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Local connectivity of some Julia sets 
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by 
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The Fatou set FR for a rational map R: C--*C is the set of points z c C  possessing a 

neighbourhood on which the family of iterates {R n }n~>o is normal (in the sense of Montel). 

The Julia set JR=C--FR is the complement of the Fatou set. (The monographs [CG], 

[Be], [St] provide introductions to the theory of iteration of rational maps.) 

Let 0E ]0, 1 [ - Q  be an irrational number and write it as a continued fraction 
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where an EN for each n~> 1. The number 0 is termed of constant type, or equivalently, is 

termed Diophantine of exponent 2, if the sequence {an}heN is bounded. 

For t~e[0, 1] define ~e=exp(i2~r0) and Pe(z):=~ez+z 2. Moreover, let JPo denote 

the Julia set of Pe. The polynomial Pe has a Siegel disc around the (indifferent) fixed 

point 0, if and only if it is locally linearizable. That  is, if there exists a local change of 

coordinates r (C, 0)--*(C, 0) with r162 It is well known that  Pe has a Siegel disc 

around 0 for every 0 of constant type (see e.g. [Si]). 

THEOREM A. For every 0 of constant type the Julia set Jge is locally connected and 

has zero Lebesgue measure. 

The proof uses in an essential way a model Je of JPe. The model Je was constructed 

in 1986 and proved to be quasi-conformally equivalent to JPe in 1987 (see [Do] for the 
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Fig. 1. The Julia set JPo for 0 = l ( v ~ - l )  

particular result, and e.g. the monograph [LV] for the theory of quasi-conformal maps of 

the plane). Let us briefly discuss the model Jo, as it is essential in the proof. Consider 

the degree-three Blaschke function: 

Y o ( z )  = z 2 z - 3  . 

1 - 3 z  

Its restriction f0: S 1---*S 1 is an analytic circle homeomorphism with 1 as a fixed critical 

point, an inflection point of order three. In particular, f0 has (Poincar~) rotation num- 

ber 0. For each irrational rotation number 0E [0, 1] there exists a unique Q0 E S 1 such that  

the restriction of fo:=~o.fo to S 1 has rotation number 0. We let JYo denote the Julia 

set of fo. 

164 

Fig. 2. The basic dynamics of fo 
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Fig. 3. The "Julia" set Je for 0--~-- 1 (v/~_ 1) 

Each fe commutes with "r(z)=l/2 (reflection in the unit circle). Thus all dynam- 

ical properties of fe are symmetric with respect to S 1. In particular, the Julia set 

Jr0 is symmetric. Moreover, the points 0 and oc are super-attractive (critical) fixed 

points with simply-connected immediate basins. Let U0 be the connected component of 

f o  I(D) =fo  I(D) contained in the complement of D. The immediate basin of co, A0(oc), 

is contained in C - ( D U U 0 ) .  

For each irrational 0 there exists a homeomorphism (unique up to postcomposi- 

tion by a rigid rotation) he:S1--~S 1 conjugating fe to the rigid rotation Re(z)=Aez 

on S 1 (see [Yol D. Let He: D - ~ D  denote a homeomorphism extending he. We shall 

suppose He quasi-conformal if he is quasi-symmetric (quasi-symmetric means that any 

two neighbouring intervals of the same length have images whose lengths are uniformly 

comparable). 

Definition. For each irrational 0 we shall define a new degree-two branched, but 

non-holomorphic, covering map Fe: C--*C by 

{ fo(z) if and only if [z[ ~> 1, 

Fo(z) = Ho loRooHo(z) if and only if lzl ~ 1, 

and an F0-invariant "Julia" set Jo=Jlo-Un)o f o n ( D )  �9 See Figure 3. 

THEOREM (Douady, Shishikura, Ghys, ..., 1986). If ho is quasi-symmetric, there 

exists a quasi-conformal homeomorphism r C--*C conjugating (the then quasi-regular 

map) Fo to the polynomial Po, The homeomorphism r maps D onto a Siegel disc A o 
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Fig. 4. The conjugation Ce 

around 0 for Pe, and maps Je onto the Julia set JPe. Furthermore, Ce can be chosen to 

be conformal on the immediate basin of oc (see also Figure 4). 

The above meta-theorem was given a real content a year later by M. Herman, who 

used inequalities, a priori real bounds, obtained by Swi~tec to prove the following. 

THEOREM (Swi~tec Herman, [He], 1987). An analytic circle homeomorphism with 

irrational rotation number ~ and with one (double) critical point is quasi-symmetrically 

conjugate to the rigid rotation Ro if and only if  0 is of constant type. 

Proof. See [He]. [] 

One asked if the above would help in proving Theorem A. The answer is yes and 

is the main concern of this paper. Note that Theorem A would follow if we knew that  

Je is locally connected and has Lebesgue measure 0 whenever ~ is of constant type 

(quasi-conformal homeomorphisms map Lebesgue null sets to Lebesgue null sets). We 

can actually prove more than this. 

THEOREM B. For any OE ]0, I [ - Q  the Julia set Jfo and the set Je are locally con- 

nected. 

THEOREM C. For every 0 of constant type the Lebesgue measure of Je is zero. 

Theorem B gives rise to the question: Suppose that  Pe has a Siegel disc whose 

boundary is a Jordan curve containing the critical point. Does this imply that  JPe is 

locally connected? 

Another interesting question is: does there exist 0 for which the full Julia set Jr0 

has positive measure? 

The main ingredients in proving the Herman-Swi~tec Theorem are the Swi~tec a 

priori real bounds (inequalities) for the ratios of closest returns of the critical point 
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(here 1) to itself. We shall state later the precise statement of the Swi~tec a priori real 

bounds, when we have introduced the points of closest return. The main ingredient in the 

present proof that  Je and Jr0 are locally connected is a dynamically defined geometric 

construction, a "puzzle", which permits to transmit the Swi~tec a priori real bounds to 

complex bounds for the Julia sets. The puzzle is inspired by Yoccoz puzzles (see [Hu] for 

quadratic polynomials) and Branner-Hubbard puzzles (see [BH] for cubic polynomials). 

Knowing the "classical" puzzle constructions by Branner-Hubbard and Yoccoz, there 

were several mental obstacles to overcome in order to arrive at this new type of puzzle 

and in controlling it. One has to accept that  the critical point chops up puzzle pieces 

giving puzzle pieces containing the critical point on the boundary. Moreover, one has 

to turn this phenomena into a "friend". Secondly, when estimating the size of puzzle 

pieces, one has to give up completely the central idea in "classical puzzles" that  some 

annuli defined by differences of puzzle pieces map properly to each other. Thus killing 

the foundations of the central Grbtzsch argument in proving divergence of nests. The 

replacement is ideas which permit to control lengths of boundaries of puzzle pieces. In 

implementing these ideas, we use essentially the "realness" of re, i.e. that  Je contains 

the unit circle. The first consequence of the "realness" of fe is that  we can draw arcs of 

finite Euclidean length in Je- The second is that  the Swi~tec a priori bounds hold. These 

say that  the closest returns of the critical point to itself essentially come geometrically. 

The third is that  we can transform the angular contraction for inverse branches around 

the critical point into a hyperbolic contraction on appropriate domains. 

The structure of the rest of this paper is as follows. w contains the red thread 

of the proof of spreading local connectivity from the critical point to all of the sets Je 

and JPo, together with some additional results, interesting in their own right. Moreover, 

it introduces the notation used in subsequent sections. w is essentially self-contained. It 

introduces the "puzzle pieces" containing the critical point on their boundary. Moreover, 

the results needed to prove local connectivity at the critical point are stated. w contains 

the proofs of the statements of w together with the necessary technical machinery to do 

so. It has w as prerequisite. w spreads local connectivity from 1 to all of Je and proves 

the theorem on zero measure. Finally w shows how to spread local connectivity also to 

all of Jfs. 

Added in revision. C.T.  McMullen has proved, using the results of this paper, that  

the Hausdorff dimension of JPe is strictly less than two whenever 0 is of constant type, 

thus improving the measure statement of Theorem A. Moreover, he proves that  the Siegel 

disc for Po is self-similar about the critical point, whenever 0 is a quadratic irrational 

(such as the golden mean) (see the manuscript [Mc]). M. Lyubich has proved that  J0 

has Lebesgue measure zero for every irrational 0, thus improving Theorem C. This result 
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would also follow by slightly changing the proof of Theorem C given in this paper. The 

proof by Lyubich is outlined in the preprint [Ya] by M. Yampolsky, which also outlines 

an alternative proof of Theorems A and B above. 
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0. S t r a t e g y  of  t h e  p r o o f  o f  local  c o n n e c t i v i t y  a n d  f u r t h e r  r e su l t s  

The definitions and structures we are about to discuss depend on 0E ]0, 1 [ - Q .  We shall 

however only use an additional index 0 in our definitions when we want to stress the 

dependence on 0. Thus the dependence on 0 is always to be assumed, if not stated 

explicitly otherwise. 

The point oc is a super-attractive fixed point for each fe and Fe. The correspond- 

ing immediate basin A0(oc) is simply-connected. Let r 1 6 2  A0(oe)--*C-D denote the 

Riemann map conjugating fo on A0(oc) to z~--~z 2 on C - D .  The image by r of the line 

{re~2"~[r>l} for ~TE[0, 1] shall be called the 77 external ray and be denoted R,~. The ray 

R, 1 lands if and only if r has a continuous extension along {rei2~'71 r> 1} t o  e i2~r '} . The 

impression of the T] prime end is the set of accumulation points for sequences { ~ (zn) },,/> 0, 

with z ,  converging to e i2~. In particular, the impression of the ~/prime end is a singleton 

if and only if ~ extends continuously to e i2~. 

THEOREM 1.3. For each OE ]0, 1[ - Q  the critical point 1E J/o is in the impression of 

precisely two prime ends of the immediate basin of oc for fe. The impressions of these 

two prime ends equal {1}. In particular, there are precisely two external rays landing 

on 1. 

The proof shall be given in w167 1 and 2. 

First we describe an abstract topologial m o d e l  .]3 bs for J0 and a model dynamics 

F~ bs on J3  bs. Secondly we discuss the proof of spreading local connectivity. Before 

however let us mention another topological model known as the pinched disc model. The 

pinched disc model is well described by K. Keller in [Ke]. Our work implies that  for any 

irrational 0 the corresponding pinched disc model described by Keller is homeomorphic 

to Je- The pinched disc model is locally connected and thus not homeomorphic to JPe 
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LOCAL CONNECTIVITY OF SOME JULIA SETS 

Fig. 5. The initial 34 first-generation drops with parent either S t or OUo 

when JPo is not locally connected, e.g. when Pe is not linearizable on any neighbourhood 

of 0. The construction of  j~bs a n d  F~ bs follows on the next couple of pages. 

Define a s u b s e t  j ~ k e l e t ~  F~-n(Sl):JONUn>~O f o n ( S l ) .  The set jskeleton (or 

even the set j~kelet~ f0--~(Sl)) naturally decomposes into a countable union of 

Jordan curves, with two such curves having at most one common point. Moreover, 

jskeleton is dense in J0 =Jr0 - U,~>~0 f0--n(D), because 0 ( ~ =  o f0--k(D))=F0-n(S 1) and 

j~keleton is dense in J/o. 

LEMMA 0.1. Let n>~O and let w be a connected component of Fon(Uo). Then the 

restriction F~=f~:  w---*Uo is a diffeomorphism. 

Proof. The map fs is a branched covering map. Moreover, the set 00 is simply- 

connected and does not intersect the forward orbits of critical points. [] 

For w and n as in the lemma we shall say that  w is a (closed) n-drop or just a drop, 

if n is understood. We shall say that  the interior of w is an (open) n-drop. Moreover, 

we define the root z of w to be the boundary point given by {z}=fon(1)NOw.  Then the 

relation root of drop defines a bijection between F0--n(1) and the set of n-drops, n~>0. 

LEMMA 0.2. Let w be an n-drop for some n>~O and let z be the root of w. Then 

either zES  1 or z belongs to the boundary of an n'-drop w' with O<~n' <n. 

Proof. Let O~k<.n be minimal with the property F0k(z)ES 1. If z ~ S  1 then k > 0  

and F ~ - l ( z ) e O U o - { 1 } ,  because Fol (S l )=SlUOUo.  Let n ' = k - l < n  and let o / b e  the 

closed n'-drop containing z. Then n' and w ~ satisfies the conclusion of the lemma. [] 

For w as in the lemma above we say that  S1 and w' respectively is the parent (drop) 

of w. More generally we shall define generations as follows: The two discs D and 00 
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Fig. 6. Addresses of some drops and their roots 

form generation zero. The drops of first generation are the drops w with root z E S 1U cOUo. 

A drop w and its root are of generation m 1> 2 precisely if the root belongs to the boundary 

of a drop w I Cw of the ( m - 1 ) s t  generation. 

Let xj=f~-J(1)NS 1, VjEZ,  and let yjEOUo be given by fo(xj)=fe(yj)  for n~>l. For 

s~> 1 let Us, V8 be the open s-drops with roots xs and Y8 respectively. The first generation 

drops and their respective roots are precisely the drops Us, V~ and roots x~, ys, for s~> 1. 

See Figure 5. 

More generally we shall label the drops and roots of all generations by finite but 

arbitrari ly long tuples with positive integers as entries. See Figure 6. A label should be 

thought of as an address: Suppose that  w is a drop of generation m~> 1 with root x. They 

will be labelled by a common m-tuple  (sl,  . . . , s m ) e N  m, where (sl ,  ..., s m - 1 ) E N  m-1 is 

the address of the parent and the sum n=~i~=l si is the number  of iterates it takes to 

map w onto U0 and x onto 1. Another way to view the last entry is to a p p l y ,  o 

to w and its parent,  thus mapping the parent onto U0 and w onto V~,,. It  turns out to be 

convenient to denote drops descending directly to 81 by U81 ..... ~,, and drops descending 

to U0 by V~ 1 ..... ~m. Moreover, we let xsl ..... ~.~ and Y81 ..... ~,, denote the respective roots. To 

complete the picture we let E denote the empty  sequence and define U~=D and V~=Uo. 

In this way there is a natural  bijection between drops and labels. Finally let us note tha t  

F~l(Xsl ..... ~m+I)=F~(Y~I ..... ~m+l)=Y~2 ..... 8m+1. 

We define limbs and sublimbs X skelet~ y skeleton of  j ske le ton  (81 .-., Sin) E N ra, m >1 0, 
81~...18m' 81~,,,~8m 

as the union of U~I ..... sm with all its descendents, and V~ ..... ~,~ with all its descendents 
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respectively: 

xskeleton = c~Us1, ,sn.L U U U c~Us1 ..... Sm,$l ..... ~m ! 
8 1 ~ . . , 1 8  m . . .  

m ' ~ l  (tl ..... tm)EN m' 

y skeleton 
81 ..... 8rn = (~Vs1 ..... 8m U U U c~Vsl . . . . .  8rn,~l ..... $m' " 

m'~>l (tl ..... tm)EN m' 

Then 
xskelet~176 a n d  j ~ k e l e t ~ 1 7 6  skelet~ (1) 

Moreover, apart from this, any two limbs of  j~keleton are either disjoint or contained one 

in the other. 

The model set j~b~ and the model dynamics F~bs: j~bs__~ j~bs are defined as follows: 

Let {&~, 9~}, s E N  N, be a family of distinct ideal points, i.e. points not already in  j;keleton. 

Define J~bs=jskelet~ Moreover, define F~b~=Fo on j$ke|eton and for 

8 =  (81 ,82 ,  ..., Sn,  ...) E N N, 

F'absfx ~ F'absr ^ \ / :~Sl-l,s2 ..... S . . . . .  if and only if 81 > 1, 

o ~ s_j = o (Ys_) = ( ~ . $ 2 , 8  3 . . . . .  8 . . . . .  if and only if S 1 = 1. 

Define abstract limbs 

x a b s  ---- x 'skelet~ [J U Xsl ..... sin,t_, 
t_EN N 

~(~abs ---- ~ ' ske le t~  U ysl  ..... sin,t, 
8 1 ~ , . , ~ 8 m  8 1 1 . . . ~ S m  

tEN  N 

for all m~>0 and for all (Sl , . . . , sm)EN m. We shall say that  xsl ..... s,,,Ysl ..... s,, are the 

roots of the respective (abstract) limbs. 

We topologize the set j~bs as follows: Define the nested sequences t--slf ~('abs,...,sm }m~)l 

and {Y~b~...,S~}m>~ 1 to be neighbourhood bases of ~ and ~)~_ respectively. In order to 

define a neighbourhood basis for any point in j$kelet~ also, we first do so by 

defining a neighbourhood basis for any point in 81 -{1}  and then pull these back by F~ bs, 

thus making this map automatically continuous. Given z E S 1 -  { 1 }, take as element of a 

neighbourhood basis at z any arc I E S  1 containing z as an interior point together with 

all limbs X~ bs with root x s E I ,  s>0.  Our proof of local connectivity of Je implies that  

Je is homeomorphic t o  j ~ b s  by a homeomorphism which conjugates dynamics. 

Recall Theorem 1.3 and let R+, R_ be the external rays of J0 (and Jr0) landing on 

the critical point 1. Let II0 C C denote the closed subset containing U0 and bounded by 

the arc R+ U { 1 } U R_. For n/> 0 and 12 a connected component of T0-n (H0), the restriction 

= H0 (2) 
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Fig. 7. Sketch of some wakes 

is a diffeomorphism. The proof is identical with that  of Lemma 0.1. For fl and n as 

above we say that  ~ is a (closed) n-wake or just a wake if n is understood. See Figure 7. 

