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. A manifestly covariant and local canonical operator formalism of non-Abelian 
gauge theories is presented in its full detail. This formalism, applicable to 

Yang-Mills theories as well as to gravity, not· only provides us a transparent 
understanding, in _the scattering theoretical aspects, but also makes it possible 
to discuss other important problems directly related to the (Heisenberg) 
operators and the , state vectors: As for the former; the physical S-matrix 
unitarity is proved quite generally on the basis of the representation of the 
algebra of the BRS charge, and asymptotic field analysis is explicitly performed 
for some examples. As for the latter, ,the problems of observables and the 
well-definedness of charge operators are discussed and clear results are obtained; 
where the locality and covariance of the formalism are indispensable. Ob­
servables are shown to be invariant under the BRS transformation as well as 
the unbroken global gauge groups. By analyzing the 'structure of "Maxwell" 
equations in YM theories, the converse oJ the Higgs theorem is found to hold. 
This turns out to lead to a remarkably simple criterion of quark confinement 
in QCD. The preseJ;J.t formalism is found· useful also for the U (1) problem 
and the charge universality proof in the Weinberg-Salam model. General 
theory of indefinite metric quantum fields is developed to some extent. 
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Chapter I 

Introduction 

§ 1.1. Motive and Outline 

A view, which may be interpreted, in a sense, as a revived and revised 

version of Einstein's "geometrization" programme of physics, becomes recently 

prevailing in elementary particle physics, with the in~reasing experimental 

data supporting the W einberg-Salam (W.S.) model in the weak-electromagnetic 

interaction as well as the quantum chromodynamics (QCD) in the strong 

interaction: 1
> Namely, all of the four types of the interactions ruling the na­

ture, not only electromagnetic and gravitational but also strong and weak in­

teractions, are intermediated by gauge fields universally.· Apart from the 

gravita.tional interaction described by the metric tensor 9t~v (x) or t.he vierbein 

field e/ (x), which has a non-compact gauge group, all other gauge fields are, 

in the geometrical Ja!lguage, the connection fields2
) of compact non-Abelian 

gauge groups of internal symmetries [SU(2) X U(l) for vV.S. model and 

SU(3) for QCD, etc.], which are called, usually in physics, Yang-Mills 

(YM) fields. 

So the present physics requires a consistent and powerful formalism of 

non-Abelian gauge theories on a sound basis. We will present, in this paper, 

a manifestly covariant and local canonical operator-forn:{alism of non-Abelian 

gauge theories in its full detail. In this formalism initiated in Ref. 3), we can 

directly deal with the Heisenberg operators and the state vector space as 

well as its subspace of physical states. Accordingly, this formalism not only 

gives us a satisfactory and transparent understanding in such scattering theo­

retical aspects as the physical S-matrix unitarity, but also enables us to discuss 

such problems as the physical observables, the well-definedness of charge 

operators and so on. The latter point is very important. The analysis of 

the general structure of non-Abelian gauge theories is first made possible in 

this formalism where we can utilize with slight modifications the useful con­

sequences derived from locality and covariance in the general quantum field 

theory with positive definite metric. On the basis of such apparatus, we can 

attack the outstanding problem of quark confinement, and will, in fact, find 

a simple and clear criterion of confinement of colored particles. 

The non-Abelian character of YM field has been shown to be crucial for 

the peculiar prop~rty of asymptotic freedom 4
l (which explains the Bjorken­

scaling and its violation5
l in the deep-inelastic scattering of leptons off nu­

cleons), and further, is supposed to hold the essential key for the solution of 

the quark-confinement problem. 6
> This very non-Abelianness, however, has 
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T. Kugo and I. Ojima 

simultaneously caused many difficulties in quantizing su'ch gauge theories as 

YM field and gravity. In fact, they have long been so far treated only in 

the path~integral formalism for lack of consistent (Heisenberg-) operator for­

malisms except for those in such non-covariant and non-local gauges as Cnu­

lomb, axial and timelike-axial gauges. To be sure, the path integral method 

has yielded many such successful results as the correct Feynman rules. in­

cluding the famous Faddeev-Pop,ov (FP) ghosts/) the Ward-Tak~hashi .(W.T.) 

identities and the proof of renormalizability of the theory,8
) etc., and it enables 

us to calculate some Green's functions and transition amplitudes, perturba­

tively; But, the absence of the notions of the state vector space and the 

H?isenberg operators. in this formalism' obstructs us to get an insight irito the 

general and fundamental aspects of the logical structure of the theory in a 

non-perturbative fashion. The understanding of the aspects of this sort seems 

quite necessary not only fo'r the explanation of the Higgs mechanism in a con-

sistent way yvith the Goldstone theorem, as already done in the Abelian case,9
J 

but also for the theoretical investigation of the quark confinement, in both of 

which the problem 'what are physical and observable?' should be clarified: 

N~xt, as for the covariance and the locality, we should recall that with-

. out these principles eve,n the renormalizations could not be carried out in a 

complete form for lack of simple kinematics to determine the forms of counter­

terms. As is seen from this. example, the r_elativistic kinematics following 

from the covariance and the locality furnishes us with some prospects to the 

unsolved problem restricting the forms of possible solutions .. From a more 

pragmatic viewpoint also, non-covariant gauges are not convenient for practical 

calculations and have appreciably worse ultraviolet properties than the local 

cova:dant gauges. Furthermore, the locality combined with the covariance 

leads to the validity of the dispersion relations/0
) which means the analyt­

icit:y in P-space, while the spectrum condition with covariance and locality con­

cludes the analyticity in x-space, naniely, analyticity of the Wightman func­

tions.m, 12
) From this analyticity, such far-reaching results are derived, as 

Reeh-Schlieder theorem, m. 12
) PCT theorem14>. 12

) and Borchers classes, 15>. 12
> the 

relation between cluster property and uniqueness of the vacuum/6
> and some 

general theorems about. the .symmetry 17 J~ 2 oJ and sq on.21)' 22
J . 

Thus, in order for us to approach such difficult dynamical problem as quark 

confinement in QCD, as well as to consolidate the foundation of Weinberg­

Salam model, it is desirable and even crucial to formulate first the canonical 

formalism of YM fields in the framework of relativistic covariant local quantum 

field theory, which enables us to utilize such general and useful apparatus as 

the above. / 

Several attempts to construct such canonical operator formulations of YM 

theory in covariant gauges have been made so far. All those attempts 23
J~zaJ 

made before Ref. 3), however, ha~e failed ·in giving satisfactory for:mulations 
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Chap. I Introduction 5 

especially by the following crucial two defects: First, the hermiticity of the· 

Hamzltonian and Lagrangian is violated, and hence, the (pseudo-) unitarily 

of (full) S-matrix also breaks down. Second, the consistent subsidiary con­

dition (s) to specify the physical subspace invariant under time-evolution is 

not given. The former defect comes from the incorrect hermiticity assign­

ment to the FP ghosts. With such non-hermitian Hamiltonian, one could 

not obtain a consistent Heisenberg operator formalism from the beginning. 

The latter one is related to the complicated non-Abelian character which 

hinders the straightforward application of Gupta-Bleuler subsidiary condition 

to the YM case. The key for the s~lution of this problem is given by the -

charge of BRS transformation24
> providing, essentially, a. global version of 

the l()cal gauge transformation. These points will be explained in: detail in 

§ 1.2. 

The contents of this pa,per are organized as follows: In the first half 

(Chaps. II~ IV), we' present basic framework of the present formalism and deal 

mainly with the scattering theoretical aspects of theory. On the basis of 

these, in the latter part (Chaps. V "-J VII), various interesting contents of gauge 

theories are revealed in full use of the general consequences of covariance and 

locality. 

