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LOCAL CONVERGENCE OF THE ALTERNATING LEAST

SQUARES ALGORITHM FOR CANONICAL TENSOR

APPROXIMATION

ANDRÉ USCHMAJEW∗

Abstract. A local convergence theorem for calculating canonical low-rank tensor approxima-
tions (PARAFAC, CANDECOMP) by the ALS algorithm is established. The main assumption is
that the Hessian matrix of the problem is positive definite modulo the scaling indeterminacy. A
discussion, whether this is realistic, and numerical illustrations are included. Also regularization is
discussed.
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1. Introduction. According to the review article of Kolda and Bader [9], the
alternating least squares algorithm (ALS) is still the “workhorse” in computing low-
rank approximations and decompositions of high-order tensors. It has been widely
used in such fields as psychometrics, chemometrics and signal processing (see the
references in [9]). The reason for the popularity of this algorithm lies in the fact that
it is very simple, conceptually and numerically, while still delivering astonishing good
results in many cases, if employed with care [17].

In the present paper we investigate the ALS algorithm for low-rank approximation
by tensors in the canonical format (also known as CP, PARAFAC or CANDECOMP).
The great majority of the literature focuses on global properties of the iteration like
the existence of convergent subsequences and critical points, or the occurrence of
swamps [5, 6, 11, 12, 15]. But any widely used algorithm should desirably also be
backed by a local convergence theory. To prevent any misunderstandings: by a local
convergence theory we mean a theory for the parameters (iterates) of an algorithm,
not for the residuals (loss function).

Surprisingly, there are few works in this direction, an exception being the work of
Zhang and Golub [19] on the rank-one approximation. For higher ranks most of the
difficulties with the global behavior of the ALS iteration seem to be intimately related
to the fact that the approximation problem itself can be ill-posed or ill-conditioned [3].
We will not enter into this discussion in the present paper but rather assume that
a local minimum exists, since otherwise the question of local convergence does not
make much sense.

There is a well-developed local theory for the so called nonlinear block Gauss-
Seidel method of alternating optimization [1, 13, 16]. It can be shown that, up to
higher-order terms, this method locally equals the linear block Gauss-Seidel iteration
applied to the Hessian matrix at the solution. Thus it is locally linearly convergent
(essentially at the same rate as the linear Gauss-Seidel) provided that this Hessian
matrix is positive definite. The problem is that local minima in canonical low-rank
tensor approximations do not have this property due to the nonuniqueness caused
by the scaling indeterminacy. (The permutation indeterminacy is irrelevant in a
local theory.) On the other hand, it is known that the Gauss-Seidel method for
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2 ANDRÉ USCHMAJEW

semidefinite linear systems is convergent up to elements in the null space of the system
matrix [7, 10]. Since an ALS algorithm usually implements some sort of normalization
procedure to remove the scaling indeterminacy, both theories can be combined to
obtain a local convergence result under very reasonable assumptions (Theorem 3.3
below), which, however, might be very difficult to verify a priori.

One convenient aspect of our approach is that it avoids the explicit use of La-
grange multipliers. It is therefore in principle applicable for more delicate types of
redundancies as they for instance occur in the Tucker format or in the newly developed
TT format [14]. This will be elaborated elsewhere.

The main ideas are not specifically related to the least squares error as the loss
function to be minimized. We will consider arbitrary loss functions as well (Theo-
rem 3.4). For them, the global minimization of each ALS direction should be replaced
by a single Newton step, since a global minimization might not necessarily stay local.

Generalization to the complex case is not completely straightforward. The prob-
lem is that it is subtle to define a format which removes the scaling indeterminacy.
We will comment on that issue at the related points of our exposition.

Notation. We use the notation f ′(x) for the derivative of a function f at x and
f ′′(x) for the Hessian at x. By (·, ·) and ∥ · ∥ we denote the Euclidian (Frobenius)
inner product and norm, respectively. However, we will write f ′′(x)[h,h] instead of
(h, f ′′(x)h).

2. The ALS algorithm. For the sake of clarity, we restrict ourselves most of
the time to third-order tensors. The reasoning for the higher-order case is completely
analog. The matrix case is not adequately covered by our considerations since the
crucial Assumption 1 below requires the local essential uniqueness of the CP decom-
position, which is reasonable for high-order tensors, but only satisfied by rank-one
matrices.

Let n1, n2, n3 ∈ N \ {1} and T ∈ R
n1×n2×n3 , T ̸= 0, be a real third-order tensor,

treated here as a three-dimensional array. Given r ∈ N, let

X = R
n1×r × R

n2×r × R
n3×r.

