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Abstract

We present an algorithmic framework for learning local causal structure around target variables of

interest in the form of direct causes/effects and Markov blankets applicable to very large data sets

with relatively small samples. The selected feature sets can be used for causal discovery and clas-

sification. The framework (Generalized Local Learning, or GLL) can be instantiated in numerous

ways, giving rise to both existing state-of-the-art as well as novel algorithms. The resulting algo-

rithms are sound under well-defined sufficient conditions. In a first set of experiments we evaluate

several algorithms derived from this framework in terms of predictivity and feature set parsimony

and compare to other local causal discovery methods and to state-of-the-art non-causal feature se-

lection methods using real data. A second set of experimental evaluations compares the algorithms

in terms of ability to induce local causal neighborhoods using simulated and resimulated data and

examines the relation of predictivity with causal induction performance.

Our experiments demonstrate, consistently with causal feature selection theory, that local causal

feature selection methods (under broad assumptions encompassing appropriate family of distribu-
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tions, types of classifiers, and loss functions) exhibit strong feature set parsimony, high predictivity

and local causal interpretability. Although non-causal feature selection methods are often used in

practice to shed light on causal relationships, we find that they cannot be interpreted causally even

when they achieve excellent predictivity. Therefore we conclude that only local causal techniques

should be used when insight into causal structure is sought.

In a companion paper we examine in depth the behavior of GLL algorithms, provide extensions,

and show how local techniques can be used for scalable and accurate global causal graph learning.

Keywords: local causal discovery, Markov blanket induction, feature selection, classification,

causal structure learning, learning of Bayesian networks

1. Introduction

This paper addresses the problem of how to learn local causal structure around a target variable of

interest using observational data. We focus on two specific types of local discovery: (a) identifica-

tion of variables that are direct causes or direct effects of the target, and (b) discovery of Markov

blankets. A Markov Blanket of a variable T is a minimal variable subset conditioned on which all

other variables are probabilistically independent of T .

Discovery of local causal relationships is significant because it plays a central role in causal

discovery and classification, because of its scalability benefits, and because by naturally bridging

causation with predictivity, it provides significant benefits in feature selection for classification.

More specifically, solving the local causal induction problem helps understanding how natural and

artificial systems work; it helps identify what interventions to pursue in order for these systems

to exhibit desired behaviors; under certain assumptions, it provides minimal feature sets required

for classification of a chosen response variable with maximum predictivity; and finally local causal

discovery can form the basis of efficient algorithms for learning the global causal structure of all

variables in the data.

The paper is organized as follows: Section 2 provides necessary background material. The

section summarizes related prior work in feature selection and causal discovery; reviews recent

results that connect causality with predictivity; explains the central role of local causal discovery

for achieving scalable global causal induction; reviews prior methods for local causal and Markov

blanket discovery and published applications; finally it introduces the open problems that are the

focus of the present report. Section 3 provides formal concepts and definitions used in the paper.

Section 4 provides a general algorithmic framework, Generalized Local Learning (GLL), which can

be instantiated in many different ways yielding sound algorithms for local causal discovery and fea-

ture selection. Section 5 evaluates a multitude of algorithmic instantiations and parameterizations

from GLL and compares them to state-of-the-art local causal discovery and feature selection meth-

ods in terms of classification performance, feature set parsimony, and execution time in many real

data sets. Section 6 evaluates and compares new and state-of-the-art algorithms in terms of ability

to induce correct local neighborhoods using simulated data from known networks and resimulated

data from real-life data sets. Section 7 discusses the experimental findings and their significance.

The experiments presented here support the conclusion that local structural learning in the

form of Markov blanket and local neighborhood induction is a theoretically well-motivated and

empirically robust learning framework that can serve as a powerful tool for data analysis geared

toward classification and causal discovery. At the same time several existing open problems of-

fer possibilities for non-trivial theoretical and practical discoveries making it an exciting field of

research. A companion paper (part II of the present work) studies the GLL algorithm properties

172



LOCAL CAUSAL AND MARKOV BLANKET INDUCTION PART I

empirically and theoretically, introduces algorithmic extensions, and connects local to global causal

graph learning (Aliferis et al., 2010). An online supplement to the present work is available at

http://www.nyuinformatics.org/downloads/supplements/JMLR2009/index.html. In ad-

dition to supplementary tables and figures, the supplement provides all software and data needed to

reproduce the analyses of the present paper.

2. Background

In the present section we provide a brief review of feature selection and causal discovery research,

summarize theoretical results motivating this work, present methods to speed-up scalability of dis-

covery, give desiderata for local algorithms, review prior methods for Markov blanket and local

neighborhood induction, and finally discuss open problems and focus of this paper.

2.1 Brief Review of Feature Selection and Causal Discovery Research

Variable selection for predictive modeling (also called feature selection) has received considerable

attention during the last three decades both in statistics and in machine learning (Guyon and Elisse-

eff, 2003; Kohavi and John, 1997). Intuitively, variable selection for prediction aims to select only

a subset of variables for constructing a diagnostic or predictive model for a given classification or

regression task. The reasons to perform variable selection include (a) improving the model predic-

tivity and addressing the curse-of-dimensionality, (b) reducing the cost of observing, storing, and

using the predictive variables, and finally, (c) gaining an understanding of the underlying process

that generates the data. The problem of variable selection is more pressing than ever, due to the re-

cent emergence of extremely large data sets, sometimes involving tens to hundreds of thousands of

variables and exhibiting a very small sample-to-variable ratio. Such data sets are common in gene

expression array studies, proteomics, computational biology, text categorization, information re-

trieval, image classification, business data analytics, consumer profile analysis, temporal modeling,

and other domains and data-mining applications.

There are many different ways to define the variable selection problem depending on the needs

of the analysis. Often however, the feature selection problem for classification/prediction is defined

as identifying the minimum-size subset of variables that exhibit the maximal predictive performance

(Guyon and Elisseeff, 2003). Variable selection methods can be broadly categorized into wrappers

(i.e., heuristic search in the space of all possible variable subsets using a classifier of choice to

assess each subset’s predictive information), or filters (i.e., not using the classifier per se to select

features, but instead applying statistical criteria to first select features and then build the classifier

with the best features). In addition, there exist learners that perform embedded variable selection,

that is, that attempt to simultaneously maximize classification performance while minimizing the

number of variables used. For example, shrinkage regression methods introduce a bias into the

parameter estimation regression procedure that imposes a penalty on the size of the parameters.

The parameters that are close to zero are essentially filtered-out from the predictive model.

A variety of embedded variable selection methods have been recently introduced. These meth-

ods are linked to a statement of the classification or regression problem as an optimization problem

with specified loss and penalty functions. These techniques usually fall into a few broad classes:

One class of methods uses the L2-norm penalty (also known as ridge penalty), for example, the re-

cursive feature elimination (RFE) method is based on the L2-norm formulation of SVM classifica-

tion problem (Rakotomamonjy, 2003; Guyon et al., 2002). Other methods are based on the L1-norm
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penalty (also known as lasso penalty), for example, feature selection via solution of the L1-norm

formulation of SVM classification problem (Zhu et al., 2004; Fung and Mangasarian, 2004) and

penalized least squares with lasso penalty on the regression coefficients (Tibshirani, 1996). A third

set of methods is based on convex combinations of the L
1- and L

2-norm penalties, for example,

feature selection using the doubly SVM formulation (Wang et al., 2006) and penalized least squares

with elastic net penalty (Zou and Hastie, 2005). A fourth set uses the L0-norm penalty, for example,

feature selection via approximate solution of the L0-norm formulation of SVM classification prob-

lem (Weston et al., 2003). Finally other methods use other penalties, for example, smoothly clipped

absolute deviation penalty (Fan and Li, 2001).

Despite the recent emphasis on mathematically sophisticated methods such as the ones men-

tioned, the majority of feature selection methods in the literature and in practice are heuristic in

nature in the sense that in most cases it is unknown what consists an optimal feature selection solu-

tion independently of the class of models fitted, and under which conditions an algorithm will output

such an optimal solution.

Typical variable selection approaches also include forward, backward, forward-backward, local

and stochastic search wrappers (Guyon and Elisseeff, 2003; Kohavi and John, 1997; Caruana and

Freitag, 1994). The most common family of filter algorithms ranks the variables according to a

score and then selects for inclusion the top k variables (Guyon and Elisseeff, 2003). The score of

each variable is often the univariate (pairwise) association with the outcome variable T for different

measures of associations such as the signal-to-noise ratio, the G2 statistic and others. Information-

theoretic (estimated mutual information) scores and multivariate scores, such as the weights re-

ceived by a Support Vector Machine, have also been suggested (Guyon and Elisseeff, 2003; Guyon

et al., 2002). Excellent recent reviews of feature selection can be found in Guyon et al. (2006a),

Guyon and Elisseeff (2003) and Liu and Motoda (1998).

An emerging successful but also principled filtering approach in variable selection, and the one

largely followed in this paper, is based on identifying the Markov blanket of the response (“target”)

variable T . The Markov blanket of T (denoted as MB(T )) is defined as a minimal set conditioned

on which all other measured variables become independent of T (more details in Section 3).

While classification is often useful for recognizing or predicting the behavior of a system, in

many problem-solving activities one needs to change the behavior of the system (i.e., to “manipu-

late it”). In such cases, knowledge of the causal relations among the various parts of the system is

necessary. Indeed, in order to design new drugs and therapies, institutional policies, or economic

strategies, one needs to know how the diseased organism, the institution, or the economy work. Of-

ten, heuristic methods based on multivariate or univariate associations and prediction accuracy are

used to induce causation, for example, consider as causally “related” the features that have a strong

association with T . Such heuristics may lead to several pitfalls and erroneous inductions, as we

will show in the present paper. For principled causal discovery with known theoretical properties

a causal theory is needed and classification is not, in general, sufficient (Spirtes et al., 2000; Pearl,

2000; Glymour and Cooper, 1999). Consider the classical epidemiologic example of the tar-stained

finger of the heavy smoker: it does predict important outcomes (e.g., increased likelihood for heart

attack and lung cancer). However, eliminating the yellow stain by washing the finger does not alter

these outcomes. While experiments can help discover causal structure, quite often experimentation

is impossible, impractical, or unethical. For example, it is unethical to force people to smoke and it

is currently impossible to manipulate most genes in humans in order to discover which genes cause

disease and how they interact in doing so. Moreover, the discoveries anticipated due to the explosive
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growth of biomedical and other data cannot be made in any reasonable amount of time using solely

the classical experimental approach where a single gene, protein, treatment, or intervention is at-

tempted each time, since the space of needed experiments is immense. It is clear that computational

methods are needed to catalyze the discovery process.

Fortunately, relatively recently (1980’s), it was shown that it is possible to soundly infer causal

relations from observational data in many practical cases (Spirtes et al., 2000; Pearl, 2000; Glymour

and Cooper, 1999; Pearl, 1988). Since then, algorithms that infer such causal relations have been

developed that can greatly reduce the number of experiments required to discover the causal struc-

ture. Several empirical studies have verified their applicability (Tsamardinos et al., 2003b; Spirtes

et al., 2000; Glymour and Cooper, 1999; Aliferis and Cooper, 1994).

One of the most common methods to model and induce causal relations is by learning causal

Bayesian networks (Neapolitan, 2004; Spirtes et al., 2000; Pearl, 2000). A special, important and

quite broad class of such networks is the family of faithful networks intuitively defined as those

whose probabilistic properties, and specifically the dependencies and independencies, are a direct

function of their structure (Spirtes et al., 2000). Cooper and Herskovits were the first to devise a

score measuring the fit of a network structure to the data based on Bayesian statistics, and used

it to learn the highest score network structure (Cooper and Herskovits, 1992). Heckerman and his

colleagues studied theoretically the properties of the various scoring metrics as they pertain to causal

discovery (Glymour and Cooper, 1999; Heckerman, 1995; Heckerman et al., 1995). Heckerman also

recently showed that Bayesian-scoring methods also assume (implicitly) faithfulness, see Chapter

4 of Glymour and Cooper (1999). Another prototypical method for learning causal relationships

by inducing causal Bayesian networks is the constraint-based approach as exemplified in the PC

algorithm by Spirtes et al. (2000). The PC induces causal relations by assuming faithfulness and

by performing tests of independence. A network with a structure consistent with the results of the

tests of independence is returned. Several other methods for learning networks have been devised

subsequently (Chickering, 2003; Moore and Wong, 2003; Cheng et al., 2002a; Friedman et al.,

1999b).

There may be many different networks that fit the data equally well, even in the sample limit, and

that exhibit the same dependencies and independencies and are thus statistically equivalent. These

networks belong to the same Markov equivalence class of causal graphs and contain the same causal

edges but may disagree on the direction of some of them, that is, whether A causes B or vice-versa

(Chickering, 2002; Spirtes et al., 2000). An essential graph is a graph where the directed edges

represent the causal relations on which all equivalent networks agree upon their directionality and

all the remaining edges are undirected. Causal discovery by employing causal Bayesian networks

is based on the following principles. The PC (Spirtes et al., 2000), Greedy Equivalence Search

(Chickering, 2003) and other prototypical or state-of-the-art Bayesian network-learning algorithms

provide theoretical guarantees, that under certain conditions such as faithfulness they will converge

to a network that is statistically indistinguishable from the true, causal, data-generating network, if

there is such. Thus, if the conditions hold the existence of all and the direction of some of the causal

relations can be induced by these methods and graphically identified in the essential graph of the

learnt network.

A typical condition of the aforementioned methods is causal sufficiency (Spirtes et al., 2000).

This condition requires that for every pair of measured variables all their common direct causes

are also measured. In other words, there are no hidden, unmeasured confounders for any pair of

variables. Algorithms, such as the FCI, that in some cases can discover causal relationships in the
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presence of hidden confounding variables and selection bias, have also been designed (see Spirtes

et al. 2000 and Chapter 6 of Glymour and Cooper 1999).

As it was mentioned above, using observational data alone (even a sample of an infinite size),

one can infer only a Markov equivalence class of causal graphs, which may be inadequate for

causal discovery. For example, it is not possible to distinguish with observational data any of these

two graphs that belong to the same Markov equivalence class: X → Y and X ← Y . However,

experimental data can distinguish between these graphs. For example, if we manipulate X and see

no change in the distribution of Y , we can conclude that the data-generative graph is not X → Y .

This principle is exploited by active learning algorithms. Generally speaking, causal discovery with

active learning can be described as follows: learn an approximation of a causal network structure

from available data (which is initially only observational data), select and perform an experiment

that maximizes some utility function, augment data and possibly current best causal network with

the result of experiment, and repeat the above steps until some termination criterion is met.

Cooper and Yoo (1999) proposed a Bayesian scoring metric that can incorporate both observa-

tional and experimental data. Using a similar metric (Tong and Koller, 2001) designed an algorithm

to select experiments that reduce the entropy of probability of alternative edge orientations. A simi-

lar but more general algorithm has been proposed in Murphy (2001) where the expected information

gain of a new experiment is calculated and the experiment with the largest information gain is se-

lected. Both above methods were designed for discrete data distributions. Pournara and Wernisch

(2004) proposed another active learning algorithm that uses a loss function defined in terms of the

size of transition sequence equivalence class of networks (Tian and Pearl, 2001) and can handle

continuous data. Meganck et al. (2006) have introduced an active learning algorithm that is based

on a general decision theoretic framework that allows to assign costs to each experiment and each

measurement. It is also worthwhile to mention the GEEVE system of Yoo and Cooper (2004) that

recommends which experiments to perform to discover gene-regulation pathway. This instance of

causal active learning allows to incorporate preferences of the experimenter. Recent work has also

provided theoretical bounds and related algorithms to minimize the number of experiments needed

to infer causal structure (Eberhardt et al., 2006, 2005).

2.2 Synopsis of Theoretical Results Motivating Present Research

A key question that has been investigated in the feature selection literature is which family of meth-

ods is more advantageous: filters or wrappers. A second one is what are the “relevant” features?

The latter question presumably is important because “relevant” features should be important for dis-

covery and so several definitions appeared defining relevancy (Guyon and Elisseeff, 2003; Kohavi

and John, 1997). Finally, how can we design optimal and efficient feature selection algorithms?

Fundamental theoretical results connecting Markov blanket induction for feature selection and local

causal discovery to standard notions of relevance were given in Tsamardinos and Aliferis (2003).

The latter paper provides a technical account and together with Spirtes et al. (2000), Pearl (2000),

Kohavi and John (1997) and Pearl (1988) they constitute the core theoretical framework underpin-

ning the present work. Here we provide a very concise description of the results in Tsamardinos and

Aliferis (2003) since they partially answer these questions and pave the way to principled feature

selection:

1. Relevance cannot be defined independently of the learner and the model-performance metric

(e.g., the loss function used) in a way that the relevant features are the solution to the feature

176



LOCAL CAUSAL AND MARKOV BLANKET INDUCTION PART I

selection problem. The quest for a universally applicable notion of relevancy for prediction is

futile.

2. Wrappers are subject to the No-Free Lunch Theorem for optimization: averaged out on all

possible problems any wrapper algorithm will do as well as a random search in the space of

feature subsets. Therefore, there cannot be a wrapper that is a priori more efficient than any

other (i.e., without taking into account the learner and model-performance metric). The quest

for a universally efficient wrapper is futile as well.

3. Any filter algorithm can be viewed as the implementation of a definition of relevancy. Because

of #1, there is no filter algorithm that is universally optimal, independently of the learner and

model-performance metric.

4. Because of #2, wrappers cannot guarantee universal efficiency and because of #3, filters can-

not guarantee universal optimality and in that respect, neither approach is superior to the

other.

5. Under the conditions that (i) the learner that constructs the classification model can actually

learn the distribution P(T |MB(T )) and (ii) that the loss function is such that perfect estimation

of the probability distribution of T is required with the smallest number of variables, the

Markov blanket of T is the optimal solution to the feature selection problem.

6. Sound Markov blanket induction algorithms exist for faithful distributions.

7. In faithful distributions and under the conditions of #5, the strongly/weakly/irrelevant taxon-

omy of variables (Kohavi and John, 1997) can be mapped naturally to causal graph properties.

Informally stated, strongly relevant features were defined by Kohavi and John (1997) to be

features that contain information about the target not found in other variables; weakly relevant

features are informative but redundant; irrelevant features are not informative (for formal defi-

nitions see Section 3). Under the causal interpretation of this taxonomy of relevancy, strongly

relevant features are the members of the Markov blanket of the target variable, weakly rele-

vant features are all variables with an undirected path to T which are not themselves members

of MB(T ), and irrelevant features are variables with no undirected path to the target.

8. Since in faithful distributions the MB(T ) contains the direct causes and direct effects of T , and

since state-of-the-art MB(T ) algorithms output the spouses separately from the direct causes

and direct effects, inducing the MB(T ) not only solves the feature selection problem but also

a form of local causal discovery problem.

Figure 1 provides a summary of the connection between causal structure and predictivity.

We will refer to algorithms that perform feature selection by formal causal induction as causal

feature selection and algorithms that do not as non-causal. As highly complementary to the above

results we would add the arguments in favor of causal feature selection presented in Guyon et al.

(2007) and recent theoretical (Hardin et al., 2004) and empirical (Statnikov et al., 2006) results that

show that under the same sufficient conditions that make Markov blanket the optimal solution to

the feature selection and local causal discovery problem, state-of-the-art methods such as ranking

features by SVM weights (RFE being a prototypical algorithm Guyon et al. 2002) do not return the
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Figure 1: Relationship between causal structure and predictivity in faithful distributions. Cyan

variables are members of Markov blanket of T . They are depicted inside the red dotted square

(i.e., variables that have undirected path to target T and that are predictive of T given the remaining

variables which makes them strongly relevant). Markov blanket variables include direct causes of T

(C,D), direct effects (F), and “spouses” of T (i.e., direct causes of the direct effects of T ) (G). Grey

variables are non-members of Markov blanket of T that have undirected path to T . They are not

predictive of T given the remaining variables but they are predictive given a subset of the remaining

variables (which makes them weakly relevant). Light-gray variables are variables that do not have

an undirected path to T . They are not predictive of T given any subset of the remaining variables,

thus they are irrelevant.

correct causal neighborhood and are not minimal, that is, do not solve the feature selection problem)

even in the large sample limit.

The above theoretical results also suggest that one should not attempt to define and identify the

relevant features for prediction, when discovery is the goal of the analysis. Instead, we argue that

a set of features with well-defined causal semantics should be identified instead: for example, the

MB(T ), the set of direct causes and direct effects of T , the set of all (direct and indirect) causes of

T , and so on.

We will investigate limitations of prominent non-causal feature selection algorithms in the com-

panion paper (Aliferis et al., 2010).

2.3 Methods to Speed-up Discovery: Local Discovery as a Critical Tool for Scalability

As appealing as causal discovery may be for understanding a domain, predicting effects of inter-

vention, and pursuing principled feature selection for classification, a major problem up until recent

years has been scalability. The PC algorithm is worst-case exponential (Spirtes et al., 2000) and

in practical settings it cannot typically handle more than a hundred variables. The FCI algorithm

is similarly worst-case intractable (Spirtes et al., 2000) and does not handle more than a couple of

dozen of variables practically. Learning Bayesian networks with Bayesian scoring techniques is

NP-Hard (Chickering et al., 1994). Heuristic hill-climbing techniques such as the Sparse Candidate

Algorithm (Friedman et al., 1999b) do not provide guaranteed correct solutions, neither they are

very efficient (they can cope with a few hundred variables at the most in practical applications).
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With the advent of massive data sets in biology, medicine, information retrieval, the WWW,

finance, economics, and so on, scalability has become a critical requirement for practical algorithms.

In early 2000’s predictions about the feasibility of causal discovery in high-dimensional data were

bleak (Silverstein et al., 2000). A variety of methods to scale up causal discovery have been devised

to address the problem:

1. Learn the full graph but focus on special types of distributions;

2. Exploit domain knowledge to speed-up learning;

3. Abandon the effort to learn the full causal graph and instead develop methods that find a

portion of the true arcs (not specific to some target variable);

4. Abandon the effort to learn the full causal graph and instead develop methods that learn the

local neighborhood of a specific target variable directly;

5. Abandon the effort to learn the fully oriented causal graph and instead develop methods that

learn the unoriented graph;

6. Induce constrains of the possible relationships among variables and then learn the full causal

graph.

Techniques #1 and #2 were introduced in Chow and Liu (1968) for learning tree-like graphs and

Naı̈ve-Bayes graphs (Duda and Hart, 1973), while modern versions are exemplified in (i) TAN/BAN

classifiers that relax the Naı̈ve-Bayes structure (Cheng and Greiner, 2001, 1999; Friedman et al.,

1997), (ii) efficient complete model averaging of Naı̈ve-Bayes classifiers (Dash and Cooper, 2002),

and (iii) algorithm TPDA which restricts the class of distributions so that learning becomes from

worst-case intractable to solvable in 4th degree polynomial time to the number of variables (and

quadratic if prior knowledge about the ordering of variables is known) (Cheng et al., 2002a). Tech-

nique #3 was introduced by Cooper (1997) and replaced learning the complete graph by learning

only a small portion of the edges (not pre-specified by the user but determined by the discovery

method). Techniques #4− 6 pertain to local learning: Technique #4 seeks to learn the complete

causal neighbourhood around a target variable provided by the user (Aliferis et al., 2003a; Tsamardi-

nos et al., 2003b). We emphasize that local learning (technique #4) is not the same as technique #3

(incomplete learning) although inventors of incomplete methods often call them ‘local’. Technique

#5 abandons directionality and learns only a fully connected but undirected graph by using local

learning methods (Tsamardinos et al., 2006; Brown et al., 2005). Often post-processing with ad-

ditional algorithms can provide directionality. The latter can also be obtained by domain-specific

criteria or experimentation. Finally, technique #6 uses local learning to restrict the search space for

full-graph induction algorithms (Tsamardinos et al., 2006; Aliferis and Tsamardinos, 2002b).

