
Local Context-based Recognition of Sketched diagrams

Gennaro Costagliola, Mattia De Rosa, Vittorio Fuccella
Dipartimento di Informatica, University of Salerno
Via Giovanni Paolo II, 84084 Fisciano (SA), Italy

{gencos, matderosa, vfuccella}@unisa.it

Abstract

We present a new methodology aimed at the design

and implementation of a framework for sketch recognition

enabling the recognition and interpretation of diagrams.

The diagrams may contain different types of sketched

graphic elements such as symbols, connectors, text. Once

symbols are distinguished from connectors and identified,

the recognition proceeds by identifying the local context

of each symbol. This is seen as the symbol interface

exposed to the rest of the diagram and includes predefined

attachment areas on each symbol. We argue that, in many

cases, simple constraints on the local context of each

symbol are enough to describe diagram languages defined

on those symbols. Further refinement and interpretation

of the set of acceptable diagrams is then provided through

a visual grammar. We also describe the architecture of

the framework and provide sample applications for the

domains of flowcharts and binary trees.

Keywords: sketch recognition, multi-domain,

methodology, framework, visual languages

1 Introduction

The use of diagrams is common in various disciplines.

Typical examples include maps, line graphs, bar charts,

engineering blueprints, architects’ sketches, hand drawn

schematics, etc. In general, diagrams can be created ei-

ther by using pen and paper, or by using specific computer

programs. These programs provide functions to facilitate

the creation of the diagram, such as copy-and-paste, but the

classic WIMP interfaces they use are unnatural when com-

pared to pen and paper. Indeed, it is not rare that a designer

prefers to use pen and paper at the beginning of the design

[32], and then transfer the diagram to the computer later [2].

To avoid this double step, a solution is to allow users

to sketch directly on the computer. This requires both spe-

cific hardware and sketch recognition based software. As

regards hardware, many pen/touch based devices such as

tablets, smartphones, interactive boards and tables, etc. are

available today, also at reasonable costs. Sketch recognition

is needed when the sketch must be processed and not con-

sidered as a simple image and it is crucial to the success of

this new modality of interaction. It is a difficult problem

due to the inherent imprecision and ambiguity of a freehand

drawing and to the many domains of application.

A central element of sketching is the stroke. On a touch

screen, a stroke starts with the pressure of the pen (or finger)

on the screen and ends when the pen is raised. Technically,

a stroke is a finite list of triples (x, y, t) (or samples) where

(x, y) are the pair of coordinates in which the pen was at the

time t. The strokes are often preprocessed in order to extract

the basic primitives from them.

In the literature we can find the description of many dif-

ferent frameworks for the recognition of diagrams. There

are both solutions developed for specific domains [17, 13,

27] and multi-domain solutions [2, 4, 26, 18, 28, 14]. In the

multi-domain frameworks, the low-level recognition is usu-

ally performed independently from the context, through the

identification of graphical primitives (lines, arcs, ellipses,

etc.). In the most advanced products, the domain knowledge

is then used at a higher level, to correct possible low-level

interpretation errors.

In this paper we present a new methodology aimed at

developing a framework for the recognition of sketched dia-

grams from different domains. The main innovation regards

the introduction of a recognition phase based on the analysis

of the local context of symbols. This results to be effective

since many visual languages need to be simple in order to

be used, and as a result their structure happens to be sim-

ple enough to be captured with local checks. We prove this

statement by showing that even a complex enough flowchart

dialect can be fully syntactically modelled through this ap-

proach. From the point of view of sketch recognition one

of the innovations introduced with this framework is that it

learns directly from sample sketches of the specific domain

the information used for low-level recognition, taking ad-

vantage of the various innovative machine learning-based

321

techniques produced in recent years (see next section).

The framework is logically composed of four layers:

Text/Graphic Separation, Symbol Recognition, Local Con-

text Detection and Diagram Recognition/Parsing. The first

three layers are mostly pattern recognition processes to ex-

tract intermediate information from the strokes and to per-

form symbol and local context recognition. They include

different modules to perform stroke segmentation, symbol

identification in the diagram and the recognition of the at-

tachment areas needed to connect the symbols to each other.

