
        

Citation for published version:
Penrose, MD & Peres, Y 2011, 'Local central limit theorems in stochastic geometry', Electronic Journal of
Probability, vol. 16, 91, pp. 2509-2544.

Publication date:
2011

Link to publication

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 25. Aug. 2022

https://researchportal.bath.ac.uk/en/publications/ea98c26d-1401-4d3c-82aa-1c2884dbc942


r 
n a l 

u o 
o f 

J 
P 

E l e c t r 
o n 

i 
c r 

o 
b a b i l i t y 

Vol. 16 (2011), Paper no. 91, pages 2509–2544. 

Journal URL 

http://www.math.washington.edu/~ejpecp/ 

Local central limit theorems 

in stochastic geometry† 

Mathew D. Penrose‡ Yuval Peres§ 

Abstract 

We give a general local central limit theorem for the sum of two independent random variables, 

one of which satisfies a central limit theorem while the other satisfies a local central limit theo-

rem with the same order variance. We apply this result to various quantities arising in stochastic 

geometry, including: size of the largest component for percolation on a box; number of com-

ponents, number of edges, or number of isolated points, for random geometric graphs; covered 

volume for germ-grain coverage models; number of accepted points for finite-input random se-

quential adsorption; sum of nearest-neighbour distances for a random sample from a continuous 

multidimensional distribution. 
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1 Introduction 

A number of general central limit theorems (CLTs) have been proved recently for quantities arising 

in stochastic geometry subject to a certain local dependence. See [18, 19, 20, 21, 22] for some 

examples. The present work is concerned with local central limit theorems for such quantities. The 

local CLT for a binomial (n, p) variable says that for large n with p fixed, its probability mass func-

tion minus that of the corresponding normal variable rounded to the nearest integer, is uniformly 

o(n−1/2). The classical local CLT provides similar results for sums of i.i.d. variables with an arbitrary 

distribution possessing a finite second moment. Here we are concerned with sums of variables with 

some weak dependence, in the sense that the summands can be thought of as contributions from 

spatial regions with only local interactions between different regions. 

Among the examples for which we obtain local CLTs here are the following. In Section 3 we give 

local CLTs for the number of clusters in percolation on a large finite lattice box, and for the size of the 

largest open cluster for supercritical percolation on a large finite box, as the box size becomes large. 

In Sections 4 and 5 we consider continuum models, starting with random geometric graphs [18] 

for which we demonstrate local CLTs for the number of copies of a fixed subgraph (for example the 

number of edges) both in the thermodynamic limit (in which the mean degree is Θ(1)) and in the 

sparse limit (in which the mean degree vanishes). For the thermodynamic limit we also derive local 

CLTs for the number of components of a given type (for example the number of isolated points), as 

an example of a more general local CLT for functionals which have finite range interactions or which 

are sums of functions determined by nearest neighbours (Theorem 5.1). This also yields local CLTs 

for quantities associated with a variety of other models, including germ-grain models and random 

sequential adsorption in the continuum. 

We derive these local CLTs using the following idea which has been seen (in somewhat different 

form) in [8], in [4], and no doubt elsewhere. If the random variable of interest is known to satisfy 

a CLT, and can be decomposed (with high probability) as the sum of two independent parts, one of 

which satisfies a local CLT with the same order of variance growth, then one can find a local CLT for 

the original variable. Theorem 2.1 below formalises this idea. The statement of this result has no 

geometrical content and it could be of use elsewhere. 

In the geometrical context, one can often use the geometrical structure to effect such a decompo-

sition. Loosely speaking, in these examples one can represent a positive proportion of the spatial 

region under consideration as a union of disjoint boxes or balls, in such a way that with high prob-

ability a non-vanishing proportion of the boxes are ‘good’ in some sense, where the contributions 

to the variable of interest from a good box, given the configuration outside the box and given that 

it has the ‘good’ property, are i.i.d. Then the classical local CLT applies to the total contribution 

from good boxes, and one can represent the variable of interest as the sum of two independent con-

tributions, one of which (namely the contribution from good boxes) satisfies a local CLT, and then 

apply Theorem 2.1. This technique is related to a method used by Avram and Bertsimas [1] to find 

lower bounds on the variance for certain quantities in stochastic geometry, although the examples 

considered here are mostly different from those considered in [1]. 

In any case, our results provide extra information on the CLT behaviour for variables for numerous 

geometrical and multivariate stochastic settings, which have arisen in a variety of applications (see 

the examples in Section 5). 
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2 A general local CLT 

In the sequel we let φ denote the standard (� (0, 1)) normal density function, i.e. φ(x) = 

(2π)−1/2 exp(−(1/2)x2). Then for σ > 0, the probability density function of the � (0, σ2) dis-

tribution is σ−1φ(x/σ), x ∈ R. Define the � (0, 0) distribution to be that of a random variable that 

is identically zero. 

We say a random variable X is integrable if E |X | < ∞. We say X has a lattice distribution if there 

exists h > 0 such that (X − a)/h ∈ Z almost surely for some a ∈ R. If X is lattice, then the largest 

such h is called the span of X , and here denoted hX . If X is non-lattice, then we set hX := 0. If X is 

degenerate, i.e. if Var[X ] = 0, then we set hX := +∞. As usual with local central limit theorems, 

we need to distinguish between the lattice and non-lattice cases. For real numbers a ≥ 0, b > 0, we 

shall write a|b to mean that either b is an integer multiple of a or a = 0. When a = +∞, b < ∞ we 

shall say by convention that a|b does not hold. 

Theorem 2.1. Let V, V1, V2, V3, . . . be independent identically distributed random variables. Suppose 

for each n ∈ N that (Yn, Sn, Zn) is a triple of integrable random variables on the same sample space 
� �n

such that (i) Yn and Sn are independent, with Sn = j=1 Vj; (ii) both n−1/2
E |Zn − (Yn + Sn)| and 

n1/2 P[Zn � ] tend to zero as n →∞; and (iii) for some σ ∈ [0, ∞),= Yn + Sn

n−1/2(Zn − E Zn) 
�

as (2.1)−→ � (0, σ2) n →∞. 

Then Var[V ] ≤ σ2 and if b, c1, c2, c3, . . . are positive constants with hV |b and cn ∼ n1/2 as n →∞, then 

u − E Zn
P[Zn ∈ [u, u + b)] − σ−1 bφ 0 as n →∞. (2.2) sup cn → 

cnσu∈R 

Also, 

n−1/2(Yn − E Yn) 
�

− Var[V ]). (2.3)−→ � (0, σ2 

Remarks. The main case to consider is cn = n1/2. The more general formulation above is convenient 

in some applications, e.g., in the proof of Theorem 4.1. Theorem 2.1 is proved in Section 7. Our 

main interest is in the conclusion (2.2), but (2.3), which comes out for free from the proof, is also 

of interest. 

3 Percolation 

Most of our applications of Theorem 2.1 will be in the continuum, but we start with applications to 

percolation on the lattice. We consider site percolation with parameter p, where each site (element) 

of Zd is open with probability p and closed otherwise, independently of all the other sites. Given 

a finite set B ⊂ Zd , the open clusters in B are defined to be the components of the (random) graph 

with vertex set consisting of the open sites in B, and edges between each pair of open sites in B that 

are at unit Euclidean distance from each other. Let Λ(B) denote the number of open clusters in B. 

Listing the open clusters in B as C1, . . . , CΛ(B), and denoting by |C j | the order (i.e., the number of 

vertices) of the cluster C j , we denote by L(B) the random variable max(|C1|, . . . , |CΛ(B)|), and refer 
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to this as the size of the largest open cluster in B. Given a growing sequence of regions (Bn)n≥1 in 

Z
d , we shall demonstrate local CLTs for the random variables Λ(Bn) and L(Bn), subject to some 

conditions on the sets Bn which are satisfied, for example, if they are cubes of side n. There should 

not be any difficulty adapting these results to bond percolation. 

For B ⊂ Zd let |B| denote the number of elements of B. Let |∂ B| denote the number of elements 

of Zd \ B lying at unit Euclidean distance from some element of B. We say a sequence (Bn)n≥1 of 

non-empty finite sets in Zd has vanishing relative boundary if 

lim |∂ Bn|/|Bn| = 0. (3.1) 
n→∞ 

We write lim inf(Bn) for ∪n≥1 ∩m≥n Bm. 

Theorem 3.1. Suppose d ≥ 2 and p ∈ (0, 1). Then there exists σ > 0 such that if (Bn)n≥1 is any 

sequence of non-empty finite subsets in Zd with vanishing relative boundary and with lim inf(Bn) = Zd , 

then 

−1/2(Λ(Bn) − E Λ(Bn)) 
�

(3.2)|Bn| −→� (0, σ2) 

and 

sup 
j∈Z 
| Bn|

1/2 P[Λ(Bn) = j] − σ−1φ 
j − E Λ(Bn) 

σ Bn
1/2| |

→ 0. (3.3) 

For the size of the largest open cluster we consider a more restricted class of sequences (Bn)n≥1. 

Let us say that (Bn)n≥1 is a cube-like sequence of lattice boxes if each set Bn is of the form 
�d 

j=1([−a j,n, b j,n] ∩ Z), where a j,n ∈ N and b j,n ∈ N for all j, n, and moreover 

inf{a1,n, b1,n, a2,n, b2,n, . . . , ad,n, bd,n}
lim inf > 0 (3.4)

n→∞ sup{a1,n, b1,n, a2,n, b2,n, . . . , ad,n, bd,n} 

which says, loosely speaking, that the sets Bn are not too far away from all being cubes. 

Given d ≥ 2, and p ∈ (0, 1), let θd (p) denote the percolation probability, that is, the probability that 

the graph with vertices consisting of all open sites in Zd and edges between any two open sites that 

are unit Euclidean distance apart includes an infinite component containing the origin. Let pc(d) 

denote the critical value of p for site percolation in d dimensions, i.e., the infimum of all p ∈ (0, 1) 

such that θd (p) > 0. It is well known that pc(d) ∈ (0, 1) for all d ≥ 2. 

Theorem 3.2. Suppose d ≥ 2 and p ∈ (pc(d), 1). Then there exists σ > 0 such that if (Bn)n≥1 is any 

cube-like sequence of lattice boxes in Zd with lim inf(Bn) = Zd , we have 

Bn
−1/2(L(Bn) − E L(Bn)) 

�
(3.5)| | −→� (0, σ2) 

and 

sup 
j∈Z 
| Bn|

1/2 P[L(Bn) = j] − σ−1φ 
j − E L(Bn) 

σ Bn
1/2| |

→ 0. (3.6) 

Theorems 3.1 and 3.2 are proved in Section 8. Theorem 3.1 is the simplest of our applications of 

Theorem 2.1 and we give its proof with some extra detail for instructional purposes. 
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4 Random geometric graphs 

For our results in this section and the next, on continuum stochastic geometry, let X1, X2, . . . be 

i.i.d. d-dimensional random vectors with common density f . Assume throughout that fmax := 

supx∈Rd f (x) < ∞, and that f is almost everywhere continuous. Define the induced binomial point 

processes 

�n := �n( f ) := {X1, ..., Xn}, n ∈ N. (4.1) 

In the special case where f is the density of the uniform distribution on the unit [0, 1]d cube we 

write f ≡ fU . 

For locally finite � ⊂ Rd and r > 0, let � (� , r) denote the graph with vertex set � and with edges 

connecting each pair of vertices x , y in � with | y − x | ≤ r; here | · | denotes the Euclidean norm 

though there should not be any difficulty extending our results to other norms. Sometimes � (� , r) 

is called a geometric graph or Gilbert graph. 

Let (rn)n≥1 be a sequence with rn → 0 as n →∞. Graphs of the type of � (�n, rn) are the subject of 

the monograph [18]. Among the quantities of interest associated with � (�n, rn) are the number of 

edges, the number of triangles, and so on; also the number of isolated points, the number of isolated 

edges, and so on. CLTs for such quantities are given in Chapter 3 of [18] (see the notes therein for 

other references) for a large class of limiting regimes for rn. Here we give some associated local 

CLTs. 

Let κ ∈ N and let Γ be a fixed connected graph with κ vertices. We follow terminology in [18]. With 

∼ denoting graph isomorphism, let Gn be the number of κ-subsets � of �n such that � (� , rn) ∼ Γ 

(i.e., the number of induced subgraphs of � (�n, rn) that are isomorphic to Γ). Let G∗ (denoted Jnn 

in [18]) denote the number of components of � (�n, rn) that are isomorphic to Γ. To avoid certain 

trivialities, assume that Γ is feasible in the sense of [18], i.e. that � (�κ, r) is isomorphic to Γ with 

strictly positive probability for some r > 0. When considering Gn, we shall also assume that κ ≥ 2. 

We shall give local CLTs for Gn and Gn
∗. 

We assume existence of the limit 

ρ := lim (nrd ) < ∞, (4.2) 
n→∞ n 

so that ρ could be zero. If ρ > 0 then we are taking the thermodynamic limit. 

We also assume that 

τ2 := n(nrd)κ−1 →∞ as n →∞. (4.3)n n 

Then (see Theorems 3.12 and 3.13 of [18]) there exists a constant σ = σ( f , Γ, ρ) > 0, given 

explicitly in terms of f , Γ and ρ in [18], such that 

lim τ−2Var(Gn) = σ2; (4.4)
n→∞ n 

τ−1 �

n (Gn − E Gn) −→ N(0, σ2). (4.5) 

We prove here an associated local central limit theorem for the case f ≡ fU . 

Theorem 4.1. Suppose f ≡ fU . Suppose k ≥ 2, and suppose assumptions (4.2) and (4.3) hold. Then 

as n →∞, 

τn → 0. (4.6) 
j − E Gn

P[Gn = j] − σ−1φsup 
στnj∈Z 
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We prove Theorem 4.1 in Section 9. It should be possible to obtain similar results for Gn
∗, but we 

shall do so only for the thermodynamic limit with ρ > 0, as an example in the next section. In 

the next section we shall see that for the case with ρ > 0, it is possible to relax the assumption 

that f ≡ fU in Theorem 4.1; when ρ = 0, a similar extension to non-uniform densities should be 

possible, but we content ourselves here with the case f ≡ fU so as to provide one example where 

the simplicity and the appeal of the approach do not get buried. 

