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LOCAL CONVERGENCE OF THE PROXIMAL POINT
ALGORITHM AND MULTIPLIER METHODS
WITHOUT MONOTONICITY

TEEMU PENNANEN

This paper studies the convergence of the classical proximal point algorithm without assuming
monotonicity of the underlying mapping. Practical conditions are given that guarantee the local
convergence of the iterates to a solution of 7'(x) 3 0, where T is an arbitrary set-valued mapping
from a Hilbert space to itself. In particular, when the problem is “nonsingular” in the sense that 7!
has a Lipschitz localization around one of the solutions, local linear convergence is obtained. This
kind of regularity property of variational inclusions has been extensively studied in the literature
under the name of strong regularity, and it can be viewed as a natural generalization of classical
constraint qualifications in nonlinear programming to more general problem classes. Combining the
new convergence results with an abstract duality framework for variational inclusions, the author
proves the local convergence of multiplier methods for a very general class of problems. This
gives as special cases new convergence results for multiplier methods for nonmonotone variational
inequalities and nonconvex nonlinear programming.

1. Introduction. Consider the problem of finding a solution to an inclusion of the form,
(P) T(x)>0,

where 7 : H = H is a set-valued mapping on a Hilbert space H. It is well known that
most problems of variational character, such as minimization or maximization (constrained
or not) of a function, variational inequalities, minimax problems, etc., can be written in this
form. In many (but not all) situations, a given problem can be written in the form (P) with
the property that T is monotone, i.e.,

(X1 =X, v, —v,) >0 V(x;,v;) €gphT,

where gph T = {(x, v) | v € T(x)} is the graph of T. This is the case, for example, in convex
programming, monotone variational inequalities, and convex-concave minimax problems.
See for example Brezis (1973), Zeidler (1990), or Rockafellar and Wets (1998, Chapter 12)
for a reference on monotone mappings.

Rockafellar (1976a) gave a general convergence and rate of convergence analysis for an
algorithm for solving the monotone case of (P). This algorithm, named the proximal point
algorithm, was a generalization of the algorithm of Martinet (1970) for convex minimiza-
tion. It was proved that when the mapping T is maximal monotone, i.e., monotone and not
extendable to another monotone mapping, the sequence {x,}, generated from any starting
point x, by the rule

(1) Xpp1 = Pr(x),
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converges weakly to a point in the solution set 7'(0) of (P), provided the approximation
is made sufficiently accurate as the iteration proceeds. Here P, is defined by P, (x) = (I +
¢, T)™! for a sequence {c,} of positive scalars that are bounded away from zero. Iteration
(1) means that x, ., is an approximate (see Rockafellar 1976a, Proposition 3) solution to
the inclusion

() T(x)+c;' (x—x,)30.

At first sight, this looks almost as hard as the original problem. The key idea in Rockafellar
(1976b), a follow-up paper to Rockafellar (1976a), was to use convex programming duality
to reformulate (2) into a problem that is much easier than (P). More precisely, it was shown
in Rockafellar (1976b) how the proximal point algorithm can be combined with convex
programming duality theory to give a general convergence analysis for the multiplier method
(augmented Lagrangian method, Rockafellar 1973) in convex programming. Furthermore,
a new algorithm that was named the proximal method of multipliers was obtained that had
better theoretical convergence properties than the ordinary multiplier method.

Since the publication of Rockafellar (1976a,b), many generalizations have been made
to the classical proximal point algorithm; see, for example, Eckstein and Bertsekas
(1992), Eckstein (1993), Tossings (1994), Tusem et al. (1994), Solodov and Svaiter (1999),
Auslender and Teboulle (2000), and the references therein. Combining such a generalized
proximal point algorithm with the general strategy in Rockafellar (1976b), one obtains gen-
eralized multiplier methods that may have advantages over the classical methods. Also,
using generalized duality frameworks beyond convex programming, the approach of Rock-
afellar (1976b) has been used to derive multiplier methods for variational inequalities in
Rockafellar (1978), Gabay (1983), Eckstein and Ferris (1999), and Auslender and Teboulle
(2000).

All the above-mentioned works rely heavily on monotonicity of the underlying mapping.
It is known, however, that the classical multiplier method for minimization often converges
even without convexity; see Bertsekas (1982), Ito and Kunisch (1990), Contesse-Becker
(1993), Conn et al. (1996), and the discussion below. Moreover, Eckstein and Ferris (1999)
successfully applied their multiplier method to nonmonotone variational inequalities, even
though its convergence analysis was based on monotonicity. This suggests that monotonicity
might not be needed for local convergence of the general proximal point algorithm for set-
valued mappings. The first result in this direction was given in Spingarn (1981), where
conditions were given that guarantee the local convergence of the proximal point algorithm
without requiring monotonicity of 7. However, these conditions that essentially require that
T—! be differentiable at a solution and that the derivative be monotone (Spingarn 1981
Theorem 2) were rather stringent, and they exclude some important applications. In a recent
paper, Kaplan and Tichatschke (1998) review the literature on proximal point algorithm for
nonconvex minimization, and they give new conditions for convergence.

In this paper, we give new, more practical conditions on the operator 7 that guarantee
the local convergence of the proximal point algorithm, given that the parameters c, are kept
sufficiently high. Except for the first section, which deals with the fully monotone case, we
will not allow errors in the computation of the iterates, so that (1) becomes x|, = P,(x).
Although this restriction will compromise the practicality of the algorithm, we have chosen
to do so since the inclusion of an error term would considerably complicate the analysis
and the presentation of our results. The study of an approximate version is the subject of
an ongoing research.

Our analysis is based on the observation that the solution set of (P) coincides with that
of the inclusion

T,(x)>0,
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where T, = (T7'+ pI)~! is the Yosida regularization of T with parameter p > 0. We
apply an over-relaxed proximal point algorithm to 7,, and show that, with the right choice
of relaxation parameters, this yields the classical proximal point algorithm for 7 itself.
The main point is that for large enough p > 0, the mapping T, can be locally monotone
even when T is not, and that local maximal monotonicity is enough to guarantee the local
convergence of the proximal point algorithm.

An important case covered by our analysis is when T~! has a Lipschitz localization
around the solution. The existence of such localizations has been studied extensively in
the literature, and there are available specific conditions guaranteeing it for many classes
of problems; see, for example, Robinson (1980), Klatte and Tammer (1990), Dontchev and
Rockafellar (1996, 1998, 2001), Klatte and Kummer (1999), Levy et al. (2000), and the
references therein. Most notably, Robinson (1980) gave a sufficient condition called strong
regularity, which guarantees the existence of a Lipschitz localization for the solution map-
ping of a variational inequality. He also showed that, in the case of nonlinear programming,
it is guaranteed by the strong second-order sufficient condition. In general, strong regularity
can be seen as a natural generalization to the set-valued case of the classical nonsingularity
condition for smooth mappings.