The last layer consists of two modules. The first one is the

Local Context-based Diagram Recogniser and validates the

scanned diagram against simple well formedness rules. If

validation succeeds then the diagram is recognised. The

second one uses visual parsing techniques and is executed

on the well formed diagram only if more checks and/or a

syntactic interpretation are needed for further translation or

execution of the diagram.

The rest of the paper is organised as follows: the next

section contains a brief survey on frameworks for sketch

recognition; in section 3 we describe the framework, its ar-

chitecture and the main recognition techniques; section 4

gives the data to provide in order to instantiate the frame-

work for a particular domain; lastly, some final remarks and

a brief discussion on future work conclude the paper.

2 Related Work

In the literature of sketch recognition we can find the de-

scription of many solutions, both multi-domain or oriented

to the interpretation of diagrams from specific domains

(e.g., UML diagrams [3], electrical circuits [4], chemical

drawings [5], etc.). In this brief survey we will only fo-

cus on the former frameworks. We will also briefly outline

other proposals which only face specific subproblems (e.g.,

fragmentation of strokes, identification of primitives, recog-

nition of symbols), since some of these techniques are used

in our framework.

2.1 Multi-Domain Sketch Recognition

Most approaches exploit the domain knowledge to im-

prove recognition at a lower level. SketchREAD [2] is a

multi-domain sketch recognition framework which uses a

structural description of the domain symbols to perform the

recognition. The domain knowledge is also used in the low-

level phases, in order to allow the system to recover from

low-level recognition errors. SketchREAD was evaluated in

two different domains: family trees and circuit diagrams.

AgentSketch [4] is a multi-domain sketch recognition

system in which an agent-based system is used for interpret-

ing sketched symbols. The method exploits the knowledge

about the domain context for disambiguating the symbols

recognized at a lower level.

The framework presented in [26] exploits a combination

of low level and high-level techniques to be less sensitive to

noise and drawing variations. It has been evaluated on two

domains: molecular diagrams and electrical circuits.

InkKit [5] is a sketch tool framework which works very

similarly to ours. It firstly classifies the strokes as either

writing or drawing, then identifies basic shapes such as

lines, rectangles, and circles, then groups these primitives

in text and diagram components and, lastly, identifies the

relationships between components.

LADDER is a language [18] which enables the defini-

tion of sketched elements at different levels (e.g., primi-

tives, symbols, entire diagrams, etc.) by giving a struc-

tural description of them, including components, geometric

constraints, etc. The framework can automatically gener-

ate a domain specific sketch recognition system from each

description and has been tested on many domains includ-

ing UML diagrams, mechanical engineering, flowcharts and

others.

Other frameworks working at a lower level than those

cited above, but having possible application on a broad

range of domains are Paleosketch [28] and CALI [14]. The

former is a recognition and beautification framework that

can recognize different classes of primitive shapes and com-

binations of them. The latter exploits a naive Bayesian clas-

sifier to recognize multi-stroke geometric shapes.

2.2 Low-Level Techniques for Sketch Recognition
and Symbol Recognition

Some frameworks are aimed to the solution of specific

subproblems of sketch recognition. In recent years we have

seen notable improvements in low-level stroke processing

and symbol recognition techniques. The most effective of

them are machine learning-based and are aimed to: stroke

fragmentation [35, 36, 27, 20, 19, 1] and recognition of

unistroke [24, 29] and multi-stroke [31, 25, 21, 23, 16, 26,

33] symbols.

Stroke fragmentation is a very mature subfield of re-

search in sketch recognition. It has produced interesting

results in recent times, especially through the use of ma-

chine learning techniques. Its objective is the recognition of

the graphical primitives composing the strokes and can be

used for a variety of objectives, including structural symbol

recognition [21, 12]. Most approaches break strokes in cor-

ners [35, 36, 27, 20], while some other approaches [19, 1]

also use the so called tangent vertices (smooth points sep-

arating a straight line from a curve or parting two curves).

Machine learning-based approaches are based on the extrac-

tion of some features from the points of stroke, particularly

speed and curvature.

322

Figure 1: A simple flowchart for computing N !.