In the present paper we explore methods to learn local causal neighborhoods and test them in

high-dimensional data sets. In the companion paper (Aliferis et al., 2010) we provide a framework

for building global graphs using the local methods. Incomplete learning (technique #3) is not pur-

sued because it is redundant in light of the other (complete) local and global learning approaches.

Figure 2 provides a visual reference guide to the kinds of causal discovery problems the methods in

the present work are able to address by starting from local causal discovery.

179



ALIFERIS, STATNIKOV, TSAMARDINOS, MANI AND KOUTSOUKOS

B

A

E

T

H Q L

M N

P

O

C D

I J

K

F G

R

S

U

V

W

X

Y

Z

B

A

E

T

H Q L

M N

P

O

C D

I J

K

F G

R

S

U

V

W

X

Y

Z

A

E

T

H Q L

M N

P

O

C D

I J

K

F G

R

S

U

V

W

X

Y

Z

B

B

A

E

T

H Q L

M N

P

O

C D

I J

K

F G

R

S

U

V

W

X

Y

Z

Problem #1: Consider a target 

variable T and discover Markov 

Blanket of T.

Problem #2: Consider a target 

variable T and discover Parents and 

Children of T.

Problem #3: Consider a target 

variable T and discover regions (e.g., 

of depth 2 edges) around T.

Problem #5: Discover undirected graph.

A

E

T

H Q L

M N

P

O

C D

I J

K

F G

R

S

U

V

W

X

Y

Z

B

A

E

T

H Q L

M N

P

O

C D

I J

K

F G

R

S

U

V

W

X

Y

Z

B

Problem #4: Discover directed graph.

Figure 2: Five types of causal discovery from local (types 1, 2), to global (4, 5) and intermediate

(3). Specialized algorithms that solve type 2 (local causes and effects) can become building blocks

for relatively efficiently solving all other types of causal discovery as well (see text for details).

2.4 Desiderata for Local Algorithms, Brief Review of Prior Methods for Markov Blanket

and Local Neighborhood Induction

An ideal local learning algorithm should have three characteristics: (a) well-defined properties, es-

pecially broadly applicable conditions that guarantee correctness, (b) good performance in practical

distributions and corresponding data sets, including ones with small sample and many features, and

finally (c) scalability in terms of running time. We briefly review progress made in the field toward

these goals.

Firm theoretical foundations of Bayesian networks were laid down by Pearl and his co-authors

(Pearl, 1988). Furthermore, all local learning methods exploit either the constraint-based frame-

work for causal discovery developed by Spirtes, Glymour, Schienes, Pearl, and Verma and their

co-authors (Spirtes et al., 2000; Pearl, 2000; Pearl and Verma, 1991) or the Bayesian search-and-

score Bayesian network learning framework introduced by Cooper and Herskovits (1992). The

relevant key contributions were covered in Section 2.1 and will not be repeated here.

While the above foundations were introduced and developed in the span of at least the last 30

years, local learning is no more than 10 years old. Specialized Markov blanket learning meth-

ods were first introduced in 1996 (Koller and Sahami, 1996), incomplete causal methods in 1997

(Cooper, 1997), and local causal discovery methods (for targeted complete induction of direct

causes and effects) were first introduced in 2002 and 2003 (Tsamardinos et al., 2003b; Aliferis

and Tsamardinos, 2002a). In 1996, Koller et al. introduced a heuristic algorithm for inducing the
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Markov blanket from data and tested the algorithm in simulated, real text, and other types of data

from the UCI repository (Koller and Sahami, 1996). In 1997 Cooper and colleagues introduced

and applied the heuristic method K2MB for finding the Markov blanket of a target variable in the

task of predicting pneumonia mortality (Cooper, 1997). In 1997 Cooper introduced an incomplete

method for causal discovery (Cooper et al., 1997). The algorithm was able to circumvent lack of

scalability of global methods by returning a subset of arcs from the full network. To avoid notational

confusion we point out that the algorithm was termed LCD (local causal discovery) despite being

an incomplete rather than local algorithm as local algorithms are defined in the present paper (i.e.,

focused on some user-specified target variable or localized region of the network). A revision of the

algorithm termed LCD2 was presented in Mani and Cooper (1999).

In 1999 Margaritis and Thrun introduced the GS algorithm with the intent to induce the Markov

blanket for the purpose of speeding up global network learning (i.e., not for feature selection) (Mar-

garitis and Thrun, 1999). GS was the first published sound Markov blanket induction algorithm.

The weak heuristic used by GS combined with the need to condition on at least as many variables

simultaneously as the Markov blanket size makes it impractical for many typical data sets since the

required sample grows exponentially to the size of the Markov blanket. This in turn forces the algo-

rithm to stop its execution prematurely (before it identifies the complete Markov blanket) because

it cannot grow the conditioning set while performing reliable tests of independence. Evaluations of

GS by its inventors were performed in data sets with a few dozen variables leaving the potential of

scalability largely unexplored.

In 2001 Cheng et al. applied the TPDA algorithm (a global BN learner) (Cheng et al., 2002a)

to learn the Markov blanket of the target variable in the Thrombin data set in order to solve a

prediction problem of drug effectiveness on the basis of molecular characteristics (Cheng et al.,

2002b). Because TPDA could not be run with more than a few hundred variables efficiently, they

pre-selected 200 variables (out of 139,351 total) using univariate filtering. Although this procedure

in general will not find the true Markov blanket (because otherwise-unconnected with the target

spouses can be missed, many true parents and children may not be in the first 200 variables, and

many non-Markov blanket members cannot be eliminated), the resulting classifier performed very

well winning the 2001 KDD Cup competition.

Friedman et al. proposed a simple Bootstrap procedure for determining membership in the

Markov blanket for small sample situations (Friedman et al., 1999a). The Markov blanket in this

method is to be extracted from the full Bayesian network learned by the SCA (Sparse Candidate

Algorithm) learner (Friedman et al., 1999b).

In 2002 and 2003 Tsamardinos, Aliferis, et al. presented a modified version of GS, termed

IAMB and several variants of the latter that through use of a better inclusion heuristic than GS and

optional post-processing of the tentative and final output of the local algorithm with global learners

would achieve true scalability to data sets with many thousands of variables and applicability in

modest (but not very small) samples (Tsamardinos et al., 2003a; Aliferis et al., 2002). IAMB and

several variants were tested both in the high-dimensional Thrombin data set (Aliferis et al., 2002)

and in data sets simulated from both existing and random Bayesian networks (Tsamardinos et al.,

2003a). The former study found that IAMB scales to high-dimensional data sets. The latter study

compared IAMB and its variants to GS, Koller-Sahami, and PC and concluded that IAMB variants

on average perform best in the data sets tested.

In 2003 Tsamardinos and Aliferis presented a full theoretical analysis explaining relevance as

defined by Kohavi and John (1997) in terms of Markov blanket and causal connectivity (Tsamardi-
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nos and Aliferis, 2003). They also provided theoretical results about the strengths and weaknesses

of filter versus wrapper algorithms, the impossibility of a universal definition of relevance, and the

optimality of Markov blanket as a solution to the feature selection problem in formal terms. These

results were summarized in Section 2.2.

The extension of Sparse Candidate Algorithm to create a local-to-global learning strategy was

first introduced in Aliferis and Tsamardinos (2002b) and led to the MMHC algorithm introduced

and evaluated in Tsamardinos et al. (2006). MMHC was shown in Tsamardinos et al. (2006) to

achieve best-of-class performance in quality and scalability compared to most state-of-the-art global

network learning algorithms.

In 2002 Aliferis et al. also introduced parallel and distributed versions of the IAMB family

of algorithms (Aliferis et al., 2002). These serve as the precursor of the parallel and distributed

local neighborhood learning method presented in the companion paper (Aliferis et al., 2010). The

precursor of the GLL framework was also introduced by Aliferis and Tsamardinos in 2002 for the

explicit purpose of reducing the sample size requirements of IAMB-style algorithms (Aliferis and

Tsamardinos, 2002a).

In 2003 Aliferis et al. introduced algorithm HITON1 Aliferis et al., and Tsamardinos et al.

introduced algorithms MMPC and MMMB (Aliferis et al., 2003a; Tsamardinos et al., 2003b). These

are the first concrete algorithms that would find sets of direct causes or direct effects and Markov

blankets in a scalable and efficient manner. HITON was tested in 5 biomedical data sets spanning

clinical, text, genomic, structural and proteomic data and compared against several feature selection

methods with excellent results in parsimony and classification accuracy (Aliferis et al., 2003a).

MMPC was tested in data simulated from human-derived Bayesian networks with excellent results

in quality and scalability. MMMB was tested in the same data sets and compared to prior algorithms

such as Koller-Sahami algorithm and IAMB variants with superior results in the quality of Markov

blankets. These benchmarking and comparative evaluation experiments provided evidence that the

local learning approach held not only theoretical but also practical potential.

HITON-PC, HITON-MB, MMPC, and MMMB algorithms lacked so-called “symmetry correc-

tion” (Tsamardinos et al., 2006), however HITON used a wrapping post-processing that at least in

principle removed this type of false positives. The symmetry correction was introduced in 2005 and

2006 by Tsamardinos et al. in the context of the introduction of MMHC (Tsamardinos et al., 2006,

2005). Peña et al. also published work pointing to the need for a symmetry correction in MMPC

(Peña et al., 2005b).

HITON was applied in 2005 to understand physician decisions and guideline compliance in the

diagnosis of melanomas (Sboner and Aliferis, 2005). HITON has been applied for the discovery

of biomarkers in human cancer data using microarrays and mass spectrometry and is also imple-

mented in the GEMS and FAST-AIMS systems for the automated analysis of microarray and mass

spectrometry data respectively (Statnikov et al., 2005b; Fananapazir et al., 2005). In a recent ex-

tensive comparison of biomarker selection algorithms (Aliferis et al., 2006a,b) it was found that

HITON outperforms 16 state-of-the-art representatives from all major biomarker algorithmic fam-

ilies in terms of combined classification performance and feature set parsimony. This evaluation

used 9 human cancer data sets (gene expression microarray and mass spectrometry) in 10 diagnos-

tic and outcome (i.e., survival) prediction classification tasks. In addition to the above real data,

resimulation was also used to create two gold standard network structures, one re-engineered from

1. From the Greek word “Xιτ ών” meaning “cloak”, and pronounced <hee tó n>.
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human lung cancer data and one from yeast data. Several applications of HITON in text categoriza-

tion have been published where the algorithm was used to understand complex “black box” SVM

models and convert complex models to Boolean queries usable by Boolean interfaces of Medline

(Aphinyanaphongs and Aliferis, 2004), to examine the consistency of editorial policies in published

journals (Aphinyanaphongs et al., 2006), and to predict drug-drug interactions (Duda et al., 2005).

HITON was also compared with excellent results to manual and machine feature selection in the

domain of early graft failure in patients with liver transplantations (Hoot et al., 2005).

In 2003 Frey et al. explored the idea of using decision tree induction to indirectly approximate

the Markov blanket (Frey et al., 2003). They produced promising results, however a main problem

with the method was that it requires a threshold parameter that cannot be optimized easily. Further-

more, as we show in the companion paper (Aliferis et al., 2010) decision tree induction is subject to

synthesis and does not select only the Markov blanket members.

In 2004 Mani et al. introduced BLCD-MB, which resembles IAMB but using a Bayesian scoring

metric rather than conditional independence testing (Mani and Cooper, 2004). The algorithm was

applied with promising results in infant mortality data (Mani and Cooper, 2004).

A method for learning regions around target variables by recursive application of MMPC or

other local learning methods was introduced in Tsamardinos et al. (2003c). Peña et al. applied

interleaved MMPC for learning regions in the domain of bioinformatics (Peña et al., 2005a).

In 2006 Gevaert et al. applied K2MB for the purpose of learning classifiers that could be used

for prognosis of breast cancer from microarray and clinical data (Gevaert et al., 2006) . Univariate

filtering was used to select 232 genes before applying K2MB.

Other recent efforts in learning Markov blankets include the following algorithms: PCX, which

post-processes the output of PC (Bai et al., 2004); KIAMB, which addresses some violations of

faithfulness using a stochastic extension to IAMB (Peña et al., 2007); FAST-IAMB, which speeds

up IAMB (Yaramakala and Margaritis, 2005); and MBFS, which is a PC-style algorithm that returns

a graph over Markov blanket members (Ramsey, 2006).

2.5 Open Problems and Focus of Paper

The focus of the present paper is to describe state-of-the-art algorithms for inducing direct causes

and effects of a response variable or its Markov blanket using a novel cohesive framework that can

help in the analysis, understanding, improvement, application (including configuration / parameter-

ization) and dissemination of the algorithms. We furthermore study comparative performance in

terms of predictivity and parsimony of state-of-the-art local causal algorithms; we compare them to

non-causal algorithms in real and simulated data sets using the same criteria; and show how novel

algorithms can be obtained. A second major hypothesis (and set of experiments in the present pa-

per) is that non-causal feature selection methods may yield predictively optimal feature sets while

from a causal perspective their output is unreliable. Testing this hypothesis has tremendous implica-

tions in many areas (e.g., analysis of biomedical molecular data) where highly predictive variables

(biomarkers) of phenotype (e.g., disease or clinical outcome) are often interpreted as being causally

implicated for the phenotype and great resources are invested in pursuing these markers for new

drug development and other research.

In the second part of our work (Aliferis et al., 2010) we address gaps in the theoretical under-

standing of local causal discovery algorithms and provide empirical and theoretical analyses of their
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behavior as well as several extensions including algorithms for learning the full causal graph using

a divide-and-conquer local learning approach.

3. Notation and Definitions

In the present paper we use Bayesian networks as the language in which to represent data generating

processes and causal relationships. We thus first formally define causal Bayesian networks. Recall

that in a directed acyclic graph (DAG), a node A is the parent of B (B is the child of A) if there is

a direct edge from A to B, A is the ancestor of B (B is the descendant of A) if there is a direct path

from A to B. “Nodes”, “features”, and “variables” will be used interchangeably.

3.1 Notation

We will denote variables with uppercase letters X ,Y,Z, values with lowercase letters, x,y,z, and sets

of variables or values with boldface uppercase or lowercase respectively. A “target” (i.e., response)

variable is denoted as T unless stated otherwise.

Definition 1 Conditional Independence. Two variables X and Y are conditionally independent

given Z, denoted as I(X ,Y |Z), iff P(X = x,Y = y|Z = z) = P(X = x|Z = z)P(Y = y|Z = z), for

all values x,y,z of X ,Y,Z respectively, such that P(Z = z) > 0.

Definition 2 Bayesian network 〈V ,G,J〉. Let V be a set of variables and J be a joint probability

distribution over all possible instantiations of V . Let G be a directed acyclic graph (DAG) such

that all nodes of G correspond one-to-one to members of V . We require that for every node A ∈ V ,

A is probabilistically independent of all non-descendants of A, given the parents of A (i.e., Markov

Condition holds). Then we call the triplet 〈V ,G,J〉 a Bayesian network (abbreviated as “BN”), or

equivalently a belief network or probabilistic network (Neapolitan, 1990).

Definition 3 Operational criterion for causation. Assume that a variable A can be forced by a

hypothetical experimenter to take values ai. If the experimenter assigns values to A according to a

uniformly random distribution over values of A, and then observes P(B|A = ai) 6= P(B|A = a j) for

some i and j, (and within a time window dt), then variable A is a cause of variable B (within dt).

We note that randomization of values of A serves to eliminate any combined causative influ-

ences on both A and B. We also note that universally acceptable definitions of causation have eluded

scientists and philosophers for centuries. Indeed the provided criterion is not a proper definition,

because it examines one cause at a time (thus multiple causation can be missed), it assumes that a

hypothetical experiment is feasible even when in practice this is not attainable, and the notion of

“forcing” variables to take values presupposes a special kind of causative primitive that is formally

undefined. Despite these limitations, the above criterion closely matches the notion of a Random-

ized Controlled Experiment which is a de facto standard for causation in many fields of science, and

following common practice in the field (Glymour and Cooper, 1999) will serve operationally the

purposes of the present paper.

Definition 4 Direct and indirect causation. Assume that a variable A is a cause of variable B

according to the operational criterion for causation in definition 3. A is an indirect cause for B

with respect to a set of variables V , iff A is not a cause of B for some instantiation of values of

V \{A,B}, otherwise A is a direct cause of B.
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Definition 5 Causal probabilistic network (a.k.a. causal Bayesian network). A causal probabilis-

tic network (abbreviated as “CPN”) 〈V ,G,J〉 is the Bayesian network 〈V ,G,J〉 with the additional

semantics that if there is an edge A→ B in G then A directly causes B (for all A,B ∈ V ) (Spirtes

et al., 2000).

Definition 6 Faithfulness. A directed acyclic graph G is faithful to a joint probability distribution J

over variable set V iff every independence present in J is entailed by G and the Markov Condition.

A distribution J is faithful iff there exists a directed acyclic graph G such that G is faithful to J

(Spirtes et al., 2000; Glymour and Cooper, 1999).

It follows from the Markov Condition that in a CPN C = 〈V ,G,J〉 every conditional indepen-

dence entailed by the graph G is also present in the probability distribution J encoded by C. Thus,

together faithfulness and the causal Markov Condition establish a close relationship between a

causal graph G and some empirical or theoretical probability distribution J. Hence we can asso-

ciate statistical properties of the sample data with causal properties of the graph of the CPN. The

d-separation criterion determines all independencies entailed by the Markov Condition and a graph

G.

Definition 7 d-separation, d-connection. A collider on a path p is a node with two incoming edges

that belong to p. A path between X and Y given a conditioning set Z is open, if (i) every collider

of p is in Z or has a descendant in Z, and (ii) no other nodes on p are in Z. If a path is not open,

then it is blocked. Two variables X and Y are d-separated given a conditioning set Z in a BN or

CPN C iff every path between X, Y is blocked (Pearl, 1988).

Property 1 Two variables X and Y are d-separated given a conditioning set Z in a faithful BN or

CPN iff I(X ,Y |Z) (Spirtes et al., 2000). It follows, that if they are d-connected, they are condition-

ally dependent.

Thus, in a faithful CPN, d-separation captures all conditional dependence and independence

relations that are encoded in the graph.

Definition 8 Markov blanket of T , denoted as MB(T ). A set MB(T ) is a minimal set of features

with the following property: for every variable subset S with no variables in MB(T ), I(S,T |MB(T )).
In Pearl’s terminology this is called the Markov Boundary (Pearl, 1988).

Property 2 The MB(T ) of any variable T in a faithful BN or a CPN is unique (Tsamardinos et al.,

2003b) (also directly derived from Pearl and Verma 1991 and Pearl and Verma 1990).

Property 3 The MB(T ) in a faithful CPN is the set of parents, children, and parents of children

(i.e., “spouses”) of T (Pearl, 2000, 1988).

Definition 9 Causal sufficiency. For every pair of measured variables, all their common causes

are also measured.

Definition 10 Feature selection problem. Given a sample S of instantiations of variable set V

drawn from distribution D, a classifier induction algorithm C and a loss function L, find: smallest

subset of variables F ⊆ V such that F minimizes expected loss L(M,D) in distribution D where M

is the classifier model (induced by C from sample S projected on F ).
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In the above definition, we mean “exact” minimization of L(M,D). In other words, out of all

possible subsets of variable set V , we are interested in subsets F ⊆V that satisfy the following two

criteria: (i) F minimizes L(M,D) and (ii) there is no subset F
∗ ⊆ V such that |F ∗| < |F | and F

∗

also minimizes L(M,D).

Definition 11 Wrapper feature selection algorithm. An algorithm that tries to solve the Feature

Selection problem by searching in the space of feature subsets and evaluating each one with a user-

specified classifier and loss function estimator.

Definition 12 Filter feature selection algorithm. An algorithm designed to solve the Feature Se-

lection problem by looking at properties of the data and not by applying a classifier to estimate

expected loss for different feature subsets.

Definition 13 Causal feature selection algorithm. An algorithm designed to solve the Feature

Selection problem by (directly or indirectly) inducing causal structure and by exploiting formal

connections between causation and predictivity.

Definition 14 Non-causal feature selection algorithm. An algorithm that tries to solve the Feature

Selection problem without reference to the causal structure that underlies the data.

Definition 15 Irrelevant, strongly relevant, weakly relevant, relevant feature (with respect to tar-

get variable T ). A variable set I that conditioned on every subset of the remaining variables does

not carry predictive information about T is irrelevant to T . Variables that are not irrelevant are

called relevant. Relevant variables are strongly relevant if they are predictive for T given the re-

maining variables, while a variable is weakly relevant if it is non-predictive for T given the remain-

ing variables (i.e., it is not strongly relevant) but it is predictive given some subset of the remaining

variables.

4. A General Framework for Local Learning

In this section we present a formal general framework for learning local causal structure. Such a

framework enables a systematic exploration of a family of related but not identical algorithms which

can be seen as instantiations of the same broad algorithmic principles encapsulated in the frame-

work. Also, the framework allows us to think about formal conditions for correctness not only at

the algorithm level but also at the level of algorithm family. We are thus able to identify two dis-

tinct sets of assumptions for correctness: the more general set of assumptions (admissibility rules)

applies to the generative algorithms and provides a set of flexible rules for constructing numerous

algorithmic instantiations each one of which is guaranteed to be correct provided that in addition a

more specific and fixed set of assumptions hold (i.e., specific sufficient conditions for correctness of

the algorithms that are instantiations of the generative framework).

We consider the following two problems of local learning:

Problem 1 Given a set of variables V following distribution P, a sample D drawn from P, and a

target variable of interest T ∈ V : determine the direct causes and direct effects of T .

Problem 2 Given a set of variables V following distribution P, a sample D drawn from P, and a

target variable of interest T ∈ V : determine the direct causes, direct effects, and the direct causes

of the direct effects of T .
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From the work of Spirtes et al. (2000) and Pearl (2000, 1988) we know that when the data are

observational, causal sufficiency holds for the variables V , and the distribution P is faithful to a

causal Bayesian network, then the direct causes, direct effects, and direct causes of the direct effects

of T , correspond to the parents, children, and spouses of T respectively in that network.