Using the new convergence results for the proximal point algorithm, we will prove the
local convergence of multiplier methods for a very general class of inclusions. Our analysis
is based in part on a generalized duality scheme, much like convex programming duality
was used in Rockafellar (1976b) to analyze multiplier methods for minimization. These
results are then specialized to variational inequalities, and we obtain what seems to be the
first convergence result for a multiplier method for nonmonotone variational inequalities.

As a further application, we derive a convergence result for the proximal method of
multipliers for nonlinear (nonconvex) programming. This result also seems to be new. In
Bertsekas (1982, §2.2), the convergence of the classical method of multipliers for equality
constrained problem was proved. These results were then used in Bertsekas (1982, §3.1), to
prove the convergence of the multiplier method for inequality constrained problems under
the assumption of strict complementarity. Stronger convergence results not requiring strict
complementarity were later derived in Ito and Kunisch (1990), Contesse-Becker (1993), and
Conn et al. (1996). Our convergence result for the proximal method of multipliers is very
similar to the results in Ito and Kunisch (1990), Contesse-Becker (1993), and Conn et al.
(1996), but its derivation based on the general proximal point algorithm is simpler. The
same strategy would yield a simplified convergence proof also for the classical method of
multipliers.

We begin by recalling the relaxed proximal point algorithm of Eckstein and Bertsekas
(1992) for monotone mappings in §2, and we show that under a standard assumption,
local linear convergence is obtained. In §3, we show that the global monotonicity of the
underlying mapping can be replaced by “local monotonicity” without affecting the local
behavior of the relaxed proximal point algorithm. The main results are given in §4. In §5,
these results are combined with a duality scheme for variational inclusions, and we obtain
multiplier methods for a very general class of problems. In §§6 and 7 these are specialized
to variational inequalities and nonlinear programming, respectively.

2. The relaxed proximal point algorithm. Throughout this paper, H will be a real
Hilbert space, unless otherwise specified. In this section, we recall the relaxed proximal
point algorithm from Eckstein and Bertsekas (1992), and give a convergence rate result for
it. Although these results are based on monotonicity of the underlying mapping, they will
eventually lead to our main results for the nonmonotone case.

THEOREM 1 (ECKSTEIN AND BERTSEKAS). Let T : H = H be maximal monotone with
0ergeT and let {0}, {c,} and {€,} be scalar sequences such that

info, >0, supoy <2, infc, >0, Y € <oo.



THE PROXIMAL POINT ALGORITHM 173
Then for any x, € H, the sequence {x,} generated by the rule
X1 = 00Xy + (1= 03) X
where X, is such that
X — Pe(x)|l < €.
converges weakly to a point in T~'(0).

Under a local Lipschitz-type condition on the mapping T~' and a tightened error toler-
ance, a convergence rate analysis was provided for the ordinary proximal point algorithm
in Rockafellar (1976a). This result has been strengthened by Luque (1984) and Robinson
(1999). Under the same conditions as in Rockafellar (1976a), we can derive a convergence
rate estimate for the over-relaxed algorithm of Theorem 1.

PROPOSITION 2. In the situation of Theorem 1, assume that o, > 1, ¢, /¢ < oo, and
3) € = 8l X — xil,

where &, — 0. If T(x) 0 has a unique solution X, and for some neighborhood U > 0 and
a constant a > 0

(4) yeU, xeT '(y) = llx—x[ =alyl,

then {x,} converges linearly to x with rate

—2
\/1—&(2—&) < -,

a?+¢

where & =limsup,_, ;.

ProoF. We have that x, — P,.(x,) — 0 (see Eckstein and Bertsekas 1992, p. 300), so
for k large enough, x, — P,(x,) € U. This together with (4) implies (see Rockafellar 1976a,
p. 836)

®) 1P (x,) = %[1* =

e — %1%

a
a*+c}
Defining X, ., = 03P, (x;) + (1 — 0}.)x;, we have
% = ZII* = llow (P (x) = %) 4 (1 = ;) (x, = D) ||
= UI?HPk(xk) = X7+ (1= 0?15 = %[> 4+ 203 (1 = 3 ) (P (%) — X, %, — %),

where (P (x;) =%, x, = X) = (P (x;) = P (%), x, = %) = [|P(x,) — P (9)[1* = [| P () — X2
by strong monotonicity of P, (this is the well-known firm nonexpansiveness property of
P,). Since o, > 1, we then get

[l %41 — x> < 0, 2= o) |1 Pe(x) — X[IP + (1 — 0 ) ||, — X7,

and using (5), ||Xe —X|| < allx, — %||, where

2
%
a’+c}

a2
ak :\/O'k(Z—(Tk)m-f-(l —O’k)2 :\/1 —O'k(z—ﬂ'k)
k
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From (3), and from the fact that o (X, — x;) = x| — X, we get
1 = XN < [ Xesr = X[ + o€
< [ Fer = Xl 4 038l — x|
< N Fer = Xl Sl — 2l

< ¥ = X 4 Bellxisr — Xl + 8¢l — £,

SO
_ ak+8k _
I =1 = G5 =3,
where
8 =2
lim sup Oikj(skk =limsupa, = \/l —6(2— &)cﬂc——i—EZ <1. O

Note that if & > 1, the convergence rate estimate is strictly positive even if ¢ = oc.
However, if we choose o}, so that & = 1 and let ¢, ~co, we obtain superlinear convergence
under the conditions of Proposition 2. It is also possible to derive a convergence rate estimate
for the case where o, < 1 is allowed but that will not be needed in what follows.

3. Convergence under local monotonicity. In this section, we study a localized version
of maximal monotonicity, and we show that it is enough to guarantee the local convergence
of the over-relaxed proximal point algorithm. Although this result is not itself interesting
from the practical point of view when dealing with truly nonmonotone problems, it will be
one of the key ingredients in deriving our main convergence result in the next section.

DEFINITION 3. A set-valued mapping T : H = H is monotone in U C H x H if
gph T NU is the graph of a monotone mapping. It will be called maximal monotone in U
if there exists a maximal monotone mapping 7 : H = H such that gph7TNU =gphTNU.

Recall that by Zorn’s lemma, any monotone mapping has a (possibly nonunique) maxi-
mal monotone extension. A mapping 7 is maximal monotone in U if and only if at least
one of the maximal monotone extensions of gph 7T N U coincides with gph 7 on U. Note
that both local monotonicity and local maximal monotonicity are preserved under inversion,
just like their global counterparts. Using the global results in Rockafellar (1970), it is easily
checked that the (generalized) subdifferential mapping df : H = H of a lower semicontin-
uous function f is maximal monotone in X x H if X is an open convex set on which f is
convex.

The following gives a local version of the well-known continuity criterion for maximal
monotonicity. In what follows, singleton sets {v} will be denoted simply by v.

PropPOSITION 4. Let T : H = H be such that for some open X,Y C H the mapping
x> T(x)NY is single valued and weakly continuous on X. If T is monotone in X x Y,
then it is also maximal monotone in X x Y.