5 General local CLTs in stochastic geometry 

In this section we present some general local central limit theorems in stochastic geometry. We shall 

illustrate these by some examples in the next section. 

For our general local CLTs in stochastic geometry, we consider marked point sets in Rd . Let � be an 

arbitrary measurable space (the mark space), and let P� be a probability distribution on � . Given 

x = (x , t) ∈ Rd ×� and given y ∈ Rd , set y + x := ( y + x , t). Given also a ∈ R, set ax = (ax , t). 

We think of t as a mark attached to the point x ∈ Rd that is unaffected by translation or scalar 

multiplication. Given � ∗ ⊂ Rd ×� , y ∈ Rd , and a ∈ (0, ∞), let y + a� ∗ := { y + ax : x ∈ � ∗}. 

Let 0 denote the origin of Rd . For x ∈ Rd , and r > 0, let B(x; r) denote the Euclidean ball 

{ y ∈ Rd : | y − x | ≤ r}, and set B∗(x; r) := B(x; r) ×� . Set B(r) := B(0; r) and B∗(r) := B∗(0; r). 

Given non-empty � ∗ ⊂ Rd ×� and � ∗ ⊂ Rd ×� , write 

D(� ∗, � ∗) := inf{|x − y| : (x , t) ∈ � ∗, ( y, u) ∈ � ∗ for some t, u ∈�}. 

Let ωd denote the volume of the d-dimensional unit ball B(1). 

Suppose H(� ∗) is a measurable R-valued function defined for all finite � ∗ ⊂ Rd ×� . Suppose H 

is translation invariant, i.e. H( y + � ∗) = H(� ∗) for all y ∈ Rd and all � ∗. 

Throughout this section we consider the thermodynamic limit; let rn, n ≥ 1 be a sequence of con-

stants such that (4.2) holds with ρ > 0. Define 

Hn(�
∗) := H(rn

−1� ∗). (5.1) 

Let the point process �n := {X1, . . . , Xn} in Rd be as given in (4.1), with f as in Section 4 (so 

fmax < ∞ and f is Lebesgue-almost everywhere continuous). Define the corresponding marked 

point process (i.e., point process in Rd ×� ) by 

�n 
∗ := {(X1, T1), . . . , (Xn, Tn)}, 

where (T1, T2, T3, . . .) is a sequence of independent � -valued random variables with distribution 

P� , independent of everything else. We are interested in local CLTs for Hn(�n 
∗), for general func-

tions H. We give two distinct types of condition on H, either of which is sufficient to obtain a local 

CLT. 

We shall say that H has finite range interactions if there exists a constant τ ∈ (0, ∞) such that 

H(� ∗ ∪� ∗) = H(� ∗) + H(� ∗) whenever D(� ∗, � ∗) > τ. (5.2) 

In many examples it is natural to write H(� ∗) as a sum. Suppose ξ(x; � ∗) is a measurable R-

valued function defined for all pairs (x, � ∗), where � ∗ ⊂ Rd ×� is finite and x is an element of 
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� ∗. Suppose ξ is translation invariant, i.e. ξ( y +x; y +� ∗) = ξ(x; � ∗) for all y ∈ Rd and all x, � ∗. 

Then ξ induces a translation-invariant functional H(ξ) defined on finite point sets � ∗ ⊂ Rd ×� by 

H(ξ)(� ∗) := ξ(x; � ∗). (5.3) 

x∈� ∗ 

Given r ∈ (0, ∞) we say ξ has range r if ξ((x , t); � ∗) = ξ((x , t); � ∗ ∩ B∗(x)) for all finite � ∗ ⊂r 

R
d ×� and all (x , t) ∈ � ∗. It is easy to see that if ξ has range r for some (finite) r then H(ξ) has 

finite range interactions, although not all H with finite range interactions arise in this way. 

Let κ ∈ N. Given any set � ∗ ⊂ Rd ×� with more than κ elements, and given x = (x , t) ∈ � ∗, 

set Rκ(x; � ∗) to be the κ-nearest neighbour distance from x to � ∗, i.e. the smallest r ≥ 0 such 

that � ∗ ∩ B∗(x; r) has at least κ elements other than x itself. If � ∗ has κ or fewer elements, set 

Rκ(x; � ∗) := ∞. 

We say that ξ depends only on the κ nearest neighbours if for all x and � ∗, writing x = (x , t) we have 

ξ(x; � ∗) = ξ(x; � ∗ ∩ B∗(x; Rκ(x; � ))). 

We give local CLTs for H under two alternative sets of conditions: either (i) when H has finite range 

interactions, or (ii) when H is induced, according to the definition (5.3), by a functional ξ(x; � ∗) 

which depends only on the κ nearest neighbours, for some fixed κ. 

Given K > 0 and n ∈ N, define point processes �n,K , and �n in Rd , and point processes �n
∗ 
,K , and 

�n 
∗ in Rd ×� , as follows. Let �n,K denote the point process consisting of n independent uniform 

random points U1,K , . . . , Un,K in B(K), and let �n be the point process consisting of n independent 

points Z1, . . . , Zn in Rd , each with a d-dimensional standard normal distribution (any other positive 

continuous density on Rd would do just as well). The corresponding marked point processes are 

defined by 

�n
∗ 
,K := {(U1,K , T1), . . . , (Un,K , Tn)}; 

�n 
∗ := {(Z1, T1), . . . , (Zn, Tn)}. 

Define the limiting span 

h(H) := lim inf hH(� ∗). (5.4) 
n→∞ n 

Theorem 5.1. Suppose that either (i) H has finite range interactions and hH(� ∗) < ∞ for some n ∈ N, 
n 

or (ii) for some κ ∈ N, H is induced by a functional ξ(x; � ∗) which depends only on the κ nearest 

neighbours, and hH(� ∗) < ∞ for some n ∈ N with n > κ. Suppose also that Hn(�
∗) and H(�n

∗ 
,K ) arenn 

integrable for all n ∈ N and K > 0. Finally suppose that 

n−1/2(Hn(�n 
∗) − E Hn(�n 

∗)) −→ � (0, σ2) as n →∞. (5.5) 

Then σ > 0 and h(H) < ∞, and for any b ∈ (0, ∞), with h(H) b, we have | 

u − E Hn(�
∗)n1/2 P[Hn(�

∗) ∈ [u, u + b)] − σ−1 bφn 
n1/2σ 

→ 0 as n →∞.sup n 
u∈R 

(5.6) 
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We prove Theorem 5.1 in Section 10. Analogues to this result and to Theorem 4.1 should also hold 

if one Poissonizes the number of points in the sample, but we do not give details. 

The corresponding result for unmarked point sets in Rd goes as follows; we adapt our terminology 

to this case in an obvious manner. 

Corollary 5.1. Suppose H(� ) is R-valued and defined for all finite � ⊂ Rd . Suppose H is translation 

invariant, and set Hn(� ) := H(rn
−1� ). Suppose that either (i) H has finite range interactions and 

hH(�n) 
< ∞ for some n ∈ N, or (ii) for some κ ∈ N, H is induced by a functional ξ(x; � ) which 

depends only on the κ nearest neighbours, and hH(�n) 
< ∞ for some n ∈ N with n > κ. Suppose also 

that Hn(�n) and H(�n,K ) are integrable for all n ∈ N and K > 0. Finally suppose that 

n−1/2(Hn ) − E Hn )) 
�

(5.7)(�n (�n −→ � (0, σ2) as n →∞. 

Then σ > 0 and h(H) < ∞ and for any b ∈ (0, ∞), with h(H)

u − E Hn(�n) 

b, we have | 

1/2P[Hn(�n) ∈ [u, u + b)] − σ−1 bφ → 0 as n →∞.sup n 
n1/2σu∈R 

(5.8) 

Corollary 5.1 is easily obtained from Theorem 5.1 by taking � to have just a single element, de-

noted t0 say, and identifying each element (x , t0) ∈ Rd ×� with the corresponding element x of 

R
d . 

To apply Theorem 5.1 in examples, we need to check condition (5.5). For some examples this is best 

done directly. However, if we strengthen the other hypotheses of Theorem 5.1, we can obtain (5.5) 

from known results and so do not need to include it as an extra hypothesis. The next three theorems 

illustrate this. As well (5.5), these results give us the associated variance convergence result 

lim n−1Var[Hn(�
∗)] = σ2. (5.9)

n→∞ n 

In the next three theorems, we impose some extra assumptions besides those of Theorem 5.1. Writ-

ing supp( f ) for the support of f , we shall assume that supp( f ) is compact, and that also rn satisfy 

|rn
−d − n| = O(n1/2), (5.10) 

which implies (4.2) with ρ = 1. We also assume certain polynomial growth bounds; see (5.11), 

(5.13) and (5.14) below. 

First consider the case where H = H(ξ) is induced by a functional ξ(x; � ∗) with finite range r > 0. 

For any set A, let card(A) denote the number of elements of A. 

Theorem 5.2. Suppose H = H(ξ) is induced by a translation invariant functional ξ(x; � ∗) having 

finite range r and and satisfying for some γ > 0 the polynomial growth bound 

|ξ((x , t); � ∗)| ≤ γ(card(� ∗ ∩ B∗(x; r)))γ ∀ finite � ∗ ⊂ Rd ×� , ∀ (x , t) ∈ � ∗. 

(5.11) 

Suppose hH(� ∗) < ∞ for some n ∈ N, and suppose supp( f ) is compact. Finally, suppose that (5.10)
n 

holds. Then there exists σ ∈ (0, ∞) such that (5.5) and (5.9) hold, and h(H) < ∞ and (5.6) holds for 

all b with h(H)|b. 
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Now we turn to the general case of Condition (i) in Theorem 5.1, where H has finite range inter-

actions but is not induced by a finite range ξ. For this case we shall borrow some concepts from 

continuum percolation. For λ > 0, let �λ denote a homogeneous Poisson point process in Rd with 

intensity λ. Let � ∗ denote the same Poisson point process with each point given an independent 
λ 

� -valued mark with the distribution P� . 

Let λc be the critical value for percolation in d dimensions, that is, the supremum of the set of all 

λ > 0 such that the component of the geometric (Gilbert) graph G(�λ ∪{0}, 1) containing the origin 

is almost surely finite. It is known (see e.g. [18]) that 0 < λc < ∞ when d ≥ 2 and λc = ∞ when 

d = 1. 

For non-empty � ⊂ Rd , write diam(� ) for sup{|x − y| : x , y ∈ �}. For � ∗ ⊂ Rd ×� , write 

diam(� ∗) for diam(π(� ∗)), where π denotes the canonical projection from Rd ×� onto Rd . 

Theorem 5.3. Suppose H(� ∗) is a measurable R-valued function defined for all finite � ∗ ⊂ Rd ×� , 

and is translation invariant. Suppose supp( f ) is compact. Suppose for some τ > 0 that the finite range 

interaction condition (5.2) holds, and suppose f and τ satisfy the subcriticality condition 

τd fmax < λc . (5.12) 

Assume (rn)n≥1 satisfies (5.10), and suppose also that hH(� ∗) < ∞ for some n ∈ N, and that there 
n 

exists a constant γ > 0 such that for all finite non-empty � ∗ ⊂ Rd we have 

H(� ∗) ≤ γ(diam(� ∗) + card(� ∗))γ . (5.13) 

Then there exists σ ∈ (0, ∞) such that (5.5) and (5.9) hold, and h(H) < ∞ and if b ∈ (0, ∞) with 

h(H)|b, then (5.6) holds. 

Now we turn to condition (ii) in Theorem 5.1. Following [24], we say that a closed region A ⊂ Rd 

is a d-dimensional C1 submanifold-with-boundary of Rd if it has a differentiable boundary in the 

following sense: for every x in the boundary ∂ A of A, there is an open U ⊂ Rd , and a continuously 

differentiable injection g from U to Rd , such that 0 ∈ U and g(0) = x and g(U ∩ ([0, ∞)× Rd−1)) = 

g(U) ∩ A. 

Theorem 5.4. Let κ ∈ N. Suppose H = H(ξ) is induced by a ξ which depends only on the κ nearest 

neighbours, and for some γ ∈ (0, ∞) suppose we have for all (x, � ∗) that 

|ξ(x; � ∗)| ≤ γ(1 + Rκ(x, � ∗))γ . (5.14) 

Suppose also that supp( f ) is either a compact convex region in Rd or a compact d-dimensional 

submanifold-with-boundary of Rd , and suppose f is bounded away from zero on supp( f ). Finally 

suppose that the sequence (rn)n≥1 satisfies (5.10), and that hH(� ∗) < ∞ for some n ∈ N with n > κ. 
n 

Then there exists σ ∈ (0, ∞) such that (5.5) and (5.9) hold, and h(H) < ∞ and if b ∈ (0, ∞) with 

h(H)|b then (5.6) also holds. 

We prove Theorems 5.2, 5.3 and 5.4 in Section 11. In proving each of these results, we apply 

Theorem 5.1, and check the CLT condition (5.5) using a general CLT from [20], stated below as 

Theorem 11.1. 

The conclusion that σ > 0 in Theorems 5.1–5.4 and Corollary 5.1 is noteworthy because the result 

from [20] on its own does not guarantee this. Our approach to showing σ > 0 here is related to 

that given in [1] (and elsewhere) but is more generic. A different approach to providing generic 

variance lower bounds was used in [21] and [3] but is less well suited to the present setting. 
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6 Applications 

This section contains discussion of some examples of concrete models in stochastic geometry, 

to which the general local central limit theorems presented in Section 5 are applicable. Fur-

ther examples where the conditions for these general theorems can be verified are discussed in 

[20, 21, 22, 23]. 

6.1 Further quantities associated with random geometric graphs 

Suppose the graph � (�n, rn) is as in Section 4. We assume here that (4.2) holds with ρ > 0. 

Theorem 5.1 enables us to extend the case ρ > 0 of Theorem 4.1 to non-uniform f . It also yields 

local CLTs for some graph quantities not covered by Theorem 4.1; we now give some examples. 