In § 1.2, we explain physicality criteria which state indispensable condi­

tions for a theory to be consistent and physically meaningful. In connection 

with it, we present the correct hermiticity assignment to FP ghosts and the 

consistent and concise subsidiary condition specifying .the physical subspace: 

Chapter II is devoted to the presentation of basic ingredients of our formal­

Ism. The Lagningian density of the system to be discussed, its BRS sym­

metry and other symmetries are presented: Some of the consequences of the 

BRS symmetry, for example, "Maxwell" equation of motion, the W. T. identi­

ties, etc., are ~erived there. 

Through the unitarity proof of the physical S-matrix in Chap. III, the role 

of the BRS invariance as a gauge invariance is made clear, which operates to 

"confine" the unphysical particles into the physically invisible unphysical world 

by the mechanism which we call "quartet mechanism". In Chap. IV, the es­

sEmce of the general discussions made in Chap. III is elucidated through various 

example models including the gravitation theory. 

In Chaps. Vand VI, where the physical contents described in Hphys of the 

YM theory remaining after the "confinement" of the unphysica~ particles are 

examined, another aspect of the gauge (BRS) invariance shows itself in the 

hotion of the observable (Chap. V) and the dynamical consequences of the 

"Maxwell" equation are discussed (Chap. VI). Here, the local covariant for­

malism exhibits its significance by allowing the general techniques developed 

in the Appendix to function effectively. These analyses reveal the ·interesting 

features of the global gauge symmetry in the YM theory concerning the Higgs 
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6 T. Kugo and I. Ojima 

phenomenon, the color confinement and their relations with the mass spectrum 

of the theory. 

In Chap. VII, some other applications of the forinalismare discussed: the 

U(1) problem from the consideration of 'local' gauge invariance, the univer­

sality of the electric charges in the W einberg-Salam model and other topics. 

Some discussions are given in the final chapter. 

In the Appendix, some of the useful consequences of the general theory 

of relativistic quantum fields obtained in the positive definite metric cases, are 

extended to the cases with indefinite metric. 

§ 1.2. Indefinite Metric and· Physicality Criteria 

As. is well-known in QED, one should inevitably bring in an indefinite 

metric into the theory in order to quantize gauge fields in a Lorentz covar­

iant manner. 2
n This means the presence of negative probabilities which 

might damage the probabilistic interpretation of the quantum theory. More­

over, the quantization of the YM theory (and also of the gravitation theory) 

requires the introduction of the unphysical fields called Faddeev-Popov (FP) 

ghosts7
) with wrong spin-statistics relation. Thus, the main problem in the 

covariant quantization of gauge fields consists in how these unphysical negative 

norm states as well as such unphysical particles as FP ghosts can be "confined" 

so as not to come out in the physical world. 

For this purpose, we recall a former example of the Abelian gauge theory, 

especially the Nakanishi~Lautrup (N.L.) formalism 28
} as a prototype of satis­

factory formulation in the .Abelian case. The N.L. formalism is an elegant 

canonical formulation in covariant gauges which provides an extension of the 

Gupta-Bleuler (G.B.) formalism29
> in Feynman gauge. In the N.L. formalism, 

this problem of unphysical negative-norm states is solved in the following way: 

First, since gauge must be, fixed before quantization, we add, to the original 

local-gauge-invariant Lagrangian densi~y f_ s of the system, the following gauge 

fixing term: 

(1·1a) 

Then, the total Lagrangian td be quantized IS 

L = .J:_ s + L GF • (1·lb) 

The auxiliary_ gauge-fixing multiplier field B, which becomes a canonical 

momentum variable conjugate to A 0, satisfies the following equations: 

OB=O, 

and obeys the commutation relations: 

(1·2) 

(1· 3) 
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Chap. I Introduction 

[ B (X) ' B (y) ] = 0 ' 

[Ail(x), B(y)] = -iapD(x-y). 

(1· 4a) 

(1· 4b) 

7 

By virtue of (1· 3), the positive and negative frequency parts (in other words, 
the annihilation and creation parts), B<+> (x) and B<-> (x), of the B field can 
be defined without any inconsistency with the time evolution of the system. 
Now,· we can· select the physical states lphys) from the total state vector 
space C{J with an indefinite metric <I) by a subsidiary condition: 

B<+> (x) lphys) = 0, (1· 5) 

which lS equivalent, by (1· 2), to a more familiar one 

(1· 5') 

as long as a:yf=O. *> Then, the physical subsPace C{J phys= {lphys)} consisting 
of all the physical states is shown to satisfy the following two conditions: 

(i) The physical subspace C{J phys is invariant under the time evolution 
of the system, namely, 

H C{J phys C C{J phys (1· 6) 

holds for the Hamiltonian H( = P 0 : generator of time translation). 

(ii) The mner product <I> is positive semi-definite in C{Jphys: 

(1· 7) 

Under the usual hermiticity assignment to field operators, the above Hamil­
tonian H is duly hermitian: 

(0) ]-Jt=;:H, (1· 8) 

which implies (on the assumption of asymptotic completeness), the (pseudo-) 
unitarity of the total S-matrix S with respect to the indefinite metric <I): 

(0') 

In this case, the condition (1 · 6) can be rewritten as 

(i') 

or equivalently 

(i") 

SC{J phys = s- 1 
C{J phys = C{J phys · 

rT ?in _ rT ?out 
'-V phys- '-Vphys , 

(1· 8') 

(1· 7') 

(1· 7") 

where q)~I;;;:t is the physical subspace of the Fock space of in- and out-states. 

*> The a- 1 factor in B= -a- 18" A" clearly indicates the reason why the G.B. subsidiary con­
dition (1·5') does not work well for Landau gauge (a=O). 
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8 T. Kugo and I. Ojima 

Since, as shown in the following theorem, these three conditions (0)-"--'(ii) are 

sufficient to guarantee the consistent physical interpretation of theory (at lea~t, 

in its scattering theoretical aspects), we call them the physicality criteria of 

theory. 

Theorem 1.1. If the theory satisfie~ the following three physicality cri-. 

teria, for the Hamiltonian H and th~ physica'l subspace W phys in the total 

state vector space q) having indefinite inner product <I), 

(0) hermiticity of the Hamiltonian: Ht- H, 

[or (0') (pseudo-) unitarity of the total 

S-matrix: StS=SSt=1] 

(i) ·in variance· of C{) phys und.er the time development, 

[or (i') Sa) phys = s-lq; phys = q; phys] 

(ii) positive semi-definiteness of the inner product 

in C{) phys, 

(1·9) 

then, the physical S-mat:rix Sphys can be defined consistently in the (com­

pleted) quotient ·space 

Hphys=C{)phys/C{} 0 (C{)0 : the zero-norm subspace of q)phys) (1·10) *) 

(which is a Hilbert space with positive definite metric), and the unitarity 

of sphys holds~ 

(1·11) 

Proof) First, by the Cauchy-Schwarz inequality due to (ii) of (1· 9) 

[ (1· 7)] , the zero-norm subspace C{) 0 of q) phys defined by 

(1·12a) 

1s orthogonal to every vector in q) phys (see, (A· 7) in Appendix A) : 

q) o_L q) phys • (1·12b) 

Hence, two state vectors I ?F) and I P") + I x> (I x> E q; o) of q; phys cannot be 

distinguished physically, because the difference lx) of them has no effect on any 

amplitude in q) phys· Then, by virtue of (ii), the (completed) ,quotient space 

(1 ·10).., Hphys = C{) phys/ q) 0, of q) phys with respect to C{) 0 becomes a Hilbert 

space, equipped with Positive definite metric defined by 

(1·13) 

*> The symbol V in (1·10) means the completed space of V including all the limiting states 

of Caw;hy . sequences in V. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.6

6
.1

/1
9
1
5
1
3
0
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Chap. I Introduction 9 

for !&')= !aJ)+CV0 , JW')= JW)+CVoEC{Jphys/CVo (JaJ), JW)EC{Jphys). Next, the 
condition (i') [derivable from (i)] allows us to define the physicalS-matrix 
Sphys in Hphys by the relation: 

(1·14) 

One can easily check the unitarity of Sphys (1·11) by the condition (0'). In 
fact, e.ff., 

By Theorem L1, QED in the N.L. formalism, which satisfies the above 
physicality criteria, is assured to give a consistent' theory succeeding in "con­
fining" all the unphysical negative norm states. · Here the crucial J?Oint in the 
N.L. (or G.B.) formalism resides in the subsidiary conditione (1·5) (or 
(1 · 5')) : By the conditions (1· 5) and (1 · 4b) together with the zero-norm 
property (1· 4a) of the B-field, the observable photon modes are reduced to 
the transverse ones*) alone (with positive norms). 