Thus, in the context of the above assumptions, Problem 1 seeks to identify the parents and

children set of T in a Bayesian network G faithful to P; we will denote this subset as PCG(T ).
There may be several networks that faithfully capture distribution P, however, as we have shown

in Tsamardinos et al. (2003b) (also directly derived from Pearl and Verma 1991, 1990) PCG(T ) =
PCG′(T ), for any two networks G and G′ faithful to the same distribution. So, the set of parents

and children of T is unique among all Bayesian networks faithful to the same distribution and so we

will drop the superscript and denote it simply as PC(T ). Notice that, a node may be a parent of T

in one network and a child of T in another, for example, the graphs X ← T and X → T may both be

faithful to the same distribution. However, the set of parents and children of T , that is, {X}, remains

the same in both networks. Finally, by Theorem 4 in Tsamardinos et al. (2003b) we know that the

Markov blanket MB(T ) is unique in all networks faithful to the same distribution. Therefore, under

the assumptions of the existence of a causal Bayesian network that faithfully captures P and causal

sufficiency of V , the problems above can be recast as follows:

Problem 3 Given a set of variables V following distribution P, a sample D drawn from P, and a

target variable of interest T ∈ V : determine the PC(T ).

Problem 4 Given a set of variables V following distribution P, a sample D drawn from P, and a

target variable of interest T ∈ V : determine the MB(T ).

Problem 1 is geared toward local causal discovery, while Problem 2 is oriented toward causal

feature selection for classification. The solutions to these problems can form the basis for solving

several other related local discovery problems, such as learning the unoriented set of causal relations

(skeleton of a Bayesian network), a region of interest of a given depth of d edges around T , or further

analyze the data to discover the orientation of the causal relations.

The Generalized Local Learning (GLL) framework consists of two main types of algorithms:

GLL-PC (GLL Parent and Children) for Problem 1 and GLL-MB for Problem 2.

4.1 Discovery of the PC(T ) Set

Identification of the PC(T ) set is based on the following theorem in Spirtes et al. (2000):

Theorem 1 In a faithful BN 〈V ,G,P〉 there is an edge between the pair of nodes X ∈V and Y ∈V

iff ¬I(X ,Y |Z), for all Z ⊆ V \{X ,Y}.

Any variable X that does have an edge with T belongs to the PC(T ). Thus, the theorem gives

rise to an immediate algorithm for identifying PC(T ): for any variable X ∈ V \ {T}, and all Z ⊆
V \ {X ,T}, test whether I(X ,T |Z). If such a Z exists for which I(X ,T |Z), then X /∈ PC(T ),
otherwise X ∈ PC(T ). This algorithm is equivalent to a “localized version” of SGS (Spirtes et al.,

2000). The problem of course is that the algorithm is very inefficient because it tests all subsets of

the variables and thus does not scale beyond problems of trivial size. The order of complexity is

O(|V |2|V |−2). The general framework presented below attempts to characterize not only the above

algorithm but also efficient implementations of the theorem that maintain soundness.
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There are several observations that lead to more efficient but still sound algorithms. First notice

that, once a subset Z ⊆ V \ {X ,T} has been found s.t. I(X ,T |Z) there is no need to perform any

other test of the form I(X ,T |Z ′): we know that X /∈ PC(T ). Thus, the sooner we identify good

candidate subsets Z that can render the variables conditionally independent from T , the fewer tests

will be necessary.

Second, to determine whether X ∈ PC(T ) there is no need to test whether ¬I(X ,T |Z) for all

subsets Z ⊆V \{X ,T} but only for all subsets Z
′⊆ParentsG(T )\{X} and all Z

′⊆ParentsG(X)\
{T} where G is any network faithful to the distribution. To see this, let us first assume that there is

no edge between X and T . Notice that either X is a non-descendant of T or T is a non-descendant

of X since the network is acyclic and they cannot be both descendants of each other. If X is a

non-descendant of T in G, then by the Markov Condition we know that there is a subset Z of

ParentsG(T ) = ParentsG(T ) \ {X} (the equality because we assume no edge between T and X)

such that I(X ,T |Z). Similarly, if T is a non-descendant of X in G then there is Z ⊆ ParentsG(X)\
{T} such that I(X ,T |Z). Conversely, if there is an edge X → T or T → X , then the dependence

¬I(X ,T |Z) holds for all Z ⊆V \{X ,T} (by the theorem), thus also holds for all Z ⊆ParentsG(T )\
{X} or Z ⊆ ParentsG(X)\{T}. We just proved that:

Proposition 1 In a faithful BN 〈V ,G,P〉 there is an edge between the pair of nodes X ∈ V and

T ∈ V iff ¬I(X ,T |Z), for all Z ⊆ ParentsG(X)\{T} and Z ⊆ ParentsG(T )\{X}.

Since the networks in most practical problems are relatively sparse, if we knew the sets

ParentsG(T ) and ParentsG(X) then the number of subsets that would need to be checked for con-

ditional independence for each X ∈ PC(T ) is significantly smaller: |2|V \{T,X}|| ≫ |2|ParentsG(X)||+
|2|ParentsG(T )||. Of course, we do not know the sets ParentsG(T ) and ParentsG(X) but one could

work with any superset of them as shown by the following proposition:

Proposition 2 In a faithful BN 〈V ,G,P〉 there is an edge between the pair of nodes X ∈ V and

T ∈ V iff ¬I(X ,T |Z), for all Z ⊆S and Z ⊆S
′, where ParentsG(X)\{T} ⊆S ⊆ V \{X ,T} and

ParentsG(X)\{T} ⊆ S
′ ⊆ V \{X ,T}.

Proof If there is an edge between the pair of nodes X and T then ¬I(X ,T |Z), for all subsets

Z ⊆ V \{X ,T} (by Theorem 1) and so ¬I(X ,T |Z) for all Z ⊆ S and Z ⊆ S
′ too. Conversely, if

there is no edge between the pair of nodes X and T , then I(X ,T |Z), for some Z ⊆ ParentsG(X) =
ParentsG(X)\{T} ⊆ S or Z ⊆ ParentsG(T ) = ParentsG(T )\{X} ⊆ S

′ (by Proposition 1).

Now, the sets ParentsG(X) and ParentsG(T ) depend on the specific network G that we are

trying to learn. As we mentioned however, there may be several such statistically equivalent net-

works among which we cannot differentiate from the data, forming an equivalence class. Thus, it is

preferable to work with supersets of ParentsG(T ) and ParentsG(X) that do not depend on a specific

network member of the class: these supersets are the sets PC(T ) and PC(X).
Let us suppose that we have available a superset of PC(T ) called TPC(T ) (tentative PC). For

any node X ∈ TPC(T ) if I(X ,T |Z) for some Z ⊆ TPC(T )\{X ,T}, then by Proposition 2, we know

that X has no edge with T , that is, X /∈ PC(T ). So, X should also be removed from TPC(T ) to obtain

a better approximation of PC(T ). If however, ¬I(X ,T |Z) for all Z ⊆ TPC(T ) \ {X ,T}, then it is

still possible that X /∈ PC(T ) because there may be a set Z ⊆ PC(X) where Z * PC(T ) for which

I(X ,T |Z).
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T

A

X

B

 

C(T). Notice that, there i
Figure 3: PC(T ) = {A},PC(X) = {A,B},X /∈ PC(T ). Notice that, there is no subset of PC(T )
that makes T conditionally independent of X : ¬I(X ,T |Ø),¬I(X ,T |A). However, there is a subset

of PC(X) for which X and T become conditionally independent: I(X ,T |{A,B}). The Extended

PC(T ) (see Definition 16 in this section) is EPC(T ) = {A,X}.

Is there actually a case, where X cannot be made independent of T by conditioning on some

subset of PC(T )? We know that all non-descendants of T can be made independent of T conditioned

on a subset of its parents, thus, if there is such an X it has to be a descendant of T . Figure 3 shows

such a case. These situations are rare in practice as indicated by our empirical results in Sections 5

and 6, which implies that by conditioning on all subsets of TPC(T ) one will approximate PC(T )
quite closely.

Definition 16 We call the Extended PC(T ), denoted as EPC(T ), the set PC(T ) union the set of

variables X for which ¬I(X ,T |Z), for all Z ⊆ PC(T )\{X}.

The previous results allow us to start building algorithms that operate locally around T in order to

find PC(T ) efficiently and soundly. Consider first the sketch of the algorithm below:

Algorithm 1

1: Find a superset TPC(T ) of PC(T )
2: for each variable X ∈ TPC(T ) do

3: if ∃Z ⊆ TPC(T )\{X}, s.t. I(X ,T |Z) then

4: remove X from TPC(T )
5: end if

6: end for

7: Return TPC(T )

This algorithm will output TPC(T )⊆ EPC(T ). To ensure we end up with the exact PC(T ) we can

use the following pruning algorithm:

Algorithm 2

1: for all X ∈ TPC(T ) do {returned from Algorithm 1}
2: if T /∈ TPC(X) then

3: remove X from TPC(T ) {TPC(X) is obtained by running Algorithm 1}
4: end if

5: end for
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GLL-PC: High-level pseudocode and main components of Generalized Local Learning - Parents and 

Children. Returns PC(T) 
 

1. U ß GLL-PC-nonsym(T)   // first approximate PC(T) without symmetry check 

2. For all X   U  

3.     If T  GLL-PC-nonsym(X) then U ß U\ {X} // check for symmetry  

4. Return U  // true set of parents and children 
 

GLL-PC-nonsym(T) // returns a set which is a subset of EPC(T) and a superset of PC(T) 
 

1. Initialization 

a. Initialize a set of candidates for the true PC(T) set: TPC(T) ß S, s.t. S  V\{T} 

b. Initialize a priority queue of variables to be examined for inclusion in TPC(T): OPEN ß V\{T  TPC(T)} 

2. Apply inclusion heuristic function 

a. Prioritize variables in OPEN for inclusion in TPC(T);   

b. Throw away non-eligible variables from OPEN;  

c. Insert in TPC(T) the highest-priority variable(s) in OPEN and remove them from OPEN 

3. Apply elimination strategy to remove variables from TPC(T) 

4. Apply interleaving strategy by repeating steps #2 and #3 until a termination criterion is met 

5. Return TPC(T)  
 

 

Figure 4: High-level outline and main components (underlined) of GLL-PC algorithm.

In essence, the second algorithm checks for every X ∈ TPC(T ) whether the symmetrical relation

holds: T ∈ TPC(X). If the symmetry is broken, we know that X /∈ PC(T ) since the parents-and-

children relation is symmetrical.

What is the complexity of the above algorithms? In Algorithm 1 if step 1 is performed by an

Oracle with constant cost, and with TPC(T ) equal to PC(T ), then the first algorithm requires an

order of O(|V |2|PC(T )|) tests. The second algorithm will require an order of O(|V |2|PC(X)|) tests for

each X in TPC(T ). Two observations to notice are: (i) the complexity order of the first algorithm

depends linearly on the size of the problem |V |, exponentially on |PC(T )|, which is a structural

property of the problem, and how close TPC(T ) is to PC(T ) and (ii) the second algorithm requires

multiple times the time of the first algorithm for minimal returns in quality of learning, that is, just to

take care of the scenario in Figure 3 and remove the variables EPC(T )\PC(T ) (i.e., X in Figure 3).

Since an Oracle is not available the complexity of both algorithms strongly depends on how

close approximation of the PC(T ) is and how efficiently this approximation is found. The simplest

strategy for example is to set TPC(T ) = V , essentially getting the local version of the algorithm SGS

described above. In general any heuristic method that returns a superset of PC(T ) is admissible,

that is, it could lead to sound algorithms.

Also notice that in the first algorithm the identification of the members of the TPC(T ) (step 1)

and the removal of variables from it (step 3) can be interleaved. TPC(T ) can grow gradually by one,

many variables, or all members of it at a time before it satisfies the requirement that is a superset of

PC(T ). The requirement for the algorithm to be sound is that, in the end, all tests I(X ,T |Z) for all

subsets Z of PC(T )\{X} have been performed.

Given the above, the components of Generalized Local Learning GLL-PC, that is, an algorithm

for PC(T ) identification based on the above principles are the following: an inclusion heuristic func-

tion to prioritize variables for consideration as members of TPC(T ) and include them in TPC(T )
according to established priority. The second component of the framework is an elimination strat-

egy, which eliminates variables from the TPC(T ) set. An interleaving strategy is the third compo-

nent and it iterates between inclusion and elimination until a stopping criterion is satisfied. Finally
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the fourth component is the check that the symmetry requirement mentioned above is satisfied. See

Figure 4 for details. The main algorithm calls an internally defined subroutine that induces parents

and children of T without symmetry correction (i.e., returns a set which is a subset of EPC(T )
and a superset of PC(T )). Note that in all references to TPC(T ) hereafter, due to generality of the

stated algorithms and the process of convergence of TPC(T ) to PC(T ), TPC(T ) stands for just an

approximation to PC(T ).
Also notice that the term “priority queue” in the schema of Figure 4 indicates an abstract data

structure that satisfies the requirement that its elements are ranked by some priority function so that

the highest-priority element is extracted first. TPC(T ) in step 1a of the GLL-PC-nonsym subroutine

will typically be instantiated with the empty set when no prior knowledge about membership in

PC(T ) exists. When the user does have prior knowledge indicating that X is a member of PC(T ),
TPC(T ) can be instantiated to contain X . This prior knowledge may come from domain knowledge,

experiments, or may be the result of running GLL-PC on variable X and finding that T is in PC(X)
when conducting local-to-global learning (Aliferis et al., 2009; Tsamardinos et al., 2006).

Steps #2,3,4 in GLL-PC-nonsym can be instantiated in various ways. Obeying a set of specific

rules generates what we call “admissible” instantiations. These admissibility rules are given in

Figure 5.

Theorem 2 When the following sufficient conditions hold:

a. There is a causal Bayesian network faithful to the data distribution P;

b. The determination of variable independence from the sample data D is correct;

c. Causal sufficiency in V

any algorithmic instantiation of GLL-PC in compliance with the admissibility rules #1−#3 above

will return the direct causes and direct effects of T .

The proof is provided in the Appendix.

We note that the algorithm schema does not address various optimizations and does not address

the issue of statistical decisions in finite sample. These will be discussed later. We also note that

initialization of TPC(T ) in step 1a of the GLL-PC-nonsym function is arbitrary because correctness

(unlike efficiency) of the algorithm is not affected by the initial contents of TPC(T ).
We next instantiate the GLL-PC schema to derive two pre-existing algorithms, interleaved

HITON-PC with symmetry correction and MMPC with symmetry correction (Tsamardinos et al.,

2006; Aliferis et al., 2003a; Tsamardinos et al., 2003b). Figure 6 depicts the instantiations needed

to obtain interleaved HITON-PC.

The interleaved HITON-PC with symmetry correction algorithm starts with an empty set of can-

didates, then ranks variables for priority for inclusion in the candidate set by univariate association.

It discards variables with zero univariate association. It then accepts each variable into TPC(T ). If

any variable inside the candidate set becomes independent of the response variable T given some

subset of the candidate set, then the algorithm removes that variable from the candidate set and never

considers it again. In other words, the algorithm attempts to eliminate weakly relevant features from

the TPC(T ) every time the TPC(T ) receives a new member. Iterations of insertion and elimination

stop when there are no more variables to examine for inclusion. Once iterating has stopped, the

candidate set is filtered using symmetry criterion. Finally, the candidate set is output. Because the
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TPC(T).   
 

GLL-PC: Admissibility rules   
 

 1. The inclusion heuristic function should respect the following requirement:  
 

// Admissibility rule #1 

All variables XX PC(T) are eligible for inclusion in the candidate set TPC(T) and each one is 

assigned a non-zero value by the ranking function. Variables with zero values are discarded and 

never considered again.  
 

Note that variables may be re-ranked after each update of the candidate set, or the original ranking may 

be used throughout the algorithmÕs operation. 
 

2. The elimination strategy should satisfy the following requirement: 
 

// Admissibility rule #2 

All and only variables that become independent of the target variable T given any subset of the 

candidate set TPC(T) are discarded and never considered again (whether they are inside or outside 

TPC(T)). 
 

3. The interleaving strategy iterates inclusion and elimination any number of times provided that iterating 

stops when the following criterion is satisfied: 
 

//Admissibility rule #3 

At termination no variable outside the set TPC(T) is eligible for inclusion and no variable in the 

candidate set can be removed at termination. 
 

 

Figure 5: GLL-PC admissibility rules.

 

Interleaved HITON-PC with symmetry correction 

Derived from GLL-PC with following instantiation specifics: 
 

Initialization 

TPC(T) ß  
 

Inclusion heuristic function 

a. Sort in descending order the variables X in OPEN according to their pairwise association with T, i.e., 

Assoc(X, T| ).  

b. Remove from OPEN variables with zero association with T, i.e., when I(X, T| ) 

c. Insert at end of TPC(T) the first variable in OPEN and remove it from OPEN   
 

Elimination strategy   

 For each X  TPC(T) 

  If  ZZ TPC(T)\{X}, s.t. I(X, T|Z) remove X from TPC(T) 
 

Interleaving strategy   

Repeat  

 steps #2 and #3 of GLL-PC-nonsym 

Until OPEN=  
 

 

Figure 6: Interleaved HITON-PC with symmetry correction as an instance of GLL-PC.

admissibility criteria are obeyed, the algorithm is guaranteed to be correct when the assumptions of

Theorem 2 hold.

Below we prove that that admissibility rules are obeyed in interleaved HITON-PC with symme-

try under the assumptions of Theorem 2:

1. Rule #1 (inclusion) is obeyed because all PC(T ) members have non-zero univariate associa-

tion with T in faithful distributions.

2. Rule #2 (elimination) is directly implemented so it holds.
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Figure 7: Bayesian network used to trace the algorithms.

Step of GLL-

PC-nonsym  

Comments OPEN TPC(T) 

1 Initialize TPC(T) and OPEN {A, B, C, D, E, F, G}  

2a (I) Prioritize variables in OPEN for inclusion in 

TPC(T) 

{F, D, E, A, B, G, C}  

2b (I) Throw away non-eligible members of OPEN (G 

and C) 

{F, D, E, A, B}  

2c (I) Insert in TPC(T) the highest-priority variable in 

OPEN (F) and remove it from OPEN  

{D, E, A, B} {F} 

3 (I) Apply elimination strategy to TPC(T): no effect {D, E, A, B} {F} 

2 (II) Insert the highest-priority variable (D) in TPC(T) 

and remove it from OPEN 

{E, A, B} {F, D} 

3 (II) Apply elimination strategy to TPC(T): no effect {E, A, B} {F, D} 

2 (III) Insert the highest-priority variable (E) in TPC(T) 

and remove it from OPEN 

{A, B} {F, D, E} 

3 (III) Apply elimination strategy to TPC(T): remove F 

since I(T, F|{D,E}) 

{A, B} {D, E} 

2 (IV) Insert the highest-priority variable (A) in TPC(T) 

and remove it from OPEN 

{B} {D, E, A} 

3 (IV) Apply elimination strategy to TPC(T): no effect {B} {D, E, A} 

2 (V) Insert the highest-priority variable (B) in TPC(T) 

and remove it from OPEN 
 {D, E, A, B} 

3 (V) Apply elimination strategy to TPC(T): no effect  {D, E, A, B} 

4  Stop interleaving since OPEN =   {D, E, A, B} 
 

Table 1: Trace of GLL-PC-nonsym(T ) during execution of interleaved HITON-PC algorithm.

3. Rule #3 (termination) is obeyed because termination requires empty OPEN and thus eligible

variables (i.e., members of PC(T )) outside TPC(T ) could only be previously discarded from

OPEN or TPC(T ). Neither case can happen because of admissibility rules #1,#2 respectively.

Similarly all variables in TPC(T ) that can be removed are removed because of admissibility

rule #2.

A trace of the algorithm is provided below for data coming out of the example BN of the Fig-

ure 7. We assume that the network is faithful and so the conditional dependencies and indepen-
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dencies can be read off the graph directly using the d-separation criterion. Consider that we want

to find parents and children of the target variable T using interleaved HITON-PC with symmetry.

Table 1 gives a complete trace of step 1 of the instantiated GLL-PC algorithm, that is, execution of

GLL-PC-nonsym subroutine for variable T . The Roman numbers in the table refer to iterations of

steps 2 and 3 in GLL-PC-nonsym.

Thus we have TPC(T ) = {D,E,A,B} by the end of GLL-PC-nonsym subroutine, so U =
{D,E,A,B} in step 1 of GLL-PC. Next, in steps 2 and 3 we first run GLL-PC-nonsym for all

X ∈U :

• GLL-PC-nonsym(D)→{T,F}

• GLL-PC-nonsym(E)→{T,F}

• GLL-PC-nonsym(A)→{T,G,C,B}

• GLL-PC-nonsym(B)→{A,C}

and then check symmetry requirement. Since T /∈ GLL-PC-nonsym(B), the variable B is removed

from U . Finally, the GLL-PC algorithm returns U = {D,E,A} in step 4.

Figure 8 shows how algorithm MMPC is obtained from GLL-PC. MMPC is also guaranteed

to be sound when the conditions of Theorem 2 hold. Interleaving consists of iterations of just

the inclusion heuristic function until OPEN is empty. The heuristic inserts into TPC(T ) the next

variable F that maximizes the minimum association of variables in OPEN with T given all subsets

of TPC(T ). In the algorithm, this minimum association of X with T conditioned over all subsets

of Z is denoted by MinZAssoc(X ,T |Z). The intuition is that we accept next the variable that

despite our best efforts to be made conditionally independent of T (i.e., conditioned on all subsets

of our current estimate TPC(T )) is still highly associated with T . The two main differences of

the MMPC algorithm from interleaved HITON-PC are the more complicated inclusion heuristic

function and the absence of interleaving of the inclusion-exclusion phases before all variables have

been processed by the inclusion heuristic function. A set of optimizations and caching operations

render the algorithm efficient; for complete details see Tsamardinos et al. (2006, 2003b).

Below we prove that admissibility rules are obeyed in MMPC with symmetry under the assump-

tions of Theorem 2:

1. Rule #1 (inclusion) is obeyed because all PC(T ) members have non-zero conditional associ-

ation with T in faithful distributions.

2. Rule #2 (elimination) is directly implemented so it holds.

3. Rule #3 (termination) is obeyed because termination requires empty OPEN and thus eligible

variables (i.e., members of PC(T )) outside TPC(T ) could only be previously discarded from

OPEN or TPC(T ). Neither case can happen because of admissibility rules #1, #2 respectively.

Similarly all variables in TPC(T ) that can be removed are removed because of admissibility

rule #2.

We now introduce a new algorithm, semi-interleaved HITON-PC with symmetry correction,

see Figure 9. Semi-interleaved HITON-PC operates like interleaved HITON-PC with one major

difference: it does not perform a full variable elimination in TPC(T ) with each TPC(T ) expansion.
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MMPC with symmetry correction

  Derived from GLL-PC with following instantiation specifics: 

Initialization

TPC(T)   

Inclusion heuristic function

a. Sort in descending order the variables X in OPEN according to MinZAssoc(X, T|Z) for Z!TPC(T)\{X}

b. Remove from OPEN variables X with zero association with T, given some Z!TPC(T)\{X}

c. Insert at end of TPC(T) the first variable in OPEN and remove it from OPEN   

Elimination strategy   

 If OPEN= 

  For each X ! TPC(T)

   If " Z#TPC(T)\{X}, s.t. I(X, T|Z) remove X from TPC(T) 

Interleaving strategy   

Repeat

 steps #2 and #3 of GLL-PC-nonsym 

Until OPEN= 

Figure 8: MMPC with symmetry correction as an instance of GLL-PC.

