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Abstract. Local convergence of Ezquerro-Hernandez iteration is
investigated in the setting of finite dimensional spaces. A proce-
dure to estimate the local convergence radius for this iteration is
proposed. Numerical experiments show that our procedure gives
estimates which are very close to the maximum convergence radii.
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1 Introduction

In [2] Ezquerro and Hernandes proposed a new class of third-order multipoint
iterations for solving nonlinear equations F (x) = 0, F : Ω ⊂ X → Y ,
where X, Y are Banach spaces. The proposed class depends on the numeric
parameter t ∈ (0, 1]; for t = 1 the iteration reduces to the following one point
method

xn+1 = xn − F ′(xn)−1[F (xn) + F (xn − F ′(xn)−1F (xn))]. (1.1)

One important advantage of the iterations of this class consists in a better
index of efficiency than Chebyshev’s or Newton’s classical method. Recently,
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Hernandes and Romero [3] gave the following procedure to estimate the lo-
cal convergence radius for (1.1). Suppose that p is a solution of the equa-
tion F (x) = 0, there exists F ′(p)−1, ‖F ′(p)−1‖ ≤ β and F ′ is k-Lipschitz
continuous on some B(p, r0) = {x : ‖x − p‖ ≤ r0}. Let r̃ = min{r0, r},
where r = ζ0/[(1 + ζ0)βk] and ζ0 is the positive real root of the equation
t3 + 4t2 − 8 = 0. Then r̃ is a local convergence radius of (1.1).

Remark 1.1. In [3] it is noted that ”this family of processes presents prob-
lems of accessibility”. This remark is based on the comparison between the
proposed estimation of local convergence radius for (1.1) and the estimation
of local convergence radius given in [1] for Newton’s method. Observe that
there are compared only the estimates of the two radii and not the maximum
local convergence radii, and it is not sure that the estimates keep the same
ordering relation as maximum convergence radii.

In this paper we are concerned with the local convergence of the itera-
tion (1.1). We give new convergence conditions of this iteration, presum-
ably weaker, and propose a new procedure to estimate the local conver-
gence radius. Our investigations are based on the convergence properties of
generalized Mann iteration defined in [5]. Recall that for a given mapping
T : C ⊂ E → E the generalized Mann iteration is defined by

xn+1 = (I −Dn)xn +DnT (xn), (1.2))

where I is the identity mapping and {Dn} ⊂ L(E) is the ”generalized control
sequence” and consists of a sequence of linear mappings; usually this sequence
is defined as a function of x, Dx = D(x) (we will use the notation Dn =
D(xn)), or it can be defined recursively as a mapping depending on xn and
Dn−1. In fact (1.2) is equivalent to xn+1 = xn − DnF (xn) where F (x) =
x − T (x). Iterations of this type have been extensively investigated over
the years, especially the case Dn = B−1n ; however, considering it as Mann
iteration some new facts can be deduced. Recall also that a mapping T :
C ⊂ E → E with nonempty set of fixed points, Fix(T ) 6= ∅, is said to be
generalized demicontractive with control mapping D : C → L(E) if

〈Dx(x− T (x)), x− p〉 ≥ λ‖Dx(x− T (x))‖2, ∀x ∈ C, p ∈ Fix(T ), (1.3))

where λ > 0.

Remark 1.2. For Dx = I the generalized demicontractivity reduces to the
simple demicontractivity concept. The class of demicontractive mappings,
introduced first in [6, 7], has several useful properties. For example, a map-
ping is demicontractive if and only if it satisfies the following weak quasi-
contractive condition

‖T (x)− p‖2 ≤ ‖x− p‖2 + k‖x− T (x)‖2, ∀x ∈ C, p ∈ Fix(T ),
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where k = 2λ− 1. Also, the class of demicontractive mappings is equivalent
to the class of quasi (L,m) − contractions considered in [8]. Marino and
Xu [4] proved that the set of fixed points of a demicontractive mapping is
closed and convex (they used the term ”k-quasi-strict pseudo-contraction”
in place of demicontractive). It can be an interesting issue whether or not
these properties hold in the case of generalized demicontractive mappings,
but this is not our main concern here.

2 Preliminary lemmas

Let E denote a finite dimensional Euclidean space endowed with the standard
metric and let C be an open subset of E. Let T : C → E be a nonlinear
mapping; we will assume throughout the papper that the set of fixed points
of T is nonempty, Fix(T ) 6= ∅.

Lemma 1. Suppose T is Fréchet differentiable on C and let p ∈ C be a given
point. Then there exists a linear mapping Rx,p (which depends on x, p), such
that

(i) T (x)− T (p) = (T ′(x) +Rx,p)(x− p);
(ii) If ‖T ′(x)‖ ≤M, ∀x ∈ C then ‖Rx,p‖ ≤ 2M ;
(iii) For any ε > 0, there exists rε > 0 such that if x ∈ B(p, rε) =

{x| ‖x− p‖ ≤ rε}, then ‖Rx,p‖ ≤ ε.