The elements of X will be denoted by x = (A,B,C).

Consider the function

f : X → R : x = (A,B,C) 7→ 1

2

∥

∥

∥
T −

r
∑

j=1

aj ⊗ bj ⊗ cj

∥

∥

∥

2

,

where aj , bj and cj are supposed to be the columns of A, B and C, respectively.
The matrices A, B and C are called factor matrices in the literature. We seek for a
solution of

f(A,B,C) = min. (2.1)

It is assumed that at least one local minimum of (2.1) exists. It will be denoted by
x∗ = (A∗,B∗,C∗).

The alternating least squares algorithm (ALS) is a simple method for (hopefully)
solving (2.1). Given a starting point x(0) (which is supposed to be close to x∗), it
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consists in iterating the cycle

A(n+1) = argmin
A∈Rn1×r

f(A,B(n),C(n)),

B(n+1) = argmin
B∈Rn2×r

f(A(n+1),B,C(n)),

C(n+1) = argmin
C∈Rn3×r

f(A(n+1),B(n+1),C).

(2.2)

This algorithm is a particular example of the nonlinear block Gauss-Seidel (relax-
ation) method [13, 16]. The name ALS stems from the fact that each micro-iteration
step in (2.2) is a linear least squares problem. If every such step possesses a unique
solution (if not, this is usually enforced by applying a pseudo inverse), then one cy-
cle (2.2) defines an operator S, that is,

(A(n+1),B(n+1),C(n+1)) = x(n+1) = S(x(n)) = S(A(n),B(n),C(n)). (2.3)

From now on we will only consider local minima of (2.1) in the open subset

X̂ = {(A,B,C) ∈ X | aj ̸= 0, bj ̸= 0, cj ̸= 0 for j = 1, 2, . . . , r}.

We assume such minima to exist. Restricting to X̂ is reasonable to avoid pseudo
inverses, since only if x∗ ∈ X̂ we can hope (2.2) to have unique solutions (take for

instance c
(n)
1 = 0 in the first line of (2.2)). We consider other local minima as too

degenerate for our framework. For them, at least one rank-one term vanishs, so the
rank parameter r should be adjusted. However, it seems to be a difficult question
whether such local minima can really exist if, say, the canonical rank of the target
tensor T is larger than or equal to r.

The major difficulty in the analysis of algorithm (2.2) lies in the fact that x∗

cannot be an isolated local minimum of (2.1), since every rank-one term a∗j ⊗ b∗j ⊗ c∗j
may be replaced by (αja

∗
j )⊗ (βjb

∗
j )⊗ (γjc

∗
j ) as long as αjβjγj = 1. We will call this

operation a rescaling of x∗ if α, β and γ are positive. In fact, every such rescaled
solution itself is a local minimum of (2.1) and a fixed point of the iteration (2.3).
So there is no reason why the iteration should, if at all, converge to a particular
prescribed solution x∗.

Additionally, when applying the ALS algorithm in the naive form (2.2) it can

happen that a component, say a
(n)
1 , tends to infinity while another, say b

(n)
1 , com-

pensates this by tending to zero, such that a
(n)
1 ⊗ b

(n)
1 ⊗ c

(n)
1 remains bounded. This

deteriorates the condition of each micro-step.
For both reasons a normalization strategy has to be invoked. The usual way to

do this is to represent tensors in the normalized form

r
∑

j=1

σjaj ⊗ bj ⊗ cj with ∥aj∥ = ∥bj∥ = ∥cj∥ = 1, σj ∈ R for j = 1, 2, . . . , r. (2.4)

To avoid additional parameters we will instead consider tensors in the equilibrated
format which fixes the representation up to change of signs1:

r
∑

j=1

aj ⊗ bj ⊗ cj with ∥aj∥ = ∥bj∥ = ∥cj∥ for j = 1, 2, . . . , r. (2.5)

1In the complex case, up to change of angles.
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The rescaling of a tensor into the equilibrated format (2.5) without changing
the signs of the vectors uniquely defines an operator R(x) = R(A,B,C) for the
corresponding parametrization via

(aj , bj , cj) 7→
( δjaj
∥aj∥

,
δjbj
∥bj∥

,
δjcj
∥cj∥

)

, δj = (∥aj∥∥bj∥∥cj∥)1/3, j = 1, 2, . . . , r.

Note that R can be defined on the whole space X by continuous extension (on X \ X̂
it is zero), but is smooth only on X̂ . We will call a representation x = (A,B,C)
equilibrated if R(x) = x. This can only happen in X̂ or at the origin.