As for symbol recognition, the earliest methods [24, 29]

were only able to recognize unistroke symbols. Several spe-

cialized methods have been recently proposed for multi-

stroke hand-drawn symbol recognition. According to a

widely accepted taxonomy [38] the methods are classi-

fied in two main categories: structural and statistical. In

structural methods, the matching is performed by finding

a correspondence between the structures, such as graphs

[31, 25, 21] or trees [23], representing the input and the tem-

plate symbols. In Statistical methods [16, 26, 33], instead,

a given number of features are extracted from the pixels of

the unknown symbol and compared to those of the models.

The recognition of unistroke symbols has had a recent

progress and has been especially used in the recognition of

gestures [34, 22, 9] for various applications, including in-

terfaces for mobile devices [37, 15].

3 The Framework Design

The objective of the framework is to enable the recogni-

tion of diagrams from a wide range of domains. A common

feature of these domains is the presence of three different

types of graphics: symbols, connectors and text.

The framework has a layered architecture composed of

the following four Layers, further divided into modules:

Text/Graphic Separation Layer; Symbol Recognition Layer;

Local Context Detection Layer; Diagram Recognition/Pars-

ing Layer.

In the following we will refer to the flowchart in Figure 1

to exemplify the operations performed by the different lay-

ers.

3.1 The Text/Graphic Separation Layer

The scope of this layer is to separate freehand drawing

(graphics) from handwriting (text) (see Figure 2b). This

preliminary operation is necessary because text and graph-

ics need to be managed separately. For the realization of

this layer we relied on the technique presented in [3]. For

sake of conciseness, in the rest of the paper we focus on the

graphic aspects of the diagram.

3.2 The Symbol Recognition Layer

This layer recognizes the user drawn sketched symbols.

It is further divided in the following modules:

• Stroke Preprocessing Module. This module identi-

fies the graphical primitives present in the graphic do-

main of the diagram (see Figure 2c). This is done in

two distinct phases: a segmentation phase, in which a

stroke is divided in more primitives and a clustering

phase in which different segments are put together to

form a primitive. Segmentation is performed by de-

tecting corners through RankFrag [6], a novel tech-

nique derived from previous machine learning-based

methods [27, 20].

• Symbol Identification Module. This module clusters

the primitives identified at the previous step in two dif-

ferent classes: symbols, connectors (see Figure 2d).

For the realization of this module we relied on the tech-

nique, based on machine learning, described in [30].

• Symbol Recognition Module. Once the primitives

composing a symbol have been grouped together, the

symbol must be assigned to a class of known symbols

(see Figure 2e). The recognition task is performed by

this module by using the technique described in [8],

which is a point cloud technique invariant with respect

to scaling and supports symbol recognition indepen-

dently from the number and order of strokes.

3.3 The Local Context Detection Layer

In the last years many methods to model a diagram as

a member of a visual language have been devised by re-

searchers. Basically, a diagram has been represented ei-

ther as a set of relations on symbols (the relation-based

approach) or as a set of attributed symbols with typed at-

tributes representing the “position” of the symbol in the sen-

tence (the attribute-based approach) [11]. Even though the

two approaches appear to be very different, they both model

a diagram (or visual sentence) as a set of symbols and re-

lations among them. Differently from the relation-based

323

(a) User drawing (only a part

shown)

(b) Text/graphic separation (c) Stroke preprocessing (de-

tected corners in red)

(d) Symbol identification (de-

tected symbols in the dashed

boxes)

(e) Symbol recognition (detected

symbol class shown near the

symbol)

(f) Local context detection (recog-

nized attachment areas in yellow)

(g) Attribute-based representation

construction (assigned values to

attachment areas)

I
N

O
U
T

F
O
U
T

T
O
U
T

· · · · ·

STAT1 a b / /
PRED1 b / c d
STAT2 c a / /

· · · · ·

(h) Attribute-based rep-

resentation in table and

graph formats

Figure 2: Recognition steps for a part of the flowchart in Figure 1.

