖x‖21‖x‖>K(111)

≤ 3ε + 2δK3(112)

so taking δ < ε/K3, the right-hand side is less than 5ε.
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