Number of components for � (�n, rn). This quantity can be written in the form Hn(�n), where 

H(� ) is the number of components of the geometric graph � (� , 1) (which clearly has finite range 

interactions). In the the thermodynamic limit, this quantity satisfies the CLT (5.7) (see Theorem 

13.26 of [18]). Therefore, Corollary 5.1 is applicable here and shows that it satisfies the local CLT 

(5.8). 

Number of components for � (�n, rn) isomorphic to a given feasible graph Γ. This quantity, denoted 

Gn 
∗ in Section 4, can be written in the form Hn(�n), with H(� ) the number of components of 

G(� , 1) isomorphic to Γ. Clearly, this H has finite range interactions since (5.2) holds for τ = 2. 

Also, it satisfies (5.7) by Theorem 3.14 of [18]. Therefore we can apply Corollary 5.1 to deduce 

(5.8) in this case. 

Independence number. The independence number of a finite graph is the maximal number k such that 

there exists a set of k vertices in the graph such that none of them are adjacent. Clearly this quantity 

is the sum of the independence numbers of the graph’s components, and therefore if for � ⊂ Rd we 

set H(� ) to be the independence number of � (� , τ) (also known as the off-line packing number 

since it is the maximum number of balls of radius τ/2 that can be packed centred at points of � ) 

then H satisfies the finite range interactions condition (5.2) with r = 2. Therefore we can apply 

Theorem 5.3 to derive a local CLT for the independence number of � (�n, rn), as follows. 

Theorem 6.1. Let τ > 0 and suppose (5.12) holds. Suppose rn satisfy (5.10). If for � ⊂ Rd we set 

H(� ) to be the independence number of � (� , τ), then there exists σ ∈ (0, ∞) such that (5.7) holds, 

and if b ∈ N then (5.8) holds. 

6.2 Germ-grain models 

Consider a coverage process in which each point X i has an associated mark Ti , the Ti (defined for 

i ≥ 1) being i.i.d. nonnegative random variables with a distribution having bounded support (i.e., 

with P[Ti ≤ K] = 1 for some finite K). Define the random coverage process 

Ξn := ∪n
i=1B(r−1X i; Ti). (6.1)n 
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For U a finite union of convex sets in Rd , let |U | denote the volume of U (i.e. its Lebesgue measure) 

and let |∂ U | denote the surface area of U (i.e. the (d − 1)-dimensional Hausdorff measure of its 

boundary). 

Theorem 6.2. Under the above assumptions, if (5.10) holds then there exists σ > 0 and σ̃ > 0 such 

that n−1/2(|Ξn| − E |Ξn|) −→ � (0, σ2) and n−1/2(|∂ Ξn| − E |∂ Ξn|) −→ � (0, σ̃2), and moreover for 

any b ∈ (0, ∞), 

sup 
u∈R 

n 1/2 P[|Ξn| ∈ [u, u + b)] − σ−1 bφ 
u − E |Ξn|

n1/2σ 
→ 0 as n →∞. 

(6.2) 

and 

sup 
u∈R 

n 1/2 P[|∂ Ξn| ∈ [u, u + b)] − σ̃−1 bφ 
u − E |∂ Ξn|

n1/2σ̃
→ 0 as n →∞. 

(6.3) 

Proof. The volume |Ξn| can be viewed as a functional Hn(�n 
∗), where H(� ) = H(ξ)(� ∗) with 

ξ((x , t); � ∗) given by the volume of that part of the ball centred at x with radius given by the 

associated mark t, which is not covered by any corresponding ball for some other point x � ∈ � with 

x � preceding x in the lexicographic ordering. Since we assume the support of the distribution of the 

Ti is bounded, this ξ has finite range r = 2K . Moreover, it satisfies the polynomial growth bound 

(5.11) so by Theorem 5.2 we get the CLT (5.5) and local CLT (5.6) for any b > 0 (in this example 

h(H) = 0). Thus we have (6.2). 

Turning to the surface area |∂ Ξn|, this can also be viewed as a functional Hn(�n) for a different 

H = H(ξ), this time taking ξ(x; � ) to be the uncovered surface area of the ball at x , which again 

has range r = 2K and satisfies (5.11). Hence by Theorem 5.2. we get the CLT (5.5) and local 

CLT (5.6) for any b > 0 for this choice of H (in this example, again h(H) = 0). Thus we have (6.3). 

Remark. The preceding argument still works if the independent balls of random radius in the 

preceding discussion are replaced by independent copies of a random compact shape that is almost 

surely contained in the ball B(K) for some K (cf. Section 6.1 of [20]). 

Other functionals for the germ-grain model. When f ≡ fU , the scaled point process rn
−1/d �n can 

be viewed as a uniform point process in a window of side rn
−1/d . CLTs for a large class of other 

functionals on germ-grain models in such a window are considered in [13], for the Poissonized point 

process with a Poisson distributed number of points. Since the Poissonized version of Theorems 5.1 

and 5.2 should also hold, it should be possible to derive local CLTs for many of the quantities 

considered in [13], at least in the case where the grains (i.e., the balls or other shapes attached to 

the random points) are of uniformly bounded diameter. 

6.3 Random sequential adsorption (RSA). 

RSA (on-line packing) is a model of irreversible deposition of particles onto an initially empty d-

dimensional surface where particles of fixed finite size arrive sequentially at random locations in an 

2519 



initially empty region A of a d-dimensional space (typically d = 1 or d = 2), and each successive 

particle is accepted if it does not overlap any previously accepted particle. The region A is taken 

to be compact and convex. The locations of successive particles are independent and governed by 

some density f on A. In the present setting, we take the mark space � to be [0, 1] with P� the 

uniform distribution. Each point x = (x , t) of � ∗ represents an incoming particle with arrival time 

t. The marks determine the order in which particles arrive, and two particles at x = (x , t) and 

y = ( y, u) are said to overlap if |x − y| ≤ 1. Let H(� ∗) denote the number of accepted particles. 

This choice of H clearly has finite range interactions ((5.2) holds for τ = 2). 

Then Hn(�
∗) represents the number of accepted particles for the re-scaled marked point process n 

r−1� ∗; note that the density f and hence the region A on which the particles are deposited, does n n 

not vary with n. At least for rn = n−1/d , the central limit theorem for Hn(�n) is known to hold; see 

[22] for the case when A = [0, 1]d and f ≡ fU and [3] for the extension to the non-uniform case 

on arbitrary compact convex A (note that these results do not require the sub-criticality condition 

(5.12) to be satisfied). Thus, the H under consideration here satisfies the condition (5.5). Therefore 

we can apply Theorem 5.1 to obtain a local CLT for the number of accepted particles in this model. 

Theorem 6.3. Suppose f has compact convex support and is bounded away from zero and infinity on 

its support. Suppose rn = n−1/d , and suppose Zn = Hn(�
∗) is the number of accepted particles in the n 

rescaled RSA model described above. In other words, suppose Zn be the number of accepted particles 

when RSA is performed on �n with distance parameter rn = n−1/d . Then there is a constant σ ∈ (0, ∞) 

such that (2.1) holds and for b = 1 and c = n1/2 , (2.2) holds. 

It is likely that in the preceding result the condition rn = n−1/d can be relaxed to (4.2) holding with 

ρ > 0. We have not checked the details. 

In the infinite input version of RSA with range of interaction r, particles continue to arrive until 

the region A is saturated, and the total number of accepted particles is a random variable with its 

distribution determined by r. A central limit theorem for the (random) total number of accepted 

particles (in the limit r → 0) is known to hold, at least for f ≡ fU ; see [25]. It would be interesting 

to know if a corresponding local central limit theorem holds here as well. 

6.4 Nearest neighbour functionals 

Many functionals have arisen in the applied literature which can be expressed as sums of functionals 

of κ-nearest neighbours, for such problems as multidimensional goodness-of-fit tests [5, 2], multidi-

mensional two-sample tests [14], entropy estimation of probability distributions [17], dimension es-

timation [16], and nonparametric regression [10]. Functionals considered include: sums of power-

weighted nearest neighbour distances, sums of logarithmic functions of the nearest-neighbour dis-

tances, number of nearest-neighbours from the same sample in a two-sample problem, and others. 

Central limit theorems have been obtained explicitly for some of these examples [5, 14, 2] and in 

other cases they can often be derived from more general results [1, 20, 21, 7]. Thus, for many of 

these examples it should be possible to check the conditions of Theorem 5.1 (case (ii)). 

We consider just one simple example where Theorem 5.4 is applicable. Suppose for some fixed 

α > 0 that H(� ) is the sum of the α-power-weighted nearest neighbour distances in � (for α = 1 

this is known as the total length of the directed nearest neighbour graph on � ). That is, suppose 

H(� ) = � (ξ)(� ) with ξ(x; � ) given by min{| y − x |α : y ∈ � \ {x}}. Then Hn(� ) = r−αH(� ),n 
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and ξ clearly satisfies (5.14) for some γ, so provided f is supported by a compact convex region in 

R
d or by a compact d-dimensional submanifold-with-boundary of Rd , and provided f is bounded 

away from zero on its support, Theorem 5.4 is applicable with κ = 1. Hence in this case there exists 

σ ∈ (0, ∞) such that (5.5) and (for any b ∈ (0, ∞)) (5.6) are valid. 

7 Proof of Theorem 2.1 

Let V, V1, V2, V3, . . . be independent identically distributed random variables. Define σV := 

Var(V ) ∈ [0, ∞]. In the case σV = 0, Theorem 2.1 is trivial, so from now on in this section, 

we assume σV > 0. Let b, c1, c2, c3, . . . be positive constants with hV 
1/2|b and cn ∼ n 

, then in the case where Zn 

as n →∞. 

We prove Theorem 2.1 first in the special case where Zn = Sn = Yn + Sn, 

and then in full generality. Before starting we recall a fact about characteristic functions. 

Lemma 7.1. If σV = ∞ then for all t ∈ R, as n →∞ 

⎤⎞⎛⎡ 
n

i tn−1/2 (Vj − E V )E 
⎢

⎣ exp 
⎜

⎝ 
⎥

⎦ 
⎟

⎠ 0. → 
j=1 

Proof. See for example Section 3, and in particular the final display, of [26]. 

Lemma 7.2. Suppose Sn = j=1 Vj and σV < ∞. Then as n →∞,
� �n 

sup 
u∈R 

cnP[Sn ∈ [u, u + b)] − σ−1 bφ 
u − E Sn 

cnσV 

→ 0 (7.1) 

Proof. First consider the special case with cn = n1/2. In this case, (7.1) holds by the classical local 

central limit theorem for sums of i.i.d. non-lattice variables with finite second moment in the case 

where hV = 0 (see page 232 of [6], or Theorem 2.5.4 of [9]), and by the local central limit theorem 

for sums of i.i.d. lattice variables in the case where hV > 0 and b/hV ∈ Z (see Theorem XV.5.3 of 

[11], or Theorem 2.5.2 of [9]). 

To extend this to the general case with cn ∼ n1/2, observe first that by the special case considered 

above, n1/2P[Sn ∈ [u, u + b)] remains bounded uniformly in u and n, and hence 

1 − 
cn 

n1/2 

1/2 1/2− cn)P[Sn ∈ [u, u + b)]|} = sup n
u∈R 

P[Sn ∈ [u, u + b)]sup 
u∈R

{|(n 

→ 0. (7.2) 

Also, for any K > 1, 

sup 
x |≤Kn1/2 

x x 
φ 

n1/2 
− φ 

cn 

≤ (2πe)−1/2 sup 
x |≤Kn1/2 

Kn1/2 

x x 

n1/2 
− 

cn| |

≤ (2πe)−1/2 1 − 
1/2n

cn 

→ 0. (7.3) 
n1/2 
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Also, for large enough n, 
� � � � �� 

x x 
sup max φ , φ 

n1/2 
≤ φ(K − 1) 

|x |≥Kn1/2 cn 

and since K is arbitrarily large, combined with (7.3), this shows that 
��

� � � �
��

� x x �
sup 

�

�φ 
n1/2 

− φ 
cn 

�

� → 0. 
x∈R 

Combined with (7.2), this shows that we can deduce (7.1) for general cn satisfying cn ∼ n1/2 from 

the special case with cn = n1/2 which was established earlier. 

Lemma 7.3. Theorem 2.1 holds in the special case where Zn = Yn + Sn. 

Proof. Assume, along with the hypotheses of Theorem 2.1, that Zn = Yn + Sn. Considering charac-

teristic functions, by (2.1) we have for t ∈ R that 
� � �� � � �� 

E exp i tn−1/2(Yn − E Yn) E exp i tn−1/2(Sn − E Sn) 

1 
→ exp(− tσ2). (7.4)

2 

If σV = ∞ then by Lemma 7.1, the second factor in the left hand side of (7.4) tends to zero, giving 

a contradiction. Hence we may assume σV < ∞ from now on. 

By the Central Limit Theorem, 

n−1/2(Sn − E Sn) −→ N(0, σV 
2 ). (7.5) 

By (7.4) and (7.5), σ2 ≤ σ2 and setting σ2 := σ2 − σ2 ≥ 0, we have that n−1/2(Yn − E Yn) isV Y V 

asymptotically � (0, σ2 
Y ). Hence, 

c−1 �

n (Yn − E Yn) −→ � (0, σ2 
Y ). (7.6) 

That is, (2.3) holds. 