The ALS algorithm for calculating an equilibrated local solution of (2.1) reads as
follows.

Algorithm 1 (ALS with equilibration).
Input: x(0) = (A(0),B(0),C(0))
For n = 0, 1, 2, . . . :

1. Perform one ALS cycle:

x̃(n+1) = (Ã(n+1), B̃(n+1), C̃(n+1)) = S(x(n)).
2. Equilibrate factor matrices:

x(n+1) = R(x̃(n+1)).
Only equilibrated local minima of (2.1) can be fixed points of R◦S. Consequently,

side conditions are not necessary.
Other variants of the ALS algorithm are possible which for instance include nor-

malization of the iterates in the sense of (2.4) instead of equilibration, see, e.g., [9].
To increase the numerical stability it may also be reasonable to equilibrate after each
micro-step (2.2). All such variants of the algorithm are equivalent in the sense that
they, given the same starting point, produce the same iterates up to rescaling. The
presented version is favorable for the convergence analysis of the algorithm, but the
convergence result as stated in Theorem 3.3 trivially transfers to different scaling
strategies. In fact, in our numerical experiments we used normalized iterates of the
form (2.4).

3. Convergence analysis. From now on x∗ will always denote a nonzero equi-
librated local solution of (2.1). Recall that then x∗ ∈ X̂ . In this section we establish
a local convergence theorem for Algorithm 1 in a neighborhood of x∗.

3.1. The positive definiteness assumption. We first return our attention to
the scaling indeterminacy again. The function f is constant on the 2r-dimensional
(in the real case not connected) submanifold2

M∗ = {(A∗∆1,B
∗∆2,C

∗∆−1
1 ∆−1

2 ) ∈ X | ∆1,∆2 regular diagonal matrices},

which contains all equivalent representations of
∑r

j=1 a
∗
j⊗b∗j⊗c∗j that can be obtained

by rescaling (including sign changing). Since every point of M∗ is a local minimum,
the derivative f ′ vanishes on M∗. Consequently, the Hessian f ′′(x∗) has at most rank
dimX − 2r = r(n1 + n2 + n3) − 2r. More precisely, let TM∗

x∗ denote the tangent
space on M∗ at x∗, then f ′′(x∗)[h,h] = 0 for all h ∈ TM∗

x∗ . It is, by the way, easy
to see that

TM∗
x∗ = {(A∗∆1,B

∗∆2,−C∗(∆1 +∆2)) ∈ X | ∆1,∆2 diagonal matrices}. (3.1)

2The main reason that this is a submanifold of the specified dimension is that the matrices
A∗, B∗ and C∗ contain no zero columns. In the order-d case the corresponding submanifold is of
dimension (d− 1)r.
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We now make
Assumption 1. The rank of f ′′(x∗) equals r(n1 +n2 +n3)− 2r, that is, the null

space of f ′′(x∗) is TM∗
x∗ .

In other words, f ′′(x∗) shall be positive definite in every direction except those
tangent to the rescalings. This implies that the parametrization x∗ is locally essen-
tially unique (the converse may not always be true). We will discuss in Sect. 3.4
whether Assumption 1 is realistic. In any case, it seems unavoidable for a standard
convergence proof of Algorithm 1. The reason for this is the following observation.

Lemma 3.1. R′(x∗) is a projector whose null space is precisely TM∗
x∗ .

Proof. First of all, R = R ◦R shows that

R′(x∗) = R′(R(x∗))R′(x∗) = R′(x∗)R′(x∗)

is a projector. Since R is constant on the connected components3 of M∗, it also
follows that R′(x∗)h = 0 for all h ∈ TM∗

x∗ .
On the other hand, R is the identity on the set of all equilibrated x, in particular

on the submanifold of all (A,B,C) whose columns have the same norm as the cor-
responding columns of (A∗,B∗,C∗). Hence R′(x∗)h = h for all h from the tangent
space of that submanifold at x∗. Since the latter can be regarded as a Cartesian
product of spheres (on which the columns of the matrices are located) it is clear that
its tangent space at x∗ is

U∗ = {(A,B,C) ∈ X | aj⊥a∗j , bj⊥b∗j , cj⊥c∗j for j = 1, 2, . . . , r},

where ⊥ means Euclidian orthogonality.
Finally, it is easy to see that, for instance, R′(x∗)h ̸= 0 for all h ̸= 0 from

V ∗ = {(A∗∆, 0, 0) ∈ X | ∆ diagonal matrix}.