approach where the relations are explicit, in the attribute-

based approach the relations are implicit and must be de-

rived by associating attribute values. The former approach

is therefore at a higher level with respect to the latter. In

this paper we adopt the attribute-based approach since it al-

lows us to work at the lowest level possible. Moreover, we

define the local context of a symbol as the set of its typed

attributes. These are specified together with the visual char-

acteristics of a symbol at definition time and are derived

at recognition time from the way the symbol interacts with

other symbols in a diagram. As an example, the rhomboid

symbol in Figure 1 is defined in Table 1 with three attributes

typed as IN (input), FOUT (output-if-false) and TOUT

(output-if-true), visually corresponding to the three attach-

ing points of the symbol. The first column of Table 1 shows

the definition of flowchart symbol identifiers together with

their typed attributes while the second column gives infor-

mation about the symbol visual aspect and the location of

its attributes. (The remaining columns of the Table will be

described in the next section). The goal of the Local Con-

text Detection Layer is then to identify the attributes and

their types for each symbol (see Figure 2f). In our system,

the attributes are identified by using an approach similar to

the one proposed in [7]. The approach is independent from

the method used to recognize symbols and assumes that the

Token Graphics
Token

occurrences
Constraints

BEGIN:

OUT
1 |OUT | = 1

END: IN 1 |IN | � 1

STAT: IN ,

OUT
� 0

|IN | � 1,

|OUT | = 1

IO: IN ,

OUT
� 0

|IN | � 1,

|OUT | = 1

PRED: IN ,

FOUT ,

TOUT

� 0

|IN | � 1,

|FOUT | = 1,

|TOUT | = 1

Table 1: Flowchart symbol specifications.

symbol has already been recognized.

3.4 The Diagram Recognition/Parsing Layer

This layer is composed of two modules: the Local

Context-based Recogniser and the Diagram Parser. They

324

execute sequentially and in some uses of the framework,

when the language is fully specified by the local constraints

or in the case of fast prototyping, only the first module is

needed.

3.4.1 Local Context-based Recogniser

The output of the recogniser is the attribute-based represen-

tation of the diagram if the diagram is well formed. This

representation is constructed by giving values to the sym-

bol attributes identified in the previous layer while check-

ing for the well formedness of the diagram against sim-

ple constraints. In order to give values to attributes, the

module generates value ids and assigns them such that two

attributes have the same value only if the corresponding

graphical counterparts are connected (see Figure 2g). This

will then produce the attribute-based representation of the

diagram (shown in Figure 2h both in tabular and graph for-

mats). As for well formedness, constraint rules are given

at definition time together with the symbol specifications

and are intended to be easy to verify. In our example, the

third and fourth columns of Table 1 indicate how many

times a symbol may occur in a diagram and the number of

values that an attribute may have, respectively. The sym-

bol PRED may then appear zero or more times in a di-

agram and may have multiple input connections but only

one exiting connection for each output attaching point. In

our experience, simple constraints such as the ones above

are enough to completely describe a visual language. In

the case of the flowcharts as the one depicted in Figure

1, it is easy to verify that Table 1 together with the three

rules “each connection must be 1-to-1”, “each IN attaching

point must only be connected to an (F /T)OUT attaching

point” and “the attribute-based (graph) representation must

be connected” completely specify a set of flowcharts that is

Turing-complete.

The Local Context-based Recogniser takes as input an

XML specification file where all the rules about tokens

and connections are coded. Figure 3 shows the XML file

specification for the case described above coding the in-

formation in Table 1 and the three additional rules. In

the XML specification, each table row is defined through

a token element. The name of the token, the file con-

taining its graphical representation, and the number of its

occurrences in a language instance are defined through the

name, ref and occurrences attributes, respectively.

Each ap element defines one of the token attaching points

by specifying its type (type attribute), name (name at-

tribute), a reference to its position in the graphical represen-

tation (ref attribute) and the number of allowed connection

(connectNum attribute). The constraint “the attribute-

based (graph) representation must be connected” is speci-

fied by <constraint>connected</constraint>.