On the. basis of the above observation, several attempts- have been made 
at formulating the YM theory with such subsidiary conditions as (() 11 A

11
) <+l 

Jphys) =U or B<+) Jphys) = 0 similarly to (1· 5). In the YM theory, however, 
the corre~ponding B-fields no longer satisfy a free field equation because of 
non-linear self-coupling of the YM fiefds. · Consequently, t~e requirement 
(1 · 5) in this case becomes· inconsistent with the time evolution of the system 
and the condition (ii) is violated. The transversality condition like (1· 5) can 
serve at best ~s the condition for the one-particle asymptotic physical sta'tes. 23

) 

Once many-particle states are set up, transitions from the initial states con-
, sisting solely of physical particles into the final states containing such unphysi­

cal particles as FP ghost pairs**) can easily occ-qr. Thus, in order to find out 
the cor,rect subsidiary' cop.dition for non-Abelian gauge theories, we should re­
examine the essence of the subsidiary condition (1· 5) for QED, instead of 
imitating it in its outward appearance;. The crux for this problem is provided 
by the remarkable symmetry found by Becchi, Rouet &nd Stora24

> in the quan­
tum theoretical Lagrangian with the gauge fixing term as well as the FP ghost 
term-ERS symmetry .. As will be shown in Chap. II, this symmetry is the 

*> In tpe case of the Abelian Higgs model, the subsidiary condition (1·5) expels the Goldstone 
boson instead of longitudiJ;ml component of A 11 from the physical world as an t_mphy~ical 
particle.9

> . 

~*> Someone claims that FP ghosts do not appear in the initial and final states because they 
go round only inte;rnal li!fes. Hut this is merely a tautology. In an operator formalism, , 
every particle appearing in the intermediate states of the unitarity relations has its own .. 
asymptotic field and state appearing in both of initial and final states. The reason why 
the amplituqes with FP ghosts i11 ~he initial m:{d final states make no contribution to the 
physical processes, should be clarified. 
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10 T. Kug6 and I. Ojima 

invariance under the BRStransformation obtained, essentially, from th~ .local 

gauge transformation by replacing the infinitesimal transformation parameter 

ea (x) with J...ca (x)' and can be viewed as the. quantum theoretical version of 

the local gauge invariance, because it reproduces all the W.T. identities which 

compensates the local gauge invariance lost through the quantization procedure. 

Hinted by the fac,t that Eq. (1· 3) crucial for the consistency of the subsidiary 

condition (1· 5) also reproduces all the W.T. identities in the Abelian gauge 

theory, we can adopt the following subsidiary condition3
)'

25
) for the non-Abelian 

cases in terms of the generator OB of the BRS transformation: 

QBjphys)=O. (1·15) 

As will be shown in Chap. II, this subsidiary condition (1·15) reproduces the . 

one, (1· 5), in the case of the Abelian gauge theory; thus (1·15) is a natural 

extension of (1 · 5) . 

The next crux is the condition (0), which has been believed incorrectly 

to be violated in the YM theory. 23 l~ 26 ) Without this condition (0), *) however, 

it is almost impossible to prove the unitarity of the physical S-matrix Sphys· 

This mistake has arise<;l from the following hermiticity assignment for the FP 

ghosts : 23 )~ 26 ), * *) 

Ct=C and Ct= C, (1·16) 

which 1s easily shown to lead to a non-hermitian Lagrangian and Hamiltonian: 

It is. this very hermiticity assignment that has ·hindered us to construct a 

covariant canonical formalism of the YM theory in a consistent and transparent 

ma:nner. What we have found is that, if we adopt the following assign­

ment:3)'**) 

Ct=C and Ct= -C (1·17) 

or equivalently 

ct=c and ct=c (1·18) 

with the redefinition of FP ghosts as 

*> Such a theory that (0) is not satisfied. shows several pathological features, for instance, 

the time dependence of the hermiticity character of operators: (eiHtc;oe-iHt)t=eiH\ote-iHtt 

~eiHtc;ote-iHt. Thus., without this condition (0), we cannot obtain a consistent Heisenberg 

operator formalism, from the beginning. 

**> The authors of Ref. 26) insisted on the equivalence of the assignment (1·16) and another 

. one, ct =-c and Ct = C, similar to (1·17) on the basis of their "R-transformation" (FP­

ghost charge conjugation). This is not the case because the "R-transformation" is not a 

symmetry transformation of the non-Abelian gauge theory. 
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Chap. I Introduction 11 

C=c and C =ic, (1·19) 

instead of the conventional (but wrong) one (1·16), the condition (0) ·is, in 

fact, verified. As will be shown in Chap~ III, it is, more strongly, indispensable 

for the whole consistency of the theory. Then, on the basis of these important 

results (1·15) and (1·18), we can formulate and develop the local covariant 

quantum theory of non-Abelian gauge fields (the YM fields as well as the 

gravitational field) in quite a consistent and general manner, as will be done 

in this paper in its full detail. 
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Chapter II 

'Basic Ingredients of the. Formalism 

§ 2.1. Local Gauge Invariance 

We present here our general formalism explicitly for the Yang-Mills type 

gauge theories based on a compact Lie group G.· [As an example of other 

type of gauge theory, quantum gravity will be discussed in § 4.3.] Compact 

Lie groups are reductive, a:r;td hence G is given by a direct product 

(2·1) 

where the Ga's are $imple grou,ps or, otherwise, one-dimensional Abelian 

groups. Corresponding to the decomposition (2 ·1), the generators xa of the 

Lie algebra g of G are given by the totality of the generators of the Lie 

algebra g a of Ga. Therefore the structure constant fabc of Q, defined by 

is giVen as 

If abc 
fa~c= 0 a 

if Xa, Xb and' Xc Ega 

otherwise 

by the structure constant faabc of the "component" algebra Qa. 

(2·2) 

(2~ 3) 

Now we consider the systym of gauge fields A/ interacting with arbi­

trary matter fields denoted generically as Cfi which may consist of fermion 

and/or boson components. The Lagrangian density Ls (A, cp) [or, more· weak­

ly the action As= f d 4xJ: s] of the system has an in variance under the local 

gauge transformation, the infinitesimal form of which is written as 

~ · abAaTb 
U ACfi = Uj ij{j/j • 

(2· 4a) 

(2· 4b) 

Here -:1-a = Aa (x) is a space-time dependent parameter of the Lie group G, and 

the Ta's stand for the (reducible, in general,) representation matrices on cp of 

the generators xa. Since one coupling constant ga can be associated with each 

'"component" group Ga in (2 ·1), the I coupling constant matrix gab in (2 · 4) 

has ~ diagonal form: 

(2·5). 

Hereafter we will often use the matrix- and vector-notation 1n order to avoid 
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Chap. II Basic Ingredients of the Formalism 13 

cumbersome indices a or z: 

(A X B)a==faacAaBc, A·B=AaBa, 

(2· 6) 

So, for example, the gauge transformation (2 · 4) 'can be rewritten concisely as 

aAAp=8~-tA+gA/lXA=DtA, 

a A(/J = iA. gT9 . 

Note also the relation (gA) · B= A· (gB) due to (2 · 5). 