This finishes the proof, since dimTM∗
x∗ + dim(U∗ ⊕ V ∗) = dimX .

Interestingly, Assumption 1 already ensures that Algorithm 1 is well-defined in a
neighborhood of x∗.

Lemma 3.2. Assume that Assumption 1 holds. Then the ALS operator S in (2.3)
is well-defined in some neighborhood of x∗ and continuously differentiable. Moreover,
x∗ is a fixed point of S and we have S′(x∗) = I −M−1f ′′(x∗), where M is the lower
block triangular (including the block diagonal) part of f ′′(x∗) corresponding to the
partition x = (A,B,C).

In a possibly smaller neighborhood the composition R ◦ S is well-defined and con-
tinuously differentiable, that is, one execution of Algorithm 1 is feasible if the current
iterate x(n) is close enough to x∗.

Proof. The main argument is that the diagonal blocks of f ′′(x∗) are positive
definite. To see this, consider for instance h ̸= 0 of the form (h1, 0, 0) with h1 ∈ R

n1×r.
Since, by (3.1), h /∈ TM∗

x∗ then, Assumption 1 guarantees f ′′(x∗)[h,h] > 0, which
shows that the first diagonal block of f ′′(x∗), corresponding to the block variable A,
is positive definite. The same reasoning works for all blocks.

It follows that the diagonal blocks of f ′′(x) are positive definite for all x sufficiently
close to x∗. Every micro-step in (2.2) is a quadratic minimization problem whose

3In the complex case, M∗ consists of only one component. One suggestion to obtain a constant
equilibration operator R is to fix certain positions in the vectors aj and bj , and rotate the corre-
sponding entries to the positive real axis, assuming that they are not zero in a neighborhood of x∗.
Although such positions surely exist, this is a little bit unsatisfactory.
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system matrix is the corresponding diagonal block of the Hessian f ′′(x) at the current
point. Hence if x(n) is close enough to x∗, then every micro-step, taken by itself,
possesses a unique (global) minimum which depends smoothly on the input. Clearly,
x∗ is a fixed point of (2.2). Therefore, we can even choose a neighborhood such small
that all three micro-steps in (2.2) can be executed consecutively with unique solutions,
that is, S is well-defined and smooth in this neighborhood.

In particular, we have shown that the lower block triangular part M of f ′′(x∗) is
nonsingular. A proof that S′(x∗) = I −M−1f ′′(x∗) can be found in [1, Lemma 2].

Since S is smooth in a neighborhood of its fixed point x∗ ∈ X̂ , and since X̂ is
open, we also have S(x(n)) ∈ X̂ if x(n) is close enough to x∗, that is, (R ◦ S)(x(n)) is
well-defined then.

As we have seen in the proof, Lemma 3.2 in principle holds under the weaker
assumption that the diagonal blocks of f ′′(x∗) are positive definite. This is equivalent
to the unique solvability of each micro-step (2.2) with input x∗. For completeness
we remark that this in turn is equivalent to the linear independence of the sets of
complementary tensors

{b∗j ⊗ c∗j | j = 1, 2, . . . , r}, {a∗j ⊗ c∗j | j = 1, 2, . . . , r}, {a∗j ⊗ b∗j | j = 1, 2, . . . , r}.

This is for instance the case, if the solution tensor
∑r

j=1 a
∗
j ⊗ b∗j ⊗ c∗j has canonical

rank r [4].

3.2. Convergence theorem. Let us outline the idea of the following conver-
gence theorem. The ALS iterator S can be locally regarded as the standard linear
block Gauss-Seidel iteration applied to the semidefinite Hessian f ′′(x∗). That method
is known to converge in the energy seminorm

|x|E = (f ′′(x∗)[x,x])1/2

of f ′′(x∗). If Assumption 1 holds, then the null space of f ′′(x∗), which is an undamped
invariant subspace of the linear Gauss-Seidel method, is the tangent space TM∗

x∗ of
the manifold M∗. Elements in this space are essentially removed by the equilibration
operator R. In particular, by Lemma 3.1,

|x|2∗ = ∥(I −R′(x∗))x∥2 + |x|2E
defines a norm on X . One can regard this norm as the energy norm of f ′′(x∗) with
the zero eigenvalues replaced by 1.