PROOF.  Let T be a maximal monotone extension of gph 7N (X x Y) and let (%, 7) €
gph TN (X x Y). It suffices to show that (x,v) € gphT. For any z € H, there is an € > 0
such that X + €z € X, so by monotonicity of T’

(T(X+ezx)NY =0, (x+€z)—X)=€{T(x+€z)NY —10,2) =0,
and then by the assumed weak continuity
(T(X)NY —v,z) > 0.

Since z € H was arbitrary, we must have v = T(X)NY, so that (¥,0) e gphT. O
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We will need the following in analyzing the proximal point algorithm for locally mono-
tone mappings.

LEMMA 5. Let T : H= H be monotone. For any ¢ > 0 and o € (0,2), the mapping
o(I+cT) ' +(1—0)I

is nonexpansive, and its fixed points are the zeros of T.

PrROOF. We have (I+cT)"' = %(I + N), where N is the unique nonexpansive mapping
corresponding to T as defined by Lawrence and Spingarn (1987) (see also Eckstein and
Ferris 1999). We then get

9
o(I+cT) "' +(1—o)l = TUI n %N,
which is nonexpansive as a convex combination of two nonexpansive mappings. [
In what follows, the open ball with center x and radius € will be denoted by B(x, €),
and the distance from a point x to a set C will be denoted by d(x). When x =0, we will
simply write B(€) in place of B(0, €).

PrOPOSITION 6. Let T : H = H be a set-valued mapping that is maximal monotone in
X x Y, where X,Y C H are open sets such that 0 € Y, and T~'(0)N X is nonempty and
closed with T'(0)N X +B(8) C X for some & > 0. Let ¢, 0, be such that inf ¢, > 0,
infoy, > 1 and supoy < 2. If dr-ignx(xo) is small enough, then there exist € > 0 and
X € T"Y(0)N X such that x, € B(X, €), and the rule

X =B, ) N[oy(I+¢,T) " (x) + (1 —0y)x,]

generates a unique sequence {x,} converging weakly and Fejér monotonically to a point in
T'(0)NXNB(X, €).

If. in addition, c,,o,, and the mapping y — T~'(y) N X satisfy the assumptions of
Proposition 2, then {x,} converges linearly to T~1(0) N X = {X} with rate

Ez
1-62-6)——= < 1.
( )a2+52

PrOOF. Let T be maximal monotone such that gph7 N (X x ¥) = gph7T N (X x Y).
Since T_I(O) is convex and T_I(O) NX = T7'(0)N X, which is nonempty and closed with
X open, we must have 7 (0) C X and 7~ (0) = T~'(0) N X. Indeed, writing 7 (0) =
(T (0)NnX)U (7_1(0) N X¢), we have a splitting of 7_1(0) into two disjoint closed sets,
which, by convexity of 7_1(0), is impossible unless one of the sets is empty. Thus, to
prove the first claim, it suffices by Theorem 1 and Lemma 5 to show that if dT—l(O) (xp) is
small enough, then there exist € > 0 and x € T~'(0) N X such that x, € B(x, €), and for
every k

(6) B(x,e)N[o,(I+c,T) ' (x)+(1—0)x] = a'k(l+ck7)7l(x) +(1—0y)x

for all x € B(x, €).
By our assumptions on X and Y, we can find an € > 0 such that 7! (0)+B(e) C X and
B(2e/c) C Y, where ¢ =inf ¢, > 0. Assume that dr1 (%) <€, and let X be the projection

of x, on the closed convex set T (0). We will first show that

7) (I+¢T)" () =B@E e)N(I+¢,T) ' (x), VxeB(,e).
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Let x € B(%, €) be arbitrary, and define x' = (1 + ¢, T)~"(x). Since (I+¢,T)~" is nonex-
pansive and X = (I +¢,T)~'(x), we have

x eB(x,e) CX,
¢ '(x—x') € ¢;'[B(x,e) —B(X, €)] C B(2e/c) C Y.
Since x' = (I + ¢, T)"'(x) means that (x',c;'(x — x')) € gphT, we then also have
(¥, ¢ '(x—x')) € gph T, or equivalently, x' € (I +¢,T) '(x), and so
(I4+¢T) ' (x) eB(E €)N(I+¢,T) " (x).
On the other hand, if x” € B(x, €) N (I +¢,T)~'(x), then
(x", e (x—x")) € (X xY)NgphT C gph T,

and so x” = (I + ckT)_l(x), which proves (7).
Now, let 1
X =0 (I+¢T) (x)+(1—0o)x,
which is a point in B(x, €), by Lemma 5. Reordering, and using (7), we get
X'+ (o, —x —\— _
% = (I+ckT) 1()c) =B, e)N(I+¢,T) ' (x) C (I+¢,T) (%),
k
so that _
X CB(x, e)N[o,(I+c,T) " (x)+ (1 —0)x].
On the other hand, if
x" CB(x,e)N[o,(I+c,T) ' (x)+ (1 —0y)x],

then

X"+ (o, —1)x
X'+ (o~ 1x CU+e,T) (),
O
where
" -1
il C/ ) LY
O

by convexity of B(x, €) and the fact that o, € [1, 2]. So by (7)
X"+ (o, — Dx

- =(I+¢T) " (x),

and then o
X" e (I+¢T) (x)+(1—0y)x,
which completes the proof of (6).
Since the sequence {x,} conforms to the algorithm of Theorem 1 applied to T, and since
T_l(y) NX =T~'(y)NX on Y, the convergence rate result follows from Proposition 2. [
Note that the condition that 7-!'(0) N X +B(8) C X for some 8 > 0 holds in particular
when T7'(0) N X is compact.

4. Local convergence without monotonicity. For any 7 : H = H and p € R, we have
that 7' (0) = T~'(0) +p0 = T~'(0), where T, denotes the Yosida regularization of T'. This
means that the solution sets to the inclusions 7'(x) 3 0 and 7,(x) > 0 coincide. What makes
the latter one more attractive from our point of view is that 7, may be locally monotone
even when T is not. This happens exactly when T~! is locally hypomonotone, that is, when
T~'+ plI is locally monotone for some p € R.

For a lower semicontinuous function f, there is a close connection between hypomono-
tonicity of its subdifferential and prox-regularity of f; see Rockafellar and Wets (1998,
§13F). In particular, 13.33 and 13.36 of Rockafellar and Wets (1998) imply that if f is
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lower-C? on a neighborhood of a point x, then for every v € df(x), df is hypomonotone in
a neighborhood of (x, v). Recall that lower-C? functions are the ones that can be expressed
locally as g — h, where g is finite and convex and 7 is C?; see Rockafellar and Wets (1998,
10.33).

A particularly convenient situation occurs when 7! has a Lipschitz localization. Recall
that a mapping 7 : H =2 H is said to have a Lipschitz localization at a point (x,v) € gph T
if there are neighborhoods X > x and Y > v such that the mapping x — T'(x)NY is single-
valued and Lipschitz continuous on X.

