Local Cohomology: an algebraic introduction with geometric applications

M. P. Brodmann

Professor of Mathematics, Universität Zürich

R. Y. Sharp

Professor of Pure Mathematics, University of Sheffield

Contents

~.

0

Preface		page ix
Nota	tion and conventions	xiv
1	The local cohomology functors	1
1.1	Torsion functors	1
1.2	Local cohomology modules	3
1.3	Connected sequences of functors	10
2	Torsion modules and ideal transforms	17
2.1	Torsion modules	18
2.2	Ideal transforms	22
2.3	Geometrical significance	38
3	The Mayer-Vietoris Sequence	47
3.1	Comparison of systems of ideals	48
3.2	Construction of the sequence	51
3.3	Arithmetic rank	55
3.4	Direct limits	59
4	Change of rings	66
4.1	Some acyclic modules	67
4.2	The Independence Theorem	71
4.3	The Flat Base Change Theorem	75
5	Other approaches	82
5.1	Use of Čech complexes	83
5.2	Use of Koszul complexes	94
6	Fundamental vanishing theorems	102
6.1	Grothendieck's Vanishing Theorem	103
6.2	Connections with grade	107
6.3	Exactness of ideal transforms	112

vi	Contents	
6.4	An Affineness Criterion due to Serre	117
7	Artinian local cohomology modules	123
7.1	Artinian modules	123
7.2	Secondary representation	127
7.3	The Non-vanishing Theorem again	131
8	The Lichtenbaum-Hartshorne Theorem	136
8.1	Preparatory lemmas	137
8.2	The main theorem	144
9	The Annihilator and Finiteness Theorems	152
9.1	Finiteness dimensions	152
9.2	Adjusted depths	155
9.3	The first inequality	159
9.4	The second inequality	163
9.5	The main theorems	170
9.6	Extensions	175
10	Matlis duality	179
10.1	Indecomposable injective modules	179
10.2	Matlis duality	185
11	Local duality	197
11.1	Minimal injective resolutions	198
11.2	Local Duality Theorems	201
11.3	Some applications	207
12	Foundations in the graded case	216
12.1	*Injective modules	217
12.2	The *restriction property	221
12.3	The reconciliation	225
12.4	Some examples and applications	229
13	Graded versions of basic theorems	237
13.1	Fundamental theorems	237
13.2	*Indecomposable *injective modules	246
13.3	*Canonical modules	253
13.4	Graded local duality	258
14	Links with projective varieties	265
14.1	Affine algebraic cones	265
14.2	Projective varieties	269

	Contents		vii
15	Castelnuovo regularity		277
15.1	Finitely generated components		277
15.2	2 The basics of Castelnuovo regularity	Ø	281
15.3	B Degrees of generators		289
16	Bounds of diagonal type		294
16.1	Some basic lemmas		295
16.2	2 The right bounding functions		299
16.3	B Polynomial representations		305
16.4	Bounding systems for numerical invariants		309
17	Hilbert polynomials		312
17.1	The characteristic function		313
17.2	2 Bounds in terms of Hilbert coefficients		319
18	Applications to reductions of ideals		325
18.1	Reductions and integral closures		325
18.2	2 The analytic spread		330
18.3	B Links with Castelnuovo regularity		333
19	Connectivity in algebraic varieties		342
19.1	The connectedness dimension		342
19.2	2 Complete local rings and connectivity		347
19.3	3 Some local dimensions		352
19.4	Connectivity of affine algebraic cones		359
19.5	5 Connectivity of projective varieties		360
19.6	2		363
19.7	7 The projective spectrum and connectedness		368
20	Links with sheaf cohomology		374
20.1	The Deligne Isomorphism		375
20.2	2 The graded Deligne Isomorphism		386
20.3	Einks with sheaf theory		389
20.4	Applications to projective schemes		398
	liography		407
Inde	ex	,	410