We shall say that  the interior of ~ is an (open) n-wake. Any two n-wakes are trivially 

disjoint, being preimages of the same set by a covering map. If ~ is an n-wake and ~ '  

is an n'-wake with O<~n~<n. Then either ~ ' N ~ = ~  or 12Cfl t, because external rays do 

not cross. 

An n-wake contains a central n-drop, whose root x is also called the root of 12. 

It is the meeting point of the two external rays bounding the wake. This defines a 

one-to-one correspondence between roots of n-drops and n-wakes. The notions of gen- 

eration and address is naturally carried over to wakes. To distinguish wakes descending 

to S 1 and OUo we shall denote by fl=,~l ..... 8~ and flv,~l ..... ~ the wakes with central 

drops U81 ,,~ and V81 8m respectively. Define Xsl s,,, =~(skelet~ =JeNf lx  81, ,sin 

and v --Vskeleton-- I~n~y,s 1 ,m, where the later equalities follows from jskeleton 

being dense in Je. Each limb is mapped diffeomorphically onto Y~ by (2) (and Ye is 

mapped homeomorphically onto Je by Fe). 

THEOREM 3.7. For each OE ]0, 1[ - Q  the Euclidean diameter of the principal limbs 

X ,  and Y8 tends to 0 as s--,oo. 

The proof of this theorem shall be given in w We obtain immediately some corol- 
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laries. We shall use X0 as a synonym for Y~. 

COROLLARY 0.3. For each OE ]0, 1[ - Q  there are no ghost limbs of D and Uo in Jo. 

That is, 

go = S i n  U z~ =s~uOVoU U ( x j u ~ ) .  
j>~o j>~l 

Proof. It suffices to prove the first equality sign, as Y~ =X0 maps homeomorphically 

onto Jo. Any point in z E Jo =j~keleton is accumulated by the proper limbs. This is 

possible only if z is already in 81 or in one of the proper limbs Xj,  because the size of 

the limb Xj tends to 0 as j tends to co, and each limb touches S 1. [] 

THEOREM 0.4. Let 0 E ] 0 , 1 [ - Q  be arbitrary. Any point of S;, and more gener- 

ally any point of j~keleton= Un~0  F~'-n(Sl)  , has a fundamental system of open connected 

neighbourhoods in Jo. 

Proof. Let us first prove the corollary for any zES  1 -{x~}s~>0. Let E>0 be given. We 

shall find an open connected neighbourhood w of z in Jo with wCD~(z) ,  where De(z) is 

the Euclidean disc of center z and radius e. Let so/>0 be such that  the Euclidean diame- 

ters diamE(X~)~ �89 for all s>~so. Let z l ,  z2ESl--{Xs}s>~oDDe/2(z) be points bounding 

an open subarc ] zl, z2 r of s l  _ u~o0 xj with z E ] zl, z2 r c D~/2 (z). Define 

 =lzl,z r u U xs. 
s,x.Elzl,z2[ 

Then w is the required neighbourhood. The above works in particular for the critical 

value v. Thus we can construct a fundamental system of connected neighbourhoods of 1 

in Jo from the system around v, as Jo is invariant Fo. By the same argument we prove 

local connectivity for the remaining points, first of S 1 and secondly of g~keleton. [ ]  

Let Eo-= Jo - jskeleton. The set Eo is readily seen to be F0-invariant and to contain all 

the repelling periodic points for Fe. In order to complete the proof of local connectivity 

of Jo we need to produce a fundamental system of connected neighbourhoods for each 

point in Eo. We shall introduce some notation in order to facilitate this discussion. This 

notation is inspired by the "puzzle" notation of Branner and Hubbard [BH]. 

Definition 0.5. For each s=(sl ,s2,  ...,sin, . . . )EN N define Xs, Ys to be the nested 

sequences of compact connected sets, 2(8_-- {X81 ..... 8,~ }m~>l and y ~=  {Y81 ..... ~.~ }m~>l. We 

call each such sequence a Nest. 

We have X~ 1 ..... ~ cX81 ..... 8,~_~, Ysl ..... ~.~ c Y ~  ..... 8.~_~ for any m-tuple (Sl, . . . ,sm), 

because it holds already for the corresponding wakes. 
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Definition 0.6. We define the Core of a Nest 3;~_ to be the set 

Core(y~) = N Ysl ..... s,, c Ee. 
m ~ l  

And likewise for Core(;d~). The Core of a Nest is always non-empty, as it is the intersec- 

tion of a nested sequence of compact non-empty sets. We shall say that  the Core of the 

Nest 3;~_ (X~) is trivial if and only if it is a one-point set. 

If Core(ys)={z},  for some zEEo, then 3;8_ is a neighbourhood basis of compact 

connected neighbourhoods of z in J0 and likewise for Core(X_~). 

Let us recall that  for any s~> 1 the map F~ maps the limb X8,81 ..... 8m homeomorphi- 

cally (even diffeomorphicalty) onto the limb Ys~ ..... ~,, for every (sl, ..., sm)EN m, m>~0. 

Thus for the question of triviality of Cores, it suffices to consider only Nest 3;~, s E N  s .  

PROPOSITION 0.7. For each ~E ]0, I [ - Q  the following two statements are equivalent: 

(1) The set Jo is locally connected. 

(2) For all _sen N, Core(ye,_~) is trivial. 

Proof. Let ~E ]0, I [ - Q  be given. 

(2) =~ (1). It suffices to show that  any zEEo has a fundamental system of connected 

neighbourhoods in Je, because of Theorem 0.4. Thus (2)=~ (1) follows from the two 

remarks preceeding this proposition. 

(1) =~ (2). We shall actually prove the equivalent, non-(2) implies non-(l). Suppose 

that  Core(y~_) is non-trivial for some s E N  N (this case suffices by the remark preceding 

this proposition). For each m>~ 1 let ~,~ be the (sl +. . .+sm)-wake with root Y81 ..... 8., and 

let ~+, ~?~ E T = R / Z  be the arguments of the two external rays bounding 12m. Moreover, 

let ~,~ C T be the interval of arguments of external rays in f~m. Then an external ray of 

argument ~/E T accumulates Y81 ..... 8,~ if and only if ~/E ~m. Moreover, 2 s~ +"'+sin. l(~m) = �89 

We deduce that  exactly 1 external ray accumulates Core(ys_). On the other hand if 

Je=OAo(c~) is locally connected, then any point zEJe is the landing point of at least one 

ray and any external ray lands. Thus non-(2) and (1) (logical and) lead to a contradiction. 

This completes the proof. E] 

THEOREM 3.25. For each ~E]0, I [ - Q  the Core(y~) is trivial for any s E N  N. In 

particular, Jo is locally connected for each irrational 8. 

Before we open the final discussion leading to local connectivity of the Julia sets Jf~, 

let us discuss a side result, which is interesting in its own right. It identifies for instance 

large compact hyperbolic subsets of Je. 
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Definition 0.8. Define a map of first return from the collection of first generation 

sublimbs of Y~ onto Y~, 

J=e: U Y , - ~  by .felt, =F$=fS. 
s~>l 

The map is infinite-to-i, but for each s>~l it is the restriction of a univalent map 

from a neighbourhood of Y~ to a neighbourhood of Y~. Moreover, ~'e leaves the set 

EYe:=EeAY~ invariant and carries all the essential dynamics of Fe on EYe. Let A 

denote both the hyperbolic metric on C - D  and its coefficient function. 

THEOREM 3.26. For all 0E]0, I [ - Q  and for all zEEYe we have 

iiDz~ell ~ = A(Te(z))[bV~(z)l > 1 and IIDz:T~e [I ~ ~ c~. (1) 
~(z )  m - ~  

Moreover, if  0 is of constant type there exists M > 1 such that 

HDz.~OH~ ) M for all z E E Y o .  (2) 

The shift a: NN--*N N is the map which forgets the first entry and shifts all other 

entries one to the left, that  is, a((sl ,  s2, ..., sin, ...))~-*(s2, ..., sin-l ,  ...). We define for any 

_s= ( s l ,  ..., s ~ ,  ...) ~ N  N, 

J=e(Y~_) := {J=e (Y~, ..... ~ ) } ~ > ~  = {F~  1 (Y~, ..... ~ ) } ~ > ~  = Y<_~). 

We see immediately that 

Core(yr = f~' (Core(y~_)) = bye (Core(y~_)), 

as f ~  is holomorphic. In particular, the property of having trivial Core is invariant 

under a. 

The map d is t ( . , .  ) : N N ~ N  N given by dist(s,_t)=~m~> 1 ~(sj , t j ) /2J is a metric on 

N N, which makes the space complete but not compact. For {81<s2<. . .<Sm}CN let 

~8~ ..... ~.~={Sl,. . . ,sm} s .  Then ~s~ ..... s.~ is a shift-invariant Cantor subset of N N. 

The following corollary of Proposition 0.7 shows that  we can use symbolic dynamics 

to try to understand the dynamics of ~'e on EYe, and thus the  dynamics of Fe on Ee. 

COROLLARY 0.9 (o f  Proposition 0.7 and Theorem 3.25). Define a map ~Po: N N ~  EYe 

by 

Core(y~) = {~e(_s)}. 

The map ~e is a homeomorphism which conjugates the shift map a:NN--*N N to the 

map ~e: E Y e - - E Y e .  
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COROLLARY 0.10. For any ~E ]0, I [ - Q  and for any Es~ ..... 8,~ the set ~ o ( ~ ,  ..... ~,~) 

is an Y:o-invariant hyperbolic Cantor set on which the dynamics of Y=o is conjugate to the 

one-sided shift on m symbols. 

COROLLARY 0.11. For any 0 E ] 0 , 1 [ - Q  of constant type there exists a constant 

L = L ( 0 ) > I  such that LK]#] for # the multiplier of any repelling periodic orbit for Po. 

Proof. Given 0E ]0, 1 [ - Q  of constant type let M be as in Theorem 3.26 (2). More- 

over, let r C--*C be a quasi-conformal homeomorphism conjugating F0 to P0, and let 

K >  1 be the constant of quasi-conformality of r Then the constant L = M  1/g works, 

because of the following two remarks. 

(1) Any repelling periodic orbit for Fo intersects EYe. 

(2) The homeomorphism r preserves repelling periodic points, and moreover, if #F 

and ~p are multipliers of corresponding repelling orbits then d;~(~F, #p)~log K, where 

d~(. , .  ) denotes distance with respect to the hyperbolic metric on C - D .  [] 

For K c C  a compact connected subset define Hull(K) to be the set K union the 

bounded connected components of C - K .  

LEMMA 0.12. Let f iCC be any wake. Then 

f in& c finJs  c n-Ao(OO) = H u l l ( f i n d o ) .  

In particular, diame(f~nJo)=diame(finJSo ). Moreover, the "l imb"of  Jlo, f~nJfo, is 

connected. 

Proof. The only non-trivial verification is the equal sign: f i-A0(c~)=Hull(f inJ0).  

However, this follows from 0Ao(oO)C J0 and the definition of wakes. [] 

COROLLARY 0.13 (of Proposition 0.7 and Theorem 3.25). Any point in EoUT(Eo) 

has a fundamental system of connected neighbourhoods in Jfo, and thus so has also any 

point in 

U I0-n(E0u (Ee)) �9 
n~>0 

For s~>0 let fib be the s-wake with root xs. Define for s~>0 limbs of 81 in Jfe by 

X+8=Jfonfis and X_~=~-(X+,) (the indices should be read plus s and minus s). 

COROLLARY 0.14 (of Theorem 3.7). The Euclidean diameters of the limbs X+8 and 

X_~ tend to 0 as n--,oo. Moreover, S 1 has no ghost limbs, i.e. Jse =sluUs>>.o(X+sUX-~), 

and any point of Un~>0 fo '~(sl)  has a fundamental system of connected neighbourhoods 

in Js " 
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Let Zo=J$o-Un~o f-n(JeUT(Jo)). Rename U0 to U+ and define U_=T(U+). An- 

other caracterization of Zo is that  it is the set consisting of those points zE Jfo whose 

forward orbit passes infinitely often through alternately U0 and T(Uo). 

The two corollaries above prove that  J$~ is locally connected at any of its points 

except those in Zo. As a last theorem on local connectivity we present 

THEOREM 4.1. For all 0e]0, I [ - Q  any point of Zo has a fundamental system of 

connected neighbourhoods in J$o, and thus J$o is locally connected. 

1. Loca l  c o n n e c t i v i t y  a t  t h e  cr i t ica l  po in t  1 

A family of Jordan curves. Recall that  Fo =fo on C - D .  They shall thus be used syn- 

onymously on this domain. Let fl0 be the unique repelling fixed point for Fo in C - D .  

Recall that  xj=Fo-J(1)nS 1 for each j E Z ,  that  yjEOUo is given by Fo(xj)=Fo(yj) for 

each j >/1, and moreover t h a t  jskeleton __ Un~>0 f o  -n (Sl )  �9 

For zl, z2 both in S 1 the symbols [zl, z21 and lzl ,  z21 denote the shorter, closed and 

open subarc respectively of S 1 bounded by zl and z2, if not stated explicitly otherwise. 

We shall furthermore use the same notation for subarcs of OUo. 

We shall construct a family of Jordan curves with nice properties. Each Jordan 

curve F in the family shall possess the following five fundamental properties: 

(1) FNJo=FNJso is a connected subset of jskelet~ I F--n{~o ~ 
0 k- )n~0  0 ~, 1' 

(2) F=(FNJo)U(FNAo(oC))cC-(DUUo). 

(3) FNS ~ and FNOU0 are non-trivial arcs of the form [1, xml and [1, Yt~ respectively 

for some m,l>~l. 

(4) le(F)<oc, where le(. ) denotes the Euclidean curve length. 

(5) Indr (0) =0. 

(See also Figure 8 and the subsection "An initial curve" .) 

THEOREM 1.1. There exists a family of Jordan curves, {Fk}k>~o, such that each 

curve has the five fundamental properties stated above and, moreover, 

l~(Fk)-~0 as k--*oc. 

For any Jordan curve "yEC let D(~) denote the closure of the bounded connected 

component of C - ~ .  

COROLLARY 1.2. For each 0E]0, I [ - Q  there exists a fundamental system of con- 

nected neighbourhoods of 1 in both Jo and J$o. 

Proof. We construct, using the family {Fk}k>~0, a neighbourhood basis of connected 

neighbourhoods of 1 in Jo and in Jso as follows. For each k let =--k be the union of 



I'1 

178 C. LUNDE P E T E R S E N  

Fig. 8. The first three curves of the family {Fk}k~>0 

fo(D(Fk)) with its reflection in 81. Then EkNJo and EkNJfo are connected neighbour- 

hoods of v = fo (1) in Jo and JYo respectively, because of properties (1) and (3) and because 

both Jo and Jfe are connected. The diameter of "--k tends to 0 as k--*oz, because fo is 

continuous and diam(D(Fk))--~0. Hence the sequences {~kNJo}k>~O and {~kNJfo}k>~O 
form neighbourhood bases of v in Jo and Jfo respectively. Consequently the sequences 

of preimages {f~l(=--kAJo)}k>>.o and {f~l(EknJfo)}k~o form neighbourhood bases with 

connected neighbourhoods of 1 in Jo and Jfe respectively. [] 

We obtain as an immediate corollary 

THEOREM 1.3. For each OE ]0, 1 [ - Q  the critical point 1E Jfo is in the impression of 

precisely two prime ends of the immediate basin of oc for fo. The impressions of these 

two prime ends equal {1}. In particular, there are precisely two external rays landing 

on 1. 

An initial curve. Denote by v the critical value x-1 = fo (1)E 81 and recall that  Yl is 

the preimage of 1 in OUo. We shall suppose that  0 < 0 <  1, so that  also 0<t(8)  < 1. Then v 

is in the upper half-plane and Xl is in the lower half-plane. The other cases, �89 <0 <1 ,  can 

be obtained using, for instance, the symmetry under conjugation by complex conjugation. 

Let x0 be the closed subarc of OUo mapping homeomorphically to the subarc 

rl, v 1 c S  1 in the upper half-plane and let ~/0 be the closure of the complementary subarc 

of OUo. The arcs x0,'Y0 are thought of as starting at 1 and ending at Yl. Define xn and 

%~ inductively as the arcs which start  at the common endpoint of xn-1  and %~-1 and 
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X 0  

D 

Rzl2 

Xl  
X2 

J 
"Y1 

ro  

x 

' \  

Fig .  9. T h e  a r c s  ~, a n d  x w i t h  s o m e  o f  t h e i r  c o n s t i t u e n t s  

which map homeomorphically to xn-1  and %-1  respectively by fe (see Figure 9). Let 

~/denote the arc "/0~1 ... "Y . . . .  , i.e. % followed by ")'1 etc., and let x denote the arc which 

is the preimage of X0Xl ... xn ... starting at Xl=F~ -1 (1). 

THEOREM (Sullivan, Douady, Hubbard, Yin). Let R be a rational map and let CR 

denote the closure of the post-critical set union possible rotation domains for R. Sup- 

pose that ~: ] - c ~ , 0 ] - - * C - C R  is a curve with Rn(~/( t ))=~(t+l)  for all t < - l .  Then 

limt--._~ ~(t) exists and is a repelling or parabolic n-periodic point 13 for R. Moreover, 

if t3 is parabolic then its multiplier is an n-th root of unity. 