Let u ∈ R and set 

t := t(u, n) := c−1(u − E Zn). (7.7)n 

Since we assume that Zn = Yn + Sn, by independence of Yn and Sn we have 

P[Zn ∈ [u, u + b)] = P[c−1(Zn − E Zn) ∈ c−1[u − E Zn, u + b − E Zn)] 
�

� � � 
n n 

� 

= 

∞ 

P 
Yn − E Yn 

∈ d x P 
Sn − E Sn 

∈ c−1[u − E Zn, u + b − E Zn) − x 
−∞ 

cn cn
n 

so that 
� ∞ � 

Yn − E Yn 

� 

cnP[Zn ∈ [u, u + b)] = P ∈ d x 

� �

−∞ 
cn 

�� 

�
� 

× cnP Sn
�

− E Sn ∈ [u − E Zn − xcn, u − E Zn − xcn + b) 

= 

∞ 

P 
Yn − E Yn 

∈ d x 
� 
cnP 
�

Sn − E Sn ∈ [(t − x)cn, (t − x)cn + b) 
�� 

. 
−∞ 

cn 
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By Lemma 7.2, 

b y
φ + gn( y)cnP Sn − E Sn ∈ [ ycn, ycn + b) = 

σV σV 

where 

sup 
y∈R 
|gn( y)| → 0 as n → ∞. (7.8) 

Hence, 

b �

1−t − cn 

t − c−1(Yn − E Yn)n
cn P[Zn ∈ [u, u + b)] = E (Yn − E Ynφ ) + gn , 

σV σV 

so by (7.8), to prove (2.2), it suffices to prove 

sup 
u∈R 

E σ−V 
1φ → 0. 

t(u, n) − c−1(Yn − E Yn)n u − E Zn 
− σ−1φ 

σV cnσ 

(7.9) 

Suppose this fails. Then there is a strictly increasing sequence of natural numbers (n(m), m ≥ 1) 

and a sequence of real numbers (um, m ≥ 1) such that with tm := t(um, n(m)), we have 

⎡ �⎤ 
tm − c

n
−
(
1 
m)
(Yn(m) − E Yn(m)) um − E Zn(m)

⎣σ−V 
1 

⎦ − σ−1φlim inf > 0. E φ 
σV cn(m)σm→∞ 

(7.10) 

By taking a subsequence if necessary, we may assume without loss of generality, either that tm → t 

for some t ∈ R, or that |tm| → ∞ as m →∞. Consider first the latter case. If |tm| → ∞ as m →∞, 

then by (7.6), 

P[|tm − c−1 (Yn(m) − E Yn(m))| ≤ |tm|/2] ≤ P[|c−1 (Yn(m) − E Yn(m))| ≥ |tm|/2]n(m) n(m)

0,→ 

and hence 
⎡ �⎤ 

tm − c
n
−
(
1 
m)
(Yn(m) − E Yn(m))

⎣σ−V 
1φ ⎦ 0. E 

σV 

→ 

c
n
−
(
1 
m)
(um − E Zn(m)) is equal to 

um−E Zn(m)σ−1φ 
cn(m)σ 

tends to zero, and thus we obtain a contradiction of (7.10). 

In the case where tm → t for some finite t, we have by (7.6) that tm−c−1 (Yn(m)−E Yn(m)) converges 
n(m)

in distribution to t − W1, where W1 ∼� (0, σ2 
Y ). Hence as m →∞, 

Since tm by (7.7), we also have under this assumption that 

⎡ �⎤ 
tm − c

n
−
(
1 
m)
(Yn(m) − E Yn(m))

E ⎣σ−V 
1φ ⎦ → σ−1

E φ((t − W1)/σV )VσV 

= E fW2 
(t − W1), 
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where W2 ∼ N(0, σ2 
V ), with probability density function fW2 

(x) := σ−1φ(x/σV ). If we assume V 

W1, W2 are independent, then E fW2 
(t − W1) is the convolution formula for the probability density 

function of W1 + W2, which is � (0, σ2), so that 

E fW2 
(t − W1) = fW1+W2 

(t) = σ−1φ(t/σ). 

On the other hand, since c−1 (um − E Zn(m)) is equal (by (7.7)) to tm which we assume converges 
n(m)

to t, we also have that 
� 

t um − E Zn(m)
σ−1φ → σ−1φ , 

cn(m)σ σ 

and therefore we obtain a contradiction of (7.10) in this case too. 

Thus (7.10) fails, and therefore (7.9) holds. Hence, (2.2) holds in the case with Zn = Yn + Sn. 

Proof of Theorem 2.1. Set Z � := Yn + Sn. By the integrability assumptions, Z � is integrable. By (2.1)n n 

and the assumption that n−1/2
E |Zn − Zn

� | → 0 as n →∞, 

n−1/2(Zn
� − E Zn

� ) 
�

as (7.11)−→ � (0, σ2) n →∞. 

Let b > 0 with hV |b. By Lemma 7.3, σ2 ≥ VarV and (2.3) holds and 

u − E Z �n
P[Zn
� ∈ [u, u + b)] − σ−1 bφ 0 as n →∞.sup cn → 

cnσu∈R 

Hence, by the assumption n1/2 P[Zn =� Z � ] → 0,n

sup 
u∈R 

�

�

�

�cn
�

P[Zn ∈ [u, u + b)] − σ−1 bφ → 0 as n →∞, 
u − E Z �n 

cnσ 

and since the assumption n−1/2
E |Zn − Zn

� | → 0 implies that cn
−1(E Zn − E Zn

� ) → 0 as n →∞, and φ 

is uniformly continuous on R, we can then deduce (2.2). 

8 Proof of theorems for percolation 

We shall repeatedly use the following Chernoff-type tail bounds for the binomial and Poisson distri-

butions. For a > 0 set ϕ(a) := 1 − a + a log a. Then ϕ(1) = 0 and ϕ(a) > 0 for a ∈ (0, ∞) \ {1}. 

Lemma 8.1. If X is a binomial or Poisson distributed random variable with E X = µ > 0. Then we 

have for all x > 0 that 

P[X ≥ x] ≤ exp(−µϕ(x/µ)), x ≥ µ; (8.1) 

P[X ≤ x] ≤ exp(−µϕ(x/µ)), x ≤ µ. (8.2) 

Proof. See e.g. Lemmas 1.1 and 1.2 of [18]. 
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Proof of Theorem 3.1. Let (Bn)n≥1 be a sequence of non-empty finite subsets in Zd with vanishing 

relative boundary. The first conclusion (3.2) follows from Theorem 3.1 of [19], so it remains to 

prove (3.3). 

For x ∈ Zd let �x�∞ denote the � -norm of x , i.e., the maximum absolute value of its coordinates. 

Let Bo be the set of points x in B
∞

n such that all y ∈ Zd with � y − x�∞ ≤ 1 are also in Bn. Sincen 

|Bn \ B
o|/|∂ Bn| is bounded by a constant depending only on d, the vanishing relative boundary n

condition (3.1) implies |Bo|/|Bn| → 1 as n →∞.n

Hence, by the pigeonhole principle, for all large enough n we can choose a set of points 

xn,1, xn,2, . . . , xn,�5−d Bn /2� 
in Bn

o such that �xn, j − xn,k�∞ ≥ 3 for each distinct j, k in 

{1, 2, . . . , �5−d |Bn|/2
|

�}

|

(let these points be chosen by some arbitrary deterministic rule). 

For 1 ≤ j ≤ �5−d |Bn|/2�, let In, j be the indicator of the event that each vertex y ∈ Zd with � y − 

= 1 is closed, and list the j for which In, j = 1, in increasing order, as J(n, 1) . . . , J(n, Nn),xn, j�∞ 
�

where Nn := 
�

j=

5−

1 

d |Bn|/2� In, j . Let In
�
, j be the indicator of the event that the vertex xn, j is itself open. 

Then Nn is binomially distributed with parameter (1 − p)3
d −1, so by Lemma 8.1, 

lim sup |Bn|
−1 log P[Nn < 5−d (1 − p)3

d −1|Bn|/4] < 0. (8.3) 
n→∞ 

Set bn := �5−d (1 − p)3
d −1|Bn|/4�. Let V1, V2, . . . be a sequence of independent Bernoulli variables 

with parameter p, independent of everything else. Recalling that Λ(B) denotes the number of open 

clusters in B, set 

min(bn,Nn) 

Sn
� := I

n
�
,J(n, j)

; Yn := Λ(Bn) − Sn
� , 

j=1 

and 

(bn−Nn)
+ 

+Sn := Sn
� Vj , 

j=1 

�0
where x+ := max(x , 0) as usual, and the sum i=1 is taken to be zero. 

In this case, the ‘good boxes’ discussed in Section 1 are the unit �∞-neighbourhoods of the sites 

xn,J(n,1), xn,J(n,2), . . . xn,J(n,min(bn,Nn))
. If xn, j is at the centre of a good box, it is (if open) isolated from 

other open sites, so that Yn is simply the number of open clusters in Bn if one ignores all sites xn,J(n, j) 

(1 ≤ j ≤ min(bn, Nn)). Hence Yn does not affect the open/closed status of these sites. 

Thus Sn has the Bin(bn, p) distribution and its distribution, given Yn, is unaffected by the value of 

Yn so Sn is independent of Yn. Also, 

(bn−Nn)
+ 

Λ(Bn) − (Yn + Sn) = Sn
� − Sn = − Vj 

j=1 

so that by (8.3), both |Bn|
1/2 P[Λ(Bn) �= Yn + Sn] and |Bn|

−1/2
E |Λ(Bn) − (Yn + Sn)| tend to zero as 

n → ∞. Combined with (3.2) this shows that Theorem 2.1 is applicable, with hV = 1, and that 

result shows that (3.3) holds. 

In the proof of Theorem 3.2, and again later on, we shall use the following. 
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Lemma 8.2. Suppose ξ1, . . . , ξm are independent identically distributed random elements of some mea-

surable space (E, � ). Suppose m ∈ N and ψ : Em → R is measurable and suppose for some finite K 

that for j = 1, . . . , m, 

K ≥ sup |ψ(x1, . . . , x j , . . . , xm) − ψ(x1, . . . , x �j , . . . , xm)|. 
(x1,...,xm,x �

j 
)∈Em+1 

Set Y = ψ(ξ1, . . . , ξm). Then for any t > 0, 

P[|Y − E Y | ≥ t] ≤ 2 exp(−t2/(2mK2)). 

Proof. The argument is similar to e.g. the proof of Theorem 3.15 of [18]; we include it for com-

pleteness. For 1 ≤ i ≤ m let �i be the σ-algebra generated by ξ1, . . . , ξi , and let �0 be the trivial 
�m

σ-algebra. Then Y −E Y = i=1 Di with Di := E [Y |�i]−E [Y |�i−1], the ith martingale difference. 

Then with ξ�i independent of ξ1, . . . , ξm with the same distribution as them, we have 

Di = E [ψ(ξ1, . . . , ξi , . . . ξm) − ξ(ξ1, . . . , ξ�i , . . . , ξm)|�i] 

so that |Di | ≤ K almost surely and hence by Azuma’s inequality (see e.g. [18]) we have the result. 

Proof of Theorem 3.2. Assume d ≥ 2 and p > pc(d). Let (Bn)n≥1 be a cube-like sequence of lattice 

boxes in Zd . For finite non-empty A ⊂ Zd we define the diameter of A, written diam(A), to be 

max{�x − y�∞ : x ∈ A, y ∈ A}. 

Set γn := �diam(Bn)
1/(4d)�. Let Bn 

in be the set of points x in Bn such that all y ∈ Zd with � y − 

x�∞ ≤ γn are also in Bn. Then we claim that |Bin|/|Bn| → 1 as n → ∞. Indeed, writing Bn = 
�d

n 

j=1([−a j,n, b j,n] ∩ Z), from the cube-like condition (3.4) we have for 1 ≤ j ≤ d that γn = o(a j,n + 

b j,n) as n →∞, and therefore 

�
d d

|Bin| = 
j=1 

(b j,n + a j,n − 2γn) = (1 + o(1)) 
j=1 

(a j,n + b j,n),n 

justifying the claim. 

By the preceding claim, and the pigeonhole principle, for all large enough n there is a deterministic 

set of points xn,1, xn,2, . . . , xn,�5−d in Bin such that �xn, j − xn,k�∞ ≥ 3 for each distinct j, k in 

{1, 2, . . . , �5−d |Bn|/2�}. 
|Bn|/2� n 

For 1 ≤ j ≤ �5−d |Bn|/2�, let In, j be the indicator of the event that (i) each vertex y ∈ Zd with 

� y − xn, j�∞ = 1 is open, and (ii) the open cluster in Bn containing all y ∈ Zd with � y − xn, j�∞ = 1 

has diameter at least γn. 

Set m(n) := �5−d p3d −1θd (p)|Bn|/8�, with θd (p) denoting the percolation probability. List the j for 

which In, j = 1 as J(n, 1), . . . , J(n, Nn), with Nn := 
��

j=

5−

1 

d |Bn|/2� In, j . Then we have for n large that 

E [Nn] ≥ �5
−d |Bn|/2�p

3d −1θd (p) ≥ 2m(n). 

Changing the open/closed status of a single site z in Bn can change the value of In, j only for those j 

for which �xn, j − z�∞ ≤ γn, and the number of such j is at most (2γn + 1)d . Moreover, for n large 

(2γn + 1)d ≤ (2(diamBn)
1/(4d)+ 3)d ≤ 3d (diamBn)

1/4 ≤ 3d |Bn|
1/4 
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so that the total change in Nn due to changing the status of a single site z is at most 3d |Bn|
1/4. So 

by Lemma 8.2, 

m(n)2 

P[Nn ≤ m(n)] ≤ P[|Nn − E Nn| ≥ m(n)] ≤ 2 exp − 
2|Bn|(3

d |Bn|
1/4)2 

and hence 

lim sup |Bn|
−1/2 log P[Nn ≤ m(n)] < 0. (8.4) 

n→∞ 

Let V1, V2, . . . be a sequence of independent Bernoulli variables with parameter p, independent of 

everything else. For 1 ≤ j ≤ �5−d |Bn|/2�, let In
�
, j be the indicator of the event that the vertex xn, j is 

open. Set 

min(m
�

(n),Nn) (m(n)−Nn)
+ 

Sn
� := I

n
�
,J(n, j)

; Sn := Sn
� + Vj . 

j=1 j=1 

Let Yn be the size of the largest open cluster in Bn if the status of x i,n is set to ‘closed’ for the first 

min(m(n), Nn) values of j for which In, j = 1. 

Then Sn has the Bin(m(n), p) distribution and we assert that its distribution, given Yn, is unaffected 

by the value of Yn so Sn is independent of Yn. Indeed, Yn is obtained without sampling the status of 

the sites xn, j for the first min(m(n), Nn) values of j for which In, j = 1. 