§ 2.2. Lagrangian of YM Theory and Its Canonical Quantization 

_The Lagrangian density for quantum gauge theory should include a gaug~ 

fixing tet:m accompanied by the well-known gauge-compensating FP ghosts. 

We, therefore, take it. as 

J:GF= -f}~tB·A~t+ (ao/2) B·B, 

where 

Since (2 · 7b) is rewritten as 

(2 ·'7) 

(2· 7a) 

(2·7b) 

(2·7c) 

(2· 8a) 

(2· 8b) 

the present gauge fixing is equivalent to a more familiar covariant gauge fixing 

term - (fJil All) 2/2a0 at the level of equation of motion and of Feynman dia­

grams. The introduction of the multiplier fields Ba, however, will play an 

important role below in assuring the nilpotency of the BRS charge without 

use of equations of motion. We have introduced the factor i in front of the 

FP ghost term (2 · 7c) in order to treat both FP ghost c and cas hermitian 

fields ·under our new hermiticity assignmentn (1· 18) : 

ct=c, z:t=c. (1·18) 

Hermiticity assignment for other fields are taken as usual; i~e., APt= All, Bt = B 
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14 T; Kugo and I. Ojima 

and so on. Note here that, only when this hermiticity assignment (1·18) for 

the FP ghosts is adopted, the Lagrangian L of (2 · 7) becomes hermitian and, 

hence, the total S-matrix is (pseudo-) unitary: 

(2·9) 

The Euler-Lagrange equations of motion for A.a, B, c and c are 

where the matter current j.a is defined by 

(2·10a) 

(2·10b) 

(2·10c) 

(2·10d) 

In order to give canonical (anti-) commutation relations (CCR or CAR), 

we need the canonical conjugate, momenta, which we define as 

n~k=oL/8Aka=F~k, (k=1, 2, 3) 

n'Pt= (8 /8¢i) L , 

(2·1la) 

(2·11b) 

(2 ·11c) 

(2·11d) 

(2·11e) 

For these momentum variables n/ conjugate to (fh( = Ba, Aka, (/Ji, ca~ ca), we 

take the following CCR or CAR as usual: 

[n/ (x, t), (f)J(y, t)] + = -i(JliJ3 (x-y), 

[n/ (x, t), n/ (y, t)] + = [(f)r(x, t), (f)J(y, t)] + = 0, (2 ·12) 

where the anti-commutators ( +) are taken only between fermion fields. Espe­

cially we regard the FP ghosts c and c as fermion fields. For simplicity, 

however, we adopt the convention of taking commutators (-) in (2 ·12) 

between any one of FP ghost fields and any one of fermion matter fields in 

(/Ji· *) 

Here we should note the following two points: First, concerning 

(2 ·11a), we have considered that the time-component gauge fields A 0a are not 

canonical coordinates but the momentum variables conjugate to the Ba's. If 

*l Either commutator or anti-commutator can be adopted between two different species of 

fermion fields without altering physics by virtue of the well-known Klein transformation. 
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Chap. II Basic Ingredients of the Formalism 15 

we treated the A 0a' s also as independent coordinate variables, Eqs. (2 ·11a), 

c/Jt=rcBa+Aoa=O, together with r/Jt=rc0a=8.L/8A0a=O, would become the 

second class constraints of Dirac's classification. Then, CCR (or CAR) 

should be obtained by the help of the Dirac bracket, defined as 

{a, 8} n= {a, S} p- {a, r/Jt} pcc- 1
) ij {¢/, S} p, 

iJabcij= {r/Jt, ¢/} P, (i,j= 1, 2) (2·13) 

instead of the usual Poisson bracket {a, /1} P· This Dirac's procedure, however, 

gives just the same CCR (or CAR) 's as those obtai~ed by the above simpli­

fi~.d treatment.*) Further, even if our starting gauge fixing Lagrangian J:GF 

(2 · 7b) was changed by the following replacement: 

(2·14) 

with an arbitrary real w, this Dirac's method would produce the same results. 

Second, in (2 ·11), we have adopted the left-differentiation convention with 

respect to the anti-commuting number ~ such as the FP ghosts or fermion 

components in cpi; that is, the differential operator (f) /8~) has a property 

(8/8~) AB= [ (8/8~) A]B+ ( -1)PAA[ (8/8~) B], (2·15) 

where A "and B are any monomials in the commuting and anti-commuting num­

bers and PA is the number of factors anti-commuting with ~ contained in A. 
[Remember that we are taking the convention that the fermion matter fields 

in cpi, if any, commute with. the FP ghosts.] Correspondingly to this conven­

tion of left-differentiation, the Hamiltonian density ..9{ should be constructed as ' 

..9C = d.irrcl- J: 

but not as ..9C = rc/d.ir- J:~ This is because the variation of the Hamiltonian 

d~nsity iJ!JC = iJd.irrc/ + d.iriJrc,/- iJ .I has to be independent of the velocity varia­

tion iJd.ir while iJ _[ = iJrlh (8 jfJ([Jr) .L + iJU)r (f) jfJd)r) .L by the left-differentiation 

rule (2 ·15) . 

§ 2.3. BRS Symmetry as a "Local Gauge Invariance" in Quantum Theory 

Due to the presence of .L GF + .L FP, the Lagrangian density .L (2 · 7) is no 

longer invariant under the local gauge transformation (2 · 4). The essence of 

the local gauge invariance is, however, inherited by the quantum theory in 

the form of the following global symmetry. Namely, Becchi, Rouet and 

Stora2
l have found a remarkable in variance ot the quantum system .L (2 · 7) 

under a global transformation, called the BRS transformation nowadays, from 

*l An analogous situation indeed occurs in the CAR of Dirac field </J: In the usual treatment, 
the variable icp* is not considered a coordinate but a momentum TC.p conjugate to cp. · 
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16 T. Kugo and I. Ojima 

which all the Ward-Takahashi (W.T.) identities can be derived very siml(ly. · 

The BRS til"ansformation is given by replacing the parameter Aa(x) in (2 · 4) ' 

by Aca (x) for the ordinary fields A/ and r:pi and by supplementing the trans­

formation properties of c, c and B as follows: 

&A.a (x) = XD.ac (x), 

&¢ (x) = iAc (x) · gTr:p (x), 

&c ( x) = - Xg ( c ( x) X c ( x) ) /2 , 

&c(x) =iXB(x), 

&B(x)=O, 

(2 ·16a), 

(2 ·16b) 

(2 ·16c) 

(2·16d) 

(2·16e) 

where A it> an x-independent parameter anti-commuting with the FP ghosts c 
and c. The BRS in variance of the Lagrangian density .L (2 · 7) in fact fol­

lows directly from the Jocal gauge invariance of .Ls (A, r:p) and th,e properties 

(2·17) 

'Eql!ations (2 ·17), which provide examples of the nil potency of the BRS charge 

stated belo~, ca~ be easily checked by noting that the structure-constant 

matrices (ifa) bc=ifbac satisfy. the commutation 'relation (2. 2) with xa sub­

stituted by ifa and that the FP ghosts c and' c obey Fermi-statistics. 

The Noether current of the BRS transformation given by 

J B Dv . a .L . C T ) a X 1 C ) a .L .B a J: = c·· +z c·g cp. · --g cxc · +z ·~~-
" a(a"Av) t a(a"r:pi) 2 a(a"c) a(a"c) 

(2·18) 

can be shown to be conserved ca.a J/ = 0) and to be rewritten asl) 

(2·19) 

by the help of the equations of motion (2 ·10). The corresponding conserved· 

charge QB (BRS charge) 

(2· 20) 

generates the BRS transformation; that is, 

(2· 21) 

where (/)1 stands for A.a, r:pi> B, c and c, and <J(/)1 is given by (2 ·16). It will 

be convenient for later use to introduce the renormalized BRS · charge Qsr 

defined as 

(2·22) 
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Chap. II Basic Ingredients of the Formalism 17 

which m fact generates a renormalized BRS transformation 

[ iJ.Q~r, Cren] = iJ.Bren 

for the renormalized fields cren = Za -l/
2c and Bren = ZB -l/

2B . 