Theorem 3.3. Let x∗ = (A∗,B∗,C∗) be an equilibrated local minimum of (2.1)
for which Assumption 1 holds. Then for every ϵ > 0 there exists a neighborhood of x∗,
such that for any starting point x(0) in this neighborhood the iterates of Algorithm 1
converge linearly to x∗ and particularly satisfy

|x(n+1) − x∗|∗ ≤ (q + ϵ)|x(n) − x∗|∗,

where q = |S′(x∗)|E < 1.
Proof. By Lemma 3.2, the operator R◦S is well-defined and continuously differen-

tiable in a neighborhood of its fixed point x∗. If we show that |(R◦S)′(x∗)|∗ ≤ q < 1,
the assertion of the theorem will follow from the contraction principle.

It holds f(R(x∗ + h)) = f(x∗ + h) for all sufficiently small h. Since f ′(x∗) =
f ′(R(x∗)) = 0, it follows that

|R′(x∗)h|2E = f ′′(x∗)[R′(x∗)h, R′(x∗)h] = f ′′(x∗)[h,h] = |h|2E .
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Additionally, by Lemma 3.1, (I−R′(x∗))R′(x∗) = 0. (Actually, R′(x∗) is an orthogo-
nal projector with respect to the inner product which induces the norm | · |∗.) Hence,
for all h ∈ X we have

|(R ◦ S)′(x∗)h|∗ = |R′(x∗)S′(x∗)h|∗
= |S′(x∗)h|E ≤ |S′(x∗)|E |h|E ≤ |S′(x∗)|E |h|∗.

(3.2)

As noted in Lemma 3.2, S′(x∗) equals the error iteration matrix I −M−1f ′′(x∗)
of the linear block Gauss-Seidel method for f ′′(x∗). It is known that for semidefinite
symmetric systems this error iteration matrix is a contraction in the energy seminorm,
that is, |S′(x∗)|E < 1, see [7, Eq. (9)] or [10, Theorem 3.2]. Due to (3.2), this proves
the theorem.

For (quite involved) estimates for q = |S′(x∗)|E we refer to [18].

3.3. General target functions. The concrete form of the function f only en-
tered in Lemma 3.2, where we used that every micro-step of the ALS iteration (2.2)
is a quadratic minimization problem. Due to the multilinearity of the tensor product,
this is the case for any quadratic cost function J : Rn1×n2×n3 → R, so our theorem
applies without change to

f(A,B,C) = J
(

r
∑

j=1

aj ⊗ bj ⊗ cj

)

. (3.3)

Important choices for J include energy norms of selfadjoint operators of eigenvalue
problems or partial differential equations. There have been attempts to use a tensor
calculus in the solution of such problems in very high dimensions, see for instance [2].

In the case of a general nonlinear functional J , the micro-steps in (2.2) do not need
to have unique solutions, even if assumptions on the Hessian are made. Moreover, the
global minima of a micro-step might lie far away from the considered local minimum
x∗ (see the discussion in [1]). To stay local, one should replace at each micro-step the
function f in (3.3) by its second-oder expansion

f̂(x) = f(x(n)) + f ′(x)(x− x(n)) +
1

2
f ′′(x)[x− x(n),x− x(n)]

at the current micro-iterate and minimize that one, which is nothing else than to
perform one Newton step with respect to the current block variable. This is called
approximate nonlinear relaxation in [16] and Newton-SOR method in [13]. For brevity,
we do not write the formulas out in detail. If we denote by Ŝ the iteration opera-
tor of that method, the claim of Lemma 3.2 and its proof hold for Ŝ (also see [13,
Theorem 10.3.3]). In fact, if J is quadratic as above, then obviously Ŝ = S.

Theorem 3.4. Let J ∈ C2(Rn1×n2×n3 ,R) and f be defined as in (3.3). Let x∗ be
an equilibrated local minimum of f for which Assumption 1 holds. Then the iteration

x(n+1) = (R ◦ Ŝ)(x(n)).

is locally linearly convergent to x∗.

3.4. Discussion of Assumption 1. We return to the least squares approxi-
mation. Assumption 1 appears quite difficult to verify. We wish to formulate some
sufficient criteria, which, however, seem far from being necessary in general cases.
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Define τ(x) = τ(A,B,C) =
∑r

j=1 aj ⊗ bj ⊗ cj . Then f(x) = 1
2∥T − τ(x)∥2 and

f ′′(x∗)[h,h] = ∥τ ′(x∗)h∥2 + (τ(x∗)− T , τ ′′(x∗)[h,h]). (3.4)

Assumption 1 states that f ′′(x∗)[h,h] = 0 only if h ∈ TM∗
x∗ . Note that for these

h we necessarily have τ ′(x∗)h = 0 (since τ is constant on M∗) and therefore also
(τ(x∗)− T , τ ′′(x∗)[h,h]) = 0.