To go into more detail, consider algorithmically sampling the open/closed status of sites in Bn as 

follows. First sample the status of sites outside ∪ j{xn, j}. Then sample the status of those xn, j for 

which the � -neighbouring sites are not all open (for these sites, In, j must be zero). At this stage, it ∞

remains to sample the status of sites xn, j for which the � -neighbouring sites are all open, and for ∞

these sites one can tell, without revealing the value of xn, j , whether or not In, j = 1 (and in particular 

one can determine the value of Nn). At the next step sample the status of all xn,i except for the first 

min(Nn, m(n)) values of i which have In, j = 1. At this point, the value of Yn is determined. However, 

the value of Sn is determined by the status of the remaining unsampled sites together with some 

extra Bernoulli variables in the case where Nn < m(n), so its distribution is independent of the value 

of Yn as asserted. 

Next, we establish that L(Bn) = Yn + Sn with high probability. One way in which this could fail 

would be if Nn < m(n), but we know from (8.4) that this has small probability. Also, we claim that 

with high probability, all sites xn, j for which In, j = 1 have all their neighbouring sites as part of the 

largest open cluster, regardless of the status of xn,i . To see this, let An be the event that (i) there is 

a unique open cluster for Bn that crosses Bn in all directions (in the sense of [19]) and (ii) all other 

clusters in Bn have diameter less than γn. Then we claim that P[Ac ] decays exponentially in γn inn

the sense that 

lim sup (diamBn)
1/(4d) log P[Ac

n] < 0. (8.5) 
n→∞ 

The proof of (8.5) proceeds as in proof of Lemma 3.4 of [19]; we include a sketch of this argument 

here for completeness. 

First suppose d = 2. For a given rectangle of dimensions (γn/3) × γn, the probability that it fails to 

have an open crossing the long way decays exponentially in γn (see Lemma 3.1 of [19]). Consider 
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the family of all rectangles of dimensions (γn/3)×γn or of dimensions γn×(γn/3), with all corners in 

(γn/3)Z
2, having non-empty intersection with Bn. The number of such rectangles is O(diam(Bn)

7/4). 

By the preceding probability estimate, all rectangles in this family have an open crossing the long 

way, except on an event of probability decaying exponentially in γn. However, if all these rectangles 

have an open crossing the long way, then event An occurs and we have justified (8.5) for d = 2. 

For d ≥ 3, by the well known result of Grimmett and Marstrand [12], there exists a finite K such 

that there is an infinite open cluster in the slab [0, K] × Rd−1 with strictly positive probability. By 

dividing Bn into slabs of thickness K we see for 1 ≤ i ≤ d that the probability that there is no open 

crossing of Bn in the i-direction decays exponentially in diam(Bn). Moreover, for i =� j, by a similar 

slab argument (consider successive slabs of thickness K in the i direction), the probability that there 

is an open cluster in Bn that crosses Bn in the i direction but not the j direction decays exponentially 

in diam(Bn). Similarly the probability that there are two or more disjoint open clusters in Bn which 

cross in the i direction decays exponentially in n. Finally by a further slab argument, the probability 

that there is an open cluster which has diameter at least γn/d in the i direction but fails to cross the 

whole of Bn in the j direction, decreases exponentially in γn. This justifies (8.5) for d ≥ 3. 

Note that the occurrence or otherwise of An is unaffected by the open/closed status of those xn,i for 

which In, j = 1. Also, for large enough n, on event An, whatever status we give to these xn, j , the 

unique crossing cluster is the largest one because it has at least diam(Bn) elements while all other 

clusters have at most O(diam(Bn)
1/4) elements. 

If Nn ≥ m(n) and event An occurs, then for each j ≤ m(n), the site xn,J(n, j) is in the largest open 

cluster if and only if it is open, since if it is open then it is in an open cluster of diameter at least γn. 

This shows that if Nn ≥ m(n) and event An occurs, we do indeed have L(Bn) = Yn+Sn. Together with 

the previous probability estimates (8.4) and (8.5), this shows that |Bn|
1/2P[L(Bn) =� Yn + Sn] → 0 as 

n →∞. Moreover, by the Cauchy-Schwarz inequality, 

E |L(Bn) − (Yn + Sn)| = E [|L(Bn) − (Yn + Sn)|1{Nn < m(n)} ∪ Ac ]n

≤ (P[Nn < m(n)] + P[Ac ])1/2(E [(L(Bn) − (Yn + Sn))
2])1/2 

n

≤ (P[Nn < m(n)] + P[Ac
n])

1/2(|Bn| + m(n)) → 0. 

By Theorem 3.2 of [19], the first conclusion (3.5) holds, and by the preceding discussion, we can 

then apply Theorem 2.1 with hV = 1, to derive the second conclusion (3.6). 

9 Proof of Theorem 4.1 

We are now in the setting of Section 4. Assume f ≡ fU , and fix a feasible connected graph Γ with κ 

vertices (2 ≤ κ < ∞). Assume also that the sequence (rn)n≥1 is given and satisfies (4.2) and (4.3). 

Then P[� (�κ, 1/(κ + 3)) ∼ Γ] ∈ (0, 1). Let Qn,1,Qn,2, . . . ,Qn,m(n) be disjoint cubes of side (κ + 5)rn, 

contained in the unit cube, with m(n) ∼ ((κ + 5)rn)
−d as n →∞. For 1 ≤ j ≤ m(n), let In, j be the 

indicator of the event that �n ∩ Qn, j consists of exactly κ points, all of them at a Euclidean distance 

greater than rn from the boundary of Qn, j . List the indices j ≤ m(n) such that In, j = 1, in increasing 

order, as Jn,1, . . . , Jn,Nn 
, with Nn := 

�m

j=

(

1 

n) 
In, j . Then 

E Nn = m(n)((κ + 3)/(κ + 5))dκ P[Bin(n, ((κ + 5)rn)
d) = κ], (9.1) 
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and hence as n →∞, since nrd is bounded by our assumption (4.2),n 

E Nn ∼ κ!−1(κ + 3)dκ(κ + 5)−d nκ rd(κ−1) exp(−n(κ + 5)d rd ). (9.2)n n 

Recalling from (4.3) that τn := n(nrd )κ−1, we can rewrite (9.2) asn 

E Nn ∼ κ!−1(κ + 3)dκ(κ + 5)−d τ2 exp(−n(κ + 5)d rd ) (9.3)n n 

as n →∞. Moreover, for the Poissonized version of this model where the number of points is Poisson 

distributed with mean n, we have the same asymptotics for the quantity corresponding to Nn (the 

binomial probability in (9.1) is asymptotic to the corresponding Poisson probability). Set α to be 

one-quarter of the coefficient of τ2 in (9.3), if the exponential factor is replaced by its smallest value n 

in the sequence, i.e. set 

α := (4κ!)−1(κ + 3)dκ(κ + 5)−d inf exp(−n(κ + 5)d rd). (9.4)nn 

Then α > 0 by our assumption (4.2) on rn. 

Lemma 9.1. It is the case that 

lim sup τ−2 log P Nn < ατ2 < 0.n n 
n→∞ 

Proof. Let δ > 0 (to be chosen later). Let Mn be Poisson distributed with parameter (1 − δ)n, 

independent of the sequence of random d-vectors X1, X2, . . .. Define the Poisson point process 

�n(1−δ) := {X1, . . . , XMn 
}. 

Let N � be defined in the same manner as Nn but in terms of �n(1−δ) rather than �n. That is, set n 

m
�

(n) 

:=Nn
� In

�
, j 

j=1 

with In
�
, j denoting the indicator of the event that �n(1−δ) ∩ Qn, j consists of exactly κ points, all at 

distance greater than rn from the boundary of Qn, j . List the indices j ≤ Mn such that In
�
, j = 1 as 

Jn
�
,1, . . . , J

n
�
,Nn
� . 

Since (9.3) holds in the Poisson setting too, using the definition of τn we have as n →∞ that 

E Nn
� ∼ κ!−1(κ + 3)dκ(κ + 5)−d (1 − δ)κτ2 

n exp(−n(1 − δ)(κ + 5)d rn
d ). (9.5) 

By (9.3) and (9.5), we can and do choose δ > 0 to be small enough so that E N � > (3/4)E Nn forn 

large n. 

By (9.3) and (9.4) we have for large n that 2ατ2 
n ≤ (5/8)E Nn. Also, N � is binomially distributed, n 

and hence by Lemma 8.1, P[N � < 2ατ2] decays exponentially in τ2.n n n

By Lemma 8.1, except on an event of probability decaying exponentially in n, the value of Mn lies 

between n(1 − 2δ) and n. If this happens, the discrepancy between Nn and N � is due to the addition n 

of at most an extra 2δn points to �n(1−δ). If also Nn
� ≥ 2ατ2 then to have Nn < ατ2, at least ατ2 ofn n n 

the added points must land in the union of the first �2ατ2 
n� cubes contributing to N � .n
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To spell out the preceding argument in more detail, let 1 ≤ j ≤ m(n). If Mn < n and In
�
, j = 1 and 

Xk ∈/ Qn, j for Mn < k ≤ n, then In, j = 1, since in this case �n ∩ Qn, j = �n(1−δ) ∩ Qn, j . Therefore if 

Mn < n and Nn
� ≥ 2ατ2 andn 

n

j=1 
n�Qn,J

n
�
, j 
} < ατ2 

n,1{Xk ∈ ∪
�2ατ2 

k=Mn+1 

then �n ∩ Qn,J
n
�
, j 
=� �n(1−δ) ∩ Qn,J

n
�
, j 

for at most �ατn� values of j ∈ [1, 2ατ2 
n], and hence 

�2ατ2
�

n� 

Nn ≥ In,J
n
�
, j 
≥ �2ατ2 

n� − ατ2 
n ≥ ατ2 

n. 
j=1 

Hence, if n(1 − 2δ) < Mn < n and Nn
� ≥ 2ατ2 

n and 
�Mn+�2δn� 

j=1 
n�Qn,J

n
�
, j 
} < ατn, then 

k=Mn+1 
1{Xk ∈ ∪

�2ατ2 

Nn ≥ ατ2. Hence n

P[Nn < ατ2 
n|Nn
� ≥ 2ατ2 

n, n − 2δn < Mn < n] 

≤ P[Bin(�2δn�, �2ατ2 
n�((κ + 5)rn)

d ) > ατ2].n

Since nrn
d is assumed bounded, we can choose δ small enough so that the expectation of the 

binomial variable in the last line is less than (α/2)τ2, and then appeal once more to Lemma 8.1 n

to see that the above conditional probability decays exponentially in τ2 
n. Combining all these 

probability estimates give the desired result. 

Proof of Theorem 4.1. Set p := P[� (�κ, 1/(κ+3)) ∼ Γ]. Let V1, V2, . . . be a sequence of independent 

Bernoulli variables with parameter p, independent of �n. Let 

min(�ατ2 
n�,Nn) 

Sn
� := 1{� (�n ∩ Qn,J(n, j); rn) ∼ Γ}; Yn := Gn − Sn

� , 
j=1 

and 

(�ατ2 
n�−Nn)

+ 

Sn := Sn
� + Vj , 

j=1 

�0
where x+ := max(x , 0) as usual, and the sum j=1 is taken to be zero. 

For each j, given that In, j = 1, the distribution of the contribution to Gn from points in Qn, j is 

Bernoulli with parameter P[� ((κ+3)rn�κ, rn) ∼ Γ], which is p. Hence Sn is binomial Bin(�ατ2 
n�, p). 

Moreover, the conditional distribution of Sn, given the value of Yn, does not depend on the value of 

Yn, and therefore Sn is independent of Yn. By (4.5), 

�ατ2 
n�
−1/2(Gn − E Gn) 

�
−→ � (0, α−1σ2). 

Moreover, 
⎡ ⎤ 
(�ατ2 

n�−Nn)
+ 

⎢

� 
⎥

E Gn − (Yn + Sn) = E ⎣ Vj⎦ ≤ p�ατ2 
n�P[Nn < ατ2]n| | 

j=1 
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so that by Lemma 9.1, both τnP[Gn �= Yn + Sn] and τ−1
E |Gn − Yn − Sn| tend to zero as n → ∞.n 

Hence, Theorem 2.1 (with hV = 1) is applicable, with �ατ2 
n� playing the role of n in that result and 

α1/2τn playing the role of cn, yielding 

sup 
k∈Z 

α1/2τnP[Gn = k] − α1/2σ−1φ 
k − E Gn 

(α1/2τn)α
−1/2σ 

→ 0, 

as n →∞. Multiplying through by α−1/2 yields (4.6). 

10 Proof of Theorem 5.1 

Recall the definition of hX (the span of X ) from Section 2. 

Lemma 10.1. If X and Y are independent random variables then hX+Y |hX . 

Proof. If hX+Y = 0 there is nothing to prove. Otherwise, set h = hX +Y . Then, considering character-

istic functions, observe that 

1 = |E exp(2πi(X + Y )/h)| = |E exp(2πiX /h)| × |E exp(2πiY /h)| 

so that |E exp(2πiX /h)| = 1 and hence h|hX . 

We are in the setup of Section 5. Recall that the point process �n consists of n normally distributed 

marked points in Rd , while �n,K consists of n uniformly distributed marked points in B(K). Set 

hn,K := hH(�n
∗ 
,K )

. Set hn := hH(� ∗), and recall from (5.4) that h(H) := lim infn→∞ hn. 
n 

Lemma 10.2. Suppose either (i) H has finite range interactions and hH(� ∗) < ∞ for some n, or (ii) 
n 

H = H(ξ) is induced by a κ-nearest neighbour functional ξ(x; � ∗), and hH(� ∗) < ∞ for some n > κ. 
n 

Then h(H) < ∞, and if h(H) > 0, there exists µ ∈ N and K > 0 such that h = h(H). If h(H) = 0,µ,K 

then for any � > 0 there exists µ ∈ N and K > 0 such that hµ,K < �. In case (ii), we can take µ such 

that additionally µ ≥ κ + 1. 

Proof. The support of the distribution of H(�n
∗ 
,K ) is increasing with K , so hn,K � |hn,K for K � ≥ K . 