. We have another important conserved charge in this system (2 · 7). One 
easily notices that the FP ghost number is conserved. Unlike the conserva­

tion of the usual fermion number, however, this FP ghost number conserva­
tion is not attributed to the in variance under the phase transformation, c~eio c 
and c~e-i 0 c. In fact, such a phase. transformation is incompatible with our 

fundamental hermiticity assignment (1·18) to c and c. Instead, an invafiance 

exists under the scale transformation, c~e 0 c and c~e- 0 c, consistent with the 
hermiticity of c and c. The corresponding. conserved current and charge are 
given by 

(2· 23a) 

(2·23b) 

This charge Qc, called FP ghost charge, indeed generates the above scale trans-, 
formation on the FP ghost fields: 

[iQc, c(x)] =c(x), 

[iOc, c(x)] = -c(x). (2· 24) 

The FP ghost number .is identified with the eigenvalue of the operata~ iQc. 
The following simple algebra of QB and Qc can be obtained from their 

definitions: 

[iQc, QB] = QB, 

[Qc, Qc] =0. 

(2 · 25a) 

(2·25b) 

(2· 25c) 

Equation (2 · 25a) expresses the r,emarkable nilpotency property of the BRS 
transformation and is easily confirmed as follows: 

2iJ.(QB)
2
=[iJ.QB, sd

3
x(B·Doc-8aB·c+ ~ g80c·(cxc))] 

= sd3 x (- 8 oB · ~ c + 8 0 (~c) · i g ( c X c)) = 0 , 
2 . 

where ~B=o(D/-(c) =o(cXc) =0 [(2·,16e), (2·17)] and (2·16c, d) are used. 
Equations (2 · 25b) and (2 · 25c) say only that the charges QB and Qc carry 
the FP ghost numbers iQc = 1 and iQc = 0, respectively. 
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18 T. Kugo and I. Ojima 

Now some remarks are in order. The hermiticity assignment (1·18) to 

FP ghosts plays an important role also here in assuring the consistency of the 

formulation: First, the charges QB and Qc are hermitian only when our as­

sigment (1· 18) is adopted: 

(2. 26) 

Under the conventional hermiticity assignment ct = ic [ (1·15)], QBt and Q/ 

become quite other quantities having no simple algebraic relations to QB and 

Oc, respectively, and further are not a·ssured by equations of motion to be 

conserved. This contradicts the, conservation of QBt following from (djdt) 

<aiOBtjJ9) = <el (d/ dt) OBi a)*=: 0, which should hold as far as' QB is well­

defined. Further the conventional assignment (1·15) contradicts also the 

BRS transformation (2 ·16) : In fact, since the transformed field c' = c + oc 

should have the same hermiticity property as the original one c, the relation 

(oc) t = ioc is required to hold for the conventional case, while 

As for the assignment ct = c, ct = c, the BRS transformation is quite consistent 

with it, if the "anti-commuting number" A obeys the' rule 

(2· 27a) 

for arbitrary operator () and is "pure-imaginary": 

(2· 27b) 

We assume these properties (2 · 27). *) Of course, if one wants, one can avoid 

the explicit use of such "anti-commuting numbers" by rewriting the BRS trans­

formation (2 · 21) as 

(2· 28a) 

where o' (/)I are the BRS transform o(/)I (x) with A factored . out (i.e., (](f) I 

= Ao' (f) I) and the anti-commutator ( +) is understood if (/)I contains odd number 

of FP ghost fields. From such a standpoint, the use of the "anti-commuting 

number" A may be understood as being purely for convenience' sake to write 

(2 · 28a) compactly as 

(2. 28b) 

*l One should also assume that there are an infinite number of such "anti-commuting numbers'' 

anti-~ommuting with one another, in order to perform the BRS transformations successively. 
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Chap. II Basic . Ingredients of the Formalism 19 

§ 2.4. Subsidiary Condition, "Maxwell" Equation and Some Other Sym­
metries of the Theory 

As explained in Chap. I, the .total state vector space CV in the covariant 
gauge theories necessarily contains negative norm states; i.e., CV has an indef­
mite metric. In order to obtain a physically meaningful theory, we should 
specify the physical subspace cvphys= {/phys)} so that it satisfies the physica­
lity criteria (1· 9), as explained in the Introduction. In Abelian gauge theo­
ries, CV phys was specified by a concise subsidiary condition (1· 5): B<+) (x) 
jphys) =0 (or (8A) <+) (x) /phys) = 0). Happily and surprisingly enough, we 
can really specify the physical subspace CV phys by a very simple subsidiary 
condition also in case of general (non-Ableiah) gauge theories~ C(Jphys= {/phys)} 
is specified byn, a) 

(2· 29) 

This condition, intuitively speaking, expresses the gauge-invaric;mce of the physi­
cal states in CV phys· It is indeed analogous to the G.B.-N.L. condition B<+) (x) 
/phys) = 0 where the B (x) field [or more precisely, fd3xA (x) 80B (x) with 
DA =OJ in Abelian case represents a generator of local gauge transformtion, 
while Q13 is a generator of the BRS's version of local (non-Abelian) gauge 
transformation. In fact, we can show here that the condition (2 · 29) really 
reproduces 1

) the subsidiary condition B<+) (x) /phys) = 0 under the special circum­
stances of Abelian gauge theories: Peculiar points to the Abelian case are 
that the structure constant vanishes and no group indices appear, and hence 
the multiplier field B and the FP ghost fields c and c become completely 
free as is seen from Eqs. (2·10): DB= De= DE"=O. Further the BRS 
charge (2 · 20) becomes quite simple as follows: 

Oe= S d 3x: B80c: =i ~ (cktBk-Bktck), (2· 30) 

where Bkt (Bk) and ckt (ck) are creation (annihilation) operators of the Band 
c fields, respectively, referring to some wave packet system {gk}. This is 
possible because B and c are free. The free property of FP ghosts c and c 
implies that the total state vector space CV can be decomposed persistently 
into a direct product CV = CV'Q9C(Jpp where CV' is the usual state vector space 
consisting of particles other than FP ghosts and CVFP is the Fock space span­
ned by c and c alone. Further, since the FP ghosts are redundant from the 
beginning in the Abelian case, we can restrict ourselves to the sector contain­
ing neither c no; c ghosts: C(J'(g)/O)pp, which is isomorphic to the usual 
state vector space CV' of Abelian gauge theory. Thus by using (2 · 30), the 
subsidiary condition (2 · 29) reduces to 

(2· 31) 
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20 T. Kugo and I. Ojima 

Here !ck) = cktjO), of course. By the linear independence of lck), we obtain 

Bkjphys)=O for all k, 

which is nothing b~t, the Nakanishi-Lautrup condition B<+l (x) jphys) = 0 (for 

all x) for the Abelian case. 

Interestingly, the present subsidiary condition (2 · 29) turns out to give, 

in a much simpler 'form, a natural extension of that of the Abelian cases, 

applicable to any gauge theories. The condition (2 · 29) provides an important 

basis in our formalism on which we develop all the discussions hereafter. 

We should notice here that we have already implicitly assumed that the 

BRS charge QB is well-defined. As is evident from the general discussions 

m Appendix B, this is equivalent to any one of the following statements: 

(i) 

(ii) The vacuum 1s physical; IO) E CV phys, 

(2· 32a) 

(2· 32b) 

(iii) The BRS symmetry corresponding to QB suffers from no 

spontaneous symmetry breakdown . (2· 32c) 

The first equation · (2 · 32a) will be often utilized henceforth. 

[Digression: Historically, such a type of subsidiary condition as (2 · 29) 

was first discussed by Curd and Ferrari. 3l Unfortl\nately, however, they 

adopted the conventional (and hence incorrect) hermiticity assignment (1·16) 

for ·the FP ghosts and did not introduce the gauge-fixing multiplier field B (x). 