 

Semi-Interleaved HITON-PC with symmetry correction 

  Derived from GLL-PC with following instantiation specifics: 
 

Initialization 

TPC(T) ß  
 

Inclusion heuristic function 

a. Sort in descending order the variables X in OPEN according to their pairwise association with T, i.e., 

Assoc(X, T| ).  

b. Remove from OPEN variables with zero association with T, i.e., when I(X, T| ) 

c. Insert at end of TPC(T) the first variable in OPEN and remove it from OPEN   
 

Elimination strategy   

 If OPEN=  

  For each X  TPC(T) 

   If  ZZ TPC(T)\{X}, s.t. I(X, T|Z) remove X from TPC(T) 

 Else 

X ß last variable added to TPC(T) // in step 2 of GLL-PC-nonsym 

          If  ZZ TPC(T)\{X}, s.t. I(X, T|Z) remove X from TPC(T) 
 

Interleaving strategy   

Repeat  

 steps #2 and #3 of GLL-PC-nonsym 

Until OPEN=  
 

 

Figure 9: Semi-interleaved HITON-PC with symmetry correction as an instance of GLL-PC.

On the contrary, once a new variable is selected for inclusion, it attempts to eliminate it and if

successful it discards it without further attempted eliminations. If it is not eliminated, it is added

to the end of the TPC(T ) and new candidates for inclusion are sought. Because the admissibility

criteria are obeyed the algorithm is guaranteed to be correct under the assumptions of Theorem 2.

Below we prove that admissibility rules are obeyed in semi-interleaved HITON-PC with sym-

metry under the assumptions of Theorem 2:

1. Rule #1 (inclusion) is obeyed because all PC(T ) members have non-zero univariate associa-

tion with T in faithful distributions.
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Step of GLL-

PC-nonsym  

Comments OPEN TPC(T) 

1 Initialize TPC(T) and OPEN {A, B, C, D, E, F, G}  

2a (I) Prioritize variables in OPEN for inclusion in 

TPC(T) 

{F, D, E, A, B, G, C}  

2b (I) Throw away non-eligible members of OPEN (G 

and C) 

{F, D, E, A, B}  

2c (I) Insert in TPC(T) the highest-priority variable in 

OPEN (F) and remove it from OPEN  

{D, E, A, B} {F} 

3 (I) Apply elimination strategy to TPC(T): no effect {D, E, A, B} {F} 

2 (II) Insert the highest-priority variable (D) in TPC(T) 

and remove it from OPEN 

{E, A, B} {F, D} 

3 (II) Apply elimination strategy to TPC(T): no effect {E, A, B} {F, D} 

2 (III) Insert the highest-priority variable (E) in TPC(T) 

and remove it from OPEN 

{A, B} {F, D, E} 

3 (III) Apply elimination strategy to TPC(T):  

No effect 

{A, B} {F, D, E} 

2 (IV) Insert the highest-priority variable (A) in TPC(T) 

and remove it from OPEN 

{B} {F, D, E, A} 

3 (IV) Apply elimination strategy to TPC(T): no effect {B} {F, D, E, A} 

2 (V) Insert the highest-priority variable (B) in TPC(T) 

and remove it from OPEN 
 {F, D, E, A, B} 

3 (V) Apply elimination strategy to TPC(T): remove F 

since I(T, F|{D,E}) 
 {D, E, A, B} 

4  Stop interleaving since OPEN =   {D, E, A, B} 
 

Table 2: Trace of GLL-PC-nonsym(T ) during execution of semi-interleaved HITON-PC algorithm.

2. Rule #2 (elimination) is directly implemented so it holds.

3. Rule #3 (termination) is obeyed because termination requires empty OPEN and thus eligible

variables (i.e., members of PC(T )) outside TPC(T ) could only be previously discarded from

OPEN or TPC(T ). Neither case can happen because of admissibility rules #1,#2 respectively.

Similarly all variables in TPC(T ) that can be removed are removed because of admissibility

rule #2.

A trace of the algorithm is provided below for data coming out of the example faithful BN of

the Figure 7. Consider that we want to find parents and children of the target variable T using semi-

interleaved HITON-PC with symmetry. Table 2 gives a complete trace of step 1 of the instantiated

GLL-PC algorithm, that is, execution of GLL-PC-nonsym subroutine for variable T. The Roman

numbers in the table refer to iterations of steps 2 and 3 in GLL-PC-nonsym.

Thus we have TPC(T ) = {D,E,A,B} by the end of GLL-PC-nonsym subroutine, so U =
{D,E,A,B} in step 1 of GLL-PC. Next, in steps 2 and 3 we first run GLL-PC-nonsym for all

X ∈U :

• GLL-PC-nonsym(D)→{T,F}

• GLL-PC-nonsym(E)→{T,F}

• GLL-PC-nonsym(A)→{T,G,C,B}

• GLL-PC-nonsym(B)→{A,C}
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and then check symmetry requirement. Since T ∈ GLL-PC-nonsym(B), the variable B is removed

from U . Finally, the GLL-PC algorithm returns U = {D,E,A} in step 4.

4.2 Discovery of the MB(T ) Set

As mentioned in Section 3 the MB(T ) contains all information sufficient for the determination of

the conditional distribution of T : P(T |MB(T )) = P(T |V \ {T}) and further, it coincides with the

parents, children and spouses of T in any network faithful to the distribution (if any) under causal

sufficiency. The previous subsection described a general family of algorithms to obtain the PC(T )
set, and so in order to find the MB(T ) one needs in addition to PC(T ), to also identify the spouses

of T .

First notice that, approximating MB(T ) with PC(T ) and missing the spouse nodes may in theory

discard very informative nodes. For example, suppose that X and T are two uniformly randomly

chosen numbers in [0,1] and that Y = min(1,X + T ). Then, the only faithful network representing

the joint distribution is X→Y ← T , where X is the spouse of T . In predicting T , the spouse node X

may reduce the uncertainty completely: conditioned on Y , T may become completely determined

(when both X and T are less than 0.5). Thus, it theoretically makes sense to develop algorithms

that identify the spouses in addition to the PC(T ), even though later in Section 5 we empirically

determine that within the scope of distributions and problems tried, the PC(T ) resulted in feature

subsets almost as predictive as the full MB(T ). In the companion paper (Aliferis et al., 2010) we also

provide possible reasons explaining the good performance of PC(T ) versus MB(T ) for classification

in practical tasks.

The theorem on which the algorithms in this family are based to discover the MB(T ) is the fol-

lowing:

Theorem 3 In a faithful BN 〈V ,G,P〉, if for a triple of nodes X ,T,Y in G,X ∈ PC(Y ), Y ∈ PC(T ),
and X /∈ PC(T ), then X →Y ← T is a subgraph of G iff ¬I(X ,T |Z ∪{Y}), for all Z ⊆ V \{X ,T}
(Spirtes et al., 2000).

We distinguish two cases: (i) X is a spouse of T but it is also a parent or child, for example,

X → T → Y and also X → Y . In this case, we cannot use the theorem above to identify Y as a

collider and X as a spouse. But at the same time we do not have to: X ∈ PC(T ) and so it will be

identified by GLL-PC. (ii) X ∈ MB(T ) \PC(T ) in which case we can use the theorem to locally

discover the subgraph X → Y ← T and determine that X should be included in MB(T ).

We now introduce the GLL-MB in Figure 10. The admissibility requirement is simply to use an

admissible GLL-PC instantiation.

For the identification of PC(T ) any method of GLL-PC can be used. Also, in step 5a we know

such a Z exist since X /∈ PC(T ) (by Theorem 1); this Z has been previously determined and is

cached during the call to GLL-PC.

Theorem 4 When the following sufficient conditions hold

a. There is a causal Bayesian network faithful to the data distribution P;

b. The determination of variable independence from the sample data D is correct;
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GLL-MB: Generalized Local Learning - Markov Blanket 
 

1. PC(T) ß GLL-PC(T)            // obtain PC(T) by running GLL-PC for variable T 

2. For every variable Y  PC(T) 

     PC(Y) ß GLL-PC(Y)       // obtain PC(Y) for every member Y of PC(T) 

3. TMB(T) ß PC(T)                 // initialize TMB(T) with PC(T) members 

4. S ß { YY PC(T) PC(Y)} \ {PC(T)  {T}}     // these are the potential spouses 

5. For every variable X  S  

 a.  Retrieve a subset Z s.t. I(X, T | Z) // subset was identified and stored in steps 1 and 2 

 b.  For every variable Y  PC(T) s.t. X  PC(Y) // Y is a potential common child of T and X 

 c.         If I(X, T| ZZ {Y})       // X is a spouse 

 d.               Insert X into TMB(T)  

6. Optionally: Eliminate from TMB(T) predictively redundant members using a backward wrapper approach.  

7. Return TMB(T) 
 

 

Figure 10: GLL-MB: Generalized Local Learning - Markov Blanket algorithm.

c. Causal sufficiency in V

any algorithmic instantiation of GLL-MB in compliance with the admissibility rule will return

MB(T ) (with no need for step 6).

The proof is provided in the Appendix.

A new Markov blanket algorithm, semi-interleaved HITON-MB, can be obtained by instantiat-

ing GLL-MB (Figure 10) with the semi-interleaved HITON-PC algorithm with symmetry correction

for GLL-PC.

Semi-interleaved HITON-MB is guaranteed to be correct under the assumptions of Theorem 4,

hence the only proof of correctness needed is the proof of correctness for semi-interleaved HITON-

PC with symmetry (which was provided earlier).

A trace of the semi-interleaved HITON-MB algorithm for data coming out of the example faith-

ful BN of the Figure 7 follows below. Please refer to Figure 10 for step numbers. Consider that we

want to find Markov blanket of T . In step 1, we find PC(T ) = {D,E,A}. Then in step 2 we find

PC(X) for all X ∈ PC(T ):

• PC(D) = {T,F},

• PC(E) = {T,F},

• PC(A) = {T,G,C,B},

In step 3 we initialize TMB(T )← {D,E,A}. The set S in step 4 contains the following variables:

{F,G,C,B}. In step 5 we loop over all members of S to find spouses of T . Let us consider each

variable separately:

• Loop for X = F : In step 5a we retrieve a subset Z = {D,E} that renders X = F independent of

T . In step 5b we loop over all potential common children of F and T , that is, Y = D and Y = E.

When we consider Y = D, we find that X = F is independent of T given Z ∪{Y} = {D,E}
and thus do not include F in TMB(T ) in step 5d. When we consider Y = E, we also do not

include F in TMB(T ) in step 5d.
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• Loop for X = G: In step 5a we retrieve a subset Z = Ø that renders X = G independent of

T . In step 5b we loop over all potential common children of G and T , that is, variable Y = A.

We find that X = G is dependent on T given Z ∪{Y} = {A} and thus include G in TMB(T )
in step 5d.

• Loop for X = C: In step 5a we retrieve a subset Z = Ø that renders X = C independent of

T . In step 5b we loop over all potential common children of C and T , that is, variable Y = A.

We find that X = C is dependent on T given Z ∪{Y} = {A} and thus include C in TMB(T )
in step 5d.

• Loop for X = B: In step 5a we retrieve a subset Z = {A,C} that renders X = B independent of

T . In step 5b we loop over all potential common children of B and T , that is, variable Y = A.

We find that X = B is independent of T given Z ∪{Y}= {A,C} and thus do not include G in

TMB(T ) in step 5d.

By the end of step 5, we have TMB(T ) = {D,E,A,G,C}. Notice that it is the true MB(T ). In

step 6 we perform wrapping to remove members of TMB(T ) that are redundant for classification.

Let us assume that we used a backward wrapping procedure that led to removal of variable G,

for example because omitting this variable does not increase classification loss. Thus, we have

TMB(T ) = {D,E,A,C} in step 7 when the algorithm terminates.

The above algorithm specifications and proofs demonstrate that it is relatively straightforward to

derive correct algorithms and prove their correctness using the GLL framework. It is also straight-

forward to derive relaxed versions (for example non-symmetry corrected versions of interleaved and

semi-interleaved HITON and MMPC) which trade-off correctness for improved tractability.

4.3 Computational Complexity

The complexity of all algorithms presented depends on the time for the tests of independence and

measures of associations. For the G2 test of independence for discrete variables, for example, we use

in reported experiments an implementation linear to the sample size and exponential to the number

of variables in the conditional set. However, because the latter number is small in practice, tests

are relatively efficient. Faster implementations exist that only take time n log(n) to the number n of

training instances, independent of the size of the conditioning set. Also, advanced data structures

(Moore and Wong, 2003) can be employed to improve the time complexity (see Tsamardinos et al.

2006 for details on the implementation of the tests). In reported experiments we also implement the

measure of association Assoc(X ,T |Z) to be the negative p-value returned by the test I(X ,T |Z) and

so it takes exactly the same time to compute as a test of independence. In the following discussion,

we consider the complexity of the algorithms in terms of the number of tests and measures of

association they perform.

The number of tests of the GLL-PC algorithm in Figure 4 depends on several factors. These

are the inclusion heuristic efficiency in approximating the PC(T ), the time required by the inclu-

sion heuristic, and the size of the PC(T ) which is a structural property of the problem to solve.

Interleaved-HITON-PC (algorithm in Figure 6) for example, will sort the variables using |V | mea-

sures of associations. Subsequently, it will perform a test I(X ,T |Z) for all subsets of the largest

TPC(T ) in any iteration of interleaving of the inclusion-exclusion steps. With appropriate caching a

test will never have to be repeated. Thus, assuming the largest size of the TPC(T ) is in the order of

the PC(T ), the complexity of the GLL-PC-nonsym subroutine is O(|V |2|PC(T )|). In step 3, it will
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execute the GLL-PC-nonsym subroutine again for all X ∈ TPC(T ). Assuming each neighborhood

of X is about the same as the PC(T ), when checking the symmetry condition, the algorithm will

perform another O(|V ||PC(T )|2|PC(T )|)tests.

To identify MB(T ) by the GLL-MB algorithm in Figure 10 we first need to initialize subset S.

Assuming all neighborhoods are about the same size (i.e., equal to |PC(T )|), the total complexity to

find the set S is O(|V ||PC(T )|22|PC(T )|) since we call GLL-PC for each member of the PC(T ). In

fact, several optimizations can reduce this order to O(|V ||PC(T )|2|PC(T )|) but we will not elaborate

further in this paper. In step 5, in the worst case we perform a single test for each node in S and

each node in PC(T ) for a total of at most O(|PC(T )|2) tests (the subset Z in step 5a is cached

and retrieved). So the order of the algorithm is O(|V ||PC(T )|22|PC(T )|) tests given the structural

assumptions above.

All other algorithmic instantiations of the template in this section have similar complexity.

At this point it is worth noting a number of polynomial approximation algorithms in the liter-

ature that increase efficiency without sacrificing quality to a large degree. The identification of a

subset Z in step 3 of the GLL-PC-nonsym subroutine as described in algorithm instantiations of

GLL-PC is a step exponential to the size of the TPC(T ); however, one could attempt to discover it

in a greedy fashion, for example by starting with the empty set and adding to Z the variable decreas-

ing the association with T the most. These ideas started with the TPDA algorithm (Cheng et al.,

2002a) and were further explored in Brown et al. (2005). Similar improvements can be applicable

to inclusion strategy.

For the above analysis we assumed that all tests I(X ,T |Z) can or should be performed and

return the correct results. However, in the next sub-section we discuss how the statistical decisions

of independence or dependence are made; these decisions severely affect the complexity of the

algorithms as well.

4.4 Dealing with Statistical Decisions

The quality of the algorithms in practice highly depends on their ability to statistically determine

whether I(X ,T |Z) or ¬I(X ,T |Z) (equivalently whether Assoc(X ,T |Z) is zero or non-zero) for a

pair of variables X and T and a set of variables Z. The test I(X ,T |Z) is implemented as a statistical

hypothesis test with null hypothesis H0: X and T are independent given Z. A p-value corresponding

to this test statistic’s distribution expresses the probability of seeing the same or more extreme (i.e.,

indicative of dependence) test statistic values when sampling from distributions where H0 is true.

If the p-value is lower than a given threshold (i.e., significance level “alpha”) α, then we consider

the independence hypothesis to be improbable and reject it. Thus, for a sufficiently low p-value we

accept dependence. If however, the p-value is not low enough to provide confidence in rejecting H0

then there are two possibilities:

a) H0 actually holds, that is, the variables are indeed conditionally independent.

b) H0 does not hold, the variables are conditionally dependent but we cannot confidently reject

H0.

The reasons for b) are that either the dependence is weak relatively to the available sample to

be detected (in order words, we have low probability to reject the null hypothesis H0 when it does

not hold, that is, low statistical power), or we are using the wrong statistical test for this type of

dependency. In essence, we would like to distinguish between the following cases:
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a) I(X ,T |Z) holds with high-probability

b) ¬I(X ,T |Z) holds with high-probability

c) Undetermined case given the available sample

To deal with case c) in our implementations we take the following approach, introduced by

Spirtes et al. (2000): we consider that we are facing case c) if there is no sufficient power according

to a reliability criterion. In our implementations this criterion depends on parameter h-ps. The

criterion dictates that if and only if we have at least h-ps sample instances per number of cells (i.e.,

number of parameters to be estimated) in the contingency tables for the discrete statistical tests then

the test is reliable.

Once a test is deemed unreliable an algorithm needs to decide how to handle the corresponding

statistical decision. For example, the PC algorithm for global causal discovery (Spirtes et al., 2000)

considers that given no other evidence, all variables are dependent with each other. That is, a pair of

variables is always connected by an edge in the graph unless a subset Z is discovered that renders

them conditionally independent.

The implementations of GLL instantiations in the present paper do not perform an unreliable

test either. However, ignoring unreliable tests with 0-order conditioning test (i.e., univariate tests)

is equivalent to assuming I(X ,T |Z) whereas ignoring unreliable tests with higher-order condition-

ing test (i.e., conditioning sets with 1 or more conditioning variables) is equivalent to assuming

¬I(X ,T |Z) as far as this unreliable test is concerned (because the final judgment on independence,

is deferred to reliable, typically lower-order tests). Thus, given no evidence of dependence, we

assume the unreliable tests to return I(X ,T |Z). The different treatment of the PC implementa-

tion leads to problems as discussed in Tsamardinos et al. (2006) pointing to the importance of this

implementation aspect of the algorithms.

Another practical implementation issue arises when prior knowledge, experiments, or domain

substantive knowledge ensures that a variable X is in PC(T ) or that X is not in PC(T ). In such

cases the algorithm can be modified to “lock” X inside or outside TPC(T ) respectively in order to

avoid the possibility that errors in statistical decisions will counter previously validated knowledge

and possibly propagate more statistical decision errors.

In addition to h-ps, a second restriction on the conditioning set size is provided by parameter

max-k. This parameter places an absolute limit on the number of elements in a conditioning set

size, without reference to available sample size. As such max-k participates in the reliability judg-

ment but also restricts the computational complexity of the algorithms by trading off computational

complexity for fit to data.

Specifically first consider that more variables than the actual PC(T ) could be output by the

algorithm. A variable X that becomes independent of T only when we condition on Z, with |Z|>
max-k could enter the TPC(T ) and will not be removed afterwards. For example, if max-k = 1,

then variable F in Figure 7 cannot be d-separated from T given any Z with |Z| ≤ 1. Thus, the

reliability criterion may increase the number of tests performed, since these depend on the size of

the TPC(T ). On the other hand, the criterion forces certain tests not to be performed, specifically

those whose conditioning set Z size is larger than max-k. Thus, since only
(

TPC(T )
max-k

)

subsets are

tested out of all possible 2|TPC(T )| ones, the complexity of the algorithm GLL-PC-nonsym now

becomes O(|V ||TPC(T )|max-k), that is, polynomial of order max-k.
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The parameters h-ps and max-k are user-specified or, alternatively, optimized automatically by

cross-validation, or optimized for a whole domain. The role and importance of these two parameters,

especially with respect to quality of statistical decisions, is explored in detail in the companion

paper (Aliferis et al., 2010). Finally, because the quality of statistical decisions is not addressed in

the proofs of correctness provided earlier, it was implicitly assumed that whenever sufficient sample

size is provided to the algorithms statistical decisions are reliable.

A recent treatment that specifically addresses the role of statistical decisions in finite sample

is presented in Tsamardinos and Brown (2008a). In this work, a bound of the p-value of the ex-

istence of an edge is provided; the bound can be used to control the False Discovery Rate of the

identification of the PC(T ) or all the edges in a network.

5. Comparative Evaluation of Local Causal and Non-Causal Feature Selection

Algorithms in Terms of Feature Selection Parsimony and Classification Accuracy

In the present section we examine the ability of GLL algorithms to discover compact sets of features

with as high classification performance as possible for each data set and compare them with other

local causal structure discovery methods as well as non-causal feature selection methods.

In order to avoid bias in error estimation we apply nested N-fold cross-validation. The inner

loop is used to try different parameters for the feature selection and classifier methods while the

outer loop tests the best configuration on an independent test set. Details are given in Statnikov

et al. (2005b), Dudoit and van der Laan (2003) and Scheffer (1999).

All experiments discussed in this section and elsewhere in this paper were conducted on ACCRE

(Advanced Computing Center for Research and Education) High Performance Computing system

at Vanderbilt University. The ACCRE system consists of 924 x86 processors (the majority of which

2 GHz) and 668 PowerPC processors (2.2 GHz) running 32 and 64-bit Linux OS. The overall

computational capacity of the cluster is approximately 6 TFLOPS. For preliminary and exploratory

experiments we used a smaller cluster of eight 3.2 GHz x86 processors.

The evaluated algorithms are listed in the Appendix Tables 5-7. They were chosen on the basis

of prior independently published results showing their state-of-the-art performance and applicabil-

ity to the range of domains represented in the evaluation data sets. We compare several versions

of GLL, including parents and children (PC) and Markov blanket (MB) inducers. Whenever we

refer to HITON-PC algorithm in this paper, we mean semi-interleaved HITON-PC without sym-

metry correction, unless mentioned otherwise. Also, other GLL algorithms evaluated do not have

symmetry correction unless mentioned otherwise. Finally, unless otherwise noted, GLL-MB does

not implement a wrapping step.

Tables 8-9 in the Appendix present the evaluation data sets. The data sets were chosen on the

basis of being representative of a wide range of problem domains (biology, medicine, economics,

ecology, digit recognition, text categorization, and computational biology) in which feature selec-

tion is essential. These data sets are challenging since they have a large number of features with

small-to-large sample sizes. Several data sets used in prior feature selection and classification chal-

lenges were included. All data sets have a single binary target variable.