Hence, there exists a limit hn,∞ such that 

hn,∞ = lim hn,K (10.1)
K→∞ 

and also we have the implication 

hn,∞ > 0 =⇒ ∃K : hn,K = hn,∞. (10.2) 

Also, for all K the support of the distribution of H(�n
∗ 
,K ) is contained in the support of H(� ∗), so n 

that 

hn = hH(� ∗) ≤ hn,K , ∀K , (10.3)
n 
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� 

and hence hn ≤ hn,∞ for all n. We assert that in fact 

hn,∞ = hn. (10.4) 

This is clear when hn,∞ = 0. When hn,∞ > 0, there exists a countable set S with span hn,∞ such 

that P[H(�n
∗ 
,K ) ∈ S] = 1 for all K . But then it is easily deduced that P[H(� ∗) ∈ S] = 1, so that n 

hn ≥ hn,∞, and combined with (10.3) this gives (10.4). 

We shall show in both cases (i) and (ii) that hn tends to a finite limit; that is, for both cases we shall 

show that 

h(H) = lim hn = lim hn,∞ < ∞. (10.5)
n→∞ n→∞ 

Also, we show in both cases that 

h(H) > 0 =⇒ ∃n0 ∈ N : hn = h(H) ∀n ≥ n0. (10.6) 

If h(H) > 0, the desired conclusion follows from (10.6), (10.4) and (10.2). If h(H) = 0, the desired 

conclusion follows from (10.5) and (10.1). 

Consider the case (i), where H has finite range interactions. In this case, we shall show that for all 

n, 

hn+1|hn, (10.7) 

and since we assume hn < ∞ for some n, (10.7) clearly implies (10.5) and (10.6). 

We now demonstrate (10.7) in case (i) as follows. By (10.4) and (10.2), to prove (10.7) it suffices to 

prove that hn+1|hn,K for all K . Choose τ such that (5.2) holds. There is a strictly positive probability 

that the first n points of �n lie in B(K) while the last one lies outside B(K + τ). Hence by (5.2) 

and translation-invariance, the support of the distribution of H(�n
∗ 
+1) contains the support of the 

distribution of H(�n
∗ 
,K ) + H({(0, T )}), where T is a P -distributed element of � , independent of 

Un
∗ 
,K . Hence by Lemma 10.1, hn+1|hn,K , so (10.7) holds as claimed in this case. 

Now consider case (ii), where we assume H = H(ξ) with ξ(x; � ) determined by the κ nearest 

neighbours. We claim that if j ≥ κ + 1 and � ≥ κ + 1 then 

h j+�|h j and h j+�|h�. (10.8) 

By (10.2) and (10.4), to verify (10.8) it suffices to show that 

h j+�|h j,K ∀K > 0. (10.9) 

Given K , let B and B� be disjoint balls of radius K , distant more than 2K from each other. There 

is a positive probability that � j+� consists of j points in B and � points in B�, and if this happens 

then (since we assume min( j, �) > κ)) the κ nearest neighbours of the points in B are also in B, 

while the κ nearest neighbours of the points in B� are also in B�, so that H(�
j 
∗ 
+�
) is the sum of 

conditionally independent contributions from the points in B and those in B�. Hence the support of 

the distribution of H(�
j 
∗ 
+�
) contains the support of the distribution of H(� j 

∗ 
,K ) + H(�̃  

� 
∗ 
,K 
), where 

H(�̃  
� 
∗ 
,K 
) is defined to be a variable with the distribution of H(�

� 
∗ 
,K 
) independent of H(� j 

∗ 
,K ). Then 

(10.9) follows from Lemma 10.1. 
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Define 

h� = inf hn. 
n≥κ+1 

Then for all � > 0 we can pick j ≥ κ + 1 with h j ≤ h� + �, and then by (10.8) we have h� ≤ h� + � 

for � ≥ j + κ + 1. This demonstrates (10.5) for this case (with h(H) = h�), since we assume hn < ∞

for some n. Moreover, if h(H) > 0, then in the argument just given we can take � < h(H) and 

then for � ≥ j + κ + 1 we must have h�|h j , which can happen only if h� = h j , so by (10.5), in fact 

h� = h j = h(H). That is, we also have (10.6) for this case. 

Since we are in the setting of Section 5, we assume (as in Section 4) that f is an almost everywhere 

continuous probability density function on Rd with fmax The point process �n ⊂ Rd is a 

sample from this density, and the marked point process � 

< 
∗ ⊂

∞

R

. 
d ×� is obtained by giving each n 

point of �
d
n a P� -distributed mark. Recall also that we are given a sequence (rn) with ρ := 

limn→∞ nrn ∈ (0, ∞). Recall from (5.1) that Hn(�
∗) := H(r−1� ∗) for a given translation-invariant n 

H. 

Our strategy for proving Theorem 5.1 goes as follows. First we choose µ, K as in Lemma 10.2. Then 

we choose constants β ≥ K and m ≥ µ in a certain way (see below), and use the continuity of f 

to pick Θ(n) disjoint deterministic balls of radius β rn such that f is positive and almost constant 

on each of these balls. We use a form of rejection sampling to make the density of points of �n in 

each (unrejected) ball uniform. We also reject all balls which do not contain exactly m points of �n 

in a certain ‘good’ configuration (of non-vanishing probability). The definition of ‘good’ is chosen 

in such a way that the contribution to Hn from inside an inner ball of radius K rn is shielded from 

everything outside the outer ball of radius β rn. We end up with Θ(n) (in probability) unrejected 

balls, and the contributions to Hn(�
∗) from the corresponding inner balls are independent (because n 

of the shielding) and identically distributed (because of the uniformly distributed points) so the sum 

contribution of these inner balls can play the role of Sn in Theorem 2.1. 

In the proof of Theorem 5.1, we need to consider certain functions, sets and sequences, defined for 

β > 0. For x ∈ Rd with f (x) > 0, define the function 

gn,β (x) := 
inf{ f ( y) : y ∈ B(x; β rn)} 

, (10.10) 
sup{ f ( y) : y ∈ B(x; β rn)} 

and for x ∈ Rd with f (x) > 0 and gn,β (x) > 0, and z ∈ B(x; β rn), define 

pn,β (x , z) := 
inf{ f ( y) : 

f

y 

(z

∈ 

) 

B(x; β)} 
. (10.11) 

Since we assume f is almost everywhere continuous, the function gn,β converges almost everywhere 

on {x : f (x) > 0} to 1. By Egorov’s theorem (see e.g. [9]), given β > 0 there is a set Aβ with 

Aβ 
f (x)d x ≥ 1/2, such that f (x) is bounded away from zero on Aβ and gn,β (x) → 1 uniformly on 

Aβ . 

Since we assume (4.2) with ρ > 0 here, for n large enough nrd < 2ρ. Set n 

η(β) := 2−(d+2)ω−1β−d f −1 ρ−1.
d max
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Given β > 0, we claim that for n large enough so that nrn
d < 2ρ, we can (and do) choose points 

xβ ,n,1, . . . , xβ ,n,�η(β)n� in Aβ with |xβ ,n, j − xβ ,n,k| > 2β rn for 1 ≤ j < k ≤ �η(β)n�. To see this we 

use a measure-theoretic version of the pigeonhole principle, as follows. Suppose inductively that 

we have chosen xβ ,n,1, . . . , xβ ,n,k, with k < �η(β)n�. Then let xβ ,n,k+1 be the first point, according 

to the lexicographic ordering, in the set Aβ \∪
k
j=1B(xβ ,n, j; 2β rn). This is possible, because this set is 

non-empty, because by subadditivity of measure, 

f (x)d x ≤ kωd (2β rn)
d fmax < η(β)nωd (2β rn)

d fmax 

∪k
j=1 

B(xβ ,n, j ;2β rn) 

= nrd /(4ρ) < 1/2 ≤ f (x)d x ,n 
Aβ 

justifying the claim. Define the ball 

Bβ ,n, j := B(xβ ,n, j , β rn); Bβ
∗ 

,n, j := B(xβ ,n, j , β rn) ×� . 

The balls Bβ ,n,1, . . . , Bβ ,n,�η(β)n� are disjoint. 

Let W1, W2, W3, . . . be uniformly distributed random variables in [0, 1], independent of each other 

and of (X j)
n
j=1, where X j = (X j , T j). For k ∈ N, think of Wk as an extra mark attached to the point 

Xk. This is used in the rejection sampling procedure. Given β , if Xk ∈ Bβ ,n, j , let us say that the point 

Xk is β -red if the associated mark Wk is less than pn,β (xβ ,n, j , Xk). Given that Xk lies in Bβ ,n, j and is 

β -red, the conditional distribution of Xk is uniform over Bβ ,n, j . 

Now let m ∈ N, and suppose � is a measurable set of configurations of m points in B(β) such that 

P[�m,β ∈ � ] > 0. The number m and the set � will be chosen so that given there are m points 

of �n in ball Bβ ,n, j , and given their rescaled configuration of lies in the set � , there is a subset of 

these m points which are ‘shielded’ from the rest of �n. 

Given � (and by implication β and m), for 1 ≤ j ≤ �η(β)n�, let I� ,n, j be the indicator of the event 

that the following conditions hold: 

• The point set �n ∩ Bβ ,n, j consists of m points, all of them β -red; 

The configuration r−1(−xβ ,n, j + (�n ∩ Bβ ,n, j)) is in � .n• 

Let N� ,n := 
�

j=

η(
1 

β)n� 
I� ,n, j , and list the i for which I� ,n, j = 1 in increasing order as J(� , n, 1) . . . , 

J(� , n, N� ,n). 

Lemma 10.3. Let β > 0, and m ∈ N. Let � be a measurable set of configurations of m points in B(β) 

such that P[�m,β ∈ � ] > 0. Then: (i) there exists δ > 0 such that 

lim sup n−1 log P[N� ,n < δn] < 0, (10.12) 
n→∞ 

and (ii) conditional on the values of I� ,n,i for 1 ≤ i ≤ �η(β)n� and the configuration of �n outside 

Bβ ,n,J(� ,n,1) ∪ · · · ∪ Bβ ,n,J(� ,n,N� ,n)
, the joint distribution of the point sets 

rn
−1(−xβ ,n,J(� ,n,1)+ (�n ∩ Bβ ,n,J(� ,n,1))), . . . , rn

−1(−xβ ,n,J(� ,n,N� ,n)
+ (�n ∩ Bβ ,n,J(� ,n,N� ,n)

)) 

is that of N� ,n independent copies of �m,β each conditioned to be in � . 
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Proof. Consider first the asymptotics for E [N� ,n]. Given a finite point set � ⊂ Rd and a set B ⊂ Rd , 

let � (B) denote the number of points of � in B. Fix m. Since f is bounded away from zero and 

infinity on Aβ and gn,β → 1 uniformly on Aβ , we have uniformly over x ∈ Aβ that 

n f ( y)d y = nf (x) ( f ( y)/ f (x))d y → β dωd ρ f (x) 
B(x;β rn) B(x;β rn) 

Hence by binomial approximation to Poisson, 

(β dωd ρ f (x))m exp(−β d ωd ρ f (x)) 
P[�n(B(x; β rn)) = m] → 

m! 
as n →∞, 

and this convergence is also uniform over x ∈ Aβ . 

Given m points Xk in Bβ ,n, j , the probability that these are all β -red is at least gn,β (x)
m so exceeds 1 

2 
if n is large enough, since gn,β → 1 uniformly on Aβ . 

Given that m of the points Xk lie in Bβ ,n, j , and given that they are all β -red, their spatial locations are 

independently uniformly distributed over Bβ ,n, j; hence the conditional probability that rn
−1(−xβ ,n, j + 

(�n ∩ Bβ ,n, j)) lies in � is a strictly positive constant. 

These arguments show that lim infn→∞ n
−1
E [N� ,n] > 0. They also demonstrate part (ii) in the 

statement of the lemma. 

Take δ > 0 with 2δ < lim infn→∞ n
−1
E [N� ,n]. We shall show that P[N� ,n < δn] decays exponen-

tially in n, using Lemma 8.2. The variable N� ,n is a function of n independent identically distributed 

triples (marked points) (Xk, Tk, Wk). 

Consider the effect of changing the value of one of the marked points ((X , T, W ) to (X �, T �, W �), say). 

The change could affect the value of I� ,n, j for at most two values of j, namely the j with X ∈ Bβ ,n, j 

and the j� with X � ∈ Bβ ,n, j� . So by Lemma 8.2, 

P[|N� ,n − E N� ,n| > δn] ≤ 2 exp(−δ2n/8), 

and (10.12) follows. 

Proof of Theorem 5.1 under condition (i) (finite range interactions). Recall that h(H) is given by (5.4). 

Since condition (i) includes the assumption that hH(� ∗) < ∞ for some n, by Lemma 10.2 we have 
n 

h(H) < ∞. Let b > 0 with h(H) b. Let � ∈ (0, b). Let µ ∈ N, and K > 0, be as given by Lemma 10.2. 

Then h = h(H) if h > 0, or hµ

|

,K < � if h = 0. Moreover H(�µ
∗ 
,K ) is integrable by assumption. Set µ,K 

b1 := 
hµ,K �b/hµ,K � if hµ,K > 0 

(10.13)
b if hµ,K = 0. 

Choose τ ∈ (0, ∞) such that (5.2) holds. We shall apply Lemma 10.3 with β = K + τ. Let � be the 

set of configurations of µ points in B(K +τ) such that in fact all of the points are in B(K). By Lemma 

10.3, we can find δ > 0 such that, writing Nn for N� ,n we have exponential decay of P[Nn < δn]. 

Let V1, V2, . . . , be random variables distributed as independent copies of H(�µ
∗ 
,K ), independently of 

�n 
∗. Set 

min(�δn�,Nn) 
�� (�δn�−Nn)

+ 

Sn
� := Hn(�n 

∗ ∩ B
K
∗ 
+τ,n,J(� ,n,�)

); Sn = Sn
� + Vj . 