PROPOSITION 7. If T~ has a Lipschitz localization at (0, X) with Lipschitz constant k,
then for p > k, T, is maximal monotone in a neighborhood of (0, x).

ProOF. Let Y 50 and X > X be open sets such that y — T!(y)NX is Lipschitz contin-
uous and define F : H = H by gph F = gph T~' N (Y x X). Since F is Lipschitz continuous
on Y, we have for any y,,y, € Y that

(F)+py— (F3) +py2)s v —y2) = =F () = FO) v =yl + ol — w7
(P - K)”yl _)’2”2’

\

IV

so for p > k, F 4 pl is monotone. Since for any y € dom(F +pl) =Y
(F+pD)(0) =T~ () NX+py=(T"'(»)+py) N (X +py).
we have gph(F + pl) = gph(T~! 4+ pI) N U, where
U={(.x)|yeY, xeX+py}

which is a neighborhood of (0, x). This proves the local monotonicity of T, ! and T,, and

the local maximal monotonicity follows by Proposition 4 from the local continuity of 7 L

O
When 7, is locally maximal monotone, Proposition 6 says that if we apply the proximal

point algorithm to it, we obtain a sequence converging to a point in 7 1(0) = T71(0). The
following identity shows how to get the resolvants of 7, from those of 7.

LeEMMA 8. Forany T :H = H, and c, p € R such that c+p, ¢ #0, we have

p

C
I+cT ) '=—[I+(c+p)T| '+ ——1.
( ») C+p[ (c+p)T] P

PROOF.

x—x'

Xe(+cT,) '(x) = eT,(x)

c

/

e (T‘1+p1)<x_cx )

(c+p)x' —px c T_l<x—x’)
¢ ¢

[(c+p)x/—px}

x—x'
— et

c c

1 [x_ (c+p)x’—px] . T[(c+p)x/—px]
c+p c c

<:>xe[1+(c+p)T][(c+p)#]

— w e[+ (c+p)T]"'(x)

c
= xe—[I+(c+p)T]'(x)+ P v O
c+p c+p
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Thus, for ¢ > 0, p > 0, the resolvant of T A is obtained from that of T by “under-
relaxation.” Applying the proximal point algorithm with an appropriate over-relaxation, we
can compensate for this to obtain the ordinary proximal point algorithm.

THEOREM 9. Let T : H = H be a set-valued mapping such that for some p >0, T, is
maximal monotone in X x Y, where X, Y C H are open sets such that 0 € Y and T~'(0)NX
is nonempty and closed with T~ (0)N X +B(8) C X for some 8 > 0. If d -1 g)nx (x,) is small
enough and inf ¢, > 2p, then there exist € > 0 and ¥ € T~'(0)N X such that x, € B(X, €),
and the rule

() X = B(x, f)m(l"‘CkT)_l(xk)
defines a unique sequence {x,}, converging weakly and Fejér monotonically to a point in
T-'(0)NX.

If, in addition, c, and the mapping y = T~ (y) N (X — pY) satisfy the assumptions of
Proposition 2, then {x;} converges linearly to T~'(0) N X = {x} with rate

c c ¢
1—= (2—_ ) — <1
c—p c—p/) (a+p)+c

Proor. The condition inf ¢, > 2p implies inf ¢} > 0, inf oy, > 1, and sup o}, < 2, where

/
c,=c—p and o= .
Ce—pP

Thus, by Proposition 6, there exist € > 0 and ¥ € T~'(0) N X such that x, € B(x, €), and
the rule

X1 = B(X, €)N[op (I + c,’(TP)_I(xk) + (1 —0o)x]

defines a sequence {x,} with the required properties. The first claim follows by noting that
by Lemma 8,

4

Cc
ok<1+c,1Tp>-'+<1—ok>1:ak[ S G p1]+<1—crk>1
k k
B ACIIp S <%+ 1 —ak>1
Ck Ck
= +cT)".

If the mapping y — T~!(y) N (X — pY) satisfies Condition (4), then

yeU, xeT,'(MNX < yeU, xeT '(y)N(X—py)+py
= yeU, xeT'(y)N(X—pY)+py
= yeU, x=x+py, ¥XeT'(y)NX-pY)
= x| =¥l +plyll < allyll+pllyl.

so the mapping y > T '(y) N X satisfies (4) with the constant a replaced by a -+ p, so that
Proposition 6 gives the rate

— — —2
— (2—_C ) < <1 O
c—p c—p/) (a+p)+c
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Rule (8) means that x,,, is the unique solution in B(x, €) to the inclusion
9) T(x)+c; ' (x—2x;)30.

Since the subproblems (9) are not in general monotone, it is necessary to restrict the region
where the iterates are sought in order to make them well defined.

The condition inf ¢, > 2p is reminiscent of the condition used in Bertsekas (1982,
Proposition 2.7) and in Contesse-Becker (1993, Theorem 2.3), which concern the multiplier
method for nonlinear programming. There, p is the negative of the smallest eigenvalue of
the Hessian of the associated value function. If, in Theorem 9, T~! is the subdifferential
of the value function, then the condition that 7~' + pI be locally maximal monotone is
a natural generalization of the condition that p be larger than the negative of the small-
est eigenvalue of the Hessian. This new condition allows T~! to be nonsmooth and even
set-valued, and it does not require 7~! to be a subdifferential of a function.

Combining Theorem 9 with Proposition 7, we obtain the following result for the case
where T~! has a Lipschitz localization.

COROLLARY 10. Assume that T~' has a Lipschitz localization at (0, %), with Lipschitz
constant k. Let {c,} be such that inf ¢, > 2k, and ¢, /¢ < oo. If || xo — X|| is small enough,
then there exists an € > 0 such that x, € B(xX, €) and the rule

X =BE QNI +6,T) " (%)

generates a unique sequence {x,} converging linearly and Fejér monotonically to x with

rate — — >
1—— (2-—°5 < <
C—K c—kK)(2k)?+7C

5. General form of multiplier methods. Let H and V be Hilbert spaces. For an arbi-
trary S : H = H, maximal monotone T : V =V, and a C? function F : H — V, consider
the problem of finding a solution to the inclusion

(P) S(x)+ VF(x)*T(F(x)) >0,

where VF(x)* is the adjoint of the Jacobian of F at a point x. This provides a flexible
model for various applications, and it is convenient for developing and analyzing multiplier
methods based on the proximal point algorithm.

The structure of (P) supports a natural duality theory, which adjoins to the primal problem
(P) dual and primal-dual problems much as in the duality theory of convex programming.

Denote
Fo(x) = S(x) + VF (x)"T (F(x)),

so that (P) can be written as F,(x) 3 0. Define the Lagrangian L : H xV = H x V by
L(x,y) = (VF(x)"y, =F(x)) +S(x) x T~ (),

and consider the primal-dual problem

(PD) L(x,y) > (0,0).