To perform imputation in data sets with missing values, we applied a non-parametric nearest

neighbor method (Batista and Monard, 2003). Specifically, this method imputes each missing value

of a variable with the present value of the same variable in the most similar instance according to

Euclidian distance metric. Discretization in non-sparse continuous data sets was performed by a
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univariate method (Liu et al., 2002) implemented in Causal Explorer (Aliferis et al., 2003b). For a

given continuous variable, the method considers many binary and ternary discretization thresholds

(by means of a sliding window) and chooses the one that maximizes statistical association with the

target variable. In sparse continuous data sets, discretization was performed by assigning value 1

to all non-zero values. All variables in each data set were also normalized to be in [0, 1] range

to facilitate classification by SVM and KNN. All computations of statistics for the preprocessing

steps were performed based on training data only to ensure unbiased classification error estimation.

Statistical comparison between algorithms was done using two-sided permutation test (with 10,000

permutations) at 5% alpha level (Good, 2000). The null hypothesis of this test is that algorithms

perform the same.

Both polynomial SVMs and KNN were used for building classifiers from each selected feature

set. In complementary experiments, the native classifier for each one of several feature selection

methods (LARS-EN, L0, and RFVS) was used and its performance was compared against classifiers

induced by SVMs and KNN. For SVMs, the misclassification cost C and kernel degree d were

optimized over values [1, 10, 100] and [1, 2, 3, 4], respectively. For KNN, the number of nearest

neighbors k was optimized over values [1,...,min(1000, number of instances in the training set)].

All optimization was conducted in nested cross-validation using training data only, while the testing

data was used only once to obtain an error estimate for the final classifier. We used the libSVM

implementation of SVM classifiers (Fan et al., 2005) and our own implementation of KNN.

We note that use of SVMs and KNN does not imply that GLL methods are designed to be

filters for these two algorithms only, or that the algorithm comparison results narrowly apply to

these two classifiers. Rather as explained in Section 2.2, GLL algorithms provide performance

guarantees as long as the classifier used has universal approximator properties. SVMs and KNN are

two exemplars of practical and scalable such methods in wide use. We also emphasize that selecting

features with a wrapper or embedded feature selection method that is not SVM or KNN specific

is not affected by the inductive bias mismatch because such mismatch is affecting performance

only when the classifier used is “handicapped” relative to the native classifier (Tsamardinos and

Aliferis, 2003; Kohavi and John, 1997). We provide experimental data substantiating this point in

the Appendix Table 10 (and Table S1 in the online supplement) where we compare classification

performance of RFVS, LARS-EN, and L0 with features selected by each corresponding method to

the classification performance of SVMs and KNN using the same features. It is shown that SVM

predictivity matches, whereas KNN predictivity compares favorably, with the classifiers that are

native to each feature selector. On the other hand, the choice of SVMs and KNN provides several

advantages to the research design of the evaluation: (a) the same classifiers can be used with all

data sets removing a possible confounder in the evaluation; (b) they can be used without feature

selection (i.e., full variable set) to give a reference point of predictivity under no feature selection

(that in practice is as good as empirically optimal predictivity especially when using SVMs); (c)

they can be used when sample size is smaller than number of variables; (d) prior evidence suggests

that they are suitable classifiers for the domains; (e) they can be executed in tractable time using

nested cross-validation as required by our protocol.

In all cases when an algorithm had not terminated within 2 days of single-CPU time per run

on a single training set (including optimization of the feature selector parameters) and in order to

make the experimental comparison feasible with all methods and data sets in the study, we deemed

it to be impractical and terminated it. While the practicality of spending more than two days of

single-CPU time on a single training set can be debated, we believe that use of slower algorithms in
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Figure 11: Causal Feature Selection Returns More Compact Feature Sets Than Non-Causal Feature

Selection—Comparison of each algorithmic family with semi-interleaved HITON-PC with G2 test.

HITON-PC is executed with 9 different configurations: {max-k = 1, α = 0.05}, {max-k = 2,α =
0.05}, {max-k = 3,α = 0.05}, {max-k = 4,α = 0.05}, {max-k = 1,α = 0.01}, {max-k = 2,α =
0.01}, {max-k = 3,α = 0.01}, {max-k = 4,α = 0.01}, and a configuration that selects one of the

above parameterizations by nested cross-validation. Results shown are averaged across all real

data sets where both HITON-PC with G2 test and an algorithmic family under consideration are

applicable and terminate within 2 days of single-CPU time per run on a single training set. Multiple

points for each algorithm correspond to different parameterizations/configurations. See Appendix

Tables 5- 7 for detailed list of algorithms. The left graph has x-axis (proportion of selected features)

ranging from 0 to 1 and y-axis (classification performance AUC) ranging from 0.5 to 1. The right

graph has the same data, but the axes are magnified to see the details better. This figure is continued

in Figures 12 and 13.

practice is problematic due to the following reasons: (i) in the context of N-fold cross-validation the

total running time is at least N times longer (i.e., >20 days single-CPU time); (ii) the analyst does

not know whether the algorithm will terminate within a reasonable amount of time, and (iii) when

quantification of uncertainty about various parameters (e.g., estimating variance in error estimates

via bootstrapping) is needed the analysis becomes prohibitive regardless of analyst flexibility and
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Figure 12: Continued from Figure 11.

computational resources. When comparing a pair of algorithms we consider only the data sets where

both algorithms terminate within the allotted time.

We evaluate the algorithms using the following metrics:

1. Number of features selected;

2. Proportion of features selected relative to the original number of features (i.e., prior to feature

selection);

3. Classification performance measured as area under ROC curve (AUC) (Fawcett, 2003);

4. Feature selection time in minutes.2

Figure 11 compares each evaluated algorithm to semi-interleaved HITON-PC with G2 test as

a reference performance for GLL, in the two-dimensional space defined by proportion of selected

features and classification performance by SVM (results for KNN are similar and are available in

2. In all cases we used the implementations provided by the authors of methods, or state-of-the-art implementations, and

thus reported time should be considered representative of what practitioners can expect in real-life with equipment

and data similar to the ones used in the present study. However, we note that running times should be interpreted

as indicative only since numerous implementation details and possible optimizations as well as computer platform

discrepancies can affect results.
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Figure 13: Continued from Figure 12.

Table S5 in the online supplement). As can be seen in the figure (and also in Figure S1 of the online

supplement), GLL algorithms typically return much more compact sets than other methods. More

compact results are provided by versions that induce the PC set rather than the MB for obvious

reasons. Out of GLL methods, the most compact sets are returned when the Z-test is applicable

(continuous data) compared to G2 test (discrete or discretized data). As seen in Tables S2-S3 in

the online supplement, depending on the parameterization of GLL, compactness varies. However,

regardless of configuration, both GLL and other local causal methods (i.e., IAMB, BLCD-MB,

FAST-IAMB, K2MB) with the exception of Koller-Sahami are typically more compact than non-

causal feature selection methods (i.e., univariate methods with backward wrapping, RFE, RELIEF,

Random Forest-based Variable Selection, L0, and LARS-EN). Forward stepwise selection and some

configurations of LARS-EN, Random Forest-based Variable Selection, and RFE are often very par-

simonious, however their parsimony varies greatly across data sets. Notice that whenever an algo-

rithm variant employed statistical comparison among feature sets (in particular non-causal ones),

it improved compactness (Figure S1 and Tables S2-S3 in the online supplement). Table 3 gives

statistical comparisons of compactness between one reference GLL algorithm (semi-interleaved

HITON-PC with G2 test and cross-validation-based optimization of the algorithm parameters) and

43 non-GLL algorithms and variants (including no feature selection). In 21 cases the GLL refer-

ence method gives statistically significantly more compact sets compared to all other methods, in 16

cases parsimony is not statistically distinguishable, and in 6 cases HITON-PC gives less compact

feature sets. These 6 cases correspond strictly to non-GLL causal feature selection algorithms and

at the expense of severe predictive suboptimality (0.06 to 0.10 AUC) relative to the reference GLL

method (see Tables S4-S5 in the online supplement).

5.1 Compactness Versus Classification Performance

Compactness is only one of the two requirements for solving the feature selection problem. A

maximally compact algorithm that does not achieve optimal predictivity does not solve the feature

selection problem. Figure 11 examines the trade-off of compactness and SVM predictivity (results

for KNN are similar and available in Table S5 in the online supplement). The best possible point

for each graph is at the upper left corner. For ease of visualization the results are plotted for each
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Table 3: Statistical comparison via permutation test (Good, 2000) of 43 non-GLL algorithms (in-

cluding no feature selection) to the reference GLL algorithm (semi-interleaved HITON-PC with

G2 test and cross-validation-based optimization of the algorithm parameters by SVM classifier) in

terms of SVM predictivity and parsimony. Each non-GLL algorithm compared to HITON-PC in

each row is denoted by “Other”. Bolded p-values are statistically significant at 5% alpha.

algorithmic family separately. To avoid overfitting and to examine robustness of various methods to

parameterization we did not select the best performing configuration, but plotted all of them. Notice

that some algorithms did not run on all 13 real data sets (i.e., algorithms with Fisher’s Z-test are

applicable only to continuous data, while some algorithms did not terminate within 2 days of single-

CPU time per run on a single training set). For such cases, we plotted results only for data sets where

the algorithms were applicable and the results for HITON-PC correspond to the same data sets. As

can be seen, GLL algorithms that induce PC sets dominate both other causal and non-causal feature
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selection algorithms. This is also substantiated in Table 3 (and Table S7 in the online supplement

that provides results for KNN classifier) that gives statistical comparisons of predictivity between

the reference GLL algorithm and all 43 non-GLL algorithms and variants (including no feature

selection). In 9 cases the GLL reference method gives statistically significantly more predictive

sets compared to all other methods, in 33 cases predictivity is not statistically distinguishable, and

in 1 case GLL gives less predictive feature sets (however the magnitude of the GLL suboptimal

predictivity is only 0.018 AUC on average, whereas the difference in compactness is more than

33% features selected on average).

The overall performance patterns of combined predictivity and parsimony are highly consistent

with Markov blanket induction theory (Section 2.2) which predicts maximum compactness and

optimal classification performance when using the MB. Different instantiations of the GLL method

give different trade-offs between predictivity and parsimony (details and statistical comparisons to

the reference method are provided in online supplement Tables S2-S6 and S8).

In the companion paper (Aliferis et al., 2010), we examine in detail conditions under which PC

induction can give optimal classification performance (the empirical illustration is provided in Fig-

ure 13). The comparison of HITON-PC with G2 test and HITON-PC with Z-test reveals that both

statistics perform similarly, while the latter (where it is applicable) does not require discretization

of continuous data that can simplify data analysis significantly (see Figure 12 and statistical com-

parisons in Table S9 in the online supplement). In Table S10 of the online supplement we provide

statistical comparisons of non-GLL causal feature selection methods in terms of predictivity and

parsimony. K2MB, BLCD-MB, IAMB, and FAST-IAMB rather unexpectedly perform statistically

indistinguishably in terms of predictivity and parsimony. Since BLCD-MB differs from K2MB by

an additional backward elimination step, this implies that this step rarely results in elimination of

features in the real data sets tested.

5.2 Analysis of Running Times

Table S6 in the online supplement gives detailed running times for all feature selection experiments.

Major observations include that: (i) univariate methods, RELIEF, RFE, LARS-EN are in general

the fastest ones, (ii) Koller-Sahami is probably the slowest method since it does not terminate on

several data sets within the allotted time limit, (iii) FAST-IAMB is two orders of magnitude faster

than IAMB on the average, and (iv) GLL algorithms are practical for very high-dimensional data

(e.g., in the Thrombin data set with > 100,000 features GLL-PC requires 10 to 52 minutes single-

CPU time depending on fixed-parameter configuration, and less than 3 hours when GLL-PC is

automatically optimized by cross-validation).

In conclusion, the GLL reference algorithm dominates most feature selection methods in predic-

tivity and compactness. Some non-GLL causal methods are more parsimonious than the reference

GLL method at the expense of severe classification suboptimality. One univariate method exhibits

slightly higher predictivity but with severe disadvantage in parsimony. No feature selection method

achieves equal or better compactness with equal or better classification performance than GLL.

6. Comparative Evaluation of Markov Blanket Induction, Local Causal

Neighborhood and Other Non-Causal Algorithms for Local Structure Discovery

In the present section we study the ability of GLL algorithms to discover local causal structure

(in the form of parent and children sets and Markov blankets) and compare them with other local
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structure discovery methods as well as non-causal feature selection. While many researchers ap-

ply feature selection techniques strictly to improve the cost and effectiveness of classification, in

many fields researchers routinely apply feature selection in order to gain insights about the causal

structure of the domain. A frequently encountered example is in bioinformatics where a plethora of

feature selection methods are applied in high-throughput genomic and proteomic data to discover

biomarkers suitable for new drug development, personalizing medical treatments, and orienting sub-

sequent experimentation (Zhou et al., 2002; Li et al., 2001; Holmes et al., 2000; Eisen et al., 1998).

It is thus necessary to test the appropriateness of various feature selection techniques for causal

discovery, not just classification.

In order to compare the performance of the tested techniques for causal discovery, we simulate

data from known Bayesian networks and also use resimulation, whereby real data is used to elicit a

causal network and then data is simulated from the obtained network (see Table 11 in the Appendix).

For each network, we randomly select 10 different targets and generate 5 samples (except for sample

size 5,000 where one sample is generated) to reduce variability due to sampling.3 An independent

sample of 5,000 instances is used for evaluation of classification performance.

In order to avoid overfitting of the results to the method used to induce the causal network,

an algorithm with different inductive bias is used than the algorithms tested. In our case we use

SCA (Friedman et al., 1999b). We note that SCA has greatly different inductive bias from the GLL

variants and thus the comparison (provided that the causal generative model is a Bayesian network)

is not unduly biased toward them, while still allowing induction of a credible causal graphical model.

Specifically, the inductive biases of the two methods can be described as follows: SCA performs

global, heuristically constrained, Bayesian search-and-score, greedy TABU iterative search for a

Bayesian network that has maximum-a-posteriori probability given the data under uninformative

prior on all possible network structures. GLL algorithms induce a local causal neighborhood, under

the distributional assumption of faithfulness and causal sufficiency, employing statistical tests of

conditional independence, and preferring to assume a variable is in the local neighborhood whenever

a conditional test is not applicable due to small sample (provided that a univariate association exists,

otherwise independence is the default) in order to minimize false negative risk of losing a true

member and overall risk of false positives and false negatives if true network is not dense. More

about the inductive bias of GLL can be found in Aliferis et al. (2010).

We obtained two resimulated networks as follows: (a) Lung Cancer network: We randomly

selected 799 genes and a phenotype target (cancer versus normal tissue indicator) from human gene

expression data of Bhattacharjee et al. (2001). Then we discretized continuous gene expression

data and applied SCA to elicit network structure. (b) Gene network: It was obtained from a subset

of variables of yeast gene expression data of Spellman et al. (1998) that contained 800 randomly

selected genes and a target variable denoting cell cycle state. Continuous gene expression data was

also discretized and SCA was applied to learn network. This research design follows Friedman et al.

(2000).

Furthermore, we note that additional factors not captured in the simulation or resimulation pro-

cess make real-life discovery potentially harder than in our experiments. Such factors include for

example, deviations of faithfulness, existence of temporal and cellular aggregation effects, unmea-

3. For networks Lung Cancer and Gene, we also add an eleventh target that corresponds to the natural response variable:

lung cancer diagnosis and cell cycle state, respectively. For network Munin we use only 6 targets because of extreme

probability distributions of the majority of variables that do not allow variability in the finite sample of size 500 and

even 5000. Because of the same reason, we did not experiment with sample size 200 in the Munin network.
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sured variables, and various measurement, normalization, and noise artifacts. However evaluations

with simulated and resimulated data yield comparative performances that are still highly informative

since if a method cannot induce the correct structure from relatively easier settings, it is unlikely that

in harder real-life situations it will perform any better. In other words successful causal structure dis-

covery performance in simulated and resimulated networks represents at a minimum “gate-keeper”

level performance that will filter the more promising from the less promising methods (Spirtes et al.,

2000). Finally, as Spirtes et al. (2000) note the behavior of constraint-based algorithms is partic-

ularly complex and theoretical analyses are very difficult to perform. The same is true for several

other modern feature selection methods. Hence, simulation experiments are necessary in order to

gain a deeper understanding of the strengths and limitations of many state-of-the-art algorithms.

The evaluated algorithms are provided in Appendix Table 12.

We evaluate the algorithms using the following metrics:

1. Graph distance. This metric calculates the average shortest unoriented graph distance of

each variable returned by an algorithm to the local neighborhood of target, normalized by the

average such distance of all variables in the graph. The rationale is to normalize the score

to allow for comparisons across data sets and to correct the score for randomly choosing

variables. The score is a non-negative number and has the following interpretation: value 0

means that current feature set is a subset of the true local neighborhood of the target, values

less than 1 are better than random selection in the specific network, values equal to 1 are as

good as random selection in the specific network and values higher than 1 are worse than

random selection. The metric is computed using Dijkstra’s shortest path algorithm.

2. Euclidean distance from the perfect sensitivity and specificity (in the ROC space) for discov-

ery of local neighborhood of the target variable. This is computed as in Tsamardinos et al.

(2003b) and provides a loss function-neutral combination of sensitivity and specificity.

3. Proportion of false positives and proportion of false negatives.

4. Classification performance using polynomial SVM and KNN classifiers with parameters opti-

mized by nested cross-validation (misclassification cost C and kernel degree d for SVMs and

number of nearest neighbors k for KNN) on an independently sampled test data set with large

sample (n=5000). The performance is measured by AUC (Fawcett, 2003) on binary tasks and

proportion of correct classifications on multiclass tasks.

5. Feature selection time in minutes. All caveats regarding interpretation of running times stated

in Section 5 apply here as well.

We note that the causal discovery evaluations emphasize local discovery of direct causes and

direct effects and this choice is supported by several reasons. First, in many domains searching

for direct causes and effects is natural (e.g., biological pathway discovery). Second, for non-causal

feature selection methods, a natural causal interpretation of their output is being among the direct

causes and direct effects (or the Markov blanket) of the target. Consider for example clustering

or differential gene expression in bioinformatics where if Gene1 clusters with Gene2, or if Gene3

is more strongly differentially expressed with respect to some phenotype than Gene4 then Gene1

and Gene2 are interpreted to be members of the same pathway (i.e., in close proximity in the gene

regulatory/causal network), and Gene 3 is interpreted to be more likely to determine the phenotype
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than Gene4. Similar interpretations abound for other non-causal feature selection methods. We

notice that if a method is locally causally inconsistent then it is very unlikely that it will be globally

causally consistent either. The logic of this argument is that algorithms either return global or local

causal knowledge. If an algorithm outputs a global causal graph and this is incorrect, then this

implies that locally it will be wrong for at least some variables. Conversely, if the global graph is

correct then locally it is correct as well. If algorithm B outputs a correct local causal set (e.g., direct

causes and direct effects) then we can “piece together” these sets and obtain a correct global graph.

Finally, if an algorithm outputs an incorrect non-empty local causal set, this implies that B returns

non-causes as direct causes or remote causes as direct causes (and the same for effects). Thus, it is

not possible to construct the full causal graph strictly from knowledge provided by the algorithm.

As a result, local causal consistency is necessary for global consistency as well.

A second reason for focusing on local causal discovery is that it is much harder in practice than

indirect causal discovery in highly interconnected causal networks. In our bioinformatics example,

because cancer affects many pathways, it is trivial to find genes affected by cancer, since a large

proportion (e.g., half) of the measured genes are expected to be affected. However, it is vastly

harder to find the chain of events that leads from occurrence of cancer to Gene1 becoming under-

or over-expressed. In such settings, discovery of remote causation is not particularly hard, neither it

is particularly interesting. Conversely, when one has a locally correct causal discovery algorithm as

elucidated in Section 2, global causal learners can be relatively easily constructed.

Finally, in our evaluations we do not examine quality of causal orientation of the algorithms

output for several reasons: First, while GLL algorithms’ output can be oriented by constraint-based

or other post-processing, non-causal feature selection methods do not readily admit orientation.

Second, orientation is not needed when target T is a terminal variable as is often the case in the real

data. Third, oriented local causal discovery is harder than unoriented one (Ramsey et al., 2006),

and it makes sense to examine the ability of the feature selection algorithms for causal discovery in

tasks of incremental difficulty, especially since as we will see most of the non-causal algorithms do

not perform well even when seeking unoriented causality. Fourth, orientation information can be

obtained subsequently by experiments or knowledge-based post-processing and in many practical

settings it is not the primary obstacle to causal discovery.

6.1 Superiority of Causal Over Non-Causal Feature Selection Methods for Causal Discovery

Causal methods achieve, consistently under a variety of conditions and across all metrics employed,

superior causal discovery performance than non-causal feature selection methods in our experi-

ments. Figures 14(a) and 15 compare semi-interleaved HITON-PC to HITON-MB, RFE, UAF, L0,

and LARS-EN in terms of graph distance and for different sample sizes. Other GLL instantiations

such as Interleaved-HITON-PC, MMPC, and Interleaved-MMPC perform similarly to HITON-PC

(data in Table S12 in the online supplement). We apply HITON-PC as is and also with a variable

pre-filtering step such that only variables that pass a test of univariate association with the target at

5% False Discovery Rate (FDR) threshold are input into the algorithm (Benjamini and Yekutieli,

2001; Benjamini and Hochberg, 1995). Motivation and analysis of incorporating FDR in GLL is

provided in Aliferis et al. (2010).

As can be seen, in all samples HITON-PC variants return features closely localized near the

target while HITON-MB requires relatively larger sample size to localize well. The distance is

smaller as sample size grows. Methods such as univariate filtering localize features well in some
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Figure 14: Performance of feature selection algorithms in 9 simulated and resimulated data sets: (a)

graph distance, (b) classification performance of polynomial SVM classifiers. The smaller is causal

graph distance and the larger is classification performance, the better is the algorithm. The results

are given for training sample sizes = 200, 500, and 5000. The bars denote maximum and minimum

performance over multiple training samples of each size (data is available only for sample sizes 200

and 500). The metrics reported in the figure are averaged over all data sets, selected targets, and

multiple samples of each size. L0 did not terminate within 2 days (per target) for sample size 5000.

Please see text for more details.

data sets and badly in others. As sample size grows, localization of univariate filtering deteriorates.

Methods L0, and LARS-EN exhibit a reverse-localization bias (i.e., preferentially select features

away from the target). Performance of RFE varies greatly across data sets in its ability to localize

features and this is independent of sample size. A “bull’s eye” plot for Insurance10 data set is

provided in Figure 16. A localization example for Insurance10 data set is shown in Figure 17. The

presented visualization examples are representative of the relative performance of causal versus non-

causal algorithms. Table 4 provides p-values (via a permutation test at 5% alpha) for the differences

of localization among algorithms.