�=1 j=1 
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Thus, S� is the the total contribution to Hn ) from points in ∪
min(�δn�,Nn) .n (�n 

∗ 
�=1 

B
K
∗ 
+τ,n,J(� ,n,�)

By Part (ii) of Lemma 10.3, given that Nn ≥ δn, for each � we know that r−1(−xβ ,n,J(� ,n,�) +n 

�n 
∗) ∩ B∗(K + τ) is conditionally distributed as �µ

∗ 
,K+τ conditional on �µ

∗ 
,K+τ ∈ � ; in other words, 

distributed as �µ
∗ 
,K . Therefore the distribution of Sn is that of the sum of �δn� independent copies 

of H(�µ
∗ 
,K ), independent of the contribution of the other points. Let Yn denote the contribution of 

the other points, i.e. 

Yn := Hn(�
∗) − S� .n n

Since the distribution of Sn, given the value of Yn, does not depend on the value of Yn, Sn is inde-

pendent of Yn. 

By assumption Hn(�n 
∗) and Sn are integrable. Clearly n1/2 P[Hn(�n) =� Yn + Sn] is at most 

n1/2 P[Nn < δn], which tends to zero by (10.12). Also by conditioning on Nn, we have that 

n−1/2
E |Hn(�n 

∗) − (Yn + Sn)| = n−1/2
E 

(�δn�−Nn)
+ 

j=1 

Vj 

≤ n−1/2
E [(�δn� − Nn)

+]E 

≤ n−1/2�δn�P[Nn ≤ δn]E 

V1
�

�V1 , (10.14) 

which tends to zero by (10.12). This also shows that Yn is integrable By the assumption (5.5), 

�δn�−1/2(Hn(�n 
∗) − E Hn(�n 

∗)) 
�

(10.15)−→ � (0, δ−1σ2), 

and so, since hµ,K b1, Theorem 2.1 is applicable, and yields | 

sup 
u∈R 

→ 0, 
u − E Hn(�n 

∗)
(δn)1/2P[Hn(�

∗) ∈ [u, u + b1)] − δ1/2σ−1 b1φn 
(δn)1/2(δ−1σ2)1/2 

(10.16) 

and dividing through by δ1/2 gives (5.6) in all cases where b = b1. In general, suppose b =� b1. 

Then h(H) = 0 (else hµ,K = h(H) and h(H)|b so b = b1 by (10.13)), and hence hµ,K < �. Since 

b1 ≤ b by (10.13), we have that 

u − E Hn(�n 
∗)

1/2 P[Hn(�
∗) ∈ [u, u + b)] − σ−1 bφninf n 

n1/2σR∈u

� 

≥ inf n
u∈R 

u − E Hn(�n 
∗)

1/2 P[Hn(�
∗) ∈ [u, u + b1)] − σ−1 b1φn 

n1/2σ 

+σ−1(b1 − b)(2π)−1/2 

so that by (10.16), since b1 ≥ b − �, 

u − E Hn(�n 
∗) � 

lim inf inf 1/2P[Hn(�
∗) ∈ [u, u + b)] − σ−1 bφn 

n1/2σ 
≥ − 

σ 
(2π)−1/2 . n 

n→∞ u∈R 
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Similarly, setting b2 := hµ,K �b/hµ,K �, we have that 

n
sup n1/2 P[Hn(�n 

∗) ∈ [u, u + b)] − σ−1 bφ 
u − E Hn(�

∗) 

u∈R n1/2σ 

≤ inf n1/2 P[Hn(�n 
∗) ∈ [u, u + b2)] + σ−1 b2φ 

u − E 

n1

H

/2

n

σ 

(�n 
∗) 

u∈R 

+σ−1(b2 − b)(2π)−1/2 

so that since b2 − b ≤ �, 

lim sup sup n1/2P[Hn(�n 
∗) ∈ [u, u + b)] − σ−1 bφ 

u − E 

n1

H

/2

n

σ 

(�n 
∗) 

≤ 
σ

� 
(2π)−1/2. 

n→∞ u∈R 

Since � > 0 is arbitrarily small, this gives us (5.6). 

Proof of Theorem 5.1 under condition (ii). We now assume that H, instead of having finite range, is 

given by (5.3) with ξ depending only on the κ nearest neighbours. Again, by Lemma 10.2 we have 

that h(H), given by (5.4), is finite. 

Let b > 0 with h(H) b. Let � ∈ (0, b). Let µ ∈ N and K > 0, with µ ≥ κ + 1, by as given by Lemma 

10.2. Then h = h

|

(H) if h(H) > 0, and hµ,K < � if h(H) = 0. Also, H(�µ
∗ 
,K ) integrable, by the µ,K 

integrability assumption in the statement of the result being proved. 

Let �1, �2, . . . , �ν be a minimal collection of open balls of radius K , each of them centred at a 

point on the boundary of B(4K), such that their union contains the boundary of B(4K). Let �0 be 

the ball B(K). 

We shall apply Lemma 10.3 with β = 5K , with m = (ν + 1)µ, and with � as follows. Let � be the 

set of configurations of m = (ν +1)µ points in B(β) = B(5K), such that each of �1, . . . , �ν contains 

at least µ points, and ∪ν 
i=1�i contains exactly νµ points, and also the ball �0 contains exactly µ 

points (so that consequently there are no points in B(5K) \ ∪ν 
i=0�i). A similar construction (using 

squares rather than balls, and with diagram) was given by Avram and Bertsimas [1] for a related 

problem. 

With this choice of β and � , let the locations xβ ,n, j = x5K ,n, j , the balls Bβ ,n, j = B5K ,n, j , the indicators 

I� ,n, j , and the variables N� ,n and J(� , n, �) be as described just before Lemma 10.3. By that result, 

we can (and do) choose δ > 0 such that (10.12) holds. 

For 1 ≤ � ≤ N� ,n, the point process r−1(−x5K ,n,J(� ,n,�) + (�n ∩ B5K ,n,J(� ,n,�))) has µ points within n 

distance K of the origin, and also at least µ points in each of the balls �1, . . . , �ν . 

Since µ ≥ κ+1, for any point configuration in � , each point inside B(K) has its κ nearest neighbours 

also inside B(K). Also none of the points in B(5K)\B(K) has any of its κ nearest neighbours in B(K). 

Finally, any further added point outside B(5K) cannot have any of its κ nearest neighbours inside 

B(K), since the line segment from such a point to any point in B(K) passes through the boundary 

of B(4K) at a location inside some �i , and any of the µ or more points inside �i are closer to the 

outside point than the point in B(K) is. To summarise this discussion, the points in B(K) are shielded 

from those outside B(5K). 

Given n, let �
(

(

ν

1

+

) 

1)µ,5K 
, . . . , � 

(�δn�) 
be a collection of (marked) point processes which are each 

(ν+1)µ,5K 

distributed as �
( 
∗ 
ν+1)µ,5K 

conditioned on �
( 
∗ 
ν+1)µ,5K 

∈ � , independently of each other and of � ∗.n 
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For 1 ≤ j ≤ �δn� set Vj := H(�
(

( 

ν

j

+

) 

1)µ,5K 
∩ B∗(K)), so that V1, V2, . . . V�δn� are random variables 

distributed as independent copies of H(�µ
∗ 
,K ), independent of �n. Define S� and Sn byn 

� ,n)min(�δn�,N (�δn�−N� ,n)
+ 

n n 

� 
� ∗ ∗ �S H B Kr S S V: ; :( ( ))� ∩ x += =, .5K J j( �)�n n n n nn , , , ,

j 11� ==

∗ �Y H SAlso set : ( )� −= .n n

� ∗ ∗S H B KrThus is the total contribution to from points in 1; �( ) ( )� ≤ ≤x ,5K J( �)�n n n nn n , , , ,

N Smin On account of the shielding effect described above, is the sum of in-δ δ( )� � � �n n, .� n n,
∗Hdependent copies of a random variable with the distribution of Moreover, we assert that ( )� .Kµ,

S Y Y Sthe distribution of , given the value of , does not depend on the value of , and therefore isn n n n 

Essentially, this assertion holds because for any triple of sub- -algebras , if isσ � � � � ∨�, ,1 2 3 1 2 

independent of and is independent of then is independent of (here� � � � � ∨� � ∨�3 1 2 1 2 3 i j 

is the smallest -algebra containing both and ). In the present instance, to define these σ � �i j

j-algebras we first define the marked point processes for 1 byσ δ� ≤ ≤ � �nj 

n n

independent of Yn. 

� j := 

⎧

⎨

⎩ 

rn
−1(−x5K ,n,J(� ,n, j)+ (�n 

∗ ∩ B
5
∗ 
K ,n,J(� ,n, j)

)) if 1 ≤ j ≤ min(�δn�, N� ,n) 
( j−N� ,n)
�
(ν+1)µ,5K 

if N� ,n < j ≤ �δn�. 

Take �3 to be the σ-algebra generated by the values of J(� , n, 1), . . . , 

J(� , n, min(�δn�, N� ,n)) and the locations and marks of points of �n outside the union of 

the balls B5K ,n,J(� ,n,1), . . . , B5K ,n,J(� ,n,min(�δn�,N� ,n))
. Take �2 to be the σ-algebra generated by the 

point processes � j ∩ B∗(5K) \ B∗(K), 1 ≤ j ≤ �δn�. Take �1 to be the σ-algebra generated by the 

point processes � j ∩ B∗(K), 1 ≤ j ≤ �δn�. Then by Lemma 10.3 and the definition of � , �1 ∨�2 

is independent of �3 and �1 is independent of �2, so �1 is independent of �2 ∨�3. The variable 

Sn is measurable with respect to �1, and by shielding, the variable Yn is measurable with respect to 

�2 ∨�3, justifying our assertion of independence. 

By the assumptions of the result being proved, Hn(�
∗) and Sn are integrable. Clearlyn 

n1/2 P[Hn(�n 
∗) �= Yn + Sn] is at most n1/2P[N� ,n < δn], which tends to zero. Also, as with (10.14) 

in Case (i), we have that n−1/2
E |Hn(�

∗) − (Yn + Sn)| tends to zero by (10.12), and Yn is integrable. n 

By (5.5), 

�δn�−1/2(Hn(�n 
∗) − E Hn(�n 

∗)) −→ � (0, δ−1σ2), (10.17) 

and so, since hµ,K |b1, Theorem 2.1 is applicable with Zn = Hn(�
∗), yielding n 

u − E Hn(�n 
∗)

(δn)1/2P[Hn(�
∗) ∈ [u, u + b1)] − δ1/2σ−1 b1φn 0, sup 

{u∈R} (δn)1/2δ−1/2σ 
→ 

as n →∞. Multiplying through by δ−1/2 yields (5.6) for this case, when b1 = b. If b1 �= b, we can 

complete the proof in the same manner as in the proof for Case (i). 
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11 Proof of Theorems 5.2, 5.3 and 5.4 

The proofs of Theorems 5.2, 5.3 and 5.4 all rely heavily on Theorem 2.3 of [20] so for convenience 

we state that result here in the form we shall use it. This requires some further notation, besides the 

notation we set up earlier in Section 5. 

As before, we assume ξ(x, � ∗) is a translation invariant, measurable R-valued function defined for 

all pairs (x, � ∗), where � ∗ ⊂ Rd ×� is finite and x is an element of � ∗. We extend the definition 

of ξ(x, � ∗) to the case where � ∗ ⊂ Rd ×� and x ∈ (Rd ×� ) \ � ∗, by setting ξ(x, � ∗) to be 

ξ(x, � ∗ ∪ {x}) in this case. Recall that H(ξ) is defined by (5.3). 

Let T be an � -valued random variable with distribution P� , independent of everything else. For 

λ > 0 let Mλ be a Poisson variable with parameter λ, independent of everything else, and let 

�λ be the point process {X1, . . . , XMλ 
}, which is a Poisson point process with intensity λ f (·). Let 

�
λ 
∗ := {(X1, T1), . . . , (XMλ 

, TMλ 
)} be the corresponding marked Poisson process. 

Given λ > 0, we say ξ is λ-homogeneously stabilizing if there is an almost surely finite positive 

random variable R such that with probability 1, 

ξ((0, T ); (�λ 
∗ ∩ B∗(0; R)) ∪� ) = ξ((0, T ); �λ 

∗ ∩ B∗(0; R)) 

for all finite � ⊂ (Rd \ B(0; R)) ×� . Recall that supp( f ) denotes the support of f . We say that ξ is 

exponentially stabilizing if for λ ≥ 1 and x ∈ supp( f ) there exists a random variable Rx ,λ such that 

ξ((λ1/d x , T ); λ1/d (�λ 
∗ ∩ B∗(x; λ−1/dRx ,λ)) ∪� ) 

= ξ((λ1/d x , T ); λ1/d (�λ 
∗ ∩ B∗(x; λ−1/dRx ,λ))) 

for all finite � ⊂ (Rd \ B(x; λ−1/dRx ,λ)))×� , and there exists a finite positive constant C such that 

P[Rx ,λ > s] ≤ C exp(−C−1s), s ≥ 1, λ ≥ 1, f ∈ supp( f ). 

For k ∈ N ∪ {0}, let �k be the collection of all subsets of supp( f ) with at most k elements. 

For k ≥ 1 and � = {x1, . . . , xk} ∈ �k \ �k−1, let � ∗ be the corresponding marked point set 

{(x1, T1), . . . , (xk, Tk)} where T1, . . . , Tk are independent � -valued variables with distribution P� , 

independent of everything else. If � ∈ �0 (so � = �) let � ∗ also be the empty set. 

We say that ξ is binomially exponentially stabilizing if there exist finite positive constants C , � such 

that for all x ∈ supp( f ) and all λ ≥ 1 and n ∈ N ∩ ((1 − �)λ, (1 + �)λ), and � ∈ �2, there is a 

random variable Rx ,λ,n,� such that 

ξ((λ1/d x , T ); λ1/d ((�n 
∗ ∪� ∗) ∩ B∗(x; λ−1/dRx ,λ,n,� )) ∪� ) 

= ξ((λ1/d x , T ); λ1/d ((�n 
∗ ∪� ∗) ∩ B∗(x; λ−1/dRx ,λ,n,� ))) (11.1) 

for all finite � ⊂ (Rd \ B(x; λ−1/dRx ,λ,n,� )) ×� , and such that all λ ≥ 1 and all n ∈ N ∩ ((1 − 

�)λ, (1 + �)λ), and all x ∈ supp( f ) and all � ∈ �2, 

P[Rx ,λ,n,� > s] ≤ C exp(−C−1s), s ≥ 1. 