< language name=" f l o w c h a r t ">

< token name=" b e g i n " r e f =" t r i a n g l e D o w n . svg "

o c c u r r e n c e s =" ==1 ">

<ap t y p e =" e x i t " name=" o u t " r e f =" l o w P o i n t "

connectNum=" ==1 " / >

< / token >

< token name=" end " r e f =" t r i a n g l e U p . svg "

o c c u r r e n c e s =" ==1 ">

<ap t y p e =" e n t e r " name=" i n " r e f =" h i P o i n t "

connectNum=" ==1 " / >

< / token >

< token name=" s t a t " r e f =" r e c t a n g l e . svg "

o c c u r r e n c e s =" >=0 ">

<ap t y p e =" e n t e r " name=" i n " r e f =" h i L i n e "

connectNum=" >=1 " / >

<ap t y p e =" e x i t " name=" o u t " r e f =" lowLine "

connectNum=" ==1 " / >

< / token >

< token name=" i o " r e f =" p a r a l l e l o g r a m . svg "

o c c u r r e n c e s =" >=0 ">

<ap t y p e =" e n t e r " name=" i n " r e f =" h i L i n e "

connectNum=" >=1 " / >

<ap t y p e =" e x i t " name=" o u t " r e f =" lowLine "

connectNum=" ==1 " / >

< / token >

< token name=" p red " r e f =" rhombus . svg "

o c c u r r e n c e s =" >=0 ">

<ap t y p e =" e n t e r " name=" i n " r e f =" h i P o i n t "

connectNum=" >=1 " / >

<ap t y p e =" e x i t " name=" f o u t " r e f =" l e f t P o i n t "

connectNum=" ==1 " / >

<ap t y p e =" e x i t " name=" t o u t " r e f =" r i g h t P o i n t "

connectNum=" ==1 " / >

< / token >

< connector r e f =" ar row ">

<cap t y p e =" e n t e r " r e f =" head " connectNum=" ==1 "

/ >

<cap t y p e =" e x i t " r e f =" t a i l " connectNum=" ==1 "

/ >

< / connector >

< c o n s t r a i n t > c o n n e c t e d < / c o n s t r a i n t >

< / language >

Figure 3: Flowchart specification.

The connector element describes how tokens are con-

nected. It defines its type (from a predefined list of imple-

mented types) and specifies that the head of the arrow must

be connected to an enter attaching point, while the head

must be connected to an exit attaching point. The predefined

type arrow together with the two connectNum="==1"

conditions guarantee that the property “each connection

must be 1-to-1” is satisfied, while the use of the type def-

initions enter and exit in the token elements guarantees that

the property “each IN attaching point must only be con-

nected to an F /T)OUT attaching point” is satisfied.

As a second example of application, let us now consider

the language of the binary trees. In this case, the sym-

bol specification shown in Table 2 and the three constraints

“each connection must be 1-to-1”, “each IN attaching point

325

Token Graphics
Token

occurrences
Constraints

ROOT: IN ,

OUT
1

|IN | = 0,

|OUT | 2

NODE: IN ,

OUT
� 0

|IN | = 1,

|OUT | 2

Table 2: Binary tree symbol specifications.

< language name=" b i n a r y T r e e ">

< token name=" r o o t " r e f =" c i r c l e . svg " o c c u r r e n c e s

=" ==1 ">

<ap t y p e =" e n t e r " name=" i n " r e f =" hiSC "

connectNum=" ==0 " / >

<ap t y p e =" e x i t " name=" o u t " r e f =" lowSC "

connectNum=" <=2 " / >

< / token >

< token name=" node " r e f =" c i r c l e . svg " o c c u r r e n c e s

=" >=0 ">

<ap t y p e =" e n t e r " name=" i n " r e f =" hiSC "

connectNum=" ==1 " / >

<ap t y p e =" e x i t " name=" o u t " r e f =" lowSC "

connectNum=" <=2 " / >

< / token >

< connector r e f =" p o l y l i n e ">

<cap t y p e =" e x i t " r e f =" p0 " connectNum=" ==1 " / >

<cap t y p e =" e n t e r " r e f =" p1 " connectNum=" ==1 " /

>

< / connector >

< c o n s t r a i n t > c o n n e c t e d < / c o n s t r a i n t >

< / language >

Figure 4: Binary tree specification.

must only be connected to an OUT attaching point” and

“the attribute-based (graph) representation must be con-

nected”, as coded in the XML specification shown in Fig-

ure 4, completely describe the language. Here, ROOT and

NODE have the same graphical representation and are only

distinguished for the number of occurrences and the con-

straints on the IN attaching point.