Tables S13-S16 and Figure S2(a)-(d) in the online supplement compare the same algorithms in

terms of (a) Euclidian distance from the point of perfect sensitivity and specificity, (b) proportion

of false negatives, (c) proportion of false positives, and (d) running time in minutes. Consistent

with the results presented in the main text, local causal discovery algorithms strongly outperform
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Sample size 200 
Child10 Insurance10 Alarm10 Hailfinder10 Pigs Link Lung_Cancer Gene Average

HITON-PC (max k=4) 0.43 0.41 0.42 0.83 0.41 0.44 0.44 0.50 0.48

HITON-PC (max k=3) 0.43 0.41 0.42 0.83 0.41 0.44 0.44 0.50 0.48

HITON-PC (max k=2) 0.43 0.41 0.42 0.83 0.41 0.44 0.44 0.50 0.48

HITON-PC (max k=1) 0.45 0.42 0.42 0.83 0.41 0.46 0.53 0.50 0.50

HITON-PC-FDR (max k=4) 0.29 0.15 0.24 0.18 0.10 0.17 0.24 0.18 0.19

HITON-PC-FDR (max k=3) 0.29 0.15 0.24 0.18 0.10 0.17 0.24 0.18 0.19

HITON-PC-FDR (max k=2) 0.29 0.15 0.24 0.18 0.10 0.17 0.24 0.18 0.19

HITON-PC-FDR (max k=1) 0.29 0.15 0.24 0.18 0.10 0.17 0.34 0.18 0.21

HITON-MB (max k=3) 0.70 0.68 0.50 0.99 0.49 0.66 0.50 0.64 0.64

RFE (reduction of features by 50%) 0.58 0.38 0.50 0.71 0.52 0.45 0.75 0.59 0.56

RFE (reduction of features by 20%) 0.57 0.46 0.54 0.65 0.46 0.30 0.63 0.54 0.52

UAF-KruskalWallis-SVM (50%) 0.45 0.27 0.32 0.50 0.26 0.34 0.34 0.26 0.34

UAF-KruskalWallis-SVM (20%) 0.43 0.32 0.38 0.55 0.27 0.29 0.29 0.22 0.34

UAF-Signal2Noise-SVM (50%) 0.47 0.31 0.44 0.47 0.33 0.35 0.46 0.27 0.39

UAF-Signal2Noise-SVM (20%) 0.44 0.35 0.40 0.56 0.28 0.29 0.44 0.25 0.38

L0 0.95 0.93 0.83 0.97 0.99 0.83 0.82 0.92 0.90

LARS-EN (for multiclass response) 0.67 0.70 0.64 0.79 0.78 0.66 0.64 0.78 0.71

LARS-EN (one-versus-rest) 0.83 0.68 0.67 0.92 0.89 0.70 0.67 0.89 0.78  
 

Sample size 500 
Child10 Insurance10 Alarm10 Hailfinder10 Pigs Link Munin Lung_Cancer Gene Average

HITON-PC (max k=4) 0.23 0.26 0.32 0.57 0.27 0.33 0.24 0.28 0.32 0.31

HITON-PC (max k=3) 0.23 0.26 0.32 0.57 0.27 0.33 0.24 0.28 0.32 0.31

HITON-PC (max k=2) 0.23 0.26 0.32 0.57 0.27 0.33 0.24 0.29 0.32 0.32

HITON-PC (max k=1) 0.24 0.28 0.37 0.57 0.34 0.39 0.24 0.52 0.45 0.38

HITON-PC-FDR (max k=4) 0.09 0.08 0.20 0.13 0.02 0.11 0.29 0.14 0.07 0.12

HITON-PC-FDR (max k=3) 0.09 0.08 0.20 0.13 0.02 0.11 0.29 0.13 0.07 0.12

HITON-PC-FDR (max k=2) 0.09 0.08 0.20 0.13 0.02 0.11 0.29 0.11 0.07 0.12

HITON-PC-FDR (max k=1) 0.09 0.11 0.23 0.13 0.08 0.12 0.29 0.40 0.22 0.19

HITON-MB (max k=3) 0.28 0.34 0.37 0.85 0.30 0.43 0.35 0.34 0.38 0.41

RFE (reduction of features by 50%) 0.63 0.51 0.61 0.53 0.37 0.40 0.26 0.70 0.56 0.51

RFE (reduction of features by 20%) 0.54 0.48 0.69 0.53 0.41 0.39 0.26 0.58 0.49 0.49

UAF-KruskalWallis-SVM (50%) 0.37 0.27 0.42 0.49 0.21 0.39 0.34 0.27 0.24 0.33

UAF-KruskalWallis-SVM (20%) 0.40 0.27 0.41 0.48 0.26 0.40 0.30 0.26 0.25 0.34

UAF-Signal2Noise-SVM (50%) 0.40 0.27 0.42 0.51 0.22 0.45 0.29 0.33 0.22 0.35

UAF-Signal2Noise-SVM (20%) 0.42 0.30 0.43 0.51 0.23 0.43 0.30 0.32 0.24 0.35

L0 0.98 0.97 0.93 0.98 0.99 0.87 0.53 0.87 0.97 0.90

LARS-EN (for multiclass response) 0.67 0.71 0.70 0.75 0.78 0.68 0.33 0.60 0.79 0.67

LARS-EN (one-versus-rest) 0.70 0.74 0.74 0.91 0.90 0.77 0.30 0.62 0.82 0.72  
 

Sample size 5000 
Child10 Insurance10 Alarm10 Hailfinder10 Pigs Link Munin Lung_Cancer Gene Average

HITON-PC (max k=4) 0.13 0.16 0.25 0.35 0.20 0.19 0.04 0.23 0.30 0.20

HITON-PC (max k=3) 0.13 0.16 0.25 0.35 0.20 0.19 0.04 0.23 0.30 0.20

HITON-PC (max k=2) 0.13 0.17 0.25 0.33 0.22 0.19 0.04 0.36 0.33 0.23

HITON-PC (max k=1) 0.18 0.27 0.29 0.33 0.30 0.42 0.04 0.63 0.50 0.33

HITON-PC-FDR (max k=4) 0.00 0.03 0.10 0.10 0.00 0.08 0.04 0.00 0.00 0.04

HITON-PC-FDR (max k=3) 0.00 0.03 0.10 0.10 0.00 0.08 0.04 0.00 0.00 0.04

HITON-PC-FDR (max k=2) 0.00 0.05 0.10 0.10 0.00 0.08 0.04 0.08 0.00 0.05

HITON-PC-FDR (max k=1) 0.01 0.17 0.14 0.11 0.16 0.16 0.04 0.55 0.23 0.18

HITON-MB (max k=3) 0.17 0.20 0.28 0.38 0.27 0.30 0.20 0.33 0.35 0.28

RFE (reduction of features by 50%) 0.63 0.64 0.58 0.59 0.40 0.90 0.28 0.66 0.48 0.57

RFE (reduction of features by 20%) 0.58 0.58 0.69 0.54 0.54 0.92 0.22 0.50 0.43 0.56

UAF-KruskalWallis-SVM (50%) 0.37 0.37 0.62 0.55 0.42 0.69 0.38 0.39 0.20 0.44

UAF-KruskalWallis-SVM (20%) 0.37 0.40 0.60 0.54 0.27 0.59 0.41 0.42 0.24 0.43

UAF-Signal2Noise-SVM (50%) 0.46 0.35 0.65 0.54 0.43 0.67 0.24 0.31 0.25 0.43

UAF-Signal2Noise-SVM (20%) 0.39 0.42 0.58 0.51 0.31 0.60 0.39 0.50 0.25 0.44

LARS-EN (for multiclass response) 0.67 0.85 0.65 0.87 0.74 0.75 0.52 0.71 0.79 0.73

LARS-EN (one-versus-rest) 0.71 0.86 0.74 0.84 0.95 0.80 0.48 0.74 0.88 0.78  
 

Figure 15: Causal graph distance results for training sample sizes = 200, 500 and 5000. The results

reported in the figure are averaged over all selected targets. Lighter cells correspond to smaller

(better) values of graph distance; darker cells correspond to larger (worse) values of graph distance.

L0 did not terminate within 2 days (per target) for sample size 5000.

non-causal feature selection methods in ability to find the direct causes and effects of the target

variable.

6.2 Classification Performance is Misleading for Causal Discovery

Despite causally wrong outputs (i.e., failing to return the Markov blanket or parents and children

set), several non-causal feature selection methods achieve comparable classification performance

with causal algorithms in the simulated data. Figure 14(b) (and Tables S17-S18 and Figure S2(e)
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Figure 16: Visualization of graph distances for Insurance10 network and sample size 5000 by “bull’s

eye” plot. For each method, results for 10 randomly selected targets are shown. The closer are points

to the origin, the better is ability for local causal discovery. Results for GLL method HITON-PC-

FDR are highlighted with red; results for baseline methods are highlighted with green.

Figure 17: An example of poor localization by a baseline method and good localization by a GLL

method. Left: Graph of the adjacency matrix of Insurance10 network. Target variable is shown

with red. HITON-PC discovers all 5 members of the parents and children set and a false positive

variable #177 that is located close to the true neighborhood (discovered variables are shown with

blue bolded circles). RFE discovers 4 out of 5 members of the PC set and introduces many false

positives scattered throughout the network (discovered variables are shown with yellow circles).

Right: A magnified area of the Insurance10 network close to the target variable.
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Table 4: Statistical comparison between semi-interleaved HITON-PC with G2 test (with and w/o

FDR correction) and other methods in terms of graph distance. Bolded p-values are statistically

significant at 5% alpha.

in the online supplement) shows the average AUC and proportion of correct classifications. This

phenomenon is related to information redundancy of features in relation to the target in non-sparse

causal processes. In addition, it is facilitated by the relative insensitivity of state-of-the-art classifiers

to irrelevant and redundant features. Good classification performance is thus greatly misleading as

a criterion for quality of causal hypotheses generated by non-causal feature selection algorithms.

In conclusion, the results in the present section strongly undermine the hope that non-causal

feature selection methods can be used as good heuristics for causal discovery. The idea that non-

causal feature selection can be used for causal discovery should be viewed with caution (Guyon

et al., 2007). Whole research programs are, in many domains, built on experiments motivated by

causal hypotheses that were generated by non-causal feature selection results (Zhou et al., 2002; Li

et al., 2001; Holmes et al., 2000; Eisen et al., 1998) and this seems an unfortunate and inadvisable

practice, in light of existence of principled causal algorithms. On the other hand, generalized local

learning algorithms in simulated and resimulated experiments show great potential for local causal

discovery.

7. Discussion

In the present section we discuss main findings of this research, state limitations and outline open

problems, and give an overview of problems addressed in the companion paper.
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7.1 Main Findings

Our experimental evaluation shows that GLL algorithms typically attain the theoretically expected

benefits of strong feature set parsimony without loss of performance relative to the best classification

attained by any method used in the experiments. The wide range of data sets and algorithms used

shows that the sufficient conditions stated in the proofs for correctness for GLL are likely to hold

and/or that violations may be small or well tolerated.

The second major result from our experiments is that we showed that use of non-causal feature

selection methods for learning causality although very widespread, is generally inadvisable. We

used resimulated and simulated data and showed that causally-motivated feature selection meth-

ods connect local causal discovery with feature selection for classification consistent with recent

theoretical work. Feature selection algorithms that are not causal have a tendency to return highly

predictive feature sets that are scattered all over the network, or that are in the periphery of the net-

work, and cannot be otherwise interpreted in a way that makes useful and consistent causal sense.

We strongly caution practitioners to use principled causal discovery algorithms whenever available

and to not substitute causal discovery methods with predictive/non-causal feature selection ones for

reasons of convenience or due to non familiarity with such methods. Practical software widely ex-

ists that can be used to apply state-of-the-art causal methods including the methods studied in the

present paper that is available for download from the online supplement.

Finally, the theoretical framework that is based in large part on faithfulness and other assump-

tions summarized in Sections 2 and 3 is a valuable frame of reference both conceptually and algo-

rithmically. However, we do not consider it to be an absolute and immutable measure by which

to judge all new and existing algorithms. Our data shows that algorithms that are not deemed cor-

rect under the more general assumptions of the framework (e.g., algorithms that do not employ

symmetry correction, or algorithms that use PC(T ) instead of MB(T ) for feature selection for clas-

sification) offer in many real data sets same predictive quality and better computational tractability

than the sound algorithms. This is a reflection of several factors. One of them is the existence of

distributions that are special classes of faithful ones and are easier to analyze (e.g., where sym-

metry correction is not required, or in other words where EPC(T ) = PC(T )). A second factor is

mitigating circumstances for violations of assumptions (Aliferis et al., 2010). A third factor is that

practical implementations of sound algorithms are statistically imperfect (in other words, a theo-

retical assumption that conveniently leads to a proof of correctness, for example that a conditional

test of independence is correct, does not entail immediate or flawless practical feasibility since all

such tests admit errors in practice). An alternative set of assumptions for correctness may require

vaguely ‘sufficient sample size’ disregarding the practical difficulty of determining whether in any

given analysis this requirement is met. As a result, practical implementations may claim soundness

without being demonstrably sound in applied settings. We address the small-sample behavior of

GLL algorithms with empirical analysis in the companion paper (Aliferis et al., 2010).

7.2 Limitations and Open Problems

A possible critique of the present work is that Markov blanket features may not work well with a

plethora of classifiers, distributions and loss functions. Indeed, a feature selector that is uniformly

optimal is not attainable as shown by the results in Tsamardinos and Aliferis (2003), and several

(possibly infinite) conceivable classifiers will fail to capture the information in the selected features.

Our focus was to examine if the GLL framework has merit in the sense of whether GLL instantia-
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tions when applied and compared to reasonable state-of-the-art baseline feature selectors in many

complex data sets from typical analysis domains and with practical classifiers, loss function and

sample sizes, yield good performance consistent with the theoretical claims of GLL.

Another possibility we would like to address is that best predictivity achieved in our experiments

for each data set may not be optimal since some classifier other than SVMs and KNN may yield

better predictivity. We believe that this possibility is remote for the following reason: Evidence from

earlier published work where we have applied instances of GLL with classifiers such as ANNs,

Decision Trees, Simple Bayes, as well as SVMs and KNN supports that the choice of classifier

matters very little in practice and similar predictivity/parsimony patterns as the ones reported here

were found (Aliferis et al., 2003a). On the other hand, the use of SVMs and KNN as classifiers

uniformly across our experiments confers many benefits explained in Section 5. To further support

the use of these classifiers we provide additional experimental results in Appendix Table 10 where

we use features extracted from embedded or wrapper-based feature selectors (L0, RFVS, LARS-

EN) and compare SVMs and KNN to classifiers native to the above embedded and wrapper-based

methods. We found that SVMs and KNN achieve predictivity comparable to the classifiers from the

aforementioned feature selectors.

Additional strong evidence in favor of our conclusions that GLL algorithms yield highly predic-

tive and parsimonious feature sets is given by the simulated and resimulated data experiments where

both the data-generative model and optimal feature sets are known. In those experiments the true

Markov blanket is directly given by the model and does constitute the gold standard for the smallest

and optimally informative feature set for common loss functions in the sense that it contains all

information available for predicting the target. The experiments showed that the GLL algorithms

identify this Markov blanket very well and better than the baseline comparison algorithms.

Although the GLL framework and the studied instantiations and implementations are theoret-

ically well motivated and empirically robust in many practical data analysis domains, as demon-

strated in our experiments, as with all machine learning methods they should be expected to not

perform well in quality or efficiency in certain distributions. Such distributions may include cases

where the Markov blanket is very large and thus the combinatorics of the elimination phase makes it

too slow. Another case can be when extreme non-linearities render the PC(T ) members “invisible”

to the algorithm (because univariate association with the target is zero). Another possibility for hurt-

ing efficiency arises when excessive synthesis of information exists such that the true members of

PC(T ) are not considered before other weakly relevant variables enter the TPC(T ). Also when cer-

tain types of deterministic relationships exist or more broadly target information equivalence (i.e.,

special types of violations of faithfulness), many Markov blankets may exist and the algorithms

will return a predictively optimal feature set but both causal localization and optimal parsimony

may be lost (Statnikov, 2008). The practical importance of these possibilities needs to be assessed

domain-by-domain.

Some of the adverse situations described in the limitations sub-section can be addressed by

relaxing the algorithm operation (e.g., for very large Markov blankets the analyst can set max-

k to a very small number and achieve faster execution but incur some false positives). In some

domains, violation of assumptions are mitigated by other factors (e.g., Aliferis et al. 2010 describes

how connectivity can make extremely epistatic parents visible to the algorithms). These and other

situations constitute open research areas and very recent research efforts attempt to address these

issues. For example, Statnikov (2008) provides algorithms that address multiplicity of Markov

blankets and Tsamardinos and Brown (2008b) introduce a method for kernel mapping of extremely
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non-linear functions to a faithful feature space that can be used to do feature selection via GLL in

the transformed feature space.

Although the emphasis of the present work was in classification, Markov blanket theory applies

equally well to regression and thus the GLL framework can be used for regression problems as well.

An empirical analysis of performance of regression-oriented GLL instantiations and comparisons

to state-of-the-art methods were not pursued here however.

7.3 Further Problems Addressed in the Companion Paper

While the theory motivating local learning and especially Markov blanket induction for feature

selection has wide implications, it is far from complete. To begin with, all theoretical arguments to-

date apply to the large sample case. While the theory implies that the large-sample Markov blanket

and the corresponding classifiers fitted from large sample, are predictively optimal, it is not known

to what extend learning from small samples affects the optimality of Markov blanket based feature

selection. More specifically, it is not clear how often in small samples and real-life distributions

the true Markov blanket (i.e., obtained from the data-generative process) gives an optimal classifier

when the latter is fitted from small samples with state-of-the-art classifiers. Similarly, we do not

know whether the estimated Markov blanket gives an optimal classifier when the latter is fitted from

small samples or even when it is fitted from the large sample. Related to the above for practical

applications, we do not know how fast is convergence of the estimated Markov blanket/classifier to

true Markov blanket/optimal classification as a function of sample size, for the available state-of-

the-art Markov blanket inducing algorithms. In the second part of our work (Aliferis et al., 2010)

we examine these issues. We also provide explanations why counter-intuitively relaxed versions of

some algorithms that trade-off computational efficiency for theoretical soundness tend to outperform

sound versions in some domains. Moreover, we systematically study the factors that influence the

quality and number of statistical decisions, explain the inductive bias of the algorithms, show how

non-causal feature selection methods can be understood in light of Markov blanket induction theory,

and address divide-and-conquer local to global causal graph learning strategies.

Appendix A.

This Appendix provides proofs of theorems and additional tables referenced in the paper.

A.1 Proof of Theorem 2

Consider the algorithm in Figure 4. First notice, that as we mentioned above, when conditions (a)

and (c) hold the direct causes and direct effects of T will coincide with the parents and children of

T in the causal Bayesian network G that faithfully captures the distribution (Spirtes et al., 2000). As

we have shown in Section 4 and in Tsamardinos et al. (2003b), the PCG(T ) = PC(T ) is unique in

all networks faithfully capturing the distribution.

First we show that the algorithm will terminate, that is that the termination criterion of admis-

sibility rule #3 will be met. The criterion requires that no variable eligible for inclusion will fail to

enter TPC(T ) and that no variable that can be eliminated from TPC(T ) is left inside. Indeed be-

cause (a) due to admissibility rule #1 all eligible variables in OPEN are identified, (b) V is finite and

OPEN instantiated to V \ {T}, and (c) termination will not happen before all eligible members of

OPEN are moved from OPEN to TPC(T ), the first part of the termination criterion will be satisfied.
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The second part of the termination criterion will also be satisfied because of admissibility rule #2

which examines for removal all variables and discards the ones that can be removed.

Lemma 1 The output of GLL-PC-nonsym TPC(T ) is such that: PC(T )⊆ TPC(T )⊆ EPC(T ).

Proof Let us assume that X ∈ PC(T ) and show that X ∈ TPC(T ) by the end of GLL-PC-nonsym.

By admissibility rule #3, X will never fail to enter TPC(T ) by the end of GLL-PC-nonsym. By The-

orem 1, for all Z ⊆ V \ {X}, ¬I(X ,T |Z) and so the elimination strategy because of admissibility

rule #2 will never remove X from TPC(T ) by the end of GLL-PC-nonsym.

Now, let us assume that X ∈ TPC(T ) by the end of GLL-PC-nonsym and show that X ∈EPC(T ).
Let us assume the opposite, that is, that X /∈ EPC(T ) and so by definition I(X ,T |Z), for some

Z ⊆ PC(T )\{X}. By the same argument as in the previous paragraph, we know that at some point

before termination of the algorithm, in step 4, TPC(T ) will contain the PC(T ). Since X /∈ EPC(T ),
the elimination strategy will find that I(X ,T |Z), for some Z ⊆ PC(T ) \ {X} and remove X from

TPC(T ) contrary to what we assumed. Thus, X ∈ EPC(T ) by the end of GLL-PC-nonsym.

Lemma 2 If X ∈ EPC(T )\PC(T ), then T /∈ EPC(X)\PC(X)

Proof Let us assume that X ∈ EPC(T )\PC(T ). For every network G faithful to the distribution P

ParentsG(T )⊆ PCG(T ) = PC(T ). X has to be a descendant of T in every network G faithful to the

distribution because if it is not a descendant, then there is a subset Z of T ’s parents s.t., I(X ,T |Z)
(by the Markov Condition). Since X ∈ EPC(T ) \PC(T ), we know that by definition ¬I(X ,T |Z),
for all Z ⊆ PC(T )\{X}. By the same argument, if also T ∈ EPC(X)\PC(X), T would have to be

a descendant of X in the every network G which is impossible since the networks are acyclic. So,

T /∈ EPC(X)\PC(X).

Let us assume that X ∈ PC(T ). By Lemma 1, X ∈ TPC(T ) by the end of GLL-PC-nonsym.

Since also T ∈ PC(X), substituting X for T , we also have that by the end of GLL-PC-nonsym,

T ∈ TPC(X). So, X will not be removed from U by the symmetry requirement of GLL-PC either,

and will be in the final output of the algorithm.

Conversely, let us assume that X /∈ PC(T ) and show X /∈ U at termination of algorithm GLL-

PC. If X never enters TPC(T ) by the inclusion heuristic, the proof is done. Similarly, if X enters but

is later removed from TPC(T ) by the exclusion strategy, the proof is done too. So, let us assume

that X enters TPC(T ) at some point and by the end of GLL-PC-nonsym(T ) is not removed by

the exclusion strategy. By Lemma 1, we get that by the end of GLL-PC-nonsym, X ∈ EPC(T )
and since we assumed X /∈ PC(T ), we get that X ∈ EPC(T ) \PC(T ). By Lemma 2, we get that

T /∈ EPC(X)\PC(X). Since also T /∈ PC(X), we get that T /∈ EPC(X). Step 3 of GLL-PC will thus

eliminate X from U .