The proof is straightforward if we define

Rx,p =
(T (x)− T (p)− T ′(x)(x− p))(x− p)T

‖x− p‖2
.

Lemma 2. Let F : C → E be a nonlinear mapping. Suppose that F is
Fréchet differentiable on C, p is a solution of F (x) = 0, there exists F ′(x)−1

and ‖F ′(p)−1‖ ≤ β, ∀x ∈ C. Then there exists r̃ such that if x ∈ B(p, r̃)
then w := x− F ′(x)−1F (x) ∈ B(p, r̃).

In fact w is the Newton’s point and the statement of Lemma 2 is a well
known result; the stronger statement ‖w − p‖ ≤ 0.5‖x − p‖, ∀x ∈ B(x∗, r̃)
is also true (Theorem 5.2.1, [1]).

Lemma 3. Let p be a solution of F (x) = 0. Suppose that for all x ∈ C, F
is continuous differentiable, there exists F ′(x)−1 and ‖F ′(x)−1‖ ≤ β. Then
there exists a ball B(p, r) such that the mapping T defined by

T (x) = x− F ′(x)−1[F (x) + F (x− F ′(x)−1F (x))], x ∈ B(p, r), (2.1)
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is generalized demicontractive with control function Dx = F ′(x)−1 and λ >
0.5 on B(p, r).

Proof. Observe first that p is a fixed point of T , i.e., Fix(T ) 6= ∅. Let η be a
positive number such that 0 < η <

√
5− 2. Then (1− η)/(1 + η)2 > 0.5 and

we can choose a λ satisfying the condition 0.5 < λ ≤ (1 − η)/(1 + η)2. The
right hand side of this inequality is equivalent to

η ≤ −2λ− 1 +
√

8λ+ 1

2λ
:= s(λ).

Now let M = supx∈C‖F ′(x)‖ and take ε = η(3βM + 1)−1β−1. For this value
of ε, let rε be the radius defined in Lemma 1 and let r = min{r̃, rε}, where
r̃ is defined in Lemma 2. From Lemma 1 we have

F (x) = F (x)− F (p) = (F ′(x) +Rx,p)(x− p), ‖Rx,p‖ ≤ ε, ∀x ∈ B(p, r),

and from Lemma 2 it results

x ∈ B(p, r)⇒ w = x− F ′(x)−1F (x) ∈ B(p, r).

Using again Lemma 1 we have

F (w) = F (w)− F (p) = (F ′(w) +Rw,p)(x− p− F ′(x)−1F (x))
= (F ′(w) +Rw,p)[I − F ′(x)−1(F ′(x) +Rx,p)](x− p)
= −(F ′(w) +Rw,p)F

′(x)−1Rx,p(x− p).

where ‖Rw,p(x)‖ ≤ 2M . Therefore

F (x) + F (w) = [F ′(x) +Rx,p − (F ′(w) +Rw,p)F
′(x)−1Rx,p](x− p),

and

F ′(x)−1(x− T (x))
= [I + F ′(x)−1Rx,p − F ′(x)−1(F ′(w) +Rw,p)F

′(x)−1Rx,p](x− p).

Using the notation ∆x = [−F ′(x)−1 +F ′(x)−1(F ′(w) +Rw,p)F
′(x)−1]Rx,p we

have
F ′(x)−1(x− T (x)) = (I −∆x)(x− p), ∀x ∈ B(p, r).

For ∆x we have that

‖∆x‖ ≤ (3βM + 1)β‖R̄x,p‖ ≤ η ≤ s(λ).

The rest of the proof follows verbatim the proof of Lemma 3 [5].
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3 Local convergence

Our approach is based on the following theorem concerning the convergence
of the generalized Mann iteration [5]:

Theorem 3.1. Let p be a fixed point of T and r0 > 0 such that B(p, r0) ⊂ C.
Suppose T and D satisfy the following conditions:

(i) I − T is demiclosd at zero on B(p, r0);
(ii) Dx is invertible and ‖D−1x ‖ ≤M,∀x ∈ B(p, r0);
(iiI) T is generalized demicontractive on B(p, r0) with control function D

and λ > 0.5.
Then the sequence given by (1.1) converges to a fixed point of T for any

starting point in B(p, r0).

Note that this theorem requires only a weak smoothness property of T
(demiclosedness of I−T at zero) and that condition (ii) is satisfied for a large
class of linear mappings. A typical case of mapping T which is not continuous
but satisfies the demiclosedess condition is the cyclic projection mapping
appearing in the projection type algorithms for solving convex feasibility
problems.

Theorem 3.2. Suppose that F is continuous differentiable, there exists F ′(x)−1

and ‖F ′(x)−1‖ ≤ β for all x ∈ C. Then Fix(T ) is made of isolated points
and the sequence {xn} given by (1.1) converges locally to some fixed point.