3.4.2 Diagram Parser

This parser is built only if a syntactic interpretation of the

diagram is needed for further processing, such as translation

or execution, and/or if the language cannot be completely

specified by a set of simple constraints. This is similar to the

division of roles between the lexical and syntactic phases

for a traditional compiler. The diagram parser takes as input

the attribute-based representation produced in the previous

module and a visual grammar for the syntax specification.

Many visual grammar formalisms and corresponding pars-

ing algorithms may be found in literature and, even though

we adopt a parsing technique based on the principles de-

scribed in [10], the framework is not linked to any specific

type of visual parser technology. Moreover, it is important

to note that, since the input to the parser is already well

formed, the complexity of this module is simplified with

respect to other approaches.

In order to show a case when the local context recogni-

tion needs to be complemented by a syntax analysis phase

let us consider a structured version of the flowchart lan-

guage described in the previous section (see Figure 5). To

structure the language we introduce two more tokens with

names B BEGIN ad B END whose roles are the same as

the block delimiters “{” and “}” in the C language, re-

spectively. Each of the two tokens is specified similarly

to the token STAT with number of occurrences � 0 and

two attaching points IN and OUT with types enter and

exit, respectively, and |IN | � 1 and |OUT | = 1. As in

any structured language, the block delimiters B BEGIN ad

B END are to be used in pairs and then other rules should

be added. As already known, these are not constraints that

can be solved by locally looking at the properties of a sin-

gle token. As a consequence, the technique described in

the previous section cannot be used to capture the whole

structured flowchart language. We now provide a visual

grammar describing a limited structured flowchart language

including the flowchart in Figure 5. The grammar is com-

posed by a set of terminals given by the tokens as described

in Figure 3 in the format: TOKEN(attaching point1, at-

taching point2, ...), a set of non terminals in the same token

format: Nterm(attaching point1, attaching point2, ...), an

initial terminal FlowCh, and the set of productions shown

in Figure 6. In each production, the single letters x, y,

u, ... represent, when in the right part of the production,

connections between token and/or non terminal attaching

points. When in the left part of a production, they indicate

which attaching points of the subsentence are externally ex-

posed. The notation x]z indicates that the two attaching

points marked by x and z will be connected to the same

target attaching point. As an example, the subsentence in

Figure 2g matches and instantiates production 7 as follows:

Block(a, d) ! Block(a,b) PRED(b, c, d) Block(c, a) where

Block(a,b) comes from matching STAT1 with production

5 instantiated as Block(a, b) ! STAT(a, b) and Block(c, a)

comes from matching STAT2 with production 5 instantiated

as Block(c, a) ! STAT(c, a). As already pointed out, in the

literature there are many approaches that use visual gram-

mar formalisms, at least as powerful as the one above, to

generate visual parsers directly from a grammar.

It can be noted that, without a local context analysis, syn-

tax errors such as adding an extra connection between any

token in Figure 5, cannot be easily detected by only using a

grammar approach.

326

Figure 5: A simple structured flowchart containing the

B BLOCK and B END tokes.

4 Instantiating the Framework

In order to instantiate the framework for a specific do-

main, it is necessary to provide input data. In particu-

lar, being mostly based on machine learning, the Symbol

Recognition Layer modules need a training phase, while the

higher level layers need formal definitions. The following

data must be provided:

1. Sample diagrams from the domain, with the following

annotations:

• Types of strokes (text, graphics);

• Strokes clustering/segmentation;

• Connector/symbols separation;

• Class names of the symbols;

• Attachment areas on the symbols;

2. The XML specification of the language and the refer-

enced files with the graphical definitions of the sym-

bols and attacching points;

3. The specification for the syntax interpretation of a dia-

gram (optional).

1. FlowCh ! BEGIN(x) Block(x, y) END(y)

2. Block(x, y) ! Block(x, z) Block (z, y)

3. Block(x, y) ! B_BEGIN(x, z) Block(z, u) B_END(u, y)

4. Block(x, y) ! IO(x, y)

5. Block(x, y) ! STAT(x, y)

6. Block(x, y]z) ! PRED(x, u, v) Block(u, y) Block(v, z)

7. Block(x]z, y) ! Block(x, u) PRED(u, v, y) Block(v, z)

8. Block(x]z, y) ! PRED(x, u, y) Block(u, z)

Figure 6: Visual grammar describing a structured flowchart

language.