The Lagrangian is related to F,, by

(10) Fy(x)={veH|3yeV: (v,0) € L(x,y)}
={S(x)+VF(x)*'y|IyeV: 0e —F(x)+T ()}
={S(x)+VF(x)'y|3yeV: ye T(F(x))}
= S(x)+ VF(x)*T(F(x)).
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Expression (10) and a desire for symmetry suggest defining a mapping G,:V = V by
(11) Gy(y)={ueV|IxeH: (0,u) € L(x,y)}

and to define the dual problem

(D) Gy(y) 2 0.

Before going into an example, we recall some notation and facts from convex analy-
sis (Rockafellar 1970). The indicator function 6. of a set C C H is the function that has
value O for x € C and +o0 otherwise. The normal cone operator of C is the subdifferential
of &.:

Ne(x)={veH|{v,y—x)<0VyeC}|

If C is closed and convex, then 0 is a closed convex function and N, is maximal monotone.
The polar cone of a cone K C H is the closed convex cone

K*={veH]|(v,x) <0VxeK}.

If K is closed and convex, the functions 0y and 6. are conjugates to each other, so that
K* =K and Nyg. = N¢'.
ExampPLE 11. Consider the nonlinear programming problem

minimize f;(x)

(Pyep) subject to  f;(x) {

=0 fori=1,..,r
<0 fori=r+1,....m

for real-valued C? functions f;. Defining § = Vf,, H = R", F(x) = (f;(x), ..., f,,(x)) and
T = Ng for
K ={0} xR"™",

the mapping F,, becomes
Fo(x) = Vfo (%) + VF (x)" N (F (x)).
At any point x satisfying the constraint qualification
y € Ng(F(x)), VF(X)'y=0=y=0,

F,(X) is equal to the subdifferential of the essential objective f,+ 6y o F of (Py.p) at the
point X; see Rockafellar and Wets (1998, 10.8). In this case, (P) is a necessary optimality
condition for (Py,p) (Rockafellar and Wets 1998, 10.1).

The Lagrangian now becomes

L(x,y) = (VF(x)"y, =F(x)) + Vf (x) X Ng- (¥),

where we have used the relation Ni' = Ng.. So now (PD) is just the classical Karush-Kuhn-
Tucker system for (P, ). Defining the Lagrangian function 1(x,y) = fy(x) + {(y, F(x)) —
O+ (), L can be expressed as

L(x,y) = dl(x,y) x I[=1](x, ),

and one can define the dual objective g(y) = inf, /(x, y), which is always a closed convex
function. If (Py,p) is a convex program, the solutions of (PD) are exactly the saddle-points
of I, and they can be expressed as (x,y), where x solves (Py.p) and y solves the dual
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problem of maximizing g; see, for example, Rockafellar (1974, §7). If, in addition, the dual
problem is strongly consistent in the sense of Rockafellar (1970), the mapping G, is the
subdifferential mapping of g, so that the problem of maximizing g is equivalent to the dual
inclusion G,(y) 2 0.

In the absence of convexity, the traditional duality theory collapses since the saddle-points
of I or the maximizers of g may not have anything to do with the solutions of (P, p).
However, for the inclusions (P), (PD), and (D) we always have the following duality result.

THEOREM 12. An x solves (P) if and only if there is a y such that (x,¥) solves (PD),
in which case y solves (D). Dually, a y solves (D) if and only if there is an X such that
(x,¥) solves (PD), in which case X solves (P). Moreover, the solutions (x,Yy) of (PD)
satisfy y € T(F(x)).

Proor. Using Expression (10), we see that x solves (P) if and only if there is a y such
that (0,0) € L(x, y). This means that (X, ¥) solves (PD), and by the definition of G, that
y solves (D). Dually, if y solves (D), there exists, by the definition of G, an x such that
(0,0) € L(x, x), which by Expression (10) means that x solves (P). To prove the last claim,
we note that by the definition of L, (0, 0) € L(x, y) implies 0 € —F(x) + T~'(y), which is
the same as y € T(F(x)). O

It is clear from the proof that monotonicity of 7" and the continuity properties of F are
irrelevant in Theorem 12. These properties are needed in all the applications of this paper, so
for simplicity, we have chosen to assume them from the start. The above duality framework
is a special case of the more general construction introduced in Pennanen (2000), but we will
refer to it as the general duality framework in what follows. For other duality frameworks
for generalized equations, see Attouch and Théra (1996), Pennanen (1999), Auslender and
Teboulle (2000), Robinson (1999), and the references therein.

5.1. Method of multipliers. Applying the proximal point algorithm to (D), we get an
iteration where y, ., is obtained from y, by solving (if possible) the modified dual problem

Go(y)+c ' (y—w) 0.

It turns out that this is exactly the dual problem in the general duality framework with the
mapping T replaced by the mapping

(12) T (u) = (I+CkT71)71(yk + ).

Indeed, since 7,7 '(y) = T7'(y) + ¢ '(y — yi), the Lagrangian L, corresponding to 7, can
be written as

L,(x,y) = (VF(x)*y, —F(x)) +S(x) x T ()
= (VF(x)*y, —=F(x))+S(x) x [T () + ¢ (y = )]
=L(x,y)+ 0. ¢ (y—w)).

so the dual problem corresponding to the primal-dual problem
(PDy) L(x,y)>(0,0)
reads

(Dy) Gy() 30,
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where
Gt(y)={ueV|IxeH:(0,u) € L(x,y)}
={ueV|IxeH:(0,u) e L(x,y)}+¢. ' (y—y)
= G+ (Y=o
Just as in (10), we find the corresponding primal problem to be
(Py) S(x)+ VF(x)"T,(F(x))20.

Note that 7, is single-valued and Lipschitz continuous since it is the composition of u
y, + ¢ u and the resolvant of the maximal monotone mapping 7.

Since (P,), (PD,), and (D,) are in the format of the general duality framework, their
solutions are related according to Theorem 12. In particular, we have the following.

LEMMA 13.  The solutions to the proximal point subproblem (D,) (if any) are precisely
the points of the form y,, , = T, (F(x,,,)), where x;_, is a solution of (P,). Moreover, the
points (X, Yiy1) are the solutions of (PD,).

In summary, we can write the proximal point algorithm for (D) in the following form.

Algorithm 1 (Method of Multipliers).
Step 0. Choose y, and set k = 0.
Step 1. Solve
S(x)+ VF(x)*T,(F(x))>0

for x;, ;.

Step 2. Set y, ., = T (F(x441)), k=k+1 and go to 1.

In practical applications of the method of multipliers, it is usually possible to write an
explicit expression for the mapping T, so that Step 2 does not present any computational
difficulties. For example, in Example 11, T = Ny, so that by Rockafellar and Wets (1998,
6.17),

(13) T (u) = (I+CkNl;l)_l(yk+Cku) = (I+CkNK*)_l(yk+Cku) = Prs (e + cu),
which is just the projection of y, 4+ c,u on the cone
K'={yeR"|y;,>0,i=r+1,...,m}.