Proof. Let p be a fixed point of T and let c be such that 0 < c < β−1. Take
ε = c in Lemma 1 and let rc be the radius defined in the same Lemma. We
have

‖F (x)‖ = ‖(F ′(x) +Rx,p)(x− p)‖ ≥ ‖(F ′(x) +Rx,p)
−1‖−1‖x− p‖,

and ‖Rx,p‖ ≤ c for all x ∈ B(p, rc). From Banach lemma we obtain ‖(F ′(x)+
Rx,p)

−1‖ ≤ β/(1− cβ). Therefore

‖x− p‖ ≤ β

1− cβ
‖F (x)‖, ∀x ∈ B(p, rc).

This shows that p is the unique fixed point in B(p, rc). Now let r0 =
min{rc, r}, where r is the radius defined in Lemma 3. The fulfillment of
conditions (i)-(iii) of Theorem 3.1 on B(p, r0) is now very easy to check. In-
deed, the conditions (i) and (ii) are obviously satisfied and (iii) results from
Lemma 3. We can apply Theorem 3.1 to deduce the convergence of the
sequence {xn} generated by (1.1) for any starting point in B(p, r0).
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The local convergence of the general Ezquerro-Hernanadez iteration is
proved in [3] (Theorem 1) under the following two condition: (C1) there
exists F ′(p)−1 and ‖F ′(p)−1‖ ≤ β, (C2) F ′ is K Lipschitz continuous oc C.
It is simple to show that from these two conditions it follows that there exists
F ′(x)−1 and ‖F ′(x)−1‖ ≤ β on some ball in C.

Based on Theorem 3.1 we can construct an algorithm that estimates quite
well the local convergence radius for (1.1). Supposing that conditions (i) and
(ii) of Theorem 3.1 are fulfilled, the idea of this algorithm is to find the largest
value for r such that the mapping T satisfies condition (iii).

The main steps of the algorithm are:

1. Apply a search line algorithm (for example of the type half-step algo-
rithm) on the positive real axis to find the largest value for r;

2. At every step of 1 solve the following constraint optimization problem

m = min
x∈B(p,r)

〈Dx(x− T (x)), x− p〉
‖Dx(x− T (x))‖2

,

and verify condition m > 0.5.

Note that the minimum in step 2 must be global on B(p, r) so that the
effective computation of this value is not an easy task. In our numerical
experiments we use several optimization algorithms available in any common
mathematical software.

4 Numerical experiments

This section is devoted to numerical experiments in order to evaluate the ef-
ficiency of the proposed procedure. More precisely, we investigate how close
are the estimates computed with the proposed algorithm to the maximum lo-
cal convergence radii. To this end we need the attraction basin of considered
fixed point and then we can estimate the maximum convergence radius. We
check the convergence of iteration process starting from all points of a given
net of points and select those points for which the iteration (1.1) converges.
Of course, the basin computed in this numerical way, generally have infor-
mative character. However, it gives significant information on the attraction
basin and the efficiency of the proposed algorithm can be satisfactorily eval-
uated.

Applying this numerical procedure, we performed a large number of nu-
merical experiments in one or several dimensions; below is presented a small
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part of them.

In the first experiment we have computed the local convergence radius
with the proposed algorithm and the maximum radius for a significant num-
ber of real functions.. In all these experiments the two radii coincide. For ex-
ample, in the case of the function f(x) = 0.5x2+cos(x) with p = 1.04855836...
the estimate is r = 0.58308619... and the maximum radius is rm = 0.58308619...

In the second experiment we applied our algorithm to several mappings
in two variables. For the following three of them:

(a) F (x) =

(
0.8x1 − cos(x1) + x22 + 1
x31 + 0.8x2

)
, (b) F (x) =

(
3x21 − x1x32 + 3x2
2x1 + x32 − 0.2x2

)
,

(c) F (x) =

(
x1x

3
2 − x1 + 2x22

x21 + sin(x2)

)
,

the results are given in Figure 1.

Figure 1: The estimate of local convergence radii with proposed algorithm

The black areas represent the whole attraction basins and the white circles
the local convergence balls. It can be seen that the proposed algorithm
gives convergence radii very close to the maximum ones or even it gives the
maximum convergence radii.

Remark 4.1. The following problem is open: How large is the class of
mappings for which the proposed algorithm gives local convergence radius
close to maximum radius? Our experiences show that for a relatively large
class of mappings the proposed procedure works. It is worthwhile to un-
derline that this favorable situation holds for Ezquerro-Hernandez method.
We applied the same procedure to other five (classical) methods, Newton,
Simplified Newton, Cebyshev, Successive Approximations and Gradient: the
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results were relatively negative, the closeness of estimates to the maximum
convergence radii being lost.
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