Proof. See [TY]. [] 

We make the arcs ~ and x closed by adding the points ~e and 3~ respectively, where 

3~ at the end of >c is a preimage of the repelling fixed point ~e. Join the two arcs by 

the lower subarc of 81 between the two root points 1 and Xl. Also join the two arcs 

by following 7 by the segment of the external ray of external argument 0 from /3e to 

equipotential level 1, say. Next follow the equipotential curve at level 1 in the clockwise 

direction to the external ray of external argument �89 Finally follow the later external 

ray into the endpoint ~ of g. We call the Jordan curve just constructed F0. Evidently 



180 C. L U N D E  P E T E R S E N  

. 'x 
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h 

v 
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V0 

Fig. 10. Iterating F backwards until it hits the critical value v 

F0 C3 Jo =Fo C~ J/o is connected. 

LEMMA 1.4. The are F0 has the five fundamental properties (1) through (5). 

Proof. The only non-trivial verification is (4). However, this follows from the fact 

that  the point flo is repelling. [] 

A binary tree To of Jordan curves. Let 0e  ]0, I [ - Q .  We shall construct a binary 

tree To of Jordan curves F possessing the five fundamental  properties (1) to (5) above. 

The root of the tree To is the curve F0 constructed above. The two children of any FETo 

shall be lifts of F to some appropriate  iterate of fo. The motivation for creating the tree 

TO is that  we shall find the sequence {Fk}k>~o of Theorem 1.1 as a descending path  in TO. 

Moving from one Jordan curve to the next. Let F be a Jordan curve satisfying the 

five fundamental properties (1) through (5) above and with I : = F N S  1 = [1, xml.  We move 

from F to anyone of its two children FPE TO as follows. If I does not contain the critical 

value v, then there is a unique inverse branch of fo defined on D(F)  and mapping I to 

some subarc of S 1. If also the inverse image of I does not contain v we may continue to 

find a unique branch of f0 --2 on D(F) mapping I to some subarc of S 1, and so on. We 

may continue this until we have obtained a branch h of f o  (j-l) for some j ~> 1 defined on 

D(F) and mapping I to some subarc of S 1 containing v in the interior (0 is irrational). 

Here we have to make a choice. The preimage of h(F) by Fo can be viewed as two 

Jordan curves with 1 as a common point. Each of the two choices for F p satisfies the 

fundamental  properties (1) through (5) above, because F does so and they are lifts of F 

to Fd (and to fg). See Figure 10. 

Let g denote the composition of the final choice of inverse branch of Fo with h. 

We will call g a move. The map  g:D(F)---+D(F I) is a homeomorphism with fdog=Id 
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Fig. 11. The colouring of the Jordan curves F 

on D(F) .  It  is easily checked tha t  F = F ' N S  1= [1, xm,1 and O ' = F ' N O U 0 =  [1, Yz'] with 

{ m ' , / ' } = { j ,  re+j} .  The long composi t ion h of inverse branches of fe is univalent on a 

domain  containing D(F)  in its interior and g is a local diffeomorphism at  each point  of  

D(F)  except at  the point  x_3 E I = S 1 N F, which is mapped  to 1. Even though  g is defined 

on all of D(F)  we shall often just  write g: F---~F/. We note also tha t  x_ j  is the first re turn  

of 1 into I .  

One of the two choices for F I has I '  above 1, the other  choice has F below 1. This 

leads us to distinguish the following two types  of moves g: F--~F ~. 

(1) The  move g is called a Gain if I and I ~ are on the same side of 1, i.e. either bo th  

above or bo th  below 1. 

(2) The  move g is called a Swap if I and F are on different sides of 1. 

The  binary  tree ~ of Jo rdan  curves is cons t ruc ted  inductively with F0 as root  and 

using the above two moves. Moreover, for k~>l we let Te,k denote  the union of the 2 k 

subtrees of To for which the root  points are the curves k moves down from F0. 
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�9 I I 

0 O' 0 

B ~ .  B' B ~ B' 

R' R' 

G " G' G , G' 

Swap Gain 

Fig. 12. The dynamics of colours under the two kinds of moves 

Colouring the Jordan curves F. Recall that  Uj and Vj are the unique connected 

components of Fo-J(Uo) (open j-drops) with roots xj and yj respectively, j~>l. 

Any curve FETe naturally falls into five subarcs, two of which, I=FNSa= [1, Xm] 

and O=FNOUo=[1,y~], have already been introduced. Let B=FNOUm, R=FNOVh 

and let G be the closure of the complementary subarc of F left out by the others. When 

making drawings the reader is invited to colour the different subarcs of F, B(lue), G(reen), 

R(ed) and O(range) and invent a colour for I. The careful reader will have observed that  

the arc G actually consists of three parts, one part  at either end contained in the Julia 

set and the middle part contained entirely in the basin of infinity, To emphasize the 

colouring we shall also at times write F(I ,  B, G, R, O) for F (see also Figure 11). 

Moving the colours. Let g: F(I ,  B, G, R, O)--*F'(I ' ,  B' ,  G', R', O') be a move between 

Jordan arcs satisfying (1) through (3). Then always 9(I)=I'UO' and g(RUG)=G'; 

whereas g(O)=B', g(B)=R' if g is a Swap; and g(O)=R', g(B)=B' if g is a Gain. See 

Figure 12. 

A good subtree. As mentioned above the family {Fk}k~>0 in Theorem 1.1 shall be 

found as a descending path in To. To facilitate the choice of a good path we shall consider 

especially certain branches of To. More precisely we shall consider such paths in To for 

which the sequence of moves does not contain consecutive Gains. We may illustrate this 

by the flowchart Figure 13. 

We call a sequence of moves admissible if it complies with the flowchart. We let 

~ denote the subtree of To consisting of those Jordan curves F obtained from F0 by an 

"~* "*AT, admissible sequence of moves. Furthermore, we let ~e,k--Ye e,k for k>~0. 

We shall at the end of this section (Bounding G(reen)) describe how to choose the 

sequence {Fk}k~>0 which satisfies the statement of Theorem 1.1. We are however already 

in position to control all but  the length of the G part  of each FEGt~. Let A denote the 

hyperbolic metric on C - D .  
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Fig. 13. Flowchart for defining G$ 

PROPOSITION 1.5. For each OE ]0, 1[ - Q  there exist constants Ko,e, KB,o, KR,O >0 

and L n,o >0 such that any Jordan curve F(I,  B, G, R, O) E ~ satisfies: 

(1) l~(O)<~go,o.l~(I), 

(2) le(B)<.KB,o'l~(I), 

(3) le(R)<.gR,o.l~(I), 

(4) lx (R) ~< LR,0. 

Here l~(. ) denotes Euclidean length and l~(. ) denotes length with respect to the 

hyperbolic metric A on C - D .  We shall postpone the proof of Proposition 1.5 to the 

next chapter. That  chapter is devoted to proving a universal version of this proposition. 

The proof essentially consists in obtaining complex bounds from the Swi~tec a priori real 

bounds. 

We shall study the endpoints xm of I and Yt of O. This leads us to discuss first and 

closest return. 

Moments and points of closest return. Let 0e  ]0, I [ - Q .  The nth convergent of 0 is 

the rational number pu/q,~ obtained by truncating the continued fraction expansion of 

at level n - 1 ,  i.e. 

Pn 

qn 
alq 

a2 + 

1 

1 

1 

�9 . 1 

an-1 

Defining qo=pl =0  and ql = p 0 = l  gives the recurrence formulas pn+l=anPn+pn_l and 
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qn+l =anq,~+q~-l. We are however not interested in the pn. 

The integers q,~ are called moments of closest return and the integers aq~+qn-1, 

O<a<<.an, are called moments of first return for orbits of fo: Sl--*S 1 and f~-l: SI__~S 1 

(c~=0, an are also closest returns). The corresponding points X+q~ and xT(~q~+q=_~) are 

called points of closest and first return respectively of 1 to itself under f ~ l .  Note that  

as usual in this paper the backward iterates of I in S 1 have positive indices, whereas the 

forward iterates have negative indices. 

Let ~ denote the logarithm of the critical value v in ]0, i27r[. For j E Z - { - 1 }  let 2j 

be the logarithm of xj  in ]~-27ri, ~[. 

LEMMA 1.6. Let < denote the natural ordering on JR. Suppose that n is even 
1 and 0<~ < 1 (the case n odd or ~ <0 < 1 is analogous, but with all inequalities reversed). 

Then, i r a , # l :  

and if an=l: 

X--(qn--qn-1) < Xqn-I < "Xqn+qn-1 < "'" < 'Xqn+l --qn < X--qn 

< Xanqn+qn-1 = Xqn+l < O < Xqn < X--qn-l ' 

X--(qn--qn 1) <~Cqn I <]:--q,t <2Cqn+qn-1 =:~q, ,+l  < O < X q n  <:~--q~-l" 

Proof. For the rigid rotations, Ro(z)=z .e  i2~~ thc above is a standard result, thus 

it follows from the Poincar6 semiconjugation theorem for circle homeomorphisms. [] 

LEMMA 1.7. The largest subarc of 81 around 1 which is mapped diffeomorphicaUy 

into S 1 by fo (q , -U  is the arc bounded by X_(qn_q,,__l ) and X_q,~ 1. 

Proof. Follows from the previous lemma, because qn=an_lqn_l +qn--2 and the first 

return of 1 under fo into the subarc of the lemma is the point x_q,.  [] 

Tracing the endpoints of I and O. In the sequel we shall focus on the combinatorics 

of the end points of the subarcs I and O of the Jordan curve F(I ,  B, G, R, O). For this 

reason it will be convenient to introduce F(xm, Yl) as a synonym for F, where xm and Yl 

are given by I =  [ l ,xm]  and O= [1, Yt]. (Note that  the points Xm and Yl alone do not 

specify the curve F(xm, Yl) uniquely.) 

LEMMA 1.8. For each F(Xm,yl)E~/-~ there exist n ~  l and O<~o~<<.a n such that 

{ m , l } =  {qn,(~q,~+qn-1} (equal as sets). 

Note that  anqn-4-qn--1 =0qn+2 +qn+l, and hence the numbers n and a are not unique 

when a = 0  or o~-an. 
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COMPLEMENT TO LEMMA 1.8. Let g: F(Xm, Yl )---+ F' ( Xm' , YV ) be a move and suppose 

that m=(~q,~+qn-1, n~  l and 0~<a<an. Then f ~  og=Id. Moreover, 

(1) (m' , l ' )=((a+l)qn+qn- l ,qn)  if g is a Gain, 

(2) (m', l ' )=(qn,((~+l)qn+qn_l) if g is a Swap. 

(Note that here we have equality of ordered pairs.) 

Proof. We prove the lemma by induction on the number of moves it takes to pro- 

duce F(x,~,y~) from Fo(xl,yl). In doing so we shall simultaneously prove the com- 

plement. As Fo(xm,yl) has m = l = l = q l = q l + q o  the induction basis is okay. Assume 

next that any Jordan curve F ET0 which is at most k~>0 moves down from Fo sat- 

isfies the statement of the lemma, and let F(xm, yl)ETo be any such curve. Write 

m = ~q,~ + qn- ~ with n/> 1, 0 ~< c~ < an, and let g: F (Xm, Yz) -* F' (xm,, Yv ) be any of the two 

moves from F. Then f ~  og--Id by Lemma 1.6 and the definition of moves. It follows that 

(m' , l '}={qn,  ((~-t-1)qn-l-q,~-l}. This proves the lemma and moreover the complement, 

because g(Xm)=Xm, if and only if g is a Gain. [] 

LEMMA 1.9. Suppose that F,F'ET0 and that g:F(xm,yl)--~F'(xm,,yv) is a move. 

Then there exists n ~  2 such that f~"og=Id, and moreover, 

m=(~q,~+qn-1, 0~< c~ <an,  

l=~qn-l+q,~-2, O<~<<.an-1. 

Proof. Let n~>2 and 0~<(~<a,~ be given by m=~qn+qn-1.  It follows from Lemma 1.8 

and its complement that f ~og=Id .  If 0<a ,  then l=q,~=an-lqn-1 +qn-2 by Lemma 1.8. 

And if 0--a, then m=qn-1, and Lemma 1.8 implies l=~qn-l+qn-2,  with 0~<f~<a,~-l. 

Thus in either case the lemma follows. [] 

PROPOSITION 1.10. Let FETo be arbitrary and let F1 and 1"2 be the arcs obtained 

by the two moves from F. Then 

D(f0(rl)) = D(f0(r2)) c D(f0(r)). 

Proof. The first equality sign follows from the definition of moves. For each FET0 let 

hr: D(F)-* C be the long composition of inverse branches of f0 with v E hr (I) c S 1, where 

I equals 81NF. We shall prove the following equivalent formulation of the proposition: 

VF~T0, 

hr(r)  = D(f0(F)). (1) 

Moreover, (1) is equivalent to Jonhr(r)=hr(rn&)=D(fo(r)), because external rays 

do not cross and f0 maps the equipotential curve at level p>0 in Ao(cO) to the equi- 
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potential  curve at level 2p. We divide the curves FETe into two complementary classes. 

The first class consists of all curves F of the form F=F(Xq~,yt) for some n~>l and 

some l=l~q~+q~-l, O~<.a~.  The second class consists of all curves F of the form 

r=r(x , Yqn) for some n~>l and some m=aqn+q,~-~, 0<c~<an (recall Lemma 1.8). 

Suppose first tha t  F = F ( I ,  B, G, R, O) belongs to the first class. If 0 ~ < a , ~ ,  then 

h r ( I )  = fo(rxq=+~+q~, Xq=+~]) c fo(]Xqn, Xj3qn+qn-1 r) c fo ( iuo) .  

The fundamental  curve properties (1) through (3) then implies tha t  hr(FNJo)cD(fo(F)),  

and thus (1) holds. 

For ~ = a =  we have to look a little bit further. 

CLAIM. For any F(Xm,yt)=F(I ,B,G,R,O)ETe,  with m=aqn+qn-~, for some 

n>~l, O~c~<an, we have [Xm,Xm,q~_x]cB, where 

Fxm, xm,q:_,l = z - ( r l  yqo_,l)navm. 

Proof of the claim. Note at first that  it suffices to observe tha t  the claim holds for Fo 

and to prove tha t  the claim holds for those F obtained by a Swap from their predecessor, 

because a Gain preserves B (see the subsection "Moving the colours"). Thus we can 

suppose that  m=qn-1 and that  the last move g~:F~(Xm,,yz,)--~F(xq~_l,Yt) is a Swap. 

Then l~=~qn_2 +qn-3 for some 0~</3~<an-2. The claim then follows because gt maps O ~ 

to B and [1, Yq,~-l~ C--O# by Lemma 1.9. 

Suppose that  F is in the first class with f~=an, so tha t  F=F(xq,,yq~+l ). Let the last 

move in obtaining F be g': F~(xm,, yl,)--*F(Xq,~, yq,~+~). It  follows from Lemma 1.8 with 

its complement that  g~ is a Swap and m ~ = (an - 1) qn + qn- 1 -- q,~+ z - qn. Let 

B' = rx.o+,--qn, Xqn+,--q,,,k] = r'NOUq,,+~_q,. 

Then 

and rYq.+x,Yq,.+,,q,.-,] C ryq.+,,yq:+,,kr=g'(B')=R 

by the claim, and hence 

hr(I) = fo(rx,~+,+,~,~,~+, l) c Z~<lzq~176 c fo ( suo)  

and 

hr (0) = fo ( [Yq~+l, Yqn+l,q~+l 1 ) C fo ( [Yq~+x, Yqn+~,k [) = fO (n). 
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) 

Io(=,,,,+,) Io(=o,.) 
Fig. 14. The  "worst" case ~=an 

The fundamental curve properties (1) through (3) then imply that  hr(FAJe)cD(fo(F)) 

(see also Figure 14), and thus (1) holds. 

This proves that  !1) holds for any F in the first class. Suppose next that  F belongs to 

the second class, i.e. F(x~q,+q,_l, yq~) for some 0<:a<an.  It follows from the complement 

to Lemma 1.8 that  there exists a F'=Ft(xq,_l,yz)ETe such that  F is obtained from 

F' by a consecutive Gains. Moreover, each Gain is a local inverse of fg~ mapping 1 

to yq. Let gl:F'(Xq~_l,yl,)---*F"(Xq~+q~_~,yqn) be the Gain of F 1. Then hr,=foog ~ 

and D(gl(r'))cD(r'), because F' belongs to the first class and hence satisfies (1) by 

the above. But then the Gain of F '~ coincides with the restriction of g' to D(F"). It 

then follows by induction that  D(F)cD(F ~) and that  the Gain g of F coincides with the 

restriction of g' to D(F), because a<an" implies that  g is also an inverse branch of f ~  

mapping 1 to yq~. But then F satisfies (1). This completes the proof. [] 

Bounding G(reen). We shall bound G and complete the proof of Theorem 1.1 (as- 

suming Proposition 1.5) before we end this section. Let WI=F~-I(C-b)cC-~) so 

that  fe=Fe: W1--*C-D is a degree-two covering. In particular, it is infinitesimally ex- 

panding with respect to the hyperbolic metric ~ on C - D .  Fix OE]0 ,1 [ -Q and let 

h0: F0-*C be the long composition of inverse branches of fe in the definition of moves 

from F0. Recall that h0 extends to a diffeomorphism from a neighbourhood of D(F0) 

onto a neighbourhood of D(h0(Fo)). Consider the half-line I from 0 to oo through the 

critical value v. Let ~ be the first intersection outside D o f /  with h0(F0). Let [v,c~] 

denote the closed line segment from v to c~. The segment [v, c~] cuts D(h0(F0)) into two 
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Fig. 15. The strongly contracting inverse branches 

closed pieces (we include [v, a] in both pieces and orient [v, a] outwards). Let ~0,+ be the 

piece containing the points in ho(D(F0)) immediately to the right of Iv, a] and let w0,- be 

the piece containing the points in D(ho(F0)) immediately to the left of [v, a]. Finally let 

we,+ =~0 ,+ -S  1. Let fl0,+, fl0,- be the connected components of fo-l(wo,+) and f~-l(wo,_) 

respectively, having a non-trivial boundary arc in common with Uo. See Figure 15. Let 

-1 f -1 .  D(ho(F0))~C denote the inverse branches of f0 with f~,+l(we,+)=120,+ and fo,+~ 0,-" 

fo, l_ (wO _ )=~O,_ r e spec t ive ly .  