Let us give an example, taken from [11], for which Assumption 1 does not hold.
Consider r = 3 and T given pointwise by

Ti1i2i3 = sin(i1 + i2 + i3).

One can prove that

sin(i1 + i2 + i3) =

3
∑

j=1

sin(ij + βj)

3
∏

k=1
k ̸=j

sin(ij + βj + αj − αk)

αj − αk
(3.5)

for all α1, α2, α3 ∈ R with sin(αj − αk) ̸= 0 for j ̸= k and all β1, β2, β3 ∈ R for
which β1 + β2 + β3 = 0. Hence if τ(x∗) = T is any of the exact decompositions given
by (3.5), the representation can be smoothly changed by manipulations beyond the
scaling indeterminacy. Geometrically this means that τ and also f are constant on a
submanifold of global minima of dimension more than 2r. The null spaces of τ ′(x∗)
and f ′′(x∗) are therefore larger than TM∗

x∗ and Assumption 1 cannot hold. A same
kind of example can be given for higher order tensors.

Let us formulate
Assumption 2. We have τ ′(x∗)h ̸= 0 for all h ̸= TM∗

x∗ , that is, the null space
of τ ′(x∗) is TM∗

x∗ .
This assumption implies that τ ′(x∗) is locally essentially unique and excludes

examples like (3.5). If now again τ(x∗) = T is an exact decomposition, then, by (3.4),
Assumption 2 is equivalent to Assumption 1, which proves the following:

Theorem 3.5. If τ(x∗) = T and Assumption 2 holds, then in a neighborhood of
x∗ the ALS algorithm is linearly convergent to x∗.

Let us now discuss the case of approximation, that is, the case r < rank T .
According to (3.4), we can expect Assumption 1 to hold, if Assumption 2 holds and
if τ(x∗)−T is sufficiently small, that is, if τ(x∗) is a good approximation for T . This
argument however lacks rigor, since the norm of τ ′′(x∗) would have to be estimated,
which seems not a priori possible4. It is therefore very difficult to make the argument
more precise in general. As so often, we have to content ourselves with an investigation
of the rank-one approximation.

In that case, we have to show rank f ′′(x∗) = n1 + n2 + n3 − 2. Since x∗ ∈ X̂ , a
space of this dimension is given by

W ∗ = {h = (δa, δb, δc) ∈ X | δa⊥a∗, δb⊥b∗}.

We have τ(x) = a⊗ b⊗ c,

τ ′(x∗)h = δa⊗ b∗ ⊗ c∗ + a∗ ⊗ δb⊗ c∗ + a∗ ⊗ b∗ ⊗ δc

4As far as we can see, this amounts in estimating
∑r

j=1 ∥a
∗

j ⊗ b∗j ⊗ c∗j∥. This quantity can
hardly be controlled a priori, a fact closely related to the phenomenon that the canonical low-rank
approximation can be an ill-posed problem (“diverging rank-one terms”).
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and

τ ′′(x∗)[h,h] = 2(δa⊗ δb⊗ c∗ + δa⊗ b∗ ⊗ δc+ a∗ ⊗ δb⊗ δc).

Let ∥τ(x∗)∥ = σ, that is, σ1/3 = ∥a∗∥ = ∥b∗∥ = ∥c∗∥. Using (a⊗b⊗c, ã⊗ b̃⊗ c̃) =
(a, ã)(b, b̃)(c, c̃), one verifies that for h ∈ W ∗ Eq. (3.4) reads

f ′′(x∗)[h,h] = σ4/3∥h∥2 − (T , τ ′′(x∗)[h,h]), (3.6)

where of course ∥h∥2 = ∥δa∥2 + ∥δb∥2 + ∥δc∥2. It is sufficient to consider ∥h∥ = 1.
Using that for h ∈ W ∗ the terms in τ ′′(x∗)[h,h] are pairwise orthogonal, one may
verify that, under the constraint ∥h∥ = 1, the norm ∥τ ′′(x∗)[h,h]∥2 is maximal only
if ∥δa∥ = ∥δb∥ = ∥δc∥ = 1/

√
3. This gives

∥τ ′′(x∗)[h,h]∥ ≤ 2

√

3 ·
(σ1/3

3

)2

=
2√
3
σ1/3.

Now notice that, if x∗ locally minimizes f , we have σ = ∥τ(x∗)∥ = (T , τ(x∗)/∥τ(x∗)∥).
Since moreover τ(x∗) and τ ′′(x∗)[h,h] are orthogonal for h ∈ W ∗, it follows that

(T , τ ′′(x∗)[h,h]) ≤ ∥τ ′′(x∗)[h,h]∥
√

∥T ∥2 − σ2 ≤ 2√
3
σ1/3

√

∥T ∥2 − σ2.