A.2 Proof of Theorem 4

Since we assume faithful Bayesian networks, d-separation in the graph of such a network is equiv-

alent to independence and can be used interchangeably (Spirtes et al., 2000).
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Method Additional Information Reference

No feature selection

RFE (recursive feature

elimination SVM-based

method)

• reduction by 50% at each iteration, best performing feature

subset is returned
(Guyon et al., 2002)

• reduction by 20% at each iteration, best performing feature

subset is returned

• reduction by 50% at each iteration, statistically same as

best performing feature subset is returned

• reduction by 20% at each iteration, statistically same as

best performing feature subset is returned

UAF-KruskalWallis-SVM

(univariate ranking by

Kruskal-Wallis statistic and

feature selection with SVM

backward wrapper)

• reduction by 50% at each iteration, best performing feature

subset is returned (Statnikov et al., 2005a;

Hollander and Wolfe, 1999)• reduction by 20% at each iteration, best performing feature

subset is returned

• reduction by 50% at each iteration, statistically same as

best performing feature subset is returned

• reduction by 20% at each iteration, statistically same as

best performing feature subset is returned

UAF-Signal2Noise-SVM

(univariate ranking by

signal-to-noise statistic and

feature selection with SVM

backward wrapper)

• reduction by 50% at each iteration, best performing feature

subset is returned
(Guyon et al., 2006b;

Statnikov et al., 2005a;

Furey et al., 2000)
• reduction by 20% at each iteration, best performing feature

subset is returned

• reduction by 50% at each iteration, statistically same as

best performing feature subset is returned

• reduction by 20% at each iteration, statistically same as

best performing feature subset is returned

UAF-Neal-SVM (univariate

ranking by Radford Neal’s

statistic and feature

selection with SVM

backward wrapper)

• reduction by 50% at each iteration, best performing feature

subset is returned Chapter 10 in Guyon et al.

(2006a)• reduction by 20% at each iteration, best performing feature

subset is returned

• reduction by 50% at each iteration, statistically same as

best performing feature subset is returned

• reduction by 20% at each iteration, statistically same as

best performing feature subset is returned

Random Forest Variable

Selection (RFVS)

• best performing feature subset is returned (Diaz-Uriarte and

Alvarez de Andres, 2006;

Breiman, 2001)

• statistically same as best performing feature subset is re-

turned

Table 5: Algorithms used in evaluation on real data sets. When statistical comparison was performed

inside a wrapper, we used a non-parametric method by DeLong et al. (1988). The only exception

is Random Forest-based Variable Selection (RFVS), where we used a method recommended by its

authors (Diaz-Uriarte and Alvarez de Andres, 2006). For GLL algorithms (i.e., variants of HITON-

PC, HITON-MB, MMPC, MMMB) we experimented with both G2 and Fisher’s Z-test whenever

the latter was applicable. This table is continued in Tables 6 and 7.

If X ∈ MB(T ), we show X ∈ TMB(T ) in the end. If X ∈ MB(T ) and X ∈ PC(T ), it will be

included in the TMB(T ) in step 3, will not be removed afterwards and will be included in the final

output.

If X ∈MB(T )\PC(T ) then X will be included in S since if X is a spouse of T , there exists Y

(by definition of spouse) s.t., X ∈ PC(Y ), Y ∈ PC(T ) and X /∈ PC(T ). For that Y , by Theorem 3 we

know that ¬I(X ,T |Z ∪{Y}), for all Z ⊆ V \{X ,T} and so the test in step 5c will succeed and X

will be included in TMB(T ) in the end.
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Method Additional Information Reference

LARS-Elastic Net

(LARS-EN)

• best performing feature subset is returned
(Zou and Hastie, 2005)

• statistically same as best performing feature subset is re-

turned

RELIEF (with backward

wrapping by SVM)

• Number of neighbors = 1, reduction by 50% at each itera-

tion, best performing feature subset is returned

(Kononenko, 1994; Kira

and Rendell, 1992)

• Number of neighbors = 1, reduction by 20% at each itera-

tion, best performing feature subset is returned

• Number of neighbors = 5, reduction by 50% at each itera-

tion, best performing feature subset is returned

• Number of neighbors = 5, reduction by 20% at each itera-

tion, best performing feature subset is returned

• Number of neighbors = 1, reduction by 50% at each iter-

ation, statistically same as best performing feature subset is

returned

• Number of neighbors = 1, reduction by 20% at each iter-

ation, statistically same as best performing feature subset is

returned

• Number of neighbors = 5, reduction by 50% at each iter-

ation, statistically same as best performing feature subset is

returned

• Number of neighbors = 5, reduction by 20% at each iter-

ation, statistically same as best performing feature subset is

returned

L0-norm (Weston et al., 2003)

Forward Stepwise Selection using SVM classifier for wrapping (Caruana and Freitag, 1994)

Koller-Sahami (with

backward wrapping by

SVM)

• k = 0, best performing feature subset is returned

(Koller and Sahami, 1996)

• k = 1, best performing feature subset is returned

• k = 2, best performing feature subset is returned

• k = 0, statistically same as best performing feature subset

is returned

• k = 1, statistically same as best performing feature subset

is returned

• k = 2, statistically same as best performing feature subset

is returned

IAMB

• G2 test and a = 0.05
(Tsamardinos and Aliferis,

2003; Tsamardinos et al.,

2003a)

• G2 test and a = 0.01

• mutual information criterion with threshold=0.01

K2MB (Cooper et al., 1997; Cooper

and Herskovits, 1992)

Table 6: Continued from Table 5.

Conversely, if X /∈MB(T ) we show that X /∈ TMB(T ) by the end of the algorithm. Let Z be the

subset in step 5a, s.t., I(X ,T |Z) (i.e., Z d-separates X and T ). Then, Z blocks all paths from X to

T . For the test in step 5c to succeed a node Y must exist that opens a new path, previously closed

by Z, from X to T . Since by conditioning on an additional node a path opens, Y has to be a collider

(by the d-separation definition) or a descendant of a collider on a path from X to T . In addition, this

path must have length two edges since all nodes in S are the parents and children of the PC(T ) but

without belonging in PC(T ). Thus, for the test in step 5c to succeed there has to be a path of length

two from X to T with a collider in-between, that is, X has to be a spouse of T . Since X /∈MB(T )
the test will fail for all Y and X /∈ TMB(T ) by the end of the algorithm.
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Method Additional Information Reference

BLCD-MB (Mani and Cooper, 2004)

FAST-IAMB G2 test and a = 0.05 (Yaramakala and Margari-

tis, 2005)

HITON-PC

(semi-interleaved)

• max-k = 4 and a = 0.05

Novel algorithm

• max-k = 3 and a = 0.05

• max-k = 2 and a = 0.05

• max-k = 1 and a = 0.05

• max-k = 4 and a = 0.01

• max-k = 3 and a = 0.01

• max-k = 2 and a = 0.01

• max-k = 1 and a = 0.01

• max-k and a selected by cross-validation

Interleaved HITON-PC

• max-k = 4 and a = 0.05

(Aliferis et al., 2003a)

• max-k = 3 and a = 0.05

• max-k = 2 and a = 0.05

• max-k = 1 and a = 0.05

• max-k = 4 and a = 0.01

• max-k = 3 and a = 0.01

• max-k = 2 and a = 0.01

• max-k = 1 and a = 0.01

• max-k and a selected by cross-validation

MMPC

• max-k = 4 and a = 0.05

(Tsamardinos et al., 2006,

2003b)

• max-k = 3 and a = 0.05

• max-k = 2 and a = 0.05

• max-k = 1 and a = 0.05

• max-k = 4 and a = 0.01

• max-k = 3 and a = 0.01

• max-k = 2 and a = 0.01

• max-k = 1 and a = 0.01

• max-k and a selected by cross-validation

Interleaved MMPC

• max-k = 4 and a = 0.05

Novel algorithm

• max-k = 3 and a = 0.05

• max-k = 2 and a = 0.05

• max-k = 1 and a = 0.05

• max-k = 4 and a = 0.01

• max-k = 3 and a = 0.01

• max-k = 2 and a = 0.01

• max-k = 1 and a = 0.01

• max-k and a selected by cross-validation

HITON-MB

(semi-interleaved)

• max-k = 3 and a = 0.05
Novel algorithm

• max-k = 3 and a = 0.01

MMMB
• max-k = 3 and a = 0.05

(Tsamardinos et al., 2003b)
• max-k = 3 and a = 0.01

Table 7: Continued from Table 6.

222



LOCAL CAUSAL AND MARKOV BLANKET INDUCTION PART I

D
a
ta

se
t

n
a
m

e

D
o
m

a
in

N
u

m
.

v
a
ri

-

a
b

le
s

N
u

m
.

sa
m

p
le

s

T
a
rg

et
D

a
ta

ty
p

e
C

ro
ss

-v
a
l.

d
es

ig
n

D
is

cr
et

iz
a
ti

o
n

a
p

p
li

ed

N
o
te

s
R

ef
er

en
ce

In
fa

n
t

M
o
r-

ta
li

ty

C
li

n
ic

al
8
6

5
,3

3
7

D
ie

d

w
it

h
in

th
e

fi
rs

t
y
ea

r

D
is

cr
et

e
1
-f

o
ld

cr
o
ss

-v
al

.

A
lr

ea
d
y

d
is

-

cr
et

e

Im
p
u
te

d

b
y

n
ea

re
st

n
ei

g
h
b
o
r

m
et

h
o
d

(M
an

i
an

d
C

o
o
p
er

,
1
9
9
9
)

O
h
su

m
ed

T
ex

t
1
4
,3

7
3

5
,0

0
0

R
el

ev
an

t

to
n
eo

n
a-

ta
l

d
is

-

ea
se

s

C
o
n
ti

n
u
o
u
s

1
-f

o
ld

cr
o
ss

-v
al

.

W
o
rd

ab
se

n
t

/

p
re

se
n
t

(J
o
ac

h
im

s,
2
0
0
2
)

A
C

P
J

E
ti

o
l-

o
g
y

T
ex

t
2
8
,2

2
8

1
5
,7

7
9

R
el

ev
an

t

to
et

io
lo

g
y

C
o
n
ti

n
u
o
u
s

1
-f

o
ld

cr
o
ss

-v
al

.

W
o
rd

ab
se

n
t

/

p
re

se
n
t

(A
p
h
in

y
an

ap
h
o
n
g
s

et
al

.,

2
0
0
6
)

L
y
m

p
h
o
m

a
G

en
e

ex
p
re

ss
io

n

7
,3

9
9

2
2
7

3
-y

ea
r

su
rv

iv
al

:

d
ea

d
v
s.

al
iv

e

C
o
n
ti

n
u
o
u
s

1
0
-f

o
ld

cr
o
ss

-v
al

.

B
in

ar
y
/t

er
n
ar

y

u
n
iv

ar
ia

te
;

u
se

d

w
in

d
ow

si
ze

s

1
0
,1

5
,

2
0
,

2
5
,

3
0

fo
r

te
rn

ar
y

(R
o
se

n
w

al
d

et
al

.,
2
0
0
2
)

G
is

et
te

D
ig

it

re
co

g
n
i-

ti
o
n

5
,0

0
0

7
,0

0
0

S
ep

ar
at

e
4

fr
o
m

9

C
o
n
ti

n
u
o
u
s

1
-f

o
ld

cr
o
ss

-v
al

.

P
ix

el
p
re

se
n
t

/

ab
se

n
t

U
se

d
o
ri

g
i-

n
al

tr
ai

n
in

g

&
va

li
d
at

io
n

se
ts

o
n
ly

N
IP

S
2
0
0
3

F
ea

tu
re

S
e-

le
ct

io
n

C
h
al

le
n
g
e

(G
u
y
o
n

et
al

.,
2
0
0
6
a)

D
ex

te
r

T
ex

t
1
9
,9

9
9

6
0
0

R
el

ev
an

t

to
co

r-

p
o
ra

te

ac
q
u
is

i-

ti
o
n
s

C
o
n
ti

n
u
o
u
s

1
0
-f

o
ld

cr
o
ss

-v
al

.

W
o
rd

ab
se

n
t

/

p
re

se
n
t

U
se

d
o
ri

g
i-

n
al

tr
ai

n
in

g

&
va

li
d
at

io
n

se
ts

o
n
ly

N
IP

S
2
0
0
3

F
ea

tu
re

S
e-

le
ct

io
n

C
h
al

le
n
g
e

(G
u
y
o
n

et
al

.,
2
0
0
6
a)

S
y
lv

a
E

co
lo

g
y

2
1
6

1
4
,3

9
4

P
o
n
d
er

o
sa

p
in

e
v
s.

ev
er

y
th

in
g

el
se

C
o
n
ti

n
u
o
u
s

&
d
is

cr
et

e

1
-f

o
ld

cr
o
ss

-v
al

.

B
in

ar
y
/t

er
n
ar

y

u
n
iv

ar
ia

te
;

u
se

d

w
in

d
ow

si
ze

s

1
0
0
0
,

1
5
0
0
,

2
0
0
0
,

2
5
0
0
,

3
0
0
0

fo
r

te
rn

ar
y

U
se

d
o
ri

g
i-

n
al

tr
ai

n
in

g

&
va

li
d
at

io
n

se
ts

o
n
ly

W
C

C
I

2
0
0
6

P
er

fo
rm

an
ce

P
re

d
ic

ti
o
n

C
h
al

le
n
g
e

T
ab

le
8
:

R
ea

l
d
at

a
se

ts
u
se

d
in

ev
al

u
at

io
n

o
f

p
re

d
ic

ti
v
it

y
an

d
co

m
p
ac

tn
es

s.
T

h
is

ta
b
le

is
co

n
ti

n
u
ed

in
T

ab
le

9
.

223



ALIFERIS, STATNIKOV, TSAMARDINOS, MANI AND KOUTSOUKOS

D
a
ta

se
t

n
a
m

e

D
o
m

a
in

N
u

m
.

v
a
ri

-

a
b

le
s

N
u

m
.

sa
m

p
le

s

T
a
rg

et
D

a
ta

ty
p

e
C

ro
ss

-v
a
l.

d
es

ig
n

D
is

cr
et

iz
a
ti

o
n

a
p

p
li

ed

N
o
te

s
R

ef
er

en
ce

O
va

ri
an

C
an

ce
r

P
ro

te
o
m

ic
s

2
,1

9
0

2
1
6

C
an

ce
r

v
s.

n
o
rm

al
s

C
o
n
ti

n
u
o
u
s

1
0
-f

o
ld

cr
o
ss

-v
al

.

B
in

ar
y
/t

er
n
ar

y

u
n
iv

ar
ia

te
;

u
se

d

w
in

d
ow

si
ze

s

1
0
,

1
5
,

2
0
,

2
5
,

3
0

fo
r

te
rn

ar
y

(C
o
n
ra

d
s

et
al

.,
2
0
0
4
)

T
h
ro

m
b
in

D
ru

g
d
is

-

co
v
er

y

1
3
9
,3

5
1

2
,5

4
3

B
in

d
in

g
to

th
ro

m
b
in

D
is

cr
et

e
(b

i-

n
ar

y
)

1
-f

o
ld

cr
o
ss

-v
al

.

A
lr

ea
d
y

d
is

-

cr
et

e

K
D

D
C

u
p

2
0
0
1

B
re

as
t

C
an

-

ce
r

G
en

e

ex
p
re

ss
io

n

1
7
,8

1
6

2
8
6

E
st

ro
g
en

-

re
ce

p
to

r

p
o
si

ti
v
e

(E
R

+
)

v
s.

E
R

-

C
o
n
ti

n
u
o
u
s

1
0
-f

o
ld

cr
o
ss

-v
al

.

B
in

ar
y
/t

er
n
ar

y

u
n
iv

ar
ia

te
,

u
se

d

w
in

d
ow

si
ze

s

1
0
,

1
5
,

2
0
,

2
5
,

3
0

fo
r

te
rn

ar
y

(W
an

g
et

al
.,

2
0
0
5
)

H
iv

a
D

ru
g

d
is

-

co
v
er

y

1
,6

1
7

4
,2

2
9

A
ct

iv
it

y
to

A
ID

S
H

IV

in
fe

ct
io

n

D
is

cr
et

e
(b

i-

n
ar

y
)

1
-f

o
ld

cr
o
ss

-v
al

.

A
lr

ea
d
y

d
is

-

cr
et

e

U
se

d
o
ri

g
i-

n
al

tr
ai

n
in

g

&
va

li
d
at

io
n

se
ts

o
n
ly

W
C

C
I

2
0
0
6

P
er

fo
rm

an
ce

P
re

d
ic

ti
o
n

C
h
al

le
n
g
e

N
o
va

T
ex

t
1
6
,9

6
9

1
,9

2
9

S
ep

ar
at

e

p
o
li

ti
cs

fr
o
m

re
li

g
io

n

to
p
ic

s

D
is

cr
et

e
(b

i-

n
ar

y
)

1
-f

o
ld

cr
o
ss

-v
al

.

A
lr

ea
d
y

d
is

-

cr
et

e

U
se

d
o
ri

g
i-

n
al

tr
ai

n
in

g

&
va

li
d
at

io
n

se
ts

o
n
ly

W
C

C
I

2
0
0
6

P
er

fo
rm

an
ce

P
re

d
ic

ti
o
n

C
h
al

le
n
g
e

B
an

k
ru

p
tc

y
F

in
an

ci
al

1
4
7

7
,0

6
3

P
er

so
n
al

b
an

k
ru

p
tc

y

C
o
n
ti

n
u
o
u
s

&
d
is

cr
et

e

1
-f

o
ld

cr
o
ss

-v
al

.

B
in

ar
y
/t

er
n
ar

y

u
n
iv

ar
ia

te
,

u
se

d

w
in

d
ow

si
ze

s

1
0
0
0
,

1
5
0
0
,

2
0
0
0
,

2
5
0
0
,

3
0
0
0

fo
r

te
rn

ar
y

Im
p
u
te

d

b
y

n
ea

re
st

n
ei

g
h
b
o
r

m
et

h
o
d

(F
o
st

er
an

d
S

ti
n
e,

2
0
0
4
)

T
ab

le
9
:

C
o
n
ti

n
u
ed

fr
o
m

T
ab

le
8
.

224



LOCAL CAUSAL AND MARKOV BLANKET INDUCTION PART I

References

C. F. Aliferis and G. F. Cooper. An evaluation of an algorithm for inductive learning of Bayesian

belief networks using simulated data sets. Proceedings of the Tenth Conference on Uncertainty

in Artificial Intelligence (UAI), 1994.

C. F. Aliferis and I. Tsamardinos. Algorithms for large-scale local causal discovery and feature

selection in the presence of small sample or large causal neighborhoods. Technical Report DSL

02-08, 2002a.

C. F. Aliferis and I. Tsamardinos. Using local causal induction to improve global causal discovery:

Enhancing the sparse candidate set. Technical Report DSL 02-04, 2002b.

C. F. Aliferis, I. Tsamardinos, and A. Statnikov. Large-scale feature selection using Markov blanket

induction for the prediction of protein-drug binding. Technical Report DSL 02-06, 2002.

C. F. Aliferis, I. Tsamardinos, and A. Statnikov. HITON: a novel Markov blanket algorithm for

optimal variable selection. AMIA 2003 Annual Symposium Proceedings, pages 21–25, 2003a.

C. F. Aliferis, I. Tsamardinos, A. Statnikov, and L. E. Brown. Causal explorer: a causal proba-

bilistic network learning toolkit for biomedical discovery. Proceedings of the 2003 International

Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences

(METMBS), 2003b.

C. F. Aliferis, A. Statnikov, E. Kokkotou, P. P. Massion, and I. Tsamardinos. Local regulatory-

network inducing algorithms for biomarker discovery from mass-throughput datasets. Technical

Report DSL 06-05, 2006a.

C. F. Aliferis, A. Statnikov, and P. P. Massion. Pathway induction and high-fidelity simulation for

molecular signature and biomarker discovery in lung cancer using microarray gene expression

data. Proceedings of the 2006 American Physiological Society Conference “Physiological Ge-

nomics and Proteomics of Lung Disease”, 2006b.

C. F. Aliferis, A. Statnikov, I. Tsamardinos, S. Mani, and X. D. Koutsoukos. Local causal and

Markov blanket induction for causal discovery and feature selection for classification. Part II:

Analysis and extensions. Journal of Machine Learning Research, 11:235–284, 2010.

Y. Aphinyanaphongs and C. F. Aliferis. Learning boolean queries for article quality filtering. Med-

info 2004., 11(Pt 1):263–267, 2004.

Y. Aphinyanaphongs, A. Statnikov, and C. F. Aliferis. A comparison of citation metrics to machine

learning filters for the identification of high quality medline documents. J.Am.Med.Inform.Assoc.,

13(4):446–455, Jul 2006.

X. Bai, C. Glymour, R. Padman, J. Ramsey, P. Spirtes, and F. Wimberly. PCX: Markov blanket

classification for large data sets with few cases. Technical Report, Center for Automated Learning

and Discovery, 2004.

G. E. A. P. A. Batista and M. C. Monard. An analysis of four missing data treatment methods for

supervised learning. Applied Artificial Intelligence, 17(5-6):519–533, 2003.

225



ALIFERIS, STATNIKOV, TSAMARDINOS, MANI AND KOUTSOUKOS

Feature 

subset
Classifier

In
fa

n
t_

 
M

or
ta

li
ty

O
h
su

m
ed

A
C

P
J_

 
E

ti
ol

og
y

L
ym

p
h
om

a
G

is
et

te
D

ex
te

r

S
yl

va
O

va
ri

an
_ 

C
an

ce
r

T
h
ro

m
b
in

B
re

as
t_

 
C

an
ce

r

H
iv

a

N
ov

a
B

an
k
ru

p
tc

y

LARS-EN

(w/o stat. 

comp.)

SVM 0.88 0.80 0.89 0.60 0.99 0.98 1.00 0.98 0.89 0.92 0.73 0.96 0.95

LARS-EN 0.88 0.81 0.88 0.60 1.00 0.98 1.00 0.99 0.89 0.92 0.77 0.94 0.94

SVM 0.86 0.77 0.82 0.57 0.99 0.98 1.00 0.96 0.85 0.94 0.62 0.96 0.95

LARS-EN 0.87 0.78 0.82 0.57 1.00 0.97 0.99 0.96 0.90 0.94 0.69 0.93 0.94

SVM 0.82 0.72 0.84 0.60 0.99 0.97 1.00 0.97 0.81 0.91 0.68 0.96 T

L0 0.81 0.72 0.87 0.58 0.99 0.97 1.00 0.96 0.81 0.91 0.69 0.95 T

SVM 0.82 T T 0.61 T 0.98 1.00 0.97 T 0.93 0.74* T 0.96

RF 0.84 T T 0.63 T 0.98 1.00 0.97 T 0.91 0.78 T 0.97

SVM 0.86 T T 0.61 T 0.98 1.00 0.96 T 0.93 0.68* T 0.97

RF 0.78 T T 0.63 T 0.98 1.00 0.97 T 0.92 0.75 T 0.97

LARS-EN

(w/o stat. 

comp.)

LARS-EN

(with stat. 

comp.)

L0

RFVS

(w/o stat. 

comp.)

RFVS 

(with stat. 

comp.)

Table 10: Classification performance (AUC) for polynomial SVMs and classifiers native to LARS-

EN, L0, and RFVS feature selection algorithms induced with features selected by the latter three

methods. In cells marked with “T”, the corresponding feature selection method did not terminate

within the allotted time.