The problems to be solved in Step 1 are of the same form as the original problem (P), but
the mapping 7 has been replaced by T,. The reason why the method of multipliers might
be useful is that 7, is guaranteed to be single-valued and Lipschitz continuous, whereas
T is typically set-valued with dom7 # V. In the case where S is single-valued (e.g., in
Example 11), (P,) is an equation instead of an inclusion.

THEOREM 14. Assume that L™ has a Lipschitz localization at a point (0,0, X, y), with
Lipschitz constant k. Let {c.} be such that inf ¢, > 2k, and ¢, /'c < oo. If ||y, — || is small
enough, then there exists a sequence {(x,,y,)} conforming to Algorithm 1 along with open
neighborhoods X, such that for each k,x,., is the unique solution in X, to (P,). The
sequence {y,} converges linearly and Fejér monotonically to y with rate

G g &
- 2- 1
\/ 5—K< E—K)(2K)2+52<

The sequence {x,} converges to X, and there is an M € R such that || x, —x|| < M|y, — |-
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ProOF. By the Lipschitz assumption, there exist open neighborhoods X > x,Y >y,
W 50, and U > 0 such that the mapping

(14) (w, u) > (X xY)NL " (w, u)
is Lipschitz on W x U. It follows that the mapping
urs P,[(X xY)NL7'(0, u)]

is Lipschitz on U. Denote by (N}O the inverse of this mapping. Then by Corollary 10, there
exists an € > 0 such that for any y, € B(¥, €), the rule

(15) Vir1 €EBGL€),  Go(Veyr) +C;1()’k+1 I ELY

generates a unique sequence converging linearly and Fejér monotonically to y. Rule (15)
can be written as

Vir1 €EB(GL,€),  yiy € G(;](C/:l(Yk = Yer1))s

which by definition of 50 means that there exists an x,, such that

(16)  (xgy1» Vi) € [X x (Y NB(3, )INLT(0, ¢ (v — yeyr))
= () €L70, ¢ k= vin1)s - % €X, 0 v €YNB(, €)
> Li(x41: Y141) 2 (0,0), x €X, yyy €YNB(Y, €).

By Lemma 13, Rule (15) thus means that y,; = T, (F(x,,,)), where x, ., solves (P,) and
Xpy1 € X = XN (T o F)""(YNB(y, €)), which is an open set by the continuity of T, o F.
Relation (16) and the Lipschitz continuity of Mapping (14) imply the uniqueness of x,
in X,.

Corollary 10 also gives the rate of linear convergence for {y,}, so there are constants r,
converging to this rate, with ||y,, —¥|| < ri|ly. — ¥| for all k. Then Relation (16) and the
Lipschitz continuity of Mapping (14) yield

X1 = XN = 1 Goeers Yigr) = (6, D)l
< klle; e =yl
< k¢ (v =91+ e = 31D
< kg '(Iye =3+ rellye =31

1
K i

Iye =yl = My =¥,

k

where M =supk((14+r,)/c,) <oo. O

To obtain local convergence of {y,} to a solution of (D), it would suffice by Theorem 9
to have G, ' locally hypomonotone instead of the existence of a Lipschitz localization for
L~'. However, this would not give the convergence of {x,} to a solution of (P), which is
what we are really interested in. The situation is very similar to the convergence analysis in
the monotone case: Assuming only maximal monotonicity of the underlying mappings, one
cannot guarantee the convergence of the primal sequence, but only that all its accumulation
points are solutions of the primal problem (Rockafellar 1976b, Eckstein 1993, Eckstein
and Ferris 1999). The convergence properties obtained above are similar to the ones for
nonlinear nonconvex programming in Bertsekas (1982), Ito and Kunisch (1990), Contesse-
Becker (1993), and Conn et al. (1996), where certain regularity properties were assumed to
hold at the solution; see also §7.
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5.2. Proximal method of multipliers. If we apply the proximal point algorithm to
(PD), we get an iteration where (x,,,, y.,,) is obtained by solving

(PDy) L(x,y)+¢; ' (x—x,, y—y) 2 (0,0).

This is the primal-dual problem in the general duality framework if we replace the mapping
S by S.(x) = S(x)+c¢;'(x—x,) and the mapping T by

T (u) =1+ CkT7])7] (O +cu),
like in the method of multipliers. Indeed, with these modifications, the Lagrangian becomes

Li(x,y) = (VF(x)"y, =F(x)) + 8, (x) x T ()
= (VF(x)"y, =F(0) +[S(x) + ¢ (x —x)] < [T () + ¢ (v = )]

=L(x,y)+c (x—x. y—y0).

The primal problem associated with the mappings S, and T} according to the general duality
framework is

(Py) S(x) +e 't (x = x) + VF(x) T, (F (x)) 3 0.

The corresponding dual problem could again be defined through (11), but it will not be
used here.
Applying Theorem 12 to (P,) and (PD,), we get the following.

LEMMA 15. The solutions to the proximal point subproblem (PD,) (if any) are precisely
the points of the form (x,,, T, (F(x.,,))), where x,_, is a solution of (Py).

We are thus lead to the following algorithm.

Algorithm 2 (Proximal Method of Multipliers).
Step 0.  Choose (x,, y,) and set k = 0.
Step 1. Solve

(Py) S(x) +c (x—x) + VF(x) T, (F(x)) 30

for x4,

Step 2. Set y, 1 = T.(F(x441)), k=k+1 and go to 1.

The only difference from Algorithm 1 is that now we have an additional regularizing
term ¢;'(x — x;) in F,. This small difference allows us to get the following improved
convergence result.

THEOREM 16. Assume that L™' has a Lipschitz localization at a point (0,0, X, y) with
Lipschitz constant k. Let {c,} be such that inf ¢, > 2k and ¢, /¢ < oo. If ||(x¢, ¥y) — (X, V)|
is small enough, then there exists a sequence {(x,,y,)} conforming to Algorithm 2 along
with open neighborhoods X, such that for each k, x,_, is the unique solution in X, to (P}).
Furthermore, the sequence {(x,,y,)} converges linearly and Fejér monotonically to (X, y)

with rate
c c c?
1— 2— 1
\/ 5—K< 5—K>(2K)2+52<
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PrOOF. Since Algorithm 2 is the proximal point algorithm applied to (PD), Corollary 10
implies the existence of an € > 0 and a sequence {(x,,y,)} with the claimed properties
such that for each k, (x,,,, y;,1) is the unique solution in B((X, ), €) to (PD,). Let X, =
H'(B((x, ), €)), where H,(x) = (x, T,(F(x))). Then X, is open by the continuity of
Hy, and x, is the unique solution of (P,) in X;. Indeed, if x;,, were any other such
solution, then by Lemma 15, H,(x;,,) € B((%, y), €) would solve (PD,), but H,(x,,,) #
(Xerrs Yig)- O

Note that, using Theorem 9 instead of Corollary 10 in the above proof, we would obtain a
convergence result under the weaker condition of local hypomonotonicity of L~!'. However,
the above version with Lipschitz localization is more directly related to the existing theory
on variational problems, and it turns out to be directly applicable in familiar contexts. In the
following two sections, we consider two special classes of problems that can be expressed
in the form (P) and for which more specific conditions are available that guarantee the
existence of such localizations.