These defects have caused difficulties in giving an explicit expression for the 

BRS generator QB satisfying hermiticity and riilpotency. Hence they gave up 

to· construct the generator QB explicitly and :simply assumed the very ex­

istence of QB as well as many BRS transformation properties of 'the asymptotic 

fields without any justifications. However these assu,mptions con,tradict one 

another as was seen before. Although they observed in Ref. 4) that the Lag­

rangian becomes hermitian under a similar hermiticity assignment to (1·17), 

they did not (ldopt it in Ref. 3) . This fact shows that they did not recognize 

the fundamental importance of the assignment (1·17) .] 

We. shall see in Chap. III ~ow the physical S-matrix unitarity is assured 

generally by the subsidiary condition (2 · 29). Explicit examples will be dis­

cuss.ed in Chap. IV. The condition (2 · 29) is really sufficient to prove the physi­

cal S-matrix unitarity. However, if one prefers specifying the physical sub­

space as small as possible, then one can add one more subsidiary condition:1l,al 

' (2· 33) 

'Yhere · Qc is, of course, the conserved FP ghost charge (2 · 23). This condi­

tion works orily in r,educing the physical subspace to the vanishing-:FP-ghost­

number sector and hence will not be imposed in this paper unless it is explicitly 
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Cliap. II Basic Ingredients of the Formalism 21 

mentioned. 

By virtue of the symmetric gauge-fixing choice (2·7b), the invariance of 
.L 8 (A, cp) under the global gauge transformation is preserved by .L (2 · 7): 
that ~s, the Noether currents of the global gauge transformation, 

(2·34). 

are conserved (fJilJ/ = 0) because of the invariance of .L' under the following 
global gauge transformation: 

[iO's·Q, cp(x)] = -iO's·Tcp(x), (2· 35) 

where the global ('color'· or 'flavor') charges Qa are of course given by Qa 
= f d3xJ0a and the matter currents jll a are defined by (2 ·10d). Note th~t this 
global invariance would not be manifest (if any in physical sector) under asym­
metric gauge-fixing choices such as Rrgauge. As was first noted in Ref. 5), 
the equation of motion (2 ·lOa) is rewritten into the following remarkable 
form by the use of the BRS charge QB and Eqs. (2 ·16), (2 · 21) and (2 · 34): 

(2· 36) 

. This equation clearly shows that the "classical" Maxwell-type equation. 

(2· 37) 

holds for any physical states lf1), lf2) E q) phys specified by (2 · 29). Equation 
(2 · 36) will play an important role in the discussions of observables (Chap. 
V). and of the spontaneous symmetry breakdown and color confinement (Chap. 
VI), and will be referred to as "Maxwell" equation there. It should be kept 
in mind that the J/'s are the currents of global color transformation in QCD 
usually supposed unbroken. 

Aside from other possible continuous symmetries such as chiral symmetry, 
flavor symmetry, etc., the present system .L (2 · 7) has also the basic discrete 
symmetries P, C and T if the original Lagrangian .Ls (A, cp) has. We only 
note here the PCT symmetry: If the Lagrangian .L matter ( cp, a '-'cp) defines a 
PCT invariant theory with a suitable PCT transformation law for the matter 
fields CfJi, then .L (2 · 7) is invaria1(t under the following anti-linear PCT 
transformation :6> 

PCT: 

A/'PCT (x) =-A/ ( -x)' 

Ba, PCT (x) = Ba ( -x), 

Ca,PCT (x) = -ca (-X), 

Ca,PCT (x) = Ca ( -x). 

(2· 38) 
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22 T. Kugo and I. Oji'rna 

[An extra minus sign in front of FP ghost field ca should be noticed.] Then, 

we can safely suppose the existence of the anti-unitary PCT operator @ satisfy­

ing 

@/0)= [0)' 

@2=1' 

(2 ·39a) 

(2. 39b) 

(2·39c) 

where @leT (x) stan-ds generically for the fields (2 · 38) supplemented by the 

PCT-transformed matter fields cp/cT (x). Under the PCT transformation, the 

BRS charge QB, the FP ghost charge Qc and the generators Qa of the global 

gauge transformation behave as follows: 6
l 

(2 · 40a) 

(2. 40b) 

(2· 40c) 

Note that the BRS transformation (2 ·16) [or (2 · 21) ] 1s consistent with the 

PCT transformation (2 · 38) and (2 · 40a). 

§ 2.5. BRS Invariance and Ward-Takahashi Identities 

The Ward-Takahashi (W.T.) identities for Green's functions can be 

derived quite simply by use of the BRS charge QB: Since QB/0)=0 (2·32a), 

we obtain 

n 

= 2:: <O!T (lJ1 (xl) .. ·CJk-1 (xk-1) tJLJk (xk) CJk+l (x~al) ···lJn (xn)) IO), 
k=l 

(2· 41) 

where the fh (x) 's are arbitrary field operators or their local products. All 

the W.T. identities for Green's functions are exhausted by Eq. (2·41). 

In order to obtain the W. T. identities for the generating functional of one­

particle-Irreducible (lPI) vertices, consider a source functional !7: 

.!7 [J, K] = s d 4
X (Jp. A~-'+Jicpi+Jc·c+Jc· c+ JB. ~ 

+ Kt-<· D~-'c +iKi (c; gT) ij({Jj- i Kc·g (c X c)), (2. 42) 

where Jc, Ja, Kt-< and Ki are "anti-commuting c-number sources" and Jt-<, Jh JB 

and Kc are c-number sources. [For fermion matter components, Ki are com­

muting and Ji are anti-cornmuting. The use of "anti-commuting c-number 

sources" is purely for convenience' sake also here.] By the nilpotency of QB, 
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Chap. II Basic Ingredients of the Formalism 23 

(2 · 25a), •we have 

(2· 43) 

and hence obtain 

0 =<OI [itlQB, T exp i.9' [J, K]] IO) 

= itl s d4x<OIT (J11 • D 11c +iJi (c · gT) ijC;Jj 

+ ~ Jc · g (c X c) '- iJ15 ·B) exp i.9' [J, K] IO). (2· 44) 

Differentiations with respect to sources J reproduce the W. T. identities (2 · 41) 
for Green's functions of field operators. [The differentiations with respect to 
"anti-commuting c-number sources" obey the l~ft-differentiation rule (2 ·15) .] 
The generating functionals vV and r of connected Green's functions and of 
lPI vertices are defined, respectively, as 

exp iW[J, K] =<OIT exp i.9' [J, K] IO), 

T[a>, K] = W[J, K] -,-Jllh, 

a>r= (ojoJr) W[J, K], 

(2· 45a) 

(2. 45b) 

(2 · 45c) 

where J1 stands generically for Jm Ji, Jc, J 15 and JB, and the c-number argu­
ments @1 of T should not be confused with the corresponding Heisenberg 
operator. By using the dual relations in the Legendre transformation 

I 
-J1 for the commuting sources, 

(oJoa> )T= c. 1 
+ J 1 for the anti-commuting sources , 

(2-46) 

we can derive an identity for r from (2. 44) :7
) 

(2· 47) 

Here the cumbersome integration symbol f d 4x is omitted. 

On the other hand, the equations of motion (2 ·lOb) and (2 ·lOc) and 
CCR (2 ·12) lead to the equations for r: 

or =a"'A +aoB oB "' ' (2 · 48a) 

. a"' or + i or = 0 . 
(JK"' ac (2·48b) 

These are the well-known results. These equations (2 · 47) and (2 · 48) will 
be much used in the analysis of the asymptotic fields in Chap. IV, and will be 
referred to as the T-W.T. identities. 
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Chapter III 

Proof of Unitarity of the Physical S-Matrix 

--"Confinement" of Unphysical Particles by Quartet Mechanism--

§ 3.1. Represent1;1tions of the Algebra of Q 13 and Qc 

In order; to establish· the physical S-matrix unitarity, it 1s sufficient to 

prove that the three physicality criteria (1· 9) are all satisfied in our' present 

formulation, as has been stated' in Theorem L1 in § 1.2: First, (0') of the 

physicality criteria (1· 9), i.e., the (pseudo-) unitarity of. the total S-matrix, 

SSt= St S = 1, holds as noted in (2 · 9) by virtue o.f our correct hermiticity as­

signment (1·18) to the FP ghosts. Second, (i') of the physicality criteria 

(1· 9)' i.e., the invariance of physical subspace under the time evolution, cv~h~s . 