Given p > 0 and � > 0, we consider the moments conditions 

sup E [|ξ((λ1/d x , T ); λ1/d (�λ 
∗ ∪� ∗))|p] < ∞ (11.2) 

λ≥1,x∈supp( f ),� ∈�1 
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and 

sup E [|ξ((λ1/d x , T ); λ1/d (�n 
∗ ∪� ∗))|p] < ∞. (11.3) 

λ≥1,n∈N∩((1−�)λ,(1+�)λ),x∈supp( f ),� ∈�3 

Theorem 11.1. Suppose H = H(ξ) is induced by translation-invariant ξ. Suppose that ξ is f (x)-

homogeneously stabilizing for Lebesgue-almost all x ∈ supp( f ), and ξ is exponentially stabilizing, 

binomially exponentially stabilizing and for some � > 0 and p > 2 satisfies (11.2) and (11.3). Suppose 

fmax < ∞ and supp( f ) is bounded. Suppose (λ(n), n ≥ 1) is a sequence taking values in R+ with 

|λ(n) − n| = O(n1/2) as n →∞. Then there exists σ ≥ 0 such that 

n−1/2(H(ξ)(λ(n)1/d ) − E H(ξ)(λ(n)1/d )) 
�

�n 
∗ �n 

∗ −→� (0, σ2), 

and n−1Var(H(ξ)(λ(n)1/d �n 
∗)) → σ2 as n →∞. 

Theorem 11.1 is a special case of Theorem 2.3 of [20], which also provides an expression for σ in 

terms of integrated two-point correlations; that paper considers random measures given by a sum 

of contributions from each point, whereas here we just consider the total measure. The sets Ω∞
and (for all λ ≥ 1) Ωλ in [20] are taken to be supp( f ). Our ξ is translation invariant, and these 

assumptions lead to some simplification of the notation in [20]. 

Proof of Theorem 5.2. The condition that ξ(x; � ∗) has finite range implies that H = H(ξ) has 

finite range interactions. Since ξ has finite range r, ξ is λ-homogeneously stabilizing for all λ > 0, 

exponentially stabilizing and binomially exponentially stabilizing (just take R = r, Rx ,λ = r and 

Rx ,λ,n,� = r). 

We shall establish (5.5) by applying Theorem 11.1. We need to check the moments conditions (11.2) 

and (11.3) in the present setting. Since we assume that fmax < ∞, for any λ > 0 and any n ∈ N with 

n ≤ 2λ, and any x ∈ supp( f ), the variable card(�n 
∗ ∩ B∗(x; rλ−1/d )) is binomially distributed with 

mean at most ωd fmax2rd . Hence by Lemma 8.1, there is a constant C , such that whenever n ≤ 2λ 

and x ∈ supp( f ) we have 

P[card(�n 
∗ ∩ B∗(x; rλ−1/d )) > u] ≤ C exp(−u/C), u ≥ 1. (11.4) 

Moreover by (5.11) and the assumption that ξ has range r, for � ∈ �3 we have 

E [ξ((λ1/d x , T ); λ1/d (�n 
∗ ∪� ∗))4] ≤ γ4

E [(4 + card(�n 
∗ ∩ B∗(x; rλ−1/d )))4γ] 

so by (11.4) we can bound the fourth moments of ξ((λ1/d x , T ); λ1/d (� ∗ ∪ � ∗)) uniformly over n 

(x , λ, n, � ) ∈ supp( f ) × [1, ∞) × N ×�3 with n ≤ 2λ. This gives us (11.3) (for p = 4 and � = 1/2) 

and (11.2) may be deduced similarly. 

Hence, the assumptions of Theorem 11.1 are satisfied, with λ(n) in that result given by λ(n) = r−d . n 

By Theorem 11.1, for some σ ≥ 0 we have (5.5) and (5.9). Then by Theorem 5.1, we can deduce 

that σ > 0 and h(H) < ∞ and (5.6) holds whenever h(H)|b. 

Proof of Theorem 5.3. Under condition (5.2), the functional H(� ∗) can be expressed as a sum 

of contributions from components of the geometric (Gilbert) graph � (� , τ), where � := π(� ∗) 

is the unmarked point set corresponding to � ∗ (recall that π denotes the canonical projection 
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from Rd ×� onto Rd .) Hence, H(� ∗) can be written as H(ξ)(� ∗) where ξ(x; � ∗) denotes the 

contribution to H(� ∗) from the component containing π(x), divided by the number of vertices in 

that component. Then ξ(x; � ∗) is unaffected by changes to � ∗ that do not affect the component of 

� (� , τ) containing π(x), and we shall use this to demonstrate that the conditions of Theorem 11.1 

hold, as follows (the argument is similar to that in Section 11.1 of [18]). 

Consider first the homogeneous stabilization condition. For λ > 0, let R(λ) be the maximum Eu-

clidean distance from the origin, of vertices in the graph � (�λ ∪{0}, τ) that are pathwise connected 

to the origin. By scaling (see the Mapping theorem in [15]), R(λ) has the same distribution as τ 

times the maximum Euclidean distance from the origin, of vertices in � (�τd λ ∪ {0}, 1) that are 

pathwise connected to the origin. Then R(λ) is almost surely finite, for any λ ∈ (0, τ−dλc). 

Changes to �λ at a distance more than R(λ) + τ from the origin do not affect the component 

of � (�λ ∪ {0}, τ) containing the origin and therefore do not affect ξ((0, T ); � ∗). This shows 
λ 

that ξ is λ-homogeneously stabilizing for any λ < τ−d λc , and therefore by assumption (5.12) the 

homogeneous stabilization condition of Theorem 11.1 holds. 

Next we consider the binomial stabilization condition. Let x ∈ supp( f ). Let Rx ,λ,n be equal to τ plus 

the maximum Euclidean distance from λ1/d x , of vertices in � (λ1/d (�n ∪ {x}), τ) that are pathwise 

connected to λ1/d x . Changes to �n at a Euclidean distance greater than λ−1/dRx ,λ,n from x will 

have no effect on ξ((λ1/d x , T ); λ1/d �n 
∗). 

Using (5.12), let � ∈ (0, 1/2) with (1 + �)2τd fmax < λc . The Poisson point process �n(1+�) := 

{X1, . . . , XMn(1+�) 
}, is stochastically dominated by �nfmax(1+�) 

(we say a point process � is stochasti-

cally dominated by a point process � if there exist coupled point processes � �, � � with � � ⊂ � � 

almost surely and � � having the distribution of � and � � having the distribution of � ). Hence by 

scaling, λ1/d �n(1+�) is stochastically dominated by �nfmax(1+�)/λ
, and hence we have for n ≤ λ(1+�) 

that λ1/d �n(1+�) is stochastically dominated by � fmax(1+�)
2 . Therefore for u > 0, 

P[Rx ,λ,n > u] ≤ P[Mn(1+�) < n] + P[R((1 + �)2 fmax) > u − τ]. (11.5) 

By scaling, the second probability in (11.5) equals the probability that there is a path from the origin 

in � (�τd (1+�)2 fmax 
∪ {0}, 1) to a point at Euclidean distance greater than τ−1u − 1 from the origin. 

By the exponential decay for subcritical continuum percolation, (see e.g. Lemma 10.2 of [18]), this 

probability decays exponentially in u (and does not depend on n). 

Let ∆ := diam(supp( f )) (here assumed finite). By Lemma 8.1, the first term in the right hand side 

of (11.5) decays exponentially in n. Hence, there is a finite positive constant C , independent of λ, 

such that provided we have n > (1 − �)λ1/d we have for all u ≤ λ1/d (∆ + τ) that 

P[Mn(1+�) < n] ≤ C exp(−C−1λ1/d ) ≤ C exp(−((∆ + τ)C)−1u). 

On the other hand P[Rx ,λ,n > u] = 0 for u > λ1/d (∆ + τ). Combined with (11.5) this shows that 

there is a constant C such that for all (x , n, λ, u) ∈ supp( f ) × N × [1, , ∞)2 with n ≤ (1 + �)λ, we 

have 

P[Rx ,λ,n > u] ≤ C exp(−u/C). (11.6) 

Now suppose � ∈ �3, and x ∈ supp( f ). Let Rx ,λ,n,� be equal to τ plus the maximum Euclidean 

distance from λ1/d x , of vertices in � (λ1/d(�n ∪� ∪{x}), τ) that are pathwise connected to λ1/d x . 
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Changes to �n ∪� at a Euclidean distance greater than λ−1/dRx ,λ,n,� from x will have no effect on 

ξ((λ1/d x , T ); λ1/d (�n 
∗∪� ∗)); that is, (11.1) holds. To check the tail behaviour of Rx ,λ,n,� , suppose 

for example that � has three elements, x1, x2 and x3. Then it is not hard to see that 

Rx ,λ,n,� ≤ Rx ,λ,n + Rx1,λ,n + Rx2,λ,n + Rx3,λ,n, 

and likewise when � has fewer than three elements. Using this together with (11.6), it is easy to 

deduce that there is a constant C such that for all (x , n, � , λ, u) ∈ supp( f ) × N ×�3 × [1, ∞)2 with 

n ≤ (1 + �)λ, and we have 

P[Rx ,λ,n,� > u] ≤ C exp(−u/C). (11.7) 

In other words, ξ is binomially exponentially stabilizing. 

Next we check the moments condition (11.3), with p = 4 and using the same choice of � as before. 

By our definition of ξ and the growth bound (5.13), we have for all (x , n, � , λ) ∈ supp( f ) × N × 

�3 × [1, ∞)2 with n ≤ λ(1 + �) that 

E [ξ((λ1/d x , T ); λ1/d (�n 
∗ ∪� ∗))4] ≤ γ4

E [(card(� ) + diam(� ))4γ], (11.8) 

where � is the vertex set of the component of � (λ1/d (�n ∪ � ∪ {x}), τ) containing λ1/d x . By 

(11.7), there is a constant C such that for all (x , n, � , λ, u) ∈ supp( f ) × N × �3 × [1, ∞)2 with 

n ≤ λ(1 + �) we have 

P[diam(� ) > u] ≤ C exp(−u/C); (11.9) 

moreover, 

P[card(� ) > u] ≤ P[diam(� ) > u1/(2d)] + P[card(�n ∩ B(x; λ−1/du1/(2d))) > u − 4] 

(11.10) 

and the first term in the right hand side of (11.10) decays exponentially in u1/(2d) by (11.9). Since 

card(�n ∩ B(x; λ−1/du1/(2d))) is binomially distributed with 

E [card(�n ∩ B(x; λ−1/du1/(2d)))] ≤ u1/2ωd fmaxn/λ, 

by Lemma 8.1 there is a constant C such that for all (x , n, λ, u) with n ≤ λ(1 + �) we have that 

P[card(�n ∩ B(x; λ−1/du1/(2d))) > u − 4] ≤ C exp(−C−1u1/2). 

Thus by (11.10) there is a constant, also denoted C , such that for all (x , n, � , λ, u) with n ≤ λ(1+�) 

we have 

P[card(� ) > u] ≤ C exp(−C−1u−1/(2d)), 

and combining this with (11.9) and using (11.8) gives us a uniform tail bound which is enough to 

ensure (11.3). The argument for (11.2) is similar. 

Thus our ξ satisfies all the assumptions of Theorem 11.1, and we can deduce (5.5) and (5.9) for 

some σ ≥ 0 by applying that result with λ(n) = r−d . Then by applying Theorem 5.1, we can deduce n 

that σ > 0 and h(H) < ∞ and (5.6) holds whenever h(H)|b. 
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Proof of Theorem 5.4. Suppose the hypotheses of Theorem 5.4 hold, and assume without loss of 

generality that ξ(x, � ∗) = 0 whenever � ∗ \ {x} has fewer than κ elements. We assert that under 

these hypotheses, there exists a constant C such that for all (x , n, λ, u) ∈ supp( f )× N× [1, ∞)2 with 

n ∈ [λ/2, 3λ/2] and n ≥ κ, we have 

P[λ1/dRκ((x , T ); � ∗) > u] ≤ C exp(−C−1u). (11.11)n 

Indeed, if supp( f ) is a compact convex region in Rd and f is bounded away from zero on supp( f ), 

then (11.11) is demonstrated in Section 6.3 of [20], while if supp( f ) is a compact d-dimensional 

submanifold-with-boundary of Rd , and f is bounded away from zero on supp( f ), then (11.11) 

comes from the proof of Lemma 6.1 of [24]. 

It is easy to see that ξ is λ-homogeneously stabilizing for all λ > 0. Also, for any (x , � ) ∈ (supp( f )× 

�3) we obviously have Rκ((x , T ); � ∗ ∪� ∗) ≤ Rκ((x , T ); � ∗) and hence by (11.11), ξ is binomially 

exponentially stabilizing, and exponential stabilization comes from a similar estimate with a Poisson 

sample. 

We need to check the moments conditions to be able to deduce (5.5) via Theorem 11.1. With γ 

as in the growth bound (5.14), we claim that there is a constant C such that for any � ∈ �3, 

any x ∈ supp( f ), and any u > 0, and for all (x , n, � , λ, u) ∈ supp( f ) × N × �3 × [1, ∞)2 with 

λ/2 ≤ n ≤ 3λ/2, and n ≥ κ, we have 

P[|ξ((λ1/d x , T ); λ1/d (�n 
∗ ∪� ∗))| > u] ≤ P[γ(1 + λ1/dRκ((x , T ), � ∗))γ > u]n 

≤ C exp(−C−1u1/γ). (11.12) 

Indeed, the first bound comes from (5.14), and the second bound comes from (11.11). Using 

(11.12), we can deduce the moments bound (11.3) for p = 4 and � = 1/2. We can derive (11.2) 

similarly. Thus Theorem 11.1 is applicable, and enables us to deduce (5.5) and (5.9) for some 

σ ≥ 0, in the present setting. Then by using Theorem 5.1, we can deduce that σ > 0 and h(H) > 0 

and (5.6) holds whenever h(H)|b. 
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