6. Application to variational inequalities. Consider problem (P) in the case where
S=f+Ny and T = Ng for a C' function f: H— H, a closed convex set X C H, and a
closed convex cone K C V:

(Pyr) f(x) + Ny (x) + VF (x)*Ng (F(x)) 0.

To motivate this problem format, let C = {x € X | F(x) € K}, which is nonconvex in general.
By Rockafellar and Wets (1998, Theorem 6.14), the (generalized) normal cone mapping N,
of C satisfies

Ne(x) D Ny (x) + VF (x)"Ni (F(x)),

where equality holds at any point x satisfying the constraint qualification
(CO) y € Ng(F(x)), —VF(x)"y € Ny(x) = y=0.
So, any solution of (Py,) solves

(17) Jf(x)+Nc(x) 20,

and vice versa at any point satisfying (CQ). The inclusion (17) can be seen as a generalized
variational inequality. Indeed, when C is convex, (17) means that

xeC, {(f(x),y—x)=0, VyeC.

The idea of applying multiplier methods to variational inequalities goes back to
Rockafellar (1978), where the case of monotone variational inequalities with convex con-
straint functions was treated. Gabay (1983) derived a multiplier method for variational
inequalities, which can be written in the form

S(x)+B*3f(Bx) 50,

where S is maximal monotone, B is linear and continuous, and f is a closed convex func-
tion. Eckstein and Ferris (1999) introduced multiplier methods that solve a monotone com-
plementarity problem by solving a sequence of smooth equations. This work was extended
by Auslender and Teboulle (2000) to monotone variational inequalities with convex con-
straint functions. The convergence results in Rockafellar (1978), Gabay (1983), Eckstein
and Ferris (1999), and Auslender and Teboulle (2000) were based on generalized dual-
ization and on convergence of proximal point methods for maximal monotone mappings.
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Specializing the results of the previous section, we can use a similar technique to obtain
local convergence results for variational inequalities without assuming monotonicity.
In the current situation, the mapping 7, in (12) can be written as in (13)

T (u) = (I+ckNK71)7l(yk +cpu) = Py (v, +cu),

so that Algorithm 2 becomes:

Algorithm 3 (Proximal Method of Multipliers).
Step 0.  Choose (x,, y,) and set k =0.
Step 1. Solve

(Py;) F0)+ e (x = x,) + Ny (x) + VF ()" Pe- (3 + ¢, F (x)) 30,

for x;, ;.

Step 2. Set yi 1 = P (Ve + ¢ F(x41)), k=k+1 and go to 1.
Note that since by assumption X is convex, problem (P¥,) can be written as an ordinary
variational inequality even though the original problem (P,,) could not. The case where
X = H is especially interesting, since then (Pf,) becomes an equation. Even though this
equation is in general nonsmooth, there are numerical algorithms such as generalized New-
ton methods (see, for example, Robinson 1994) that could be used in solving it.

To apply Theorem 16, we need to establish the existence of a Lipschitz localization for
the inverse of the Lagrangian, which in this case can be written as

L(x,y) = (f(x) + VF(x)"y, =F (x)) 4+ Nx (x) x Ng- ().

We see that now (PD) is a variational inequality for the C' function

8(x,y) = (f(x) + VF(x)"y, —F (x))

and the closed convex set X x K*. According to Robinson (1980), L~ has a Lipschitz
localization at a solution (x, y) of (PD) if the inverse of the semilinearized mapping

L(x,y) = g(&,5) + Vg(%, 7) (x — ¥,y — ) + Ny (x) x Ny ()

has one at (0, 0). Following Robinson (1980), such a property of the variational inequality
(PD) will be called strong regularity at (x,y). We can now state Theorem 16 in the
following form.

THEOREM 17. Assume that (PDy,) is strongly regular at (X,¥). If ||(x, o) — (X, Y|
is small enough, and if c, are large enough with c, /'c < oo, then there exists a sequence
{(x¢, ¥0)} conforming to Algorithm 3 along with open neighborhoods X, such that for each
k, X, is the unique solution in X, to (P,). Then also, the sequence {(x;,y,)} converges
linearly and Fejér monotonically to (x,y) with rate r(¢) < 1 that is decreasing in ¢ and

r(¢)N\O as ¢ Soo.

In a similar fashion, one can use Algorithm 1 to derive a multiplier method for (Py,)
where the additional regularizing term ¢ ' (x — x,) would be missing from the subproblems
(P§,). Theorem 14 would then imply the convergence of this method, just as in the case of
the proximal method of multipliers above, where Theorem 16 was used.

Since the publication of Robinson (1980), strong regularity has been studied by many
authors. Dontchev and Rockafellar (1996) studied the important special case of variational
inequalities over polyhedral convex sets, and they gave sufficient as well as necessary con-
dition, called the critical face condition, for strong regularity. In the light of their results,
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strong regularity can be seen as a generalized constraint qualification that is a generic prop-
erty of a variational inequality, like the classical constraint qualifications in nonlinear pro-
gramming. In Dontchev and Rockafellar (1996), stability results for nonlinear programming
were obtained by specializing the more general results on variational inequalities. In the
same vein, we obtain convergence results for multiplier methods of nonlinear programming
in the next section.

7. Application to nonlinear programming. Consider again the nonlinear program-
ming problem

minimize f;(x)

(Pyip) subject to  f;(x) {

=0 fori=1,...,r
<0 fori=r+1,...,m

of Example 11. Recall that the primal-dual inclusion in Example 11 is the Karush-Kuhn-
Tucker system,

Vfo(x) + VE(x)'y = 0

(PDy,p) —F(x)+Ng-(y) 20

for (Py.p).

We will use Theorem 17 to derive a local convergence result for a nonconvex case of the
following proximal method of multipliers, which was introduced in Rockafellar (1976b) for
convex programming.

Algorithm 4 (Proximal Method of Multipliers).
Step 0.  Choose (x,, y,) and set k = 0.
Step 1. Solve

. 1 1
(PII:/LP) minimize ¢, (x) := fo(x) + z—|lx —x; ||2 +—dg(y + CkF(x))2
2¢; 2¢;
for x; ;.
Step 2. Set
y,i+1:y,i+ckﬁ(xk+l) fori=1,...,r,

Vo =max{y, + ¢ fi(x,), 0} fori=r+1,...,m,

k=k+1 and go to 1.

From implementation point of view, this differs from the classical method of multipli-
ers only in the additional regularizing term ﬁ”x —x;]|? in ¢,. As in the convex case in
Rockafellar (1976b), it turns out that this term allows us to deduce better convergence prop-
erties than for the ordinary method of multipliers.

Let (x, y) be a point satisfying the KKT conditions for (P, ), and define the index sets

L ={1,....,r}Ulie[r+1,m]| f;(x) =0, y >0},
L ={ie[r+1,m]|fi(x)=0, y, =0},
L={ie[r+1,m]]| fi(X) <0, y,=0}.