LEMMA 1.11. Let 0El0, I [ - Q .  On f~o,+ the map fo is strongly infinitesimally ex- 

panding with respect to the hyperbolic metric )~ on C - I ) .  That is, there exists 0<2e(0) < 1 

such that 

A(fo(z)) , , ,  , 1 Vz e flo +, 
IID~f~ - ~  ]~ >" 1-2----~ 

and consequently the corresponding local inverse branches are strongly contracting, 

][D~f~:ll~ ~< (1-2r Vzewo,+. (1) 

Moreover, liminf II D z f o lt ~ --  a ,  where inf is over Dr(1)Nflo,+ and lim is for r-+O. 

Proof. On W1 the map fo is expanding with respect to A and moreover IIDzfoli~--* 3, 

when z ~ l  in f~ l (]v ,a])AW1.  [] 

Let F1 and F 2 be the curves obtained by one and two Swaps respectively from Fo. 

(This choice is not essential but convenient.) Let F(I, B, G, R, O) be any curve in the 

subtree of To with root F2. Let h be the long composition of inverse branches of fo on 



LOCAL CONNECTIVITY OF SOME JULIA SETS 189 

F with vEh(I). It is easy to check that  h(I)ch2(I2)C(ho(Io)) ~ It then follows that  

D(h(r))cD(ho(ro)). In particular we have h(RUG)Cwe,+Uwe,_. Alternatively we can 

appeal to Proposition 1.10, whose proof however requires a little more work. 

We are now ready to choose the sequence {Fk}k>~oC~ for Theorem 1.1. The first 

three curves, Fo, F1 and F2, have already been chosen above. We shall choose the 

sequence as a descending path in G$. Thus we need only specify how the decision between 

a Swap and a Gain is taken at the top of the flowchart (Figure 13). Suppose that  

•k(Ik, Bk, Gk, Rk, Ok), k~>2, has already been chosen. Let hk be the long composition 

of univalent inverse branches of fe defined on some neighbourhood of D(Fk) and with 

vEhk(Ik). Now at least half of the A-length of hk(RkUGk) is in either we,+ or we,_. If in 

we,+ we choose f - 1  e,+ as final inverse branch of fe on D(hk(Fk)), and if in we,- we choose 

the other branch f - 1  If the obtained move is a Swap, then we have chosen the Swap, e,-" 
and if it is a Gain we have chosen the Gain. If both we,+ and we,_ contain at least half 

the A-length, we choose the Swap. 

Definition 1.12. Define {Fk}k~>0 to be the descending sequence in G$ chosen above. 

LEMMA 1.13. There exist constants Lc,o, Kc,o >0 such that 

l~(Gk) <. Lc,e and le(Gk) <. Kc,e'le(Ik) 

for all k >10. 

Proof. We have gk(RkUGk)-=Gk+l and thus l~(Gk+l)<~l~(Gk)+l~(Rk) for all k, 

as fe is expanding with respect to )~. Moreover, / ~ ( G 0 ) < ~  and by Proposition 1.5 (4) 

there exists a constant LR,e such that  l~(Rk)~Ln,e for all k. By construction and 

Lemma 1.11 (1) we thus have 

l~(Gk+l) <~ �89189 

<~ (1-e)(l~(Gk)+LR,e) 

for at least every second k. Let L'=2Le,n/~. If l~(Gk)>~L', then 

l~(Gk+2) <~ (1-c)(l~(Gk)+ LR,e)+ LR,e <. l~(Gk)-c.Ln,e. 

Thus limsuplx(Gk)<~L'+Ln. This proves the existence of an upper bound Lv,e for 

l~(Gk). 

To prove the existence of KG,e note that  Gk and Bk have a common endpoint and 

that  Bk touches S 1. Moreover, le(B)<~Ks,e'l~(I) by Proposition 1.5 (2). The weight 

function )~(z) of the hyperbolic metric on O - D  is asymptotic to 1 / ( N - 1  ) when z 

approaches 81. Hence we also get the existence of KG,e. [] 
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Proof of Theorem 1.1. Let { k}k~OEGo be the sequence defined in Definition 1.12. 

Set Kr,o=I+KB,o+KG,e+KR,o+Ko,o. Then le(Fk)<~Kr,e.l~(Ik). It follows from the 

definition of G$ and the fact that  fo is conjugate to the rigid rotation Re on S 1, that  

l~(Ik)--*O when k---*oc. This proves Theorem 1.1. Appealing to the Swi~tec a priori real 

bounds (see w we even obtain exponential convergence to zero. [] 

2. Complex  bounds from real bounds  

The Swiqtec a priori real bounds. The following theorem is often referred to as the 

Swi~tec a priori real bounds: 

THEOREM (Swi~tec, Herman). There exists a constant 0 < a < l  such that for all 

0E ]0, 1 [ - Q  the points of closest return under f [ l :  Sl__~S 1, Xq,, n~ 1, satisfy 

Ixqn+1-11 1 
a<<. ]Xq _11 <<'a" 

Proof. [Sw], [Yo2, w proposition, p. 6]. [] 

An initial version of this result in the case of rational 0 and for n up to O=pn/qn 

appeared in [Sw]. M. Herman [He] observed that  Swi~tec's inequalities hold for all n, 

when 0 is irrational. He then used the inequalitites to prove the Herman-Swi~tec conju- 

gation theorem. The Swi~ktec a priori real bounds are actually bet ter  than stated above. 

The constant a depends only on f~ and hence only on f0. More precisely, it depends 

on macroscopic properties of re, such as the order of the critical point and the total 

variation of log lf~l on S l - J ,  where J is an interval around the critical point c, such 

that fe has negative Schwarzian derivative on J - { c } .  For more precise statements see 

the manuscript [Yo2]. 

Terminology 2.1. Let F(xm,yt)ETo. We say that  F has a Fresh B(lue) if F=F0  or if 

the last move in obtaining F was a Swap. If the last move in obtaining F was a Gain, we 

distinguish two cases. First we note that  (m, l)=(aqn+qn-1, qn), 0<c~<an, for some n, 

by the complement to Lemma 1.8. Moreover, an easy induction argument on that  same 

complement shows that  F is obtained from a FP(xq,, Yt) by c~ consecutive Gains. If F p 

has a Fresh B, then F is said to have a Young B(lue). If not, then F is said to have an 

old B(lue). 

We shall use a similar notion for R(ed). Let F(x,~,yl)eT0.  We say that  F has a 

Fresh R(ed) if F=F0  or if the last move in obtaining F was a Gain. If the last move in 

obtaining F was a Swap, then we distinguish three cases. It follows from Lemma 1.8 and 

its complement that  (m, l)=(q~, (c~+l)qn+q,~-l) for some n and O<<.a<an, and that  the 
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Young R Young R 
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F " F " F 
Fresh B Young B Young B 

Fresh R Fresh R 

an Gains 

Young R Juvenile R Old R 
F F F 

r r j G  , r / 
Young B Young B Old B 
Fresh R Fresh R 

Fig. 16. A branch of G0 with F 's  up to old B(lue) and old R(ed) (G = Gain, S = Swap) 

predecessor F '(xm,,  Yt') of F has m=aqn+q,~-l. We say tha t  F has a Young R(ed) if F '  

has a Fresh B or if F'  has a Young B and 0<(~. Moreover, we say that  F has a Juvenile 

R(ed) if F '  has a Young B, but  c~=0. If none of the above, then F is said to have an old 

R(ed) (see also Figure 16). 

The philosophy or motivation for the above terminology is tha t  the O part  of a curve 

FET0 is always newborn (and well controlled). A Fresh B or R is only one move away 

from the O stage (recall Figure 12). Moreover, a Fresh B belongs to a F(xqn, Yl) for 

some n. An arc B or R is considered Young, if it is at most an moves away from the 

Fresh B stage. Finally the borderline Juvenile R is an + 1 moves away from the Fresh B 

stage. In Propositions 2.10 and 2.11 as well as in the proof of Theorem 2.2 we shall see 

how we can carry over the initial control of O to its close descendents. 

Define G0 to be the subtree of To consisting of the set of F for which the descending 

path  from F0 to F does not pass any F'  with an old B. We note that  trivially G~cG0. 

Moreover, we note that  any FEG0 has either a Fresh, a Young or a Juvenile R. Define 

Go,k=Gon%,k. 

THEOREM 2.2. There exist universal constants Ko, KB, K R > 0  and LR >O, i.e. not 

depending on OE ]0, 1[ - Q ,  such that 

lim sup le (O) <g~ (1) 

le(S) 
lim sup ~ ~< K s ,  (2) 

go,k ~e I , l  ) 

l (n) 
lim sup ~ ~< Kn, (3) 

lim sup Ix(R) <. Ln. (4) 
~O,k 

We note tha t  Proposition 1.5 is an immediate corollary of the above Theorem 2.2, 

because G$ C Go. In the language of Sullivan [Su], the O, B and R of a F e Go are "beau",  
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i.e. bounded (here in terms of I), and after a finite number of moves the bounds are uni- 

versal. We shall express this by saying that the bounds are asymptotically universal. We 

remark also that it now easily follows that the bounds Lc,o and Ka,o are asymptotically 

universal. This chapter is devoted to proving the above theorem. We shall immediately 

prove the first statement. 

Proof of Theorem 2.2(1). Let r(xm,yl)ETe,1 so that {m,l}={qn,aq,~+qn-1} for 

some n~>l and O<~a<~a,, by Lemma 1.8. Thus [0,q,~]CI and Oc[0,  q,~_l] for some 

n>~l. As fe has a double critical point at 1 we obtain 

l~(O) 1 l~(O) l~([1,yq~_~]) and l imsupL---~<~-,  
le(I---~ <" /e([1,xq~]) r~-e,k ~ 1  a 

where the latter comes from the Swi~tec a priori real bounds. [] 

Some hyperbolic geometry. Besides Terminology 2.3 the rest of this subsection are 

elementary facts about the hyperbolic geometry of some particular sets. The reader 

making a first reading of the paper is recommended to read the terminology and continue 

reading in the following subsection, "The complex bounds", thus using this subsection 

as a reference when needed. 

Terminology 2.3. For K ~ S  1 an open subarc define 

A K = C - ( S 1 - K )  and A*K=AK--{O, oo }. 

Let AK denote both the hyperbolic metric and the coefficient function of the hyperbolic 

metric on A;(. Moreover, let dK ( .,. ) and Ig (.) denote the AK-distance and curve length 

functions respectively. 

For J C S  1 an open subarc let g=f~(J) .  Define W~=f~I(A*Iv)CA*j so that the 

restriction fo. W~-~A*K is a branched covering map of degree three, with 1 as only 

possible branch point. Let ~oj denote both the hyperbolic metric and the coefficient 

function of the hyperbolic metric on W~. 

Define H~={ziRe(z)X0 }. For a~bEC let [a,b] and ]a,b[ denote the closed and 

open line segments from a to b respectively. For R ' ~ i R  an open interval let C k denote 

the set H_ UH+ t.JK and let 5 k denote the hyperbolic metric on C~.  We shall often refer 

to C~ as a doubly slit plane (with gab R') when h" is relatively compact in iR. 

LEMMA 2.4. Suppose that V c U c C  are hyperbolic subsets of C, i.e. each carries 

a hyperbolic metric. Let Av and Au denote the coefficient functions of the respective 

hyperbolic metrics and let du(. ,. ) denote the hyperbolic distance in U. Then 

~(z) 
tanh(�89 OV))<~ ~ - - ~ < l  VzEV. 
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Fig. 17. The arc "YK and its two lifts to fe outside D 

Proof. Let z E V be arbitrary. Lifting to a universal cover of U if necessary, we can 

suppose that  U=D and z=O. Then the largest Euclidean disc centered at 0 and entirely 

contained in Y has Euclidean radius tanh( ldv(z ,  OY)), so the lemma follows. [] 

Given K C S  1 an open subarc let e i~ denote the midpoint of K.  Let VK: [0, 1]-~A}c 

denote the arc Vg(t)=exp(irr(1--e~t)§ Then ")'g is a closed arc beginning and 

ending at ei~EK and with index 1 around 0. Let [')']K be the homotopy class of "/g in 

A~ through curves ~,' with endpoints in K.  See Figure 17. Define 

EK := inf 1g('y') and FK := d~ K (K, oo), 

where a g  denotes the hyperbolic metric on AK (see also Figure 17). 

There exist (continuous) decreasing functions E and F with EK=E(IE(K))  and 

FK=F(Ir because multiplication by a constant rl of norm 1 is a hyperbolic isometry 
$ 

between AK, A*K and AvE, AnK respectively. Our sole interest here is however that  

E(1)--~oc as l--*O. The latter can be seen as follows: An elementary calculation shows 

that  F(l)=log(cot(}l)). Moreover, E(l)>2F(i) for all 0<l~<27r as A*KCAK. We shall 

use the function E through the following lemma. 

LEMMA 2.5. Let K, J c S  1 and J'COUo be open arcs such that fo maps J and J' 

diffeomorphicaUy to K. Then 

dej (S 1, g') = dej (J, J') = E(l~(g)). 

In particular, the distance d e j (S 1, J' ) depends only on le ( K ) and tends to c~ as le ( K ) ---+ O. 

Proof. The first equality is because J=S1AW~.  The restriction fe:W3--+A* K is a 

covering map and an isometry with respect to the hyperbolic metrics ~0j and )~K, because 

l ~ J .  Moreover, any curve in [V]K has two lifts to fe joining J and J '  in W~, and any 

simple curve which joins J and J' in W~ maps by fo to a curve in the equivalence class 

['Y]K (see also Figure 17). [] 
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LEMMA 2.6. For K C S  1 an open arc and t > 0  define 

~g,t = {7 C A~-]~ a curve with ~/MK # Z and lg(7) ~ t} .  

The number sup{l~(7 ) I TE~K,t } depends only on l=l~( K). We denote it Sz,t. It satisfies 

lim St,t 1 sinht  (1) 

Proof. We shall first prove an analogous statement for doubly slit planes. 

SUBLEMMA. Let K C i R  be an open relatively compact interval and let 5~: denote 

the hyperbolic metric on Ck ,  the doubly slit plane with gab K. Any curve ~EC~: with 

~n~::/:g satisfies 

l~(~) ~< �89 l~ ( .~) .s inh( l~ (7)) (2) 

with equality iS and only if ~ is a horizontal line segment emanating from the midpoint 

of~:. 

Proof of the sublemma. It suffices to consider ~'2 = ] - i ,  i[, as the affine map z~-*s+rz 

is both an Euclidean congruence and a hyperbolic isometry between C2=CR2 and 

Cs+r~ 2 for all r > 0  and sEiR. We let 52 denote the hyperbolic metric on C2. 

Let lr: H+--~C2 be the univalent map 7r(z)= �89 Then 7r([1, et])= [0, sinh t], 

which shows that  the horizontal linesegment ~t = [0, sinh t] has 52-length t. This proves 

the optimality of (2). We shall prove that  for any xER,  

52(x) ,.<52(z) for all z with d62(z, g2)<d6~(x,~ '2) ,  (3) 

with equality if and only if z = •  Let us first prove that  [xl [ < [x2[ implies 52 (xl) > 52 (x2). 

This follows from the computation 

1 2 
52(~(~))- ~1~"(~)1-Is+l/sl Vs>O, 

because 7r is an increasing homeomorphism of R+ onto R mapping 1 to 0, and 1/x is 

the coefficient of the hyperbolic metric on H+ at the point x+iy. Next we consider the 

automorphisms of C2, 
z+ir  

Hr(Z) - l _ i r z ,  - l < r < l .  

Each Hr, being a Mhbius transformation, preserves the circles through its fixed points 

:t=i. We deduce that  the arcs of circle between =t=i are lines of equidistance to K2, which 

is itself such an arc. Let x E R  be arbitrary. We compute 

1 - - r  2 

52(x) = 52(g~(x))" IH'~(x) I = 52(g~(x)). l+r2x------ 5 < 52(g~(x)). 
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The computation shows that 52, when restricted to the arc of circle between +i  through x, 

attains its infimum only at x. This completes the proof of (3). 