= q;~~YS' also holds. This is because the present physical subspace cvphys is 

specified by the subsidiary condition (2 · 29) , 

(3·1) 

in terms of the conserved (and scalar) charge Q 13, and hence, is' manifestly 

invariant und~r the time evolution as well as under the Lorentz transforma­

tion. Thus/ we have only to prove the third criterion (ii) of (1· 9), i.e.·, the 

positive semi-definiteness of metr~c in CV phys which is not so trivial as the others. 

For this\ purpose, we should analyze the metric structure of the total state 

vector space CV and the physical subspace CV phys explicitly for each of con­

crete models. We can, however,, discuss the general feature of the metric 

structure to a considerable extent so1ely by analyzing the irreducible repre­

sentations of algebra (2 · 25) . of Q 13 and Qc: 

[iQc, QB] = QB' 

[Qc, Qc] =0 · 

(3 · 2a) 

(3 ·2b) 

(3· 2c) 

On the basis of such analysis, we will find quity a general mechanism, called 

"quartet mecha:rism", by which the unphysical particles having non~positive 

norms are made undetectable completely in the physical world (Hphys 

= C{J phys/CV o) • 

We assume that the BRS charge Q13 as well as the FP ghost charge Qc 

does not suffer from spontaneous s'ymmetry breaking, and hence QBIO)=QciO) 

= o, of course. So any one-particle states, physical or unphysical, are classified 
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Chap. III Proof of Unitarity of the Physical S-Matrix 25 

into the irreducible representations of the algebra (3 · 2). We assume also that 
these one-particle states are created (or annihilated). by the asymptotic fields 
which correspond to. certain (interpolating) Heisenberg fields, composite or 
elementary. Because of the nil potency (3 · 2a) of QB, the irreducible represen­
tation is at most two dimensional, and hence, singlet or doublet. As will be 
seen in Chap. V, the charge Q 11 (as well as Qc) is commutative with other 
conserved quantities such as the energy momentum P 11

, the angular momentum 
M 11v, the global ('color' or 'flavor') ·charges Qa and other possible charges, if 

any. Therefore, the particle multiplet of an irreducible representation can be 
.simultaneously. assigned ,such quantum numbers. Taking account of these 
points, we find only three types for the structure of particle multiplet realiz­

ing the algebra (3 · 2): 

(I) 

(II) 

(III) 

physical particle = BRS-singlet, } 

singlet pair= '~FP-conjugate" pair of two BRS-singlets, 

quartet= "FP-conjugate" pair of two BRS-doublets. 

(3·3) 

Singlet representations. In order to show (3 · 3) explicitly, we begin 
with the analysis of singlet representations of (3 · 2). Let us denote one­
particle states by lk, N) where N represents the eigenvalue of FP ghost 

charge iQc and k stands for all other quantum numbers, e.g., mass, momentum 
(or wave packet states), spin and internal quantum numbers, etc. If a state 
I k, N) satisfies · 

(3·4) 

and there exists no state I*) such that QBI *) = jk, N), then, jk, N) trivially 
forms a basis of singlet representation of (3 · 2) , and is called BRS-singlet. 

Now we discuss two cases N= 0 and N=/=0, separately. 

(I) Genuine physical particle (N = 0). The creation operator ¢kt, de­
fined by lk, N = 0) = ¢ktjO), ,commutes with QB by Eq. (3 · 4) :*> 

(3·5) 

where we have used the · hermiticity of QB. Thus, since ¢k is gauge- (or 
BRS-) invariant and has vanishing FP ghost number, ¢'k represents genuine 
physical particle which freely appears in the physical subspace CV phys specified 

by (3 ·1) ~ QBjphys) = 0. Therefore, for a consistency of theory, ¢1C should 
have positive norm: 

(3·6) 

*l Since Eq. (3·4) leads only to QB¢r}IO)= [QB, ¢kt] 10)=0, one may suspect that . [QB, ¢kt] 
might be a linear combination of some annihilation operators. This is, however, impossible 
because (01 [QB, ¢kt] = -(OI¢ktQB=O. 
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26 T. Kugo and I. Ojima 

where l is another possible value for k, anq the anti-commutator ( +) is under­

stood for fermions of course. We assume here the positivity (3 · 6), which 

should be assured in each explicit model. 

(II) Singlet pa{r (N=/=-0). If N=/=0, then (k, Nlk, N) = 0 due to the 

conservation of FP ghost number iQc. So there should exist some "FP­

conjugate" state, say lk, - N), which has the FP ghost number - N and 

(k, - Nlk, N)=/=-0, because, otherwise, the state lk, N) by itself cannot produce 

any poles in any Green's function as the intermediate state and hence cannot 

appear from the first as a one-particle asymptotic state, which should exhibit 

its existence in the poles of some Green's functions. Such "FP-conjugate" 

state lk, - N) is unique under the normalization 

(k, -Nik, N)=l, (3~7) 

as far as k contains a maximal set of quantum numbers by which particle states 

are discriminated. [Indeed, even if one finds many states {IZ, -N)} satisfying 

(l, - Nlk, N)=/=-0, one can construct only one state satisfying (3 · 7) by 

Schmidt's orthogonalization method.] Further, this "FP-conjugate" state must 

also be a BRS-singlet: 

(3·\8) 

with no state I*) satisfying QBI*)= lk, -N). Indeed, otherwise, lk, -N) 

belongs to a BRS-doublet and then the original lk, N) also turns ~ut to fall . 

into another BRS-doublet as will be seen in the next ,case (III) soon below. 

This contradicts the first assumption that lk, N) is a BRS-singlet. So, in this 

case, the representation becomes a singlet pair, "FP-c~njugate'' pair ot two 

BRS-singlets. Introducing the creation (and annihilation) operators by 

we obtain by (3 · 4) and (3 · 8) 

[QB, (Jk] + = [QB, Q"k] + = 0 (3· 9a) 

and their hermitian conjugates. Further, Eq. (3·7) and the equations 

<k, Nlk, N) = (k, - Nlk, - N) = 0 due to FP ghost number conservation lead to 

the following (anti-) commutation relations: 

(3. 9b) 

and their hermitian conjugates. Here, in (3 · 9a) and (3 · 9b), the commutator 

(-) [the anti-commutator ( +)] should be taken for even [odd] N. Precise­

ly speaking, in deriving the commutation relations (3 · 9b), we can obtain 
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Chap. III Proof of Unitarily of the Physical S-Matrix 27 

only the vacuum expe~tation values of them. However, by the present as­

sumption that the operators (J'b (J'kt, (Jk and 6/ belong to the asymptotic fields 

corresponding to certain Heisenberg fields, we can use the Greenberg-Robinson 

theorem [Theorem C.l in Appendix C] which assures that the (anti-) commuta­

tors of asymptotic fields are c-numbers, and hence conclude (3 · 9b). 