4.1 Implementation

The framework is being developed in Java.

In addition to the development of the modules for the

recognition, we are working at the development of an envi-

ronment that facilitates the production of input data needed

to instantiate the framework for a particular domain. Specif-

ically, we’re providing a GUI for making quick annotations

on the sample diagrams and to define the constraints and the

syntax specification.

5 Conclusions

We described a local context-based recognition method-

ology whose final objective is the development of a frame-

work for multi-domain sketch recognition and interpreta-

tion. The diagrams may contain different types of graphic

elements (symbols, connectors, text). Future work will in-

clude the instantiation of the framework in different do-

mains. At the end of the development phase, we will per-

form tests to evaluate the effectiveness and efficiency of the

individual modules and of the overall framework. We will

make comparative evaluations with state-of-art techniques.

References

[1] F. Albert, D. Fernndez-Pacheco, and N. Aleixos. New

method to find corner and tangent vertices in sketches us-

ing parametric cubic curves approximation. Pattern Recog-

nition, 46(5):1433 – 1448, 2013.

[2] C. Alvarado and R. Davis. Sketchread: a multi-domain

sketch recognition engine. In Proc. of UIST ’04, pages 23–

32, 2004.

[3] D. Avola, A. Buono, P. Nostro, and R. Wang. A novel online

textual/graphical domain separation approach for sketch-

based interfaces. In E. Damiani, J. Jeong, R. Howlett, and

L. Jain, editors, New Directions in Intelligent Interactive

Multimedia Systems and Services - 2, volume 226, pages

167–176. Springer, 2009.

327

[4] G. Casella, V. Deufemia, V. Mascardi, G. o Costagliola, and

M. Martelli. An agent-based framework for sketched symbol

interpretation. JVLC, 19(2):225–257, 2008.

[5] R. Chung, P. Mirica, and B. Plimmer. Inkkit: A generic

design tool for the tablet pc. In Proc. of CHINZ’05, pages

29–30, 2005.

[6] G. Costagliola, M. De Rosa, V. Fortino, and V. Fuccella.

Rankfrag: A novel machine learning-based technique for

hand-drawn sketch segmentation. Submitted for publication,

Apr. 2014.

[7] G. Costagliola, M. De Rosa, and V. Fuccella. Identifying

attachment areas on sketched symbols. In Proc. of VL/HCC

’11, pages 83–86, 2011.

[8] G. Costagliola, M. De Rosa, and V. Fuccella. Improving

shape context matching for the recognition of sketched sym-

bols. In Proc. of DMS, pages 289–294, 2011.

[9] G. Costagliola, M. De Rosa, and V. Fuccella. Investigating

human performance in hand-drawn symbol autocompletion.

In Proc. of SMC ’13, pages 279–284, 2013.

[10] G. Costagliola, V. Deufemia, and M. Risi. Sketch grammars:

a formalism for describing and recognizing diagrammatic

sketch languages. In Proc. of ICDAR’05, pages 1226–1230,

2005.

[11] G. Costagliola and G. Polese. Extended positional gram-

mars. In Proc. of VL ’00, pages 103–110, 2000.

[12] G. Costagliola, M. D. Rosa, and V. Fuccella. Recognition

and autocompletion of partially drawn symbols by using po-

lar histograms as spatial relation descriptors. Computers &

Graphics, 39(0):101 – 116, 2014.

[13] G. Feng, C. Viard-Gaudin, and Z. Sun. On-line hand-drawn

electric circuit diagram recognition using 2d dynamic pro-

gramming. Pattern Recognition, 42(12):3215 – 3223, 2009.

[14] M. Fonseca and J. Jorge. Using fuzzy logic to recognize ge-

ometric shapes interactively. In Proc. of FUZZ’IEEE, vol-

ume 1, pages 291–296 vol.1, 2000.

[15] V. Fuccella, M. De Rosa, and G. Costagliola. Novice and

expert performance of keyscretch: a gesture-based text entry

method for touch-screens (in press). IEEE Transactions on

Human-Machine Systems, 2014.

[16] L. Gennari, L. B. Kara, T. F. Stahovich, and K. Shimada.

Combining geometry and domain knowledge to interpret

hand-drawn diagrams. Computers & Graphics, 29(4):547–

562, 2005.