We shall prove the sublemma only for piecewise differentiable curves and leave 

the generalization to rectifiable curves to the reader, as we only need the piecewise 

differentiable case. Let ~ c C 2  be a piecewise differentiable curve with ~ N K 2 ~ O  and 

l~2(~)=t~oc. We can suppose that t<co ,  as (2) is void if t=co. It suffices to consider 

curves with one end point on K2, because sinh t 1 + sinh t2 < sinh(t 1 + t2). Reparametrizing 

if necessary we can suppose that  ~: [0, t]--*C2 is parametrized by hyperbolic curve length 

and starts on K2. Then I~'(s)l=l/52(~(s)) for all O<.s<t and 

fo t fo t 1 for ~-~(s) l~ (7) = I~'(s)lds = ds <. ds = le (~0) = sinh t, 

where the inequality comes from (3), and equality applies if and only if ~=~t. This 

proves the sublemma. [] 

To justify the definition of Sz,t we note that the rigid rotations z~-*)~z, with I)~1=1, 

are both Euclidean isometries and hyperbolic isometries between A~ and A~K. We shall 

hence only consider the arcs Kl ~ S  1 of Euclidean length 0<l~<2~ and with mid point 1. 

The lemma then follows from the sublemma by considering the Mhbius transformation 

H ( z ) = ( l + z ) / ( 1 - z ) ,  which maps 1 to 0 and each A* univalently into a doubly slit Kl 

plane. [] 

The complex bounds. 

Definition 2.7. Let ~E]0, I [ - Q .  Define Qo=[1,yq,], Ql=OUo-Qo and, for n~>2, 

Q n =  [1, yq.]. Moreover, define K m =  lx-q,~, x-q.,+, [ CS 1 for m~> 1. (For typographical 

reasons we shall not add an index ~ to Qn and Kin.) 

PROPOSITION 2.8. For each 0 E ] 0 , 1 [ - Q  there exist positive constants Ld,o, d= 

1, 2, 3, ..., such that for all n, 

IK.~+.(Qn) <. Ld,e. 

COMPLEMENT TO PROPOSITION 2.8. There exist (explicit) universal constants 

L, M > 0 ,  i.e. not depending on 8, such that 

lim sup lg~+d (Qn) ~ L+ (d§  (1) 
n - - ~ O O  

For d>~l we define Ld=L+(d+2)M.  
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~ X--qn+d 

x-q"+"+ ~'Nyq,, 

- - i rn+d 

t X~qn+d 
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Ya, 

Fig. 18. The (bounded) geometry of Qn relative to Kn+d 

Sketch of proof. When n tends to c~, the set A* looks more and more like a gn+d 

doubly slit plane with gab K,~+d. Moreover, the arc Q~ looks more and more like a line 

segment sticking out of Kn+d making an angle +30 ~ with the horizontal, because f0 has 

a double critical point at 1 and preserves the unit circle. Finally the Swi~tec a priori real 

bounds imply that  the described configuration has bounded geometry independent of 0. 

The proof we shall give renders the above sketch into a proof, essentially by changing 

coordinates so that  we get actual slit planes and actual line segments. See Figure 18. 

Proof. Let ~ be a logarithm of v and define F~(z)=9-~z 3. Define a univalent 

parameter (I): D--*VcC with (I)(0)=l and Ct(0)>0 such that  the following diagram is 

commutative: 

D F~> D~(9) 

01 fo lexp (2) 
V ) W. 

Note that  exp is univalent on D~ (~) and let V' =exp(D~ (~)). Define V to be the preimage 

of V' under f0. Then V is simply-connected and the restriction re: V---*V' is a branched 

triple cover, branched only above ~. Define (I): D - ~ V  as the Riemann map with (I)(0)=l 

and r  It is easy to verify that  �9 satisfies (2). 

Define ~j=r for j E Z - ( - 1 )  and ~)j=r for j~>l. The quotients of ~j 

over ~)j for j ~> 1 are all some third root of unity, as they have the same image under F~. 

For all n and d we have 1g.+~(Qn)<oc and thus it suffices to prove the complement 
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of the lemma. Fix 0E]0, I [ - Q  and d~>l. For n~>2 let 

Qn=r and Rn+d=ff)-l(gn+d)-~-]&_qn+d,&-qn+~+l[. 

We shall first find explicit universal constants L, M > 0  such that 

lim sup l ~  (Qn) ~< L+(d+2)M, (3) 
n - " 4 0 O  n + d  

where 6R~+~ is the hyperbolic metric on the doubly slit plane with gab K,~+d. Second 

and finally we shall prove that (3) implies (1) with the same constants. 

Let rn+d=min{]&-q~+~ I, ]&-an+d+, ]}" Let Zn,de [0, ~)qn] be given by ]Zn,d] =r,~+d. The 

hyperbolic length L of the segment [0, Zn,d] measured in the doubly slit plane with gab 

]--irn+d,irn+d[ does not depend on n or d, because the geometry is fixed so that 

the only thing which changes is the scale. As ]--irn+d,irn+g[~gn+d we also have 

l ~ + d  ([0, Zn,d]) < L. Moreover, l~+~ ([Zn,d, ~]qn]) • lH+ ([Zn,d, ~q~]) because H+ C CRn+d. 

Combining the Swi~tec a priori real bounds with the univalence of �9 we obtain 

Iz~,dl r , ~ + d  min{l&q~+d+~ f, I&v~+a+= I}/> ad+2 (4) 
liminf ~ = liminf ] - ~ / >  lim inf I~)qn I " 

Hence we obtain by direct computation limsuplH+([Zn,d, flq.])<~ (2/x/3)(d+2)log 1/a. 

This proves (3) with M---(2/x/3)log 1/a. Moreover, the bound does not depend on 0, 

because the Swi~tec a priori real bounds which imply (4) do not depend on 0, and L is 

universal. 

It follows from (3) that the hyperbolic distance in the slit planes d6~+~ (t~n, 0D) 

diverges to oc as n~cx~ and d is fixed. It then follows from Lemma 2.4 that we may 

replace 6R,+d in (3) with the hyperbolic metrics on the slit disc DR~+d=DACR~+d. 

Finally this remark proves that (3) implies (1) and thus the complement, because 

maps DR,+e univalently into A* K~+d and in particular is a hyperbolic contraction. [] 

LEMMA 2.9. Suppose that N>/1 and J, K c S  I are any pair of subarcs such that 

the restriction f g  : J--~K is a diffeomorphism. Then any univalent branch G: U--+W~ of 

f [ N  defined on a subset U cA* K satisfies 

Qj(C(z)) [G'(z)] 

with equality if and only if N =  1. That is, G is infinitesimally contracting or possibly a 

local isometry with respect to the involved metrics. 

Proof. We have Oj(z)>Aj(z) for all zeW~.  This proves the first inequality. Sup- 

pose first that N =  1. Then the restriction fo: W~--+A* K is a covering map of degree three, 
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because the assumption that f0 maps J diffeomorphically to K implies that v~K.  In par- 

ticular, the restriction is a local isometry for the respective hyperbolic metrics Qj and AK. 

This proves the case N--1. We shall prove the general case by induction. So suppose that 

(1) holds for N - 1 ) 1 ,  that f~v maps J diffeomorphically to K and that G: U--*Wj is a 

univalent branch of f~-N defined on a subset UcA* K. Define J1 =K1 =fe(J),  G1 =fooG 

and UI=GI(U). Then GI: U--~U1 is a univalent branch of fN-1 which by the induction 

hypotheses satisfies 

[[DzGI[Ix:,,xK < [[DzGlllO:l,XK <<.1 VzeU.  

Let G2: U1--~Wj be the inverse branch of fe on U1 with G=G2oG1. Then we proved 

above that 

I IDzV2110j ,~  = 1 VzeVl.  

Since Jm =K1 we can conclude by the chain rule. [] 

Recall Terminology 2.1 on Fresh and Young B. 

PROPOSITION 2.10. Suppose that F(xq~, yz)ETo,1 has a Fresh B. Let J be the open 

arc J=]l,xq,~_q,~_l[ c S  1. Then 

Ij(B) < lKn_l (Qn-2) <~ LI,o, 

where Kn-1 and Q~-2 are as in Definition 2.7 and Ll,e is as in Proposition 2.8. 

Proof. The arc g is mapped diffeomorphically onto ]X_q,, X_q,_~ [=K,~-I by f ~ .  

Let gq F~--~F be the final Swap in obtaining F (F has a Fresh B). Then fq-og~=Id and 

gr 
r '  (Xm' , Ya'q,~-l+q,~-:) ~ I~(Xq,~, Yl), 

Swap 

(Q~_~_)O' ~' ,B, 
Swap 

for some 0~<~<an_l,  by Lemma 1.9. Moreover, g~ can be defined univalently in a 

neighbourhood U c A ~  of O ~. Thus by Lemma 2.9 and Proposition 2.8, 

Ij(B) <. lK~_, (0') <~ IK~_, (Qn-2) ~ Ll,o. [] 

PROPOSITION 2.11. Suppose that F(X~q~+q~_~,yl)ETe, 0<a~<a,~, has a Young B. 

Let J be the open subarc J=~l,x(a_l)q~+q~_~ [ c S  1. Then 

Ij(B) < lg~ (Qn-3) < L3,o, 

where Kn and Qn-3 are as in Definition 2.7 and L3,o is as in Proposition 2.8. 

Proof. The open arc J c S  1 is mapped diffeomorphicaUy onto 

K = ]z_(~qn+q~_, ) ,X_q~ [ 
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by f(o aqn+qn-t). L e t  G: F ' - ~ F  be the long composition of the final a consecutive Gains in 

constructing F and let g~: F~-~F" be the final Swap in constructing F" (F has a Young B). 
l! We assume here that  F'7~F0. In case F =Fo, one should replace g' by the branch of f o  1 

mapping Qo to B0 and Q~-3 by Q0. The details are left to the reader. Then fq'~-~ og~=Id 

and 

g' p , /  G 
r ' (xm,,  y~,qo_~+q~_~ ) ' (Xqo_l, yl',) ' r(xaq~+qo_l, yl), 

Swap a Ga ins  

(Qn-3-~)O'  9' B"  a ) ) S t  
Swap a Gains  

where O<~a'<~a~-2, by Lemma 1.9. Moreover, f~'~q"+q'~-l)oGogP=Id, Gog ~ can be defined 

univalently in a neighbourhood UcA* K of O' and KD_Kn= ]X_q,~+l, X_q,~ [. Thus 

1j(B) <. IK(O') <~ lK,~ (Q~-3) ~< L3,0, 

where the first inequality comes from Lemma 2.9 and the last two inequalities come from 

Proposition 2.8. [] 

Controlling Fresh and Young B(lue). 

Proof of Theorem 2.2 (2). Let F(I ,  B, G, R, O) E~e be arbitrary. The Jordan curve F 

has either a Fresh or Young B by definition of Ge. In particular, F satisfies the hypotheses 

of either Lemma 2.10 or Lemma 2.11. We shall treat the two cases separately. 

Suppose that  r=F(Xa~,yL ) has a Fresh B so that  I2~(B)<.IK~_,(Qn-2), where 

&=]l , xq_q ._ , [cS  1. As le(Jn)--*O, when u - , c o ,  and limsuplKn_,(Qn-2)<L1 we 

obtain from Lemma 2.6 that  

�9 l e ( e )  
hmsup ~ ~< �89 sinh(L1), (1) 

where sup is over curves F(Xqn,yl ) with a Fresh B and lim is for n--~co. Moreover, 

r l ,  xqol __-_,- c r l ,  c r l ,  

so that  
lr a_2 

lim sup ~ ~< (2) 

by the Swi~tec a priori real bounds, and where limsup has the same sense as above. 

Combining (1) and (2) we obtain 

limsup lr 1 sinh(L1). (3) 
Fresh ~ e'~-Y ~-~2 
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This takes care of the case of F with a Fresh B. For F with a Young B one obtains 

l~(B) 1 sinh(/3)  (4) lim sup ~ ~< 
Young ~e Ifl} 

by copying the above arguments. The details are left to the reader as an exercise. This 

completes the proof of Proposition 2.2 (2). [] 

Uniform bounds for Fresh, Young and Juvenile R. 

Proof of Theorem 2.2 (4). We shall prove the following more precise estimates: 

lim sup l~(R) <~ L1, (1) 
Fresh 

lim sup l~ (R) <~ L3, (2) 
Young 

lim sup l~(R) <. n5. (3) 
Juvenile 

Here sup is over FETO,k with respectively a Fresh, Young or Juvenile R, and lim is for k 

tending to oo. 

Let F (xm, Yl) = F (I, B, G, R, O) E To. We shall consider separately the three different 

cases (see Terminology 2.1 for the definitions of Fresh, Young and Juvenile). The relevant 

final moves in the three cases are for Fresh R, 

g' 
F'(X,~q,~+q,,_,, Yv) ~ F(x(,~+l)q,~+q,,_l, yq,~), 

(1') 

(Qn_~_)o '  g' ,R, 
Gain 

where O<~a<a,~ and f ~  og'=Id, so that  V=/3qn-1 +qn-2 with 0 ~ < ~ a ~ - l ,  by Lemma 1.9. 

For Young R we have (m,l)=(qn, (a+l)q,~+qn-1) for some n and O<~a<an, and 

gl// 
g' ,r"(xq~_,,yv,) v , r '" (x  y~,, ,)----r(xm,y~), 

F'(Xm',yv) Swap ~ Gains ~ '~q'~+q'~-" Swap 

(Qn-3 2)  O' g' , B"  a , B '"  9'" , R, (2') 
Swap a Gains Swap 

where f~-~og'=Id, so that  l'=/3qn-2+qn-3 for some 0~<fl~<an-2. Here the indices of 

the marked points (xm,, Yv) of F' follow from Lemma 1.9 and from Lemma 1.8 with its 

complement for the others. 

Finally for Juvenile R we have (m, l)=(qn,  qn+qn-1) for some n, and 

g' F l l ( x  G ) P " I / x  ~ g'" 
' ~ q n - 3 , Y l " )  ~ q , ~ - l , Y q , ~ - ~ ) - - - - ~ F ( X m , y l ) ,  F'(xm,,yv)  Swap ~ - 2  Gains Swap 

(Q,~-5 _D) O' g' , B"  a , B '"  g''' > R, (3') 
Swap c~ Gains Swap 
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where f ~ - 3  og '=Id,  so that  ll-~13qn_4+qn_5 for some O ~ a n - 4 .  As above the indices of 

the marked points for F' follow from Lemma 1.9 and from Lemma 1.8 with its complement 

for the others. 

Passing from (i') to (i) is essentially the same for i = 1 , 2  and 3. We shall hence 

only go through the details for i=3, the Juvenile (and worst) case. Let J,~= ] 1, xq~_ 1 [ 

and ' - ' - _ J ~ - ] l ,  Yqn-1 [. Then Jn is mapped onto the arc K n -  ]X_(q~+qn_l),X_q~ [DI(n 

diffeomorphically by f~a~+q~-l) and f~q~+q~ Oo(g"'oGog')=Id. Let Zn be given by 

fo(J~)=fo(J~)=Zn, and let 0~=pj~ denote the hyperbolic metric on W* Then we 
j n ,  

get from Lemma 2.9, 

le~ (R) = le~ (g'"oGog' (O') ) <~ IK, (0') < l~:~ (Q~-5) ~< L5,e. (4) 

Let ?~n denote the hyperbolic metric on W ~ - D .  Then 

l~(R) < lw (R ) < le~(R).coth(�89 (R , J~)) 
(5) 

< lg~ (Q~-5)'coth(�89 (R, Jn)) 

by Lemma 2.4. Moreover, from Lemma 2.5 and (4) we find that 

de~(R, Jn) >~ E(4(Z,~))-Le,5 , oc. (6) 
n --* o 0  

Finally (3) follows from (5) combined with the complement of Proposition 2.8 and (6). 

The reader is encouraged to fill in the details for (1) and (2) to complete the proof of 

Theorem 2.2 (4). [] 

Proof of Theorem 2.2 (3). Combine Theorem 2.2, (4) and (1) with the fact that  the 

hyperbolic metric A on C - D  is asymptotic to 1 / ( [z [ -1)  as Iz[--*l. [] 

As above the careful reader will have noticed that  we only used that F had a Fresh, 

a Young or a Juvenile R in the above proof. Hence we might replace G0 in Theorem 2.2, 

(3) and (4) by the set of FET0 with a Fresh, a Young or a Juvenile R. 

3. Local connectivity of J0 

We introduce the notation t 0 = l  and tn=qn+qn_l for n~> 1. Moreover, we shall use the 

extended notation F(xm, Yl, Xm,k) for the Jordan curve F(I ,  B, G, R, O)ET~, where Xm 

and yt are the "free" endpoints of I and O as before and Xm,k is the "free" endpoint 

of B. 

Estimating the sizes of limbs. We let $'0 = {Fk (Xmk, Y4 ) }k~>0 C G$ be the descending 

sequence of Jordan curves defined in Definition 1.12. 
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PROPOSITION AND DEFINITION 3.1. For each 0E]0, I [ - Q  there exists a sequence 

of Jordan curves {E~(Xq~, Yt~, Xq~,t~_l)}n>~l CG~ such that each E,~ either belongs to jze 

or is obtained from some FkEJ:o by one, two or three Swaps. 

Proof. We are looking for curves of the form En=E,~(xq,,Yt~,Xq~,t~_~)E~$. Such 

curves are obtained by two consecutive Swaps of a curve of the form F'(x ~ *  \ qn_2,ylt ] u - ~  

i.e. 
g, g,, 

, , 

Swap Swap 

Recall tha t  each Fk+l E.T'0 is obtained from Fk by a move gk: Fk---+Fk+l. It  follows that  

each number  qn, n ~  1, appears  at most once in the sequence {mk}k~O. 