Bayesian 

network 

Number of 

variables 
Training samples 

Number of selected 

targets 

Child10 200 5 x 200, 5 x 500, 1 x 5000 10 

Insurance10 270 5 x 200, 5 x 500, 1 x 5000 10 

Alarm10 370 5 x 200, 5 x 500, 1 x 5000 10 

Hailfinder10 560 5 x 200, 5 x 500, 1 x 5000 10 

Munin 189 5 x 500, 1 x 5000 6 

Pigs 441 5 x 200, 5 x 500, 1 x 5000 10 

Link 724 5 x 200, 5 x 500, 1 x 5000 10 

Lung_Cancer  800 5 x 200, 5 x 500, 1 x 5000 11 

Gene 801 5 x 200, 5 x 500, 1 x 5000 11 

Table 11: Simulated and resimulated data sets used for experiments. Lung Cancer network is res-

imulated from human lung cancer gene expression data (Bhattacharjee et al., 2001) using SCA

algorithm (Friedman et al., 1999b). Gene network is resimulated from yeast cell cycle gene expres-

sion data (Spellman et al., 1998) using SCA algorithm. More details about data sets are provided in

Tsamardinos et al. (2006).
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HITON-PC (max k=4) HITON-PC-FDR (max k=4) 

HITON-PC (max k=3) HITON-PC-FDR (max k=3) 

HITON-PC (max k=2) HITON-PC-FDR (max k=2) 

HITON-PC (max k=1) HITON-PC-FDR (max k=1) 

Interleaved HITON-PC (max k=4) HITON-MB (max k=3) 

Interleaved HITON-PC (max k=3) MMMB (max k=3) 

Interleaved HITON-PC (max k=2) RFE (reduction of features by 50%) 

Interleaved HITON-PC (max k=1) RFE (reduction of features by 20%) 

MMPC (max k=4) UAF-KruskalWallis-SVM (50%) 

MMPC (max k=3) UAF-KruskalWallis-SVM (20%) 

MMPC (max k=2) UAF-Signal2Noise-SVM (50%) 

MMPC (max k=1) UAF-Signal2Noise-SVM (20%) 

Interleaved MMPC (max k=4) L0 

Interleaved MMPC (max k=3) LARS-EN (for multiclass response) 

Interleaved MMPC (max k=2) LARS-EN (one-versus-rest) 

Interleaved MMPC (max k=1)  

Table 12: Algorithms used in local causal discovery experiments with simulated and resimulated

data.

Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: A practical and powerful

approach to multiple testing. Journal of the Royal Statistical Society.Series B (Methodological),

57(1):289–300, 1995.

Y. Benjamini and D. Yekutieli. The control of the false discovery rate in multiple testing under

dependency. Ann.Statist, 29(4):1165–1188, 2001.

A. Bhattacharjee, W. G. Richards, J. Staunton, C. Li, S. Monti, P. Vasa, C. Ladd, J. Beheshti,

R. Bueno, M. Gillette, M. Loda, G. Weber, E. J. Mark, E. S. Lander, W. Wong, B. E. Johnson,

T. R. Golub, D. J. Sugarbaker, and M. Meyerson. Classification of human lung carcinomas by

mrna expression profiling reveals distinct adenocarcinoma subclasses. Proc.Natl.Acad.Sci.U.S.A,

98(24):13790–13795, Nov 2001.

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

L. E. Brown, I. Tsamardinos, and C. F. Aliferis. A comparison of novel and state-of-the-art polyno-

mial Bayesian network learning algorithms. Proceedings of the Twentieth National Conference

on Artificial Intelligence (AAAI), 2005.

R. Caruana and D. Freitag. Greedy attribute selection. Proceedings of the Eleventh International

Conference on Machine Learning, pages 28–36, 1994.

J. Cheng and R. Greiner. Comparing Bayesian network classifiers. Proceedings of the 15th Confer-

ence on Uncertainty in Artificial Intelligence (UAI), pages 101–107, 1999.

J. Cheng and R. Greiner. Learning Bayesian belief network classifiers: Algorithms and system.

Proceedings of 14th Biennial Conference of the Canadian Society for Computational Studies of

Intelligence, 2001.

227



ALIFERIS, STATNIKOV, TSAMARDINOS, MANI AND KOUTSOUKOS

J. Cheng, R. Greiner, J. Kelly, D. Bell, and W. Liu. Learning Bayesian networks from data: an

information-theory based approach. Artificial Intelligence, 137(1):43–90, 2002a.

J. Cheng, C. Hatzis, H. Hayashi, M. A. Krogel, S. Morishita, D. Page, and J. Sese. Kdd cup 2001

report. ACM SIGKDD Explorations Newsletter, 3(2):47–64, 2002b.

D. M. Chickering. Learning equivalence classes of bayesian-network structures. Journal of Machine

Learning Research, 2:445–498, 2002.

D. M. Chickering. Optimal structure identification with greedy search. Journal of Machine Learning

Research, 3(3):507–554, 2003.

D. M. Chickering, D. Geiger, and D. Heckerman. Learning Bayesian networks is NP-hard. Techni-

cal Report MSR-TR-94-17, 1994.

C. Chow and C. Liu. Approximating discrete probability distributions with dependence trees. IEEE

Transactions on Information Theory, 14(3):462–467, 1968.

T. P. Conrads, V. A. Fusaro, S. Ross, D. Johann, V. Rajapakse, B. A. Hitt, S. M. Steinberg, E. C.

Kohn, D. A. Fishman, G. Whitely, J. C. Barrett, L. A. Liotta, E. F. I. I. I. Petricoin, and T. D.

Veenstra. High-resolution serum proteomic features for ovarian cancer detection. Endocr.Relat

Cancer, 11(2):163–178, Jun 2004.

G. F. Cooper. A simple constraint-based algorithm for efficiently mining observational databases

for causal relationships. Data Mining and Knowledge Discovery, 1(2):203–224, 1997.

G. F. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks

from data. Machine Learning, 9(4):309–347, 1992.

G. F. Cooper and C. Yoo. Causal discovery from a mixture of experimental and observational data.

Proceedings of Uncertainty in Artificial Intelligence, pages 116–125, 1999.

G. F. Cooper, C. F. Aliferis, R. Ambrosino, J. Aronis, B. G. Buchanan, R. Caruana, M. J. Fine,

C. Glymour, G. Gordon, and B. H. Hanusa. An evaluation of machine-learning methods for

predicting pneumonia mortality. Artificial Intelligence in Medicine, 9(2):107–138, 1997.

D. Dash and G. F. Cooper. Exact model averaging with naive Bayesian classifiers. Proc.19th

Int.Conf.Machine Learning (ICML 2002), pages 91–98, 2002.

E. R. DeLong, D. M. DeLong, and D. L. Clarke-Pearson. Comparing the areas under two or more

correlated receiver operating characteristic curves: a nonparametric approach. Biometrics, 44(3):

837–845, Sep 1988.

R. Diaz-Uriarte and S. Alvarez de Andres. Gene selection and classification of microarray data

using random forest. BMC Bioinformatics, 7:3, 2006.

R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. Wiley, New York, 1973.

S. Duda, C. F. Aliferis, R. Miller, A. Statnikov, and K. Johnson. Extracting drug-drug interaction

articles from medline to improve the content of drug databases. AMIA 2005 Annual Symposium

Proceedings, pages 216–220, 2005.

228



LOCAL CAUSAL AND MARKOV BLANKET INDUCTION PART I

S. Dudoit and M. J. van der Laan. Asymptotics of cross-validated risk estimation in model selection

and performance assessment. UC Berkeley Division of Biostatistics Working Paper Series, 126,

2003.

F. Eberhardt, C. Glymour, and R. Scheines. On the number of experiments sufficient and in the

worst case necessary to identify all causal relations among n variables. Proceedings of the 21st

Conference on Uncertainty in Artificial Intelligence (UAI), pages 178–183, 2005.

F. Eberhardt, C. Glymour, and R. Scheines. N-1 experiments suffice to determine the causal relations

among n variables. Innovations in Machine Learning: Theory And Applications, 2006.

M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and display of genome-

wide expression patterns. Proc.Natl.Acad.Sci.U.S.A, 95(25):14863–14868, Dec 1998.

J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle properties.

Journal of the American Statistical Association, 96(456):1348–1361, 2001.

R. E. Fan, P. H. Chen, and C. J. Lin. Working set selection using second order information for

training support vector machines. Journal of Machine Learning Research, 6(1889):1918, 2005.

N. Fananapazir, M. Li, D. Spentzos, and C. F. Aliferis. Formative evaluation of a prototype system

for automated analysis of mass spectrometry data. AMIA 2005 Annual Symposium Proceedings,

pages 241–245, 2005.

T. Fawcett. Roc graphs: Notes and practical considerations for researchers. Technical Report,

HPL-2003-4, HP Laboratories, 2003.

D. P. Foster and R. A. Stine. Variable selecion in data mining: Building a predictive model for

bankruptcy. Journal of the American Statistical Association, 99(466):303–314, 2004.

L. Frey, D. Fisher, I. Tsamardinos, C. F. Aliferis, and A. Statnikov. Identifying Markov blankets

with decision tree induction. Proceedings of the Third IEEE International Conference on Data

Mining (ICDM), 2003.

N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Machine Learning, 29

(2):131–163, 1997.

N. Friedman, M. Goldszmidt, and A. Wyner. Data analysis with Bayesian networks: A bootstrap

approach. Proceedings of Uncertainty in Artificial Intelligence (UAI), pages 206–215, 1999a.

N. Friedman, I. Nachman, and D. Pe’er. Learning Bayesian network structure from massive datasets:

the “sparse candidate” algorithm. Proceedings of the Fifteenth Conference on Uncertainty in

Artificial Intelligence (UAI), 1999b.

N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using Bayesian networks to analyze expression

data. J Comput.Biol., 7(3-4):601–620, 2000.

G. M. Fung and O. L. Mangasarian. A feature selection newton method for support vector machine

classification. Computational Optimization and Applications, 28(2):185–202, 2004.

229



ALIFERIS, STATNIKOV, TSAMARDINOS, MANI AND KOUTSOUKOS

T. S. Furey, N. Cristianini, N. Duffy, D. W. Bednarski, M. Schummer, and D. Haussler. Support

vector machine classification and validation of cancer tissue samples using microarray expression

data. Bioinformatics, 16(10):906–914, Oct 2000.

O. Gevaert, Smet F. De, D. Timmerman, Y. Moreau, and Moor B. De. Predicting the prognosis of

breast cancer by integrating clinical and microarray data with Bayesian networks. Bioinformatics,

22(14):e184–e190, Jul 2006.

C. N. Glymour and G. F. Cooper. Computation, Causation, and Discovery. AAAI Press, Menlo

Park, Calif, 1999.

P. I. Good. Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses,

volume 2nd. Springer, New York, 2000.

I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of Machine

Learning Research, 3(1):1157–1182, 2003.

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using

support vector machines. Machine Learning, 46(1):389–422, 2002.

I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh. Feature Extraction: Foundations and Applica-

tions. Springer-Verlag, Berlin, 2006a.

I. Guyon, J. Li, T. Mader, P. A. Pletscher, G. Schneider, and M. Uhr. Feature selection with the

clop package. Technical report, http://clopinet.com/isabelle/Projects/ETH/TM-fextract-class.pdf,

2006b.

I. Guyon, C. F. Aliferis, and A. Elisseeff. Computational Methods of Feature Selection, chapter

Causal Feature Selection. Chapman and Hall, 2007.

D. Hardin, I. Tsamardinos, and C. F. Aliferis. A theoretical characterization of linear SVM-based

feature selection. Proceedings of the Twenty First International Conference on Machine Learning

(ICML), 2004.

D. Heckerman. A tutorial on learning with Bayesian networks. Technical Report MSR-TR-95-06,

1995.

D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination

of knowledge and statistical data. Machine Learning, 20(3):197–243, 1995.

M. Hollander and D. Wolfe. Nonparametric Statistical Methods, volume 2nd. Wiley, New York,

NY, USA, 1999.

J. H. Holmes, D. R. Durbin, and F. K. Winston. The learning classifier system: an evolutionary

computation approach to knowledge discovery in epidemiologic surveillance. Artif.Intell.Med.,

19(1):53–74, May 2000.

N. Hoot, I. Feurer, C. W. Pinson, and C. F. Aliferis. Modelling liver transplant survival: comparing

techniques of deriving predictor sets. Journal of Gastrointestinal Surgery, 9(4):563, Apr 2005.

230



LOCAL CAUSAL AND MARKOV BLANKET INDUCTION PART I

T. Joachims. Learning to Classify Text Using Support Vector Machines. Kluwer Academic Publish-

ers, Boston, 2002.

K. Kira and L. A. Rendell. A practical approach to feature selection. Proceedings of the Ninth

International Workshop on Machine Learning, pages 249–256, 1992.

R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1-2):

273–324, 1997.

D. Koller and M. Sahami. Toward optimal feature selection. Proceedings of the International

Conference on Machine Learning, 1996, 1996.

I. Kononenko. Estimating attributes: Analysis and extensions of relief. Proceedings of the European

Conference on Machine Learning, pages 171–182, 1994.

L. Li, C. R. Weinberg, T. A. Darden, and L. G. Pedersen. Gene selection for sample classification

based on gene expression data: study of sensitivity to choice of parameters of the ga/knn method.

Bioinformatics, 17(12):1131–1142, Dec 2001.

H. Liu and H. Motoda. Feature Extraction, Construction and Selection: A Data Mining Perspective.

Kluwer Academic, Boston, 1998.

H. Liu, F. Hussain, C. L. Tan, and M. Dash. Discretization: an enabling technique. Data Mining

and Knowledge Discovery, 6(4):393–423, 2002.

S. Mani and G. F. Cooper. A study in causal discovery from population-based infant birth and death

records. Proceedings of the AMIA Annual Fall Symposium, 319, 1999.

S. Mani and G. F. Cooper. Causal discovery using a Bayesian local causal discovery algorithm.

Medinfo 2004., 11(Pt 1):731–735, 2004.

D. Margaritis and S. Thrun. Bayesian network induction via local neighborhoods. Advances in

Neural Information Processing Systems, 12:505–511, 1999.

S. Meganck, P. Leray, and B. Manderick. Learning causal Bayesian networks from observations

and experiments: A decision theoretic approach. Modeling Decisions in Artificial Intelligence,

LNCS, pages 58–69, 2006.

A. Moore and W. K. Wong. Optimal reinsertion: a new search operator for accelerated and more

accurate Bayesian network structure learning. Proceedings of the Twentieth International Con-

ference on Machine Learning (ICML), pages 552–559, 2003.

K. P. Murphy. Active learning of causal Bayes net structure. Technical Report, University of Cali-

fornia, Berkeley, 2001.

R. E. Neapolitan. Probabilistic Reasoning in Expert Systems: Theory and Algorithms. Wiley, New

York, 1990.

R. E. Neapolitan. Learning Bayesian networks. Pearson Prentice Hall, Upper Saddle River, NJ,

2004.

231



ALIFERIS, STATNIKOV, TSAMARDINOS, MANI AND KOUTSOUKOS

J. Peña, J. Bjorkegren, and J. Tegner. Growing Bayesian network models of gene networks from

seed genes. Bioinformatics, 21(2):224–229, 2005a.

J. Peña, J. Bjorkegren, and J. Tegner. Scalable, efficient and correct learning of Markov boundaries

under the faithfulness assumption. Proceedings of the Eighth European Conference on Symbolic

and Quantitative Approaches to Reasoning with Uncertainty, 2005b.

J. Peña, R. Nilsson, J. Bjorkegren, and J. Tegnér. Towards scalable and data efficient learning of

Markov boundaries. International Journal of Approximate Reasoning, 45(2):211–232, 2007.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan

Kaufmann Publishers, San Mateo, California, 1988.

J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, Cambridge,

U.K, 2000.

J. Pearl and T. Verma. A theory of inferred causation. Principles of Knowledge Representation and

Reasoning: Proceedings of Second International Conference, pages 441–452, 1991.

J. Pearl and T. S. Verma. Equivalence and synthesis of causal models. Proceedings of the Sixth

Conference on Uncertainty in Artificial Intelligence, pages 220–227, 1990.

I. Pournara and L. Wernisch. Reconstruction of gene networks using Bayesian learning and manip-

ulation experiments. Bioinformatics, 20(17):2934–2942, Nov 2004.

A. Rakotomamonjy. Variable selection using SVM-based criteria. Journal of Machine Learning

Research, 3(7-8):1357–1370, 2003.

J. Ramsey. A pc-style Markov blanket search for high-dimensional datasets. Technical Report,

CMU-PHIL-177, Carnegie Mellon University, Department of Philosophy, 2006.

J. Ramsey, J. Zhang, and P. Spirtes. Adjacency-faithfulness and conservative causal inference.

Proceedings of the 22nd Annual Conference on Uncertainty in Artificial Intelligence (UAI-06),

2006.

A. Rosenwald, G. Wright, W. C. Chan, J. M. Connors, E. Campo, R. I. Fisher, R. D. Gascoyne,

H. K. Muller-Hermelink, E. B. Smeland, J. M. Giltnane, E. M. Hurt, H. Zhao, L. Averett, L. Yang,

W. H. Wilson, E. S. Jaffe, R. Simon, R. D. Klausner, J. Powell, P. L. Duffey, D. L. Longo, T. C.

Greiner, D. D. Weisenburger, W. G. Sanger, B. J. Dave, J. C. Lynch, J. Vose, J. O. Armitage,

E. Montserrat, A. Lopez-Guillermo, T. M. Grogan, T. P. Miller, M. LeBlanc, G. Ott, S. Kvaloy,

J. Delabie, H. Holte, P. Krajci, T. Stokke, and L. M. Staudt. The use of molecular profiling to

predict survival after chemotherapy for diffuse large-b-cell lymphoma. N.Engl.J Med., 346(25):

1937–1947, Jun 2002.

A. Sboner and C. F. Aliferis. Modeling clinical judgment and implicit guideline compliance in the

diagnosis of melanomas using machine learning. AMIA 2005 Annual Symposium Proceedings,

pages 664–668, 2005.

T. Scheffer. Error Estimation and Model Selection. PhD thesis, Ph.D.Thesis, Technischen Univer-

sitet Berlin, School of Computer Science, 1999.

232



LOCAL CAUSAL AND MARKOV BLANKET INDUCTION PART I

C. Silverstein, S. Brin, R. Motwani, and J. Ullman. Scalable techniques for mining causal structures.

Data Mining and Knowledge Discovery, 4(2):163–192, 2000.

P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D. Bot-

stein, and B. Futcher. Comprehensive identification of cell cycle-regulated genes of the yeast

saccharomyces cerevisiae by microarray hybridization. Mol.Biol Cell, 9(12):3273–3297, Dec

1998.

P. Spirtes, C. N. Glymour, and R. Scheines. Causation, Prediction, and Search, volume 2nd. MIT

Press, Cambridge, Mass, 2000.

A. Statnikov. Algorithms for discovery of multiple Markov boundaries: Application to the molecu-

lar signature multiplicity problem. Ph.D.Thesis, Department of Biomedical Informatics, Vander-

bilt University, 2008.

A. Statnikov, C. F. Aliferis, I. Tsamardinos, D. Hardin, and S. Levy. A comprehensive evaluation

of multicategory classification methods for microarray gene expression cancer diagnosis. Bioin-

formatics, 21(5):631–643, Mar 2005a.

A. Statnikov, I. Tsamardinos, Y. Dosbayev, and C. F. Aliferis. Gems: a system for automated cancer

diagnosis and biomarker discovery from microarray gene expression data. Int.J.Med.Inform., 74

(7-8):491–503, Aug 2005b.

A. Statnikov, D. Hardin, and C. F. Aliferis. Using SVM weight-based methods to identify causally

relevant and non-causally relevant variables. Proceedings of the NIPS 2006 Workshop on Causal-

ity and Feature Selection, 2006.

J. Tian and J. Pearl. Causal discovery from changes: A bayesian approach. UCLA Cognitive Systems

Laboratory, Technical Report (R-285), 2001.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical

Society.Series B (Methodological), 58(1):267–288, 1996.

S. Tong and D. Koller. Active learning for structure in bayesian networks. Proceedings of the

International Joint Conference on Artificial Intelligence, 17:863–869, 2001.

I. Tsamardinos and C. F. Aliferis. Towards principled feature selection: relevancy, filters and wrap-

pers. Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics

(AI & Stats), 2003.

I. Tsamardinos and L. E. Brown. Bounding the false discovery rate in local Bayesian network

learning. Proceedings of the Twenty Third National Conference on Artificial Intelligence (AAAI),

2008a.

I. Tsamardinos and L. E. Brown. Markov blanket-based variable selection in feature space. Techni-

cal report DSL-08-01, 2008b.

I. Tsamardinos, C. F. Aliferis, and A. Statnikov. Algorithms for large scale Markov blanket discov-

ery. Proceedings of the Sixteenth International Florida Artificial Intelligence Research Society

Conference (FLAIRS), pages 376–381, 2003a.

233



ALIFERIS, STATNIKOV, TSAMARDINOS, MANI AND KOUTSOUKOS

I. Tsamardinos, C. F. Aliferis, and A. Statnikov. Time and sample efficient discovery of Markov

blankets and direct causal relations. Proceedings of the Ninth International Conference on Knowl-

edge Discovery and Data Mining (KDD), pages 673–678, 2003b.

I. Tsamardinos, C. F. Aliferis, A. Statnikov, and L. E. Brown. Scaling-up Bayesian network learning

to thousands of variables using local learning technique. Technical Report DSL 03-02, 12, 2003c.

I. Tsamardinos, Brown L.E., and C. F. Aliferis. The max-min hill-climbing Bayesian network

structure learning algorithm. Technical report DSL-05-01, 2005.

I. Tsamardinos, L. E. Brown, and C. F. Aliferis. The max-min hill-climbing Bayesian network

structure learning algorithm. Machine Learning, 65(1):31–78, 2006.

L. Wang, J. Zhu, and H. Zou. The doubly regularized support vector machine. Statistica Sinica, 16:

589–615, 2006.

Y. Wang, J. G. Klijn, Y. Zhang, A. M. Sieuwerts, M. P. Look, F. Yang, D. Talantov, M. Timmermans,

M. E. Meijer-van Gelder, J. Yu, T. Jatkoe, E. M. Berns, D. Atkins, and J. A. Foekens. Gene-

expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer.

Lancet, 365(9460):671–679, Feb 2005.

J. Weston, A. Elisseeff, B. Scholkopf, and M. Tipping. Use of the zero-norm with linear models

and kernel methods. Journal of Machine Learning Research, 3(7):1439–1461, 2003.

S. Yaramakala and D. Margaritis. Speculative Markov blanket discovery for optimal feature selec-

tion. Proceedings of the Fifth IEEE International Conference on Data Mining, pages 809–812,

2005.

C. Yoo and G. F. Cooper. An evaluation of a system that recommends microarray experiments to

perform to discover gene-regulation pathways. Artif.Intell.Med., 31(2):169–182, Jun 2004.

X. Zhou, M. C. J. Kao, and W. H. Wong. Transitive functional annotation by shortest-path analysis

of gene expression data. Proceedings of the National Academy of Sciences, 99(20):12783–12788,

2002.

J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1-norm support vector machines. Advances in Neural

Information Processing Systems (NIPS), 16, 2004.

H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal of the Royal

Statistical Society Series B(Statistical Methodology), 67(2):301–320, 2005.

234