Recall that (x, y) is said to satisfy the strong second-order sufficient condition (SSOSC) for

(PNLP) if
(w, V21(%, 7)w) >0 Yw#0:(Vfi(¥),w)=0 Viel,.
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Here the function [ is defined by I(x, y) = f,(x) +(y, F(x)). Note that SSOSC holds if and
only if there is a ¢ € R such that

(18) (w, V21X, P)w) +¢ > (VF(X), w)* >0 Yw#O.

iel)
We will make use of the following identity.

LeEmMA 18. For any nonempty closed convex cone K
a0 = sup { ) = 31}
—dg(u) = sup {(u,y)— = .
7K ye/?* y ) y

ProoF. Computing the conjugate of the function g(u) = %d «(1)?

€)= sup{ ) = 3o -ulP - 5,0

u,v

= sup{ (v 3.3 = 3 lF - 5,0
= Supl(0.9) ~ 30} + LI = .0+ 2 I,

we have by the continuity of g that
1 2 *k 1 2
Sdi()’ =g () = sup { (u.3) = S IyI* :
yek*

see Rockafellar and Wets (1998, 11.1). O

THEOREM 19. Let (x,y) be a KKT pair for problem (Py,p) satisfying the SSOSC and
assume that the gradients Vf;(X) for i € I, are linearly independent. If the {c,} are large
enough with ¢, /¢ < oo and if ||(xy,¥y) — (X, ¥)| is small enough, then there exists a
sequence {(x,, y,)} conforming to Algorithm 4 along with open neighborhoods X, such that
for each k, x,, is the unique solution in X, to (P%, ). Then also, the sequence {(x;, y,)}
converges linearly and Fejér monotonically to (x,y) with rate r(c) < 1 that is decreasing

in ¢ and r(c)N\O as ¢ /oc.

Proofr. By Robinson (1980, Theorem 4.1), the SSOSC and the linear independence
condition imply that the KKT system (PD,;p) is strongly regular at (x,y). Thus, by
Theorem 17, it suffices to show that Algorithm 4 is equivalent to Algorithm 3.

Applying Rockafellar and Wets (1998, 12.23) to the indicator function &, of K, we get

Vdg () =21+ N ' =2(1+ Ny.) ™' = 2P,
where the last equality follows from Rockafellar and Wets (1998, 6.17). Thus,
Vi (x) = Vfo (x) + ' (x = x;) + VF (x)" P (3 + ¢, F (x).
Since K* = R" x R7™", Step 2 can be written as y; | = Pg.(y; + ¢, F(x;,,)). It remains
to show that for large enough c,, the unique stationary point of ¢, in X, is in fact a
minimizer of ¢,. To this end, we apply the second-order sufficient condition in Rockafellar

and Wets (1998, 13.26), which applies to composite-type minimization problems like the
one we have in Step 1.
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By Lemma 18,
1 ) » 1
s—dg(yetcu)” =supy(y, utc y) — 5. By) (s
2¢; yeY 2

where ¥ = K* and B = ¢;'I. Thus, problem (P},,) can be written in the format of
Rockafellar and Wets (1998, 13.26) as

minimize f,(x) + GY,B(I’*:(x)) over all x € X,

where X = R", fy(x) = fo(x) + 5 ||x—xk||2 and F(x) := F(x) + ¢; 'y, Part (b) of
Rockafellar and Wets (1998, 13. 26) ‘then says that a sufficient condition for x,,, to be a
local minimizer of fo +0y o F is that

(19) max (w V L(xk+l,y)w>+26Y/(XH ). B(VF(xk+1)w) >0 Ywe X (x.,)\{0},

YEY (xp41)

where
E(n) = 70+ F@) = 5 (0 By).

Y(xir) = {0 | =V, L(xg¥) € Ny(xsy), VyL(xa, ) € Ny,
X,(karl) = Tx(xk+1) N sz(karl > y)L’
Y'(y) = Ty(») NV, L(xy0, )%

1

Oy (x,).8(u) = sup {<y, )= 5, By>},
YEY! (Xgy1)

and T, denotes the tangent cone of a set C; see Rockafellar and Wets (1998, §6A). We see

that Y (x,, ) is exactly the set of ys satisfying the system

Vio(x) + VF(x)*y—i—c,:l(x —x)=0
(20) —F(x)+Ng-(0) +¢;. ' (y=x) 30

together with x,, . Since this is the proximal point subproblem (PD,) in the current situa-
tion, we know from Lemma 15 that its solutions are of the form {(x, T, (F(x))) | Vé.(x) =
0}, so Y(x,,,) is the singleton set {y,,,}. Since X =R", we have X'(x,,,) =R", so the
sufficient condition (19) can be written as

(21) (w, (fol(xlﬁ»l’ Yis1) —i—c,jll)w) J’_20Y’(xk+1),B(VF(xk+l)w)2 >0 Yw#0,

where Y/(£k+1) = T Vi) NF (1) = ¢ G — 901

Define Y ={y e R" |y, =0 Vi & I,}. By choosing ||(xy, y,) — (%, ¥)|| small enough, we
can, by the Fejér monotonicity of the sequence {(x,y,)}, guarantee that y, , —¥ is so
small that y;,, > 0 for all i € I;\{1,...,r}, and then Y C T (yip)- Since (41, Yirr)
satisfies (20), we see that the positivity of yj,, for i € I;\{l,...,r} also implies that
fitxi) — e (i — i) = 0. Thus, Y C Y'(x,,,), and then we get from Lemma 18 that
for every u,

v

sup o1 - _<y,3y>} —sup {1 = 5 ol

yeY yeY

Oy (.5 (1)

= Sy ) =3 X luy

lEIl
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The sufficient condition (21) is thus guaranteed by the condition

(w, fol(xkﬂ’ )’k+1)w> + ¢ Z(Vfi(xk+l)’ wi>2 >0 Vw#0,

iel

which holds by the continuity of V2 [ and Vf;, and by (18), provided c, is large enough. [

An analogous derivation based on Theorem 14 would give a convergence result for the
classical multiplier method for nonlinear programming. Such results have been obtained
by completely different methods in Bertsekas (1982), Ito and Kunisch (1990), Contesse-
Becker (1993), and Conn et al. (1996).

Let us stress that the problems treated in §§5-7 are not the most general ones that can be
handled with the present approach. We have chosen them as illustrative examples on how
to use the general results of §4 in combination with an abstract duality framework. In these
examples, we have relied on the Lipschitz condition of Corollary 10 instead of the much
more general condition of local hypomonotonicity in Theorem 9. This was done partially
because of the role of the Lipschitz condition as a generalized constraint qualification in
variational analysis. In light of Proposition 7, the hypomonotonicity condition could serve as
a still more general constraint qualification. As already observed, this condition has indeed
been related to regularity properties of functions; see Rockafellar and Wets (1998, §13F).
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