Define 

1 (Xql, Yql +qo, Xql ,to ) = Fo (xql, Yql ) and E2 (Xq2, Yt2, Xq~,tl ) ---- r l  (Xq2, Yq2 +ql )" 

For n~>3 we define En=En(xq~,  Yt~,Xq~,t~_l) as follows: If there exists k~>0 with F k =  

Fk(xq~,Yt~,Xqn,t~_l) , then we define E n = F k .  If not, we look for a k~>0 with F k =  

Fk(xqn_l, Yt,~_~). If such a k exists define En to be the Swap of Fk. If such a k does not 

exist either, we look for a k~>0 with Fk=Fk(xq.~_2,yl ) for some I. If  such a k exists we 

define En as the curve obtained by two consecutive Swaps of Fk. Finally if such a k does 

not exist either, then there exists a k~>0 with Fk=Fk(xq~_3, Yt) for some I. Because the 

sequence {mk}k~>0 can jump over a qn only if there exists k~>0 with rnk =qn-1 ,  the move 

gk is a Gain and a n = l ,  so that  mk+l=q,~+l.  In the final case we let En be the curve 

obtained by three consecutive Swaps from Fk. The reader shall easily verify that  with 

the above definition Ea either equals F2 or is obtained by a Swap from F1, so that  the 

final case in the definition occurs no earlier than  for n = 4 .  This completes the definition 

and the proposition. [] 

For each n>~l and 0~<j<qn+l let 

Jn,j = lx-q~ +j, X--qn+l+qn + j [ C 81 , 

J '~j = ]y-q~+3, y-q~+,+q~+j [ C OUo, 

so that  fo(J~,j)=fe(J'~,j)=J~,j_l for j > 0 .  Note that  the arcs J,~,j and J~,j depend on 0. 

LEMMA 3.2. For each OE ]0, I [ - Q  the arc Jn,j is mapped diffeomorphically onto 

Jn,o by fg for every n ~ l  and O<j<qn+l. 

Proof. Evidently, J,~,o=fg(Jnj). Next we note tha t  x_q~+~ is the first return of 

1 into Jn,o=]x_q,,X_q~+~+q~[cS 1 under fo. This proves tha t  the restrictions fJ :  

Jnj-*Jn,o are diffeomorphisms for each 0~<j<q~+l,  and so completes the proof. [] 
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1 ~ 2It. 
D J.,o ~i:: 

Zqn 

Z--qn+l q-q,~ / 

/ 

~n,O(Xq.. , Yr., Xq~,t,._l ) 

Fig. 19. The Jordan arc Zn relative to the gab Jn,o 

LEMMA 3.3. Given OE ]0, I [ - Q  write 

E~(xq., yr., xq~,t~_,) = ~(I~,  B~, G~, R=, 0~) 

for each n >~ 1. Then 

1J~,o(On)<~Ll,o, Ig=,o(Bn)<~L2,o and I~(Gn)<.LG,o+3LR,o. 

Moreover, the bounds are asymptotically universal. 

Proof. See Figure 19. To obtain the estimate on ON we note that  Jn,0 contains 

Ix q~, X_q~+l [=Kn and that  On C [1, yq~_~] =Q,~-I. Thus the first estimate is imme- 

diate from Lemma 2.8. To obtain the estimate on B~ we note that  f ~  maps K'= 

~l,x_q~+~+q~ [CJ,~,o diffeomorphically onto ]x_q,,x_q~+, [=K~ of Lemma 2.8. Let 

g:F(I ,B,G,R,O)~P~ be the last move in obtaining E~. Then B,~=g(O), fq"og=Id 

and g can be defined univalently in a neighbourhood UcA*K, of O. Moreover, O is a sub- 

arc of [1, Yq~-2] =Q~-2, because the free endpoint of B is xq,,t~_l. Thus by combining 

Lemma 2.9 and Lemma 2.8 we obtain 

lj,, o (B~) < IK, (B,~) <~ Ig, (0) <~ lK,~ (Q , -2 )  < L2,e. 
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The estimate for l~(G) comes from E~ being at most three admissible moves (Swaps) 

away from a Fk, for which we have lx(G)<.La,o. Finally the bounds are easily seen to 

be asymptotically universal. [] 

LEMMA 3.4. For each OE ]0, 1 [ - Q  the Euclidean length l~( Jn,j) tends to 0 uniformly 

in j as n--*oc. 

Proof. The restriction fo: S l ' ' + s l  is conjugate to the rigid rotation Ro according 

to Yoccoz [Yol; there are no analytic Denjoy counterexamples]. Let h:Sl--~S 1 be a 

conjugating homeomorphism, i.e. hoRo=fooh. Then l~(h-l(j~,j))=l~(h-l(Jn,o) ) for all 

n ) l  and all 0~<j<q~+l. Moreover, h is uniformly continuous as S 1 is compact and 

le(h-l(Jn,o))---+O as n--*oc. Thus the lemma follows. [] 

Definition 3.5. For each n~>l rename En to En,O. ~trthermore, for each O<j<qn+l 

let E~,j and A~,j be the unique lifts of En,0 to f~ intersecting S 1 and OUo respectively. 

Let I,~,o be the I of E~,o. Moreover, for 0 < j < q ~ + l  let  In,j=Y]n,jNfoJ(Xn,o). 

LEMMA 3.6. For each OE ]0, 1 [ - Q  there exist constants L~,o, LA,0>0 such that 

Ij,,,j (E~,j --in,j) ~ L~,O Vn ~> 1, 0 ~<j < q~+l, 

1)~(An,j) <<.L~,o Vn>>. 1, 0 < j  <qn+a. 

(1) 

(2) 

Moreover, the constants Lz,o and La,o are asymptotically universal. 

Proof. Let Lz,e=L2,o+LG,o+4LR,o+La,e. Then 1j,,,(E,~,o-I,,o)<.LE,e as it fol- 

lows from Lemma 3.3. Let Qn,j=pj,,.j denote the hyperbolic metric on W*j,,.j cAjn,.* 

Let I~,j=An,jNfoJ(L~,o) for 0 < j < q n + l .  Then g~,jCJ~, 9 is a pn,j-geodesic, because 

Jn,j-l=fo(Jtn,j) is a ~jn.j_~-geodesic. In particular, l~,.j(An,j)<2l~,,,3(An,j-Itn,j). 

From Lemma 3.2 and Lemma 2.9 we obtain 

1g,,,j (En,j -In,j)  < le,,, ~ (En,j --In,j) <. lg,,,o (En,o - L~,o) ~< Lz,O, 

le.~, j (An,j) • 21e.,j (An, j --I;~,j) < 2lj,,o(En, 0 --In,o') <~ 2LE,o. 
(3) 

by (3) and Lemma 3.4. Hence by Lemma 2.4, l imsupn_.~ l~(An,j)<<.2Lz,o, from which 

the existence of LA,0 as in (2) easily follows. Moreover, as L1,0, L2,0, LR,O and Lc,0 are 

asymptotically universal, so are L~,0 and L~,0. [] 

The first line is identical with (1). Lemma 2.5 implies dQ,~,j (Jn,j, J'n,j)=E(le(Jn,j-1)), so 

that 

d~,j(Jn,j,An,j) >/(E(le(Jn,j-1))-LE,o) ---.oo as n--*oc, 
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THEOREM 3.7. For each OE ]0, 1[ - Q  the Euclidean diameter of the principal limbs 

Xs and Ys, s ~ 1, tends to 0 as s--+ oc. 

Proof. It suffices to consider the limbs Xs, s ~ l ,  as fe (Y~)=fe(Xs)  for all s~>l. Let 

0E ]0, 1 [ - Q  be given. We shall first prove that  

le(~n,j)---+0 a s  n ----+ o c ,  ( 1 )  

uniformly in O~j<qn+l. 

Combining Lemma 3.6 (1) with Lemma 3.4 and Lemma 2.6 we obtain 

l~(Zn,j--in,j) 
l imsup l~(Jn,j) ~< 2 sinh(�89 (3) 

It follows that  there exists a constant KE,o such that  

le(~n,j) < KE, 0 .le(gn,j) Vn ~ 1, 0 ~<j < qn+l, (4) 

as lr for all n , j  and In,jCJn,j .  Combining (4) and Lemma 3.4 we obtain (1). 

Finally the theorem follows from (1), because Xaqn+l+q,~+jcD(~n,j) for all n ~ l ,  0<. 

j<qn+l and 0 < ~ < a n + l .  [] 

"The bridge across Lille Bmlt". Suppose that  ~1, ~2 are two curves with one or two 

common endpoint(s). We shall write ~1'~2 for the curve obtained by gluing the two arcs 

at their common endpoint(s). 

PROPOSITION AND DEFINITION 3.8. Let OE ]0, 1[ - Q .  There exist positive constants 

L'd,O, d=0,  1, 2, 3, ..., and for each pair (l, l')=(c~q,~+q,~_l, ~qn+d+qn+d-1) with n ) 2  and 

0~<O~<an, O< ~ <~an+d, there exists an arc ~/l,t' E Uo joining Yl to Yv and with 

l~(~t,l,) <. L'd,O, 

where A denotes the hyperbolic metric on C - I ) .  See Figure 20. 

COMPLEMENT TO PROPOSITION 3.8. There exist explicit and universal constants 

L', M,  i.e. not depending on 0 such that the same curves satisfy 

L ' + ( d + 2 ) M  ford  odd, 

limsupl;~(~/l,l,) ~< ( d + 2 ) M  for d even. 

Proof. We shall define the curves ~t,t, so that they all have finite ),-length and then 

prove the complement, from which the proposition follows. Let O : D - - + V c C  be the 

univalent parameter with (I)(0)--1, ~ ' ( 0 ) > 0  and expo(z~-*~-Trza)=feoO defined in the 
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\ 

D 

/ 

~ n  

A 

Zq n 

Yq~+l~ 

Fig. 20. The curves 7l,t' in U0 

proof of Proposition 2.8 (here exp(~)=v).  Define ~)j = r  for j~> 1, zj = [~j] c R+ and 

let Cj be the cirle with center 0 and radius zj. Moreover, define 

l+= { z l A r g ( z ) = •  

so that 

r177 = aUon{z I Ira(z) E o}. 

For (l, l ' )=(aqn+qn-1, ~qn+d+qn+d-1) with n~>2, O<~a<an, 0<~<an+d ,  define an 

arc ~t,l' as follows (see Figure 20): If d is even then yt and Yl' are in the same line 

segment l+ or l_. We define ~l,Z,=[~l,~)Z,]. For d odd Yz and Yz, are in opposite line 

segments. Let [!)l,zl] and [21',~)t'] be the smaller subarcs of Cz and Ci, respectively, 

between the respective points. Define ~z,l, = [~)t, zt] .[zl, zz,]. [zl,,~)z,]. Let A denote the 

hyperbolic metric on H+ and let L' be the A-distance between l+ and l_. Then the 
1 i A-length of any of the arcs [~)j, zj] equals ~L .  Moreover, [~)l, Yz,] C [~)q,_l, Yq~+d+l] if d is 

even and [zl, zl,] C [Zq,_ 1 , Zq,+d+l ]. Hence we get by direct calculation 

2 19q.-11 
l~([~]l, Y/']) ~ l~( [gq , -1 ,9qn+d+l ] )  = " ~  log  - -  for d even ,  

lx([Zl, zt,]) < Ix([Zq.-1, zq.+a+,]) = log Zq._a . 
Zqn+d+l 

Combining the univalence of r with the Swi~tec a priori real bounds we obtain 

l imsuplog Zq,,_~ = l i m s u p l o g  I~)q,-~_____J~ ~< (d+2) log 1. 

This proves asymptotic bounds as in the complement, but  for the curves ~l,t, in the 

metric A. We define 7Z,l,=O(~t,l,) and then appeal to Lemma 2.4 to carry over the 
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asymptotic bounds for the curves ~l,z' to the asymptotic bounds of the complement for 

the curves ~/~,u, as in the proof of Proposition 2.8. [] 

For 0<~< �89 define 

S(r/) = {z I I Arg(z)I ~< 7/}u{0} and [(-4-~?) = {z I I Arg(z)I = -4-r/}. 

Sr(~/)=S(~)NDr, where Dr is the Euclidean disc of center 0 and radius r>0.  Moreover, 

let S(7/)=exp(S(~)), Sr(7/)=exp(Sr(~)) and l(+~/)=exp(/(• Recall that He is the 

principal wake containing the limb Xo=Ye .  

THEOREM 3.9. Let OE ]0, 1[ - Q  be of constant type. There exists an angle 0<~< �89 

and r >0 such that 

X0nexp(Dr) C IIeDexp(Dr) C Sr (~/). 

Moreover, the angle 7 l depends only on N=limsup an, whereas r depends on the number 

no for which an <<.N for all n>~no. 

COMPLEMENT TO THEOREM 3.9. For 0 as in the theorem there exists a constant 

Lo >0 such that 

diam~(Ys) ~< Le Vs/> 1. 

Moreover, l imsupdiam~(Ys)<~L(l imsupan) ,  where the constants L(n)>0, n~>l, are in- 

dependent of O. 

Proof. We shall construct a "suspension bridge", which will prevent He and X0 from 

coming too close to S 1, and which will imply both the theorem and its complement. See 

Figure 21. 

For each n>~ 1 write En=E,~(Im B~, Gn, Rn, On) and let Pn=Rn .  Gn . For each n ) 2  

define arcs as follows: 

(1) Pn,c~=f[(c~q~+q'-')(Pn)nEn,c~q~+q~_, for O<a<an,  

(2) "/t,,_l,t,~,a=fo(aq'~+q'~-l)(~/t,~_l,tn)nUaq,~+q,~_, for O<o~an,  

(3) 7~_2,t =f[q=-l(~t=_2,t~)NOq~_~, 

(4) 7)n =7~,~_2,tn " Pn,o'Tt,~_l,t,~,l " Pn,l "...'Tt,_l,t,~,a,~_ l " Pn,a, _ l "Tt~_ l,t,~,a,~ , 

(5) ~n-=Pn- l "Vn ' ( -Pn+l ) ' ( -T t~_ , , t~+, ) ,  

(6) D~=D(E~). 

Finally define long arcs 

(7) ~ovon =P2'P4"...'P~'..., 

( 8 )  A o d d  : P 3  ' P 5  " ... "~:)2n+l �9 ... �9 

Then Aewn and A o d  d converges to 1 and can be made into closed arcs by adding 

the point 1 to each. Let R+ and R_ be the two external rays landing on 1. Then 

Pn,~NR+ = Pn,~NR_ = Pn,~NXo = 0,  
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2 ' \  I 

1 

Fig. 21. The barriers Aeven and Aod d separating the principal wake Fie from D 

because 

JOAEn,c~q~+q,~_l C Xo~q~+q,,_l UX(o~+l)qn+qn_ 1 U [X~q -i-qn_l , X(~+l)qn+qn_l ]" 

Pn,o,C~n,c~qn+qn_ 1 and external rays do not cross (see also Figure 21). 

As f / 1  is contracting with respect to A we obtain from Lemma 3.3 and Proposi- 

tion 3.8 that 

l)~(7~n) ~ l;~(Pn-1)+l~(Pn)+lA(Pn+l)+lA(~/t~_l,tn+l) 

2(L~ +Lc,e +4LR,e) +a~(L~ +Lc,e +4LR,e) 

= K2,o + an" KI,O, 

where the constants El,0, K2,e are defined by the equality sign. The above curves can 

be constructed and the estimate on ~n holds for all 0E ]0, 1[ -Q.  We note however that 

the estimate depends on an. 

Suppose that 0 is of constant type. Let N=l imsupa~ and let n0~>2 be minimal 

with a,~<~N for all n>~no. Let us prove that there exists 0<T]< �89 such that 

"P~ C S(~) for all n >~ no. (1) 
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Let ~<7 /1  < �89 be minimal with UoCS(~ll). Next let 7h <77< �89 be given by 

dist 5, ([(~h), [(~/)) = �89 (/(2,0 + N.  Kl,e), 

where ~ denotes the hyperbolic metric on H+. Then ~/satisfies (1). 

Let 0 < r < 7r be small enough that  

exp(Dr) C (D(Eno,o)UD(Eno+I,o)UUoUD). 

Then X0 A exp(Dr)C S~ (7/), where 7/is as in (1). This proves the theorem. 

To prove the complement we note first that  for any n~>2, O<a~a~ and 0 < j < q n  we 

have Y~q~+q~_~+j cD(An, j ) .  Moreover, 

diamx(D(A~,j)) < �89 < L~,0 

by Lemma 3.3. Thus we need only bound the A-diameters of the limbs Y~q~+q,-i for 

n~> 1 and 0<c~<an. Each limb ]I8 is a compact subset of C - D .  Thus we need only give a 

bound for the cases n~>n0+2, say. For any n~>n0+2 we have Y~q~+q~-i cDnUDn-2  and 

diamx(DnUD,~-2)<~K2,o+N.Kl,o. This proves the existence of a bound in the remain- 

ing case. Finally the statement of asymptotic universality follows from the asymptotic 

universality of the bounding constants. [] 

We obtain as immediate corollary a proof of the last half of Theorem 3.26. (Recall 

Definition 0.8.) 

THEOREM 3.26 (2). Let 0El0, 1[ be of constant type. Then there exists a constant 

M = M ( 0 ) > I  such that 

IID~FelI~ >>. M for all z E Yo. 