Inserting this into (3.6) leads to the estimate

f ′′(x∗)[h,h] ≥ σ4/3 − 2√
3
σ1/3

√

∥T ∥2 − σ2

for all h ∈ W ∗ with ∥h∥ = 1. The right side is positive if

σ2 >
4

7
∥T ∥2,

or, equivalently,

∥T − τ(x∗)∥2 = ∥T ∥2 − σ2 <
3

7
∥T ∥2.

In the order-d case the same reasoning leads to the estimate

∥τ ′′(x∗)[h,h]∥ ≤ 2

√

d(d− 1)

2
·
(σ(d−2)/d

d

)2

=

√

2d− 2

d
σ(d−2)/d

(since 1
2τ

′′(x∗)[h,h] consists of d(d− 1)/2 orthogonal terms then), and with that

f ′′(x∗)[h,h] ≥ σ2(d−1)/d −
√

2d− 2

d
σ(d−2)/d

√

∥T ∥2 − σ2 (3.7)

for all normalized h in an analogously defined space W ∗. The right side is positive if

σ2 >
2d− 2

3d− 2
∥T ∥2,

or, equivalently,

∥T − τ(x∗)∥2 = ∥T ∥2 − σ2 <
1

3− 2/d
∥T ∥2.
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If τ(x∗) is supposed to be the best rank-one approximation to T ̸= 0 (which always
exists), we can formulate the following criterion:

Theorem 3.6. If the Euclidian distance between an order-d tensor T and the set
of rank-one tensor is strictly smaller than ∥T ∥/

√

3− 2/d, then Assumption 1 holds
for any best rank-one approximation of T . Consequently, the ALS algorithm then
converges linearly in a neighborhood of a best rank-one approximation.

Although this already is a surprisingly soft condition, we remark that it may
not need to be necessary for Assumption 1 to hold. In particular, one expects esti-
mate (3.7) to be too rough in many cases. It is however sharp and might be used to
construct examples for which Assumption 1 does not hold. Consider for instance the
matrix case d = 2 with T being the 2 × 2 identity matrix, which is the worst case
when it comes to rank-one approximation. Its distance to the set of rank-one matrices
is 1, which is not strictly smaller than ∥T ∥/

√

3− 2/d = 1. Indeed, every matrix
(

sin2 t sin t cos t
sin t cos t cos2 t

)

=

(

sin t
cos t

)

⊗
(

sin t
cos t

)

(3.8)

is a best rank-one approximation of the identity. Obviously, this set cannot be ob-
tained by rescaling of a single rank-one matrix. Therefore this again is an example
where Assumption 1 does not hold5.

The rank-one case has also been studied in [19], but within a different framework.
A quite general condition has been formulated there for the local convergence of ALS,
namely the positive definiteness of a certain Lagrangian. As we believe, it is closely
related to our Assumption 1.

3.5. A note on regularization. There are several reasons why one should
instead of (2.1) consider a Tikhonov regularized problem such as

gλ(A,B,C) = f(A,B,C) + λ(∥A∥2 + ∥B∥2 + ∥C∥2) = min, (3.9)

where λ > 0 is a regularization parameter and the norms are the corresponding
Euclidian (Frobenius) matrix norms. (Note that ∥A∥2 + ∥B∥2 + ∥C∥2 = ∥x∥2.)

The first reason is that this problem is always well-posed, that is, admits a global
minimizer (it is coercive). This also has direct consequences to the behavior of an
ALS algorithm applied to (3.9). It has been observed that swamps occur less often so
that (global) convergence to a critical point is much faster [12, 15].

A second, equally important reason to consider (3.9) is that the scaling indetermi-
nacy is completely removed. One can check that for a local minimum x∗ ∈ X̂ of (3.9)
it necessarily holds ∥a∗j∥ = ∥b∗j∥ = ∥c∗j∥ for all j = 1, 2, . . . , r, that is, the solution

is equilibrated6. It is hence reasonable to apply the standard convergence theory of
the nonlinear block Gauss-Seidel method by assuming that g′′λ(x

∗) is positive definite
at a local solution. Since Lemma 3.2 holds, the local convergence of ALS applied to
gλ (without equilibration) then follows immediately from the above considerations,
cf. [1, Theorem 2]. Indeed, we have

Theorem 3.7. If λ is large enough, g′′λ(x
∗) is positive definite at global mini-

mizers x∗. Consequently, the ALS algorithm (without equilibation) is locally linearly
convergent at such points.