[17] T. Hammond and R. Davis. Tahuti: a geometrical sketch

recognition system for uml class diagrams. In ACM SIG-

GRAPH 2006 courses, 2006.

[18] T. Hammond and R. Davis. Ladder, a sketching language

for user interface developers. In ACM SIGGRAPH 2007

courses, 2007.

[19] J. Herold and T. F. Stahovich. Speedseg: A technique for

segmenting pen strokes using pen speed. Computers &

Graphics, 35(2):250–264, 2011.

[20] J. Herold and T. F. Stahovich. A machine learning approach

to automatic stroke segmentation. Computers & Graphics,

38(0):357 – 364, 2014.

[21] W. Lee, L. Burak Kara, and T. F. Stahovich. An efficient

graph-based recognizer for hand-drawn symbols. Comput-

ers & Graphics, 31:554–567, August 2007.

[22] Y. Li. Protractor: A fast and accurate gesture recognizer. In

Proc. of CHI ’10, pages 2169–2172, 2010.
[23] Y. Lin, L. Wenyin, and C. Jiang. A structural approach to

recognizing incomplete graphic objects. In Proceedings of

the 17th International Conference on Pattern Recognition,

2004. ICPR 2004., volume 1, pages 371–375 Vol.1, aug.

2004.
[24] J. S. Lipscomb. A trainable gesture recognizer. Pattern

Recognition, 24:895–907, September 1991.
[25] J. Llados, E. Marti, and J. Villanueva. Symbol recognition

by error-tolerant subgraph matching between region adja-

cency graphs. IEEE Trans. PAMI, 23(10):1137–1143, Oct.

2001.
[26] T. Y. Ouyang and R. Davis. A visual approach to sketched

symbol recognition. In Proc. of IJCAI’09, pages 1463–1468,

2009.
[27] T. Y. Ouyang and R. Davis. Chemink: a natural real-time

recognition system for chemical drawings. In Proc. of IUI

’11, pages 267–276, 2011.
[28] B. Paulson and T. Hammond. Paleosketch: accurate prim-

itive sketch recognition and beautification. In Proc. of IUI

’08, pages 1–10, 2008.
[29] D. Rubine. Specifying gestures by example. SIGGRAPH

Comput. Graph., 25:329–337, July 1991.
[30] T. F. Stahovich, E. J. Peterson, and H. Lin. An efficient,

classification-based approach for grouping pen strokes into

objects. Computers & Graphics, (0):–, 2014.
[31] W.-H. Tsai and K.-S. Fu. Error-correcting isomorphisms of

attributed relational graphs for pattern analysis. IEEE Trans.

Systems Man Cyber., 9(12):757–768, dec. 1979.
[32] D. G. Ullman, S. Wood, and D. Craig. The importance of

drawing in the mechanical design process. Computers &

Graphics, 14(2):263 – 274, 1990.
[33] D. Willems, R. Niels, M. van Gerven, and L. Vuurpijl. Iconic

and multi-stroke gesture recognition. Pattern Recognition,

42(12):3303–3312, 2009. New Frontiers in Handwriting

Recognition.
[34] J. O. Wobbrock, A. D. Wilson, and Y. Li. Gestures with-

out libraries, toolkits or training: a $1 recognizer for user

interface prototypes. In Proc. of UIST ’07, pages 159–168,

2007.
[35] A. Wolin, B. Eoff, and T. Hammond. Shortstraw: A simple

and effective corner finder for polylines. In EUROGRAPH-

ICS Workshop on Sketch-Based Interfaces and Modeling.

Eurographics Association, 2008.
[36] Y. Xiong and J. J. J. LaViola. A shortstraw-based algorithm

for corner finding in sketch-based interfaces. Computers &

Graphics, 34(5):513 – 527, 2010.
[37] S. Zhai and P. O. Kristensson. The word-gesture key-

board: Reimagining keyboard interaction. Commun. ACM,

55(9):91–101, Sept. 2012.
[38] W. Zhang, L. Wenyin, and K. Zhang. Symbol recognition

with kernel density matching. IEEE Trans. Pattern Anal.

Mach. Intell., 28(12):2020–2024, dec. 2006.

328