Proof. Given 0E ]0, I [ - Q  of bounded type let ~Tr<r/< ~7rl and r > 0  be as in Theo- 

rem 3.9. Then YoC(Sr(71)-{O})UK, where K c C - D  is a compact subset. Thus there 

exists M > I  such that  Q(z)/)~(z)~M for all zEYo. As 

Q(z).IIDjoII~,, ~ ~(z) IID~fell:, = ~ = ~ > 1 

the theorem follows from the definition of Fe. 

Vze  W1, 

[] 

Lifting to the exponential. This subsection except Theorem 3.12 shall be used both 

in the subsequent subsection and in the subsection "Controlling the core of nests for all 

irrational O". Let J0=]O-i27r,9[,  where ~ is the logarithm in ]0, i2~r[ of the critical 
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value v. Moreover, let b'0 be the connected component of exp-l(U0) with 0 on the 

boundary. 

Recall that  fe: W 1 - ~ C - D  is a degree-two covering map, where W1 is the unbounded 

connected component of f / I ( C - D ) .  Let Wl=exp- l (W1)  and let Go: H+--*W1 be a lift 

of exp to f0oexp. The map Go extends to a continuous map of H+ onto W1. The 

extended map Go is injective except on the set {9-i27r, 9}+i47rZ, which is mapped two- 

to-one onto i27rZ. Choosing another lift, if necessary, we shall suppose that  Go maps 

Jo homeomorphically onto 0U0-{0}. The map Go is an isometry with respect to the 

hyperbolic metrics A on n+_and 5 on W1. Let ]o: WI--*H+__ denote the inverse of Go and 

extend ]o continuously to Wl- i27rZ.  We note that  W1 does not depend on ~9 and that  

]01, ]02 for O l , 0 2 E ] 0 ,  I [ - Q  differ only by an additive, imaginary constant, because fol 

and fo2 differ only by a multiplicative constant of modulus 1. 

We shall write Co for Cjo, the doubly slit plane with gab J0. Moreover, we let 50 

denote the hyperbolic metric on Co. For 0 < T < o c  we define (see Figure 22) 

w(T) = {z E H+ ]0 < d6o (J0, z) ~< T} and f~(T) = Go(w(T)). 

By the above remark the set i2(T) doesnot  depend on 0 and the sets w(T)=we(T) differ 

only by a purely imaginary translation. We remind the reader that  for each T>0,  the set 

w(T) is bounded in H+ by an arc of circle through the endpoints of J0. We call this arc 

of circle CT. The angle between J0 and CT at any one of their common endpoints is in 
1 one-to-one correspondence with T. An elementary calculation shows that  the angle ~r  

corresponds to the distance T c = l o g ( l + v ~ ) .  The arc CTc is a A-geodesic. Moreover, 

each CT is an arc of A-equidistance from CTc. Thus the set w(T) is a A-convex subset 

of H+ if and only if T~Tc.  Then also f~(T) is a ~-convex subset of W1 if and only if 

T~Tc ,  as Go is an isometry. 

LEMMA 3.10. There exists an increasing function M: R+-*]0,  1[ such that 

i(z) 
O(z----) <<" M(T) Vz E a(T), 

where A is the coefficient of the hyperbolic metric on H+ and ~ is the coefficient of the 

hyperbolic metric on W1. In particular, if T>~Tc, then 

diam~ (K) ~< M(T).diam~(K) 

for all compact subsets K c~(T) .  

Proof. The boundary of ~(T) different from 0Uo makes a non-zero angle with the 

imaginary axis at 0. [] 
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H+ i2~" W 

8 Go 

 (Tc) 

8--i2~r 

Fig. 22. The set W and f l(T) with T = T c  

Let )(j ,  j>~0, be the connected component of exp- l (Xj )  intersecting the segment 

J0 and let ) (~=) (0-{0} .  Moreover, define Y~I ..... 8,~=exp-l(Y~l ....... )M)(o for each 

(Sl , . . . ,Sm)EN m, m ~ l ,  and ?)~=)(0Nexp-l(y~) for s~>l. Define W 0 = C - D  and for 

n ~> 2 let Wn be the unbounded connected component of f -1  (W~_ 1). Then each restric- 

tion re: W,~--*W~-I is a degree-two covering map. Define W~=exp- l (W~)  for all n~>l 

(the case n= 1 has previously been taken care of). 

Definition 3.11. Let 0E ]0, 1[ - Q .  For each s ~> 1 let G,,e: H+--~ W8 C_ W1 be the lift 

of e x p : H + - * C - D  to f$oexp: W~---*C-D with G~,e(O)=~. We shall usually omit the 

index 0 however. Moreover, for (sl, ..., Sm)EN m we shall use the shorthand notation 

Gs~,.. . ,sm = (~sl  ~ ... ~  

Each G8 is Lipschitz with constant 1 with respect to the hyperbolic metrics A and ~. 

Moreover, for all m~>l and for all (sl, ..., sm)EN m, 

Y81 ..... ~.~ =Gs, ..... ~m(Xo)=G, 1 ..... ~m_,(Y~m)=Gs, . . . . . . . .  2(Zsm_,,~m), 

and G81 ..... ~.~:H+--*W~I+...+~ is biholomorphie, because it is a lift of the universal COV- 
f s l + . . . + S m  ~ ering exp: H + - - + C - D  to the universal covering Je o exp: W81+...+~m--*C-D. 

THEOREM 3.12. For any 0E ]0, I [ - Q  of constant type the Core Core(Y~,e) is trivial 

for each _sEN N. 

Proof. We shall prove the following equivalent statement of the theorem: For every 

8 : ( S l ,  . . . ,  s in ,  . . . ) E N  N there exists s such tha t  

m ~ l  
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Let O of constant type be given. It follows from Theorem 3.9 that  there exists a constant 

T>~Tc such that  ()(0-0U0) CrY(T). This is because the angle between Of~(T) at 0 and i R  

is determined by T and tends to 0 as T tends to c~. Let M=M(T) and let L be an upper 

bound for diams for s~>l as given by the complement to Theorem 3.9. 

Then we have for any _sEN N, 

diams (Y81 ....... ) = diams, (G~ . . . . .  G~.~_~ (Y~m)) ~< L. M (m- 1) __~ O. 
T ~ - - +  0 0  

Here we have applied iteratively the second statement of Lemma 3.10 and the fact that  

each G8 is Lipschitz with constant 1 with respect to the hyperbolic metrics A and ~. [] 

On the Lebesgue measure of Je for 0 of constant type. Let Je = exp-1 (J  e). Moreover, 

for 5 a continuous conformal metric on a connected open subset W C C and a point z E l/V, 

let B~,R(z)={w6l/V[d~(w,z)~R}. If no metric is specified, then W=C and 5 is the 

Euclidean metric. Finally for w C I/V a Borel-measurable subset let Area(w, 5) denote the 

Area (infinite or not) of w with respect to 5. We write however mes(w) for the Lebesgue 

measure of w. 

PROPOSITION 3.13. Let 06 ]0, I [ - Q  be of constant type. There exist R=Re >0 and 

O<a=ao<~ l such that for all z 6 . ~ ,  

Area( JoNBs z), A) 

Area(Bs <. 1-a.  

Proof. Given 06]0, I [ - Q  of constant type let 0 < ~ < l ~ r  and r > 0  be as in Propo- 

sition 3.9 so that  -~oNDrcSr(~?). Moreover, let 0<yl~<~Tr and r l > 0  be such that  

S~1 (~h) C U0 U {0}. Define R-- dists ([(-T/), /(7]1 )). The function 

relA(z) = Area(J0 MBi,R(z), A) 

Area(Bs A) 

is a continuous function of z6H+.  Moreover, re lA(z)<l  for all z6X~, because Je and 

hence J0 has empty interior. Thus it suffices to prove that  

l imsuprelA(z) < 1, z6X~.  (1) 
Izl~0 

Let n l =  �89 dis ts  [(~h)). Moreover, let r2=exp(-R).min(r, rl}. 

z6Sr2(~?) we have 

sR,,x(lzl) c BR,X(z)NUo c H+-Jo. 

Then for any 

(2) 
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The number 
Area(BRl,~(Izl)' ~) 

-- >0  
BR,~(z) 

does not depend on zES~2(~). Hence we have proved that the limsup of (1) is bounded 

by 1 - a .  [] 

LEMMA 3.14. Let U, VC C be open hyperbolic subsets, i.e. carrying hyperbolic met- 

rics )~v and )~y respectively, and let dv( ",. ) denote the corresponding distance function 

on U. Suppose that U is simply-connected and let f: U-*V be a univalent map. For 

z, wEU arbitrary let T=lIDzfllxv,~ U and R=du(z,  w). Then 

sinh R T T sinh R 
expR )~y(f(z) ) <<" I f ( w ) - f ( z ) l  <<" )~v(f(z)-----~) ' exp(-R)" 

Proof. Let zEU be arbitrary and let r D--+U be biholomorphic with r Then 

r is a hyperbolic isometry, so that we can suppose that U=D.  The lemma then follows 

from the estimates 

(1+1wl)2 Ig'(0)l Ig(w)-g(0)l < Ig'(0)l (1_ 1 1)2 

for univalent maps g: D---~C. [] 

LEMMA 3.15. Let UC~ C be an open simply-connected subset. Let Au be the coef- 

ficient function of the hyperbolic metric and let du(. , . ) denote the hyperbolic distance 

function. For z ,wEU arbitrary let R=du(z,  w). Then 

~u(w) 
exp(-2R) ~< ~ < exp(2R). 

Proof. Easy consequence of the distortion theorem for univalent mappings of the 

disc. [] 

THEOREM 3.16. Let 0E ]0, I [ - Q  be of constant type, let R>0 and 0 < a ~ l  be as in 

Proposition 3.13 and let a'=min{ 1, a.e(-12R)} >0. Then for all zEX~, 

liminf mes(B~(z)NJe) ~< 1 - a '  < 1. 
~--*0 mes(B~(z)) 

Proof. Let 0E ]0, 1[ - Q  of constant type be given. Define Cdens: H+ x R+--+ [0, 1] by 

Cdens(z, r ) m e s ( B r  ( z ) -  Je) 
mes(Br(z)) 
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The statement of the theorem is that  l imsup,_. 0Cdens(z,r)~>a ~ for any zEX~. For 

any z E exp- 1 (j~k~l~ton) N)(~ we have lim supr__, o Cdens (z, r) ~> �89 ~> ~', because any inverse 

image of 0Uo-{1} is an analytic arc with C - J e  on one side. Thus we need only consider 

points zEX~ with exp(z) of infinite address. 

Let zEX~ be a point with exp(z) of infinite address (itinerary) _sEN N. Let z,nEX~ 

be given by exp(zm)=f~++~")(exp(z))=F~(exp(z)) so that  z=G~ ..... ~m(Zm) for all 

m~> 1. Let 5,~ denote the hyperbolic metric on W~+...+~m so that  G~ ..... ~.~ is an isometry 

with respect to ~ and 5~. Define 

= c s , ,  ( ) = ( z ) .  

Let 0 < M < I  be as in the proof of Theorem 3.12. Then IIDz..G~I ..... ~..II~,~<Mm--~0 

when m--*oo. Thus the Euclidean diameter of ~m(z)  tends to 0 when m--*oc by 

Lemma 3.14. Moreover, 

Area(win(z) -Je ,  ~m) _ Area(BX,R(zm)-Je, ~) 

Area(~Vm (z), 5m) Area(BX,R(Zm), ~) 

because G~ 1 ..... ~., is an isometry. Next Lemma 3.15 implies that  

mes( m(z)- J0) 
mes( m(z)) 

/> ~ exp(-8R).  

Finally Lemma 3.14 implies that  there exists rm >0 such that  

D~,. (z) C zvm C D~.~ exp(2R)(Z). 

Hence Cdens(z, e2Rrm)>~ exp(-12R).  This completes the proof. [] 

COROLLARY 3.17. For 0E ]0, I [ - Q  of constant type, the set Jo has zero Lebesgue 

measure and so has JPe, the Julia set of the quadratic polynomial Po. 

Proof. Let K c R  2 be a compact set. A point zEK is called a density point for K if 

lim mes(gMBr(z)) = 1. 
, --- ,o mes(Br (z)) 

The Lebesgue density theorem states that: For any compact set K c R  2 almost all points 

of K are density points for K.  

Theorem 3.16 implies that  X~ =Xo-{1}  does not contain any density points for J0, 

because . ~  does not contain any density points for J0 and exp is locally biholomorphic. 

Thus X~ is a null set by the Lebesgue density theorem. Finally Je=fe(X~)U{v} is a 

null set because fo is holomorphic and injective on X~. [] 
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Controlling the Core of Nests for all irrational O. This subsection is devoted to 

spreading local connectivity to all points z with infinite address. The special case 0 

of constant type was handled in Theorem 3.12. Here we give a slightly different proof 

independent of the combinatorics of 0. We shall use frequently all of the subsection 

"Lifting to the exponential" except Theorem 3.12. 

For each irrational 0 we single out the following set of exceptional addresses: 

C e = { j = k q n + q n - l l n ~  l, O < k ~ a n } .  

We divide N N into the following three classes: 

ItEB (~) = { (Sl, ..., Sin,...)I lim inf s m <  ce}, 

Itp~ (~) = {(sl, ..., sin, ...) ~ ItEB(0) Isup{m I sm~ $} = ce}, 

ItsR(t?) = {(sl, ..., Sm, ...) r (ItEB (0) U Itp~ (0))} 

={(Sl, . . . ,Sm,. . . )ISm ' c ~ a n d 3 m o : V m ~ m o ,  smE$}.  
m --~ 00 

Addresses in the first two classes can be handled with essentially the information at 

hand, but in order to handle also the more difficult addresses in ItsR(O) we shall obtain 

a new family of curves by cutting and pasting iterated preimages of the En. 

PROPOSITION AND DEFINITION 3.18. There exists a family of Jordan curves 

{Tn,0}n~>3, Tn,0=T~n U [1, X q n ] ,  and a constant L' >0 such that T,O 

lj,,,o(T~)<.L~T,e Vn>~3, (1) 

Yaq~+q~_, C D(T~,o) Vn ~> 3 and for each 0 < a ~ an. (2) 

Proof. For n>~l let gn: D(En)--~D(Fn) be the Gain of En. Then gn is a local branch 

of f[q,+l mapping 1 to yq~+~ and D(Fn)cD(En)  by Proposition 1.10. If a n + l > l  then 

the Gain of F,~ coincides with the restriction of gn to D(Fn), because it is a local inverse 

of rq'+~ mapping 1 to yq.+~. Let . . n - g n  JO 

~ n ( X q ~ , Y t ~ , X q ~ , t ~ _ l )  H~ ) ~ n + 2 ( X q n + : , y q ~ + l , X q ~ + 2 , t ~ _ l )  ' 
an-F1 G a i n s  

be the long composition of the an+l consecutive Gains starting from En. Essentially the 

curve ~n+2 is the curve we want, except that  its Aj~,0-1ength grows linearly with a,~+l. 

Thus if an+l ~<2 we define Tn+2,0--~n+2 and T~+2=Tn+2 ,0 - ]  1, xq~+2 [. If an+l/>3 we 

shall replace the part of ~n+2 whose Aj~,0-1ength is proportional to a~+l by a shortcut 

of bounded length. 
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.A, l#,.+, % !~"+' 

\ f j \  --.__.. o .,-.+,x, 
t )--.-" \ :""' 

/ : ~ / \ I r - -_gl+- , , .+ ,  ( [ 1 ,  yt,,.+, ] )  

\ !  J o oV~_..z~ o \, 
iq,~ l/n+i 

Fig. 23. Constructing the new Jordan curves Tn,0 cutting and pasting bits and pieces 

Define P,,+2=H,~(B,~.Gn.P~.'Tt,~,q,~+I) if a n a l  and P,~+2=Hn(Bn.G,~.P~) if an=l. 

Thus 

P..+2 = H. .  (E. .  - [1, Xq. [ - r l ,  y<,:+, r)  

and it starts at Xq,,+2, leaves OUq,~+ 2 at Xq,+2,t,,_ 1 and ends at 

Yq,+, ..... q.+1 
Y 

l+a,~+l times 

(see also Figure 23). Suppose that an+l ~>3, and define 

T# D ~l+a~+l / ^2+a,~+ 1 
,.,+,>=,,.,+,>.~,, ,,r:~,y<,.,+,.1).~,o (r,,~,q:+,J) 

2 
�9 (g.. ( -P, - , .+2) ) .g . . ( r , , ,o+ >, l l ) .  r,,<,.,+,, 1] 

and Tn+2,0 = T ' U  [1, Xq.+2 ] . We have T~+2,oAJfo CYq.+l UOUoU S 1UXq~+2 by construc- 

tion. Thus Y~q~+~+q.+l cD(T~+2,0) for each 0<a~<an+2. This proves property (2). 
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To prove (1) and thus the existence of L r v,0 we prove that  there exists a universal 

constant L~r, i.e. independent of 0 such that  

lim sup/J.+2,o i (Tn+2,0) ~< n~ r. (3) 

We shall prove (3) by proving that  the )~j~+2,o-lengths of the 6 constituent subarcs of 

T '  ,~+2,0 are asymptotically universally bounded. Whenever a constituent is compactly 

contained in C - D  it suffices to give a bound for its A-length, because C - D c A j . ,  o. 