5For higher ranks, Assumption 1 will never hold in the matrix case, since a low-rank decompo-
sition UV T might be replaced by UAA−1V T , which is more than just a scaling indeterminacy.

6Using the Lagrange multiplier rule one can rigorously show that among all rescalings αja
∗

j ,
βjb

∗

j , γjc
∗

j with αjβjγj = 1 only the one that leads to an equilibrated solution minimizes the second

term in (3.9).
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Fig. 4.1. Depicted are the absolute errors ∥x∗−x(n)∥ between “exact” normalized factor matri-

ces of a rank-r approximation of a random 10× 10× 10 tensor and the iterates of the corresponding

ALS algorithm. Plots are given for r = 2 (∗), r = 3 (◦), r = 4 (+) and r = 5 (×). As one can

see, the convergence rate is better for r = 4 than for r = 3. However, this behavior was rather

exceptional in our experiments.

Proof. Fix λ0 > 0. All global minima x∗
λ0

of gλ0
lie in a certain ball of radius

depending on λ0 (again since gλ0
is coercive). Then for λ > λ0 the global minima x∗

λ

of gλ also have to lie in that ball, since otherwise we would obtain the contradiction

gλ(x
∗
λ0
) = gλ0

(x∗
λ0
) + (λ− λ0)∥x∗

λ0
∥ < gλ0

(x∗
λ) + (λ− λ0)∥x∗

λ∥ = gλ(x
∗
λ).

Consequently, the Hessian f ′′(x∗
λ) can be bounded by a constant depending only on

λ0, so that

g′′λ(x
∗
λ) = f ′′(x∗

λ) + 2λI

will be positive definite if λ is large enough.
Of course one does not want to make λ too large. At least, in contrast to the

unregularized case, for every λ the heuristic mentioned in the previous section can be
justified for global minima: since τ ′′(x∗

λ) now only has to be bounded on the ball in
which its global minimizers x∗

λ are located (which depends on λ), the Hessian

g′′λ(x
∗
λ)[h,h] = ∥τ ′(x∗

λ)h∥2 + (τ(x∗
λ)− T , τ ′′(x∗

λ)[h,h]) + 2λ∥h∥2

will be positive definite, if τ(x∗
λ) − T is sufficiently small. In particular, for exact

decompositions it is always positive definite.

4. Numerical experiments. Our numerical experiments were quite simple and
only meant to demonstrate the linear convergence rate and check the size of the
convergence region. The calculations have neither been systematic nor exhaustive.
Real applications can be found elsewhere. We emphasize again that we were interested
in the local convergence of the factor matrices, that is, say in the order-3 case, we
measured the Euclidian norm

∥x∗ − x∥ =
√

∥A∗ −A∥2 + ∥B∗ −B∥2 + ∥C∗ −C∥2,
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where the matrix norms are the Frobenius norms. To obtain a relative measure we
normalized the columns of the factor matrices to one (instead of equilibrating them).

In our experiments we randomly generated tensors of different size and order and
first calculated a “best” rank-r approximation using ALS with a random starting
point. As a stopping criterion we imposed that the difference ∥x(n)−x(n−1)∥ between
two subsequent normalized iterates should be sufficiently small (∼ 10−14) in order
“guarantee” that the solution is at least a critical point of the approximation problem.
For large values of r we had to try many starting points to achieve this precision due
to the appearance of swamps.

The normalized factor matrices of the calculated solutions then have been ran-
domly perturbed by different orders of magnitude and then used as a starting point
for the ALS algorithm again. We observed that the initial solution would be recovered
if the perturbation was of magnitude at most 100. In fact, larger perturbations result
in an almost random starting point, so the ALS iteration almost surely will converge
to a different critical point. Usually, the convergence rate decreased for larger r, but
not in all experiments. In Fig 4.1 we plotted the errors ∥x∗ − x(n)∥ of the iteration
for the rank r = 2, 3, 4 and 5 approximation of a random 10× 10× 10 tensor. As one
can see, the convergence is linear and the rate is better for r = 4 than for r = 3 in
this example, but then again really slow for r = 5.

For special tensors, such as hyperdiagonal or, more generally, complete orthogonal
tensors [8], one can exactly determine the best rank-r approximation by truncation of
a complete orthogonal representation. Applying the same kind of experiment for such
tensors we observed very fast convergence of ALS (at most 4 iterations independently
of r), so we did not include plots for this case.
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