Moreover, gn is infinitesimally contracting with respect to ),, so it suffices to give bounds 

for the following four lengths: 

(4) 

(rl,y<:+:l c rl ,y<,:+,l) ,  (s) 

l (gn(Pn+2)), (6) 

Ia.+ .o ( rl, yq,,+, 1 ). (7) 

The careful reader may easily verify that  this also suffices to cover the cases an+l ~<2. We 

shall concentrate on (4) and (6), as the two others essentially are treated in Lemma 3.3 

and the proof of Theorem 2.2(4). Furthermore, Pn+2=Hn(Bn).Hn(Gn.Rn.'Tt.,q.+,) 
with "Yt.,q.+l possibly being a point. As we have asymptotically universal bounds for 

l~(Gn.R~.'Tt.,q.+l) (for "Yt.,q.+l see Proposition and Definition 3.8) we are left with only 

lj.+2,o(H,~(B,~)) and lx(gn(H~(Bn))). 
Note that  f~.+2 maps Hn(Bn) diffeomorphically onto rl, yt._,lcQn_2, because 

Bn = rXq., Xq.,t._ll C OUq. by construction of En (recall Definition 2.7). Moreover, f~.+2 

maps the arc K~+2=rl,x_q.+3+q.+2] CJn+2,0 diffeomorphically onto Kn+2. Let t~n+2 

denote the hyperbolic metric on Wj.+2,q.+l and note that  f~.+l ogn=id" Combining 

Lemma 3.2 with Proposition 2.8 and Lemma 2.9 we obtain 

lo.+2(g,~(Hn(Bn))) <~ Ig.+2,o(H,~(B,~)) 
(8) 

< lg'+2(H,~(S,~)) <~ Ig.+2(Qn-2) <. L4,O. 

This takes care of Ij.+2,o(H,~(Bn)). To obtain a bound for l~(gn(Hn(Bn))) from (8) we 

combine Lemma 2.4 with Lemma 2.5 as in the proof of Lemma 3.6. This completes the 

proof. [] 

Definition 3.19. For l~<n and 0<j<q,~+l let T,~,j be the unique lift of Tn,0 to f~ 

intersecting OUo. Note that  the previously defined arc In,0 equals both the I of En,0 

and the intersection Tn,0NS 1 for n~>3. Let I~n,j=Tn,jNfo-J(fn,o) for each n~>3 and 

O<j<qn+l. 
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LEMMA 3.20. For each OE ]0, 1[ - Q  there exist constants L~,o, LT,0>0 (LIT, o equals 

the constant of Proposition and Definition 3.18) such that Vn~>3 and 0<j<qn+t ,  

1j,.:_l (f0(T,~,/- l~j))  ~< L~v,o, (1) 

lx(T,~,j) ~< Lr,o. (2) 

Proof. The proof is a simple copy of the proof of Lemma 3.6 and is left to the 

reader. [] 

For n~> 1 and 0 < j  <qn+l let/~n,j be the connected component of exp -1 (A,~,j) inter- 

secting 0U0. Moreover, for n~>3 and 0< j<qn+l  let T,~,j be the connected component of 

exp-l (Tmj)  intersecting 0U0. Recall the definition of ~(T), T>0,  from the subsection 

"Lifting to the exponential". 

LEMMA 3.21. For each t~E]0, I [ - Q  there exist constants 

TA,0, Tv,o >~ Tc = l o g ( l + v ~ )  

such that 

/9(/~n,j)Cfl(TA,0) Vn~>l, 0 < j < q n + l ,  (1) 

D(Tn,j)Cfl(TT,0) Vn~>3, 0< j<q ,~+ l .  (2) 

Proof. We prove (1) and leave the similar proof of (2) to the reader. Let Jn,j-1 be the 

connected component of exp-l(Jn, j_l)  contained in J0 and let -' I~, j=exp-l(Fn, j )Ns 

We shall prove the following slightly better statement, from which (1) follows. Let 5,,j-1 

denote the hyperbolic metric on the doubly slit plane Cj, . j_I.  There exists TA,0 >0 such 

that 
~ - ~ !  

l~n. j_,( fo(A, , j - I~, j ) )  <~ 2TA,o, l <. n, O< j < qn+l. (3) 

To prove (3) it suffices to prove that 

l imsup/~,j_l  (]0(/~n,j-I~,/)) ~< limsup/j~,,_l (E~ , j_ I - I~ j_ I )  ~< Lr.,0, (4) 

because the length l~,,j_l (]e(/~,~,j)) is always finite. Let An , j_ l=exp- l (A j , . j _ l )  and let 

~n,j-1 denote the hyperbolic metric on A,~,j-1. Then 

ls (f0 (An,j - l~,j ) ) = I g,.j_~ (E,~,j-1 - I,~,j-1) <. nr.,o, (5) 

by Lemma 3.6 and because the restriction exp: An,j_I---*Aj~,3_ 1 is a local hyperbolic 

isometry. Moreover, by the same argument 

d~,,j-1 (fo (An,j), OCj~.~_I ) >~ E(lr (Jn,j- 1)) - L~.,o. (6) 

The right hand side of (6) diverges to oe as n diverges to oo, by Lemma 3.4. We obtain 

(4) by combining this fact with Lemma 2.4 and (5). Recall Lemma 3.10. [] 
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LEMMA 3.22. For each 0E]0 ,1[ -Q there exist constants LN,o>O and TN,O>>-Tc, 

I <.N, such that for each O<s<~N, 

diamx (Y~) ~< LN,O, (1) 

and moreover, for all compact subsets KCX~, 

diamx (G~ (K) ) <. M(TN,o).diams, (K). (2) 

Proof. The sets ]I8, 0<s~<N, are compact subsets of H+. This proves the existence 

of LN as in (1). We have ug_l )(8-1 cW(TN,o) for Tn,0 sufficiently big, because the former 

is a compact subset of Co. Moreover, Y,=G,(Xo)=Ge(Xs_I) for each s=l, ..., N, and 

in particular Y* C ~(TN,o). Increasing TN,e if necessary we can suppose that Tc <<.TN,o. 

Since G, is Lipschitz with constant 1 for the hyperbolic metrics ~ and ~ we have 

diamh(Gs(K)) < diamh,(K ) 

for any compact subset KcX~.  Furthermore, Lemma 3.10 implies 

diams,(Gs(K)) ~< M(TN.o).diam~(G,(K)). [] 

Recall that $={j=kq,+q~-lln>>. 1, 0<k~<an}. 

LEMMA 3.23. Suppose that s~$ and s>q2+l .  Then 

diam~(Ys) ~< LA,e (1) 

and for all compact subsets K C . ~ ,  

diamh, (G8 (K) ) <. M(Ta,o). diamh, (K). (2) 

Proof. Let q 2 + l < s ~ $  be arbitrary, so that s is of the form s=aqn+l+qn+j for 

some n~>l, 0<a~<an+l and 0<j<qn+l .  As Y~q~+I+q~+jcD(A~,j) and the covering 

map exp:H+--+C-D is a hyperbolic isometry, we obtain (1) from Lemma 3.6 and we 

obtain 

by Lemma 3.21(1). 

obtain (2). 

= c a (TA,o )  

Applying Lemma 3.10 as in the above proof of Lemma 3.22 we 
[] 
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LEMMA 3.24. For s2-~o~qn+qn-lEE, n~3, 0<a~<an and Sl <S2, we have 

diam,(Y81,82) < LT,o (1) 

and for all compact subsets KcY82, 

diam~ (G81 (g)) <<. M(TT,o). diam~ (g) .  (2) 

Proof. We have 81<82:aqnq-qn--l<~qn+l, O<a<<.an and Y~2cD(Tn,0), which im- 

plies that  Y~,~2 c D ( T n , ~ ) .  From here and onwards the proof goes as in the previous 

lemma, except that  we use Lemma 3.20 to obtain (1) and Lemma 3.21 (2) to obtain (2). [] 

THEOREM 3.25. For each t?E]0, I [ - Q ,  Core(y0,8) is trivial for any _sEN N. In 

particular, Je is locally connected for each irrational O. 

Proof. Let 0E ]0, 1 [ - Q  be given. We shall prove the following equivalent statement 

of the theorem: Let s_=(sl, ..., Sm, ...) be arbitrary. There exists 5gEH+ such that  

N ..... = 
r n ~ l  

We shall treat the three types of addresses ItEB(~), Itp~(t?) and ItSR(~) separately. Sup- 

pose first that _sEItEB(~) and let N = l i m i n f s m .  Let LN,O and TN,e be constants as in 

Lemma 3.22. Define MN=M(TN,e), where M ( . )  is the function of Lemma 3.10. More- 

over, define x(m)=#{l<mlsl<.g},  where # ( . )  denotes the cardinality. Then for any 

m with sm<.N, 

diam~ (Ys, ..... ~,~) = diam~ (G~, . . . . .  G~,,_I (Ys,~)) < LN,O" (MN) x(m) r n ~  O. 

This proves the case s__E ItF_2(~). 

Suppose next that  sEItp~(~). Shifting s some number of times if necessary, we can 

suppose that  sm >q2-1-1 for all m, so that  Lemma 3.23 applies whenever sm ~C. Define 

MA=M(TA,e) and x(m)=#{l<misz~s  }. Then for any m with s to iC,  

diam~(Ys~ ..... ~m) = d iami (G~ . . . . .  G~_~ (Y~))  <~ LA,e-(MA) x(m) rn--*~ 0. 

This proves the case _sEItpa~(0). 

Finally suppose that  sEItsn(O). Shifting _s some number of times if necessary, we 

can suppose that  sm Es and Sm >q3 for all m. 

Let L=LT,e and M=M(TT,e). Define x(m)=#{l<m--l is l>sl_l} .  Then for any 

m with 8m>8rn--1, 

diam~ (Y~ ..... 8~) = diam~ (G~, ..... G~,~_ 2 (Y~,~_~,8,~)) <<. L. M x(m) ,~__,s O. 

This proves the case _sEItsn(~) and completes the proof. [] 
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THEOREM 3.26 (1). For all 0E ]0, I [ - Q  and for all zEYe we have 

IID, FelI; , -  > 1 and IID, F llx, _+oo' oo. 

Proof. Let 0E ]0, 1 [ - Q  be given. The first inequality follows from 

Q(z) _ Q(z) IIDjell =llD fell ' 'A(z) > 1  VzEW1, 

and the definition of Fe. For each T > 0  we have O(z)/A(z)>~I/M(T) for all zEexp(~(T))  

(recall Lemma 3.10), because exp is a local isometry for both the pair of metrics A, A 

and ~, Q. 

We proceed to prove the second part of the theorem. Let z EYe with itinerary 

(Sl, ...,Sm, ...)--_sEN N be arbitrary. We shall consider separately the three cases of _s 

belonging to the three different classes of addresses ItEB, I t s ,  ItsR. 

Suppose first that  _sEItEB. Let N=liminfsm and let Tg,e be as in the proof of 

Lemma 3.22, so that  Y~Eexp(f~(Ty)) for all O<s<.N. Let M=M(TN,~), where M ( . )  

is the function of Lemma 3.10. Moreover, define x(m)=#{l<.m[s1<.N}, where # ( . )  

denotes the cardinality. Then 

IID~F~ll~, ~ M -x(m) , o0. 
'D'~ " " -*  O 0  

(1) 

This proves the case sEItEB(0). 

Secondly suppose that  _sEItpa~(0). Shifting _s some number of times if necessary, 

we can suppose that  sin>q2+1 for all m. Recall from the proof of Lemma 3.23 that  

Yscexp(f~(TA,e)) for all s ~ .  Define M=M(TA,o) and x(m)=#{l<~mlszq~C }. Then 

(1) holds again. This proves the case s_EIt~(0). 

Finally suppose that  sEItsR(0). Shifting s_ some number of times if necessary, we 

can suppose that  sm E s and sm> q3 for all m. Recall from the proof of Lemma 3.24 that  

Y81,82 Cexp(f~(Tv,e)) whenever sl < s2 E~: and s2 >qJ. 

Let M=M(TT,e). Define x(m)=#{l<<.m[sz<sz+l}. Then (1) holds again. This 

proves the case s_EItsR(0) and completes the proof. [] 

4. Local connectivity of J! 

Let Z0 be the subset of Jfo consisting of those points which pass infinitely often through 

U+=Uo and U_ =r(U+). In this section we shall prove the following theorem. 
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THEOREM 4.1. For all 0E]0, I [ - Q  any point of Zo has a fundamental system of 

connected neighbourhoods in JYo. 

For s~>l we define Z+s=f~-l(X(s_l))NUo and Z_s=T(Z+s). The sets Z_s and Z+8 

are connected and Ys 6Z+8. We shall rename Ys to Y+s and define Y-s =~-(Y+s). We shall 

say that  Z+s is the internal limb of U+ with root Y+s and that  Z_8 is the internal limb 

of U_ with root Y-s. 

Rename the hyperbolic metric A on C - D  to A+ and let A_ denote the hyper- 

bolic metric on D * = D - { 0 } .  Moreover, let 5+ denote the hyperbolic metric on U+= 

U+-f~l(O) and let 5_ denote the hyperbolic metric on U* =U_-f~-l(oz). We note im- 

mediately that  r is an isometry with respect to both of the pairs of metrics A+ and 5+. 

LEMMA 4.2. The local inverse branches fol:D*---+U+o and f~-l: C _ ~ _ . , U ,  ~ are 

strong contractions with respect to the pair of hyperbolic metrics A+ and A_. More pre- 

cisely, there exists a constant 0 < C < 1  such that 

IIDzf~-Xll~+,~_ <<. C.IID~f~-llla+,~_ = C  VzED* 

and 

IIDj[IlI~_,~+ ~<CIID, EIlI6_,~+ =C VzeC-~ .  

Proof. Let us prove that  there exists a constant 0 < C < I  such that  A+(z)/5+(z)<.C 

for all zEU+ and A_(z)/5_(z)<.C for all zEU_. These two inequalities are equivalent 

because T is a hyperbolic isometry. 

The first inequality, say, follows by observing that  U+ C C -  D and observing that  the 

boundary of U+ makes an angle of �89 with S x at 1, their unique point of intersection. [] 

LEMMA 4.3. For each t?E]0, I [ - Q  there exists a constant Lo>O such that for all 

s>~ l, 

diam,+ (Z+s) = diam,_ (Z_s) ~< L0. 

Proof. The equality sign follows from T being an isometry with respect to the pair 

of metrics A+ and A and T(Z+8)=Z_s. 

We shall thus concentrate on giving an absolute upper bound for diam,_ (Z_8). For 

n~>2 write En=E,~(I,~, Bn, Gn, Rn, On) where E,~=En,0 is the arc defined in w Define 

an arc - - ncU-  by fa(~n)=fo(B,~UGnUR,~), so that  En connects y_q~ and Y-t~ in U_. 

Essentially repeating the arguments of Lemma 3.3 we find that  

lim sup l~_ (En) <. L1 + L2 +C(4LR,o +LG,0). (1) 
n - - 4 O O  
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(Let g: F(xq,,_~, yt)--*E,~(Xq,~, yt,~) be the last move in obtaining En. Let h be the long 

composition of inverse branches of f0 in the construction of g. Consider instead of g, 

the composition of h with the previously unused inverse branch of f0, which maps C - D  

into U_. The details are left to the reader.) 

We extend the notion [ . , .  ] to include also subarcs of U_ as well (as S 1 and U+ 

where it has previously been defined). 

Let DncU_, n>~l, be topological discs defined as follows. For n = l  we take D1 to 

be bounded by ~4 and the subarc Vy-q4,y-t4~cOU- not containing 1. For n~>2 take 

D,~ to be bounded by En, T('~tn,qn+3), "~'n-t-3 a n d  (--T(~/qn,tn+a)) , where ~ft,u C OU_ are the 

curves of Proposition and Definition 3.8. Then it follows from (1) that  

lim sup diam,_ (Dn) ~< L~2+L1 +L2+C(4LR,e+Lc,o). 
n ---~ O 0  

In particular, there exists a constant L0 such that  diam,_ (Dn)~L0 for all n, as each Dn 

is a compact subset of D* and so has finite A_-diameter. Next we easily check that  any 

limb Z_8, s~>l, is contained in at least one Dn, so that  its A_-diameter is at most L0. [] 

Proof of Theorem 4.1. Let zEZo be arbitrary. Let nl~>0 be minimal with the 

property zl :=f~l (z)eU+UU_. Replacing z by ~'(z) we can suppose that  zl eU+. Hence 

zl e Z+81 for some sl/> 1. Let n2 ~> 1 be minimal with z2 := f~2 (zl) E U_ and let s2 be given 

by z2 E Z_ s2. Define inductively nj 1> 1, zj E U+ O U_ and sj/> 1 by nj being minimal with 

/Z+8# C U+ if and only if j is odd, 

zs := f ~  (zj_l) E [ Z_8~ c U_ if and only if j is even. 

Next let wj denote the connected component, containing z, of f~('u+'~2+'"+n#)(Z+sj) 

if j is odd and of f0-('~+n2+"'+nJ)(Z_8# ) if j is even. Then each wj is a connected 

neighbourhood of z in Jr0. Moreover, applying first Lemma 4.3 and then Lemma 4.2 we 

obtain 

diam,+ (wj) ~< L0. C j ~ 0, 
j ' - -*  OO 

which implies that  the sequence {wj }j>~ 1 forms a fundamental system of connected neigh- 

bourhoods of z in Jfo. As z E Z0 was arbitrary we have proved the theorem. [] 
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