If this type of multiplet would appear in the theory, a consistent formula­

tion would not be possible. Despite that the particles (J'k and (Jk have non­

vanishing FP ghost numbers N(=/=0), they appear freely in the physical 

subspace CV phys because of (3 ·9a), if they exist. They not only break spin­

statistics connection (for odd N), but also violate the positive semi-definiteness 

of metric also in the physical subspace; for example, the states (6'kt -{Jkt) /0) 

=/1) satisfying OB/1)=0 have negative norm <Ill)= -1. Even if we fur­

ther restrict the physical subspace by imposing one more subsidiary condition 

(2 · 33) of vanishing FP ghost number, Qc/phys) = 0, the examples of negative 

norm states are easily constructed for odd N; e.g., (J'kt(fktjO)-: /2) satisfies 

QB/.2) = Qc/2) = 0 and has negative norm, <2/2) = -1! Therefore, although 

this singlet-pair representation seems quite admissible from the algebraic con­

sideration alone, we cannot construct a physically meaningful theory if such 

particles appear: The physical S-matrix unitarity breaks down and the proba­

bility-interpretation becomes quite impossible. Fortunately, in the explicit models 

(Yang-Mills, SU (2) Riggs-Kibble and gravity) discussed in Chap. IV, we 

will find no ·evidence for such singlet pairs to exist. Especially, the "elemen-. 

tary" FP ghosts fall into the quartet considered in the next case (III) but 

not into this singlet pair. Further, if ,we do not stick to the covari~nce, such 

gauges as axial gauges with no FP ghosts are possible, so, from this fact, we 

may expect that a general proof of the absence of singlet pairs will be given 

in the near future. So we here simply assume that no such singlet pairs ap­

pear, and henceforth discard them. 

Doublet representations. If a state /k, N) satisfies QB/k, N)=/=0, then, 

/k, N) and /k, N + l)=QB/k, N) form a basis of BRS-doublet representation of 

the algebra (3·2): 

QB/k, N)= /k, N+l). (3 ·10) 

The nil potency (3 · 2a), QB2 = 0, together with (3 ·10) leads to 

OB/k, N+l)=O. (3 ·lla) 

Since this state /k, N + 1) has vanishing norm, 

<k, N+l/k, N+l)=<k, N/OB/k, N+l)=O, (3 ·llb) 

by using the same reasoning as the above in the case (II), we can conclude 

that the state /k, N + 1) must have a unique "FP-conjugate" state, say 
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28 T. Kugo and I. Ojima 

lk, - (N + 1) ), which has the FP ghost number - (N + 1) and satisfies 

(k,- (N+1) lk, N+1)=1. 

And further, this "FP-conjugate" state lk, - (N + 1)) also belongs to another 

BRS-doublet, because the state lk, - N) defined by 

QBik,- (N+1) )= lk, -N), 

does not vanish due to a f'W. T. identity": 

(k, Nlk, -N)=(k, NIQBik,- (N+1) > 
=;=(k, N+1lk,- (N+1) )=1. 

(3 ·12) 

(3 ·13) 

Thus, the BRS-doublet representations are always realized in pairs: ( {!k, N), 

lk,N+l)},{!k,-(N+.l)),ik,-N)}). This provides the third and final 

type of possibility for the representations of algebra (3 · 2). We call this 

"FP-conjugate" pair of two BRS-doublets simply a quartet and discuss its 

metric structure and BRS transformation property because it gives quite an 

interesting and general mechanism of "confine~ent" of unphysical particles. 1
> 

(III) Quartet. Let us introduce· the creation operators defined by 

ik, N)==xkt!O), -lk, -N)==Skt!O), 

ilk, N + 1)=-=rkt!O), . -ik, - (N+ 1) )=rkt!O), (3·14) 

and .the annihilation operators by their hermitian conjugates. We can regard , 

the FP ghost. n~mber N as even without loss of generality, by exchanging 

one BRS-do~blet of the pair for another if necessary. Then, from the defini­

tions (3 ·10) and (3 ·12), we find the BRS transformation properties, in the 

same way as before, 

[QB, xk] =-irk, 

{QB, rk} = f3k, 

and hence, from the nilpbtency QB2 
= 0, 

(3 ·15a) 

(3 ·15b) 

(3 ·15c) 

The "W.T. identity" (3 ·13) and the FP ghost number conservation, together. 

with Greenberg-Robinson theorem (Appendix C), are sufficient for us to con­

clude the following (anti-) commutation relations: 
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Chap. III Proof of Unitarity of the Physical S-Matrix · 29 

where the anti-commutators are understood only in the sector of rand f which 

have odd FP ghost number ± (N + 1). All the vanishing matrix elements, 

except for [Sb plt] = 0 which is derived from the nil potency QB2 ~ 0, are the 

results of FP ghost number conservation. (J)kl in (3 ·16) represents the value 

of the commutator [xb x}J which remains undetermined from the algebraic 

considerations alone,*> but it need not be specified for our purpose fortunately . 

. We have thus shown from the algebraic consideration that there can exist 

the quartet representations, i.e., the BRS-doublet pairs,· satisfying the BRS 

transformation property (3 ·15) and having the metric structure (3 ·16). 

Here, we note an example of the quartets, present always in the theory, con­

taining each "elementary" FP ghost pair as their members, for each group 

index 'a'. We call these quartets the "elementary quartets". 2> Now, note the 

following two W. T. 'identities: 

<OITBa (x) Bb (y) IO) = <OI {QB, T(Ba (x)cb(y))} IO) = 0, 

<OIT All a (x) Bb (y) IO)-i<OIT(D/lc) a (x) z;b (y) IO) 

= <o I {QB, T (A/ (x) c0(Y),)} IO) = o, 

(3·17a) 

(3·17b) 

where use has been made of OBI 0) = 0 and the BRS transforma tiori (2 · 21) 

with (2·16). We recall the equations of motion (2·10c) and (2·10b), 

and the equal-time commutation relations, 

(3·18a) . 

(3 ·18b) 

i {(Doc) a (x)' z;b (y) L·o=Yo = ic)abas (x-y)', (3 ·19a) 

[Aoa (x), Bb (y)] xo=vo = ic)abaa (x -y), (3 ·19b) 

which are nothing but CAR and CCR (2·12) with (2 ·11). It follows from. 

these. (3 ·18a) and (3 ·19a) that 

Oxll<OIT (D/lc) a (x) cb (y) IO) =c) (xo-Yo) <ol {(Doc) a (x) 'cb (y)} IO) 

= ic)abc)4 (x _ y). 

Hence we obtain, taking account of (3 ·17b) also, 

F.T.<OIT (D/lc) a (x) cb (y) IO) = ic)abp/ljp2
, 

F.T.<OIT All a (x) Bb (y) IO) = -c)abP/l/P2
, 

(3 · 20a) 

(3. 20b) 

where the Fourier transform F. T. is defined by the operation f d4xeip<x-y>. 

*> Of course, if N~o; wkz =0 by the FP ghost number conservation. In all important cases~ 
however, N=O. 
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30 T. Kugo and L Ojima 

Equation (3 · 20b) can be directly obtained also by utilizing Eqs. (3 ·18b) and 

(3 ·19b) together with the help of (3 ·17a). 

The pole structures of Eqs. (3 · 20) imply the existence of massless asymp­

totic fields (for each group index a) which are defined as follows: 

Ba(x)as=(3a(x) + ... , 

( D ttc) a (X) as = 0 tt "{ (X) + · · · , 

where use has been made of the notation 

(3 · 21a) 

(3. 21b) 

(3 · 21c) 

(3. 21d) 

with the superscript 'as' representing 'in' or 'out', and the dots ( · · ·) stand for 

the other possible asymptotic fields irrelevant to the pole~ in (3 · 20). The 

BRS transformation (2 · 21) with (2 ·16) for the Heisenberg fields A/, Ba, 

(Dttc) a. and ca determine the following BRS transformation properties for the 

asymptotic fields in (3 · 21) [see Theorem C.3 and (C · 25) m Appendix C]: 

[iQB, Xa (x)] = ra (x), {iQB, r (X)} = i(3a (x), 

{iQB, ra (x)} = 0, [iQB, (3a (x)] = 0. · 

(3 · 23a) 

(3. 23b) 

These equations (if re'Written in terms of the creation and annihilation opera­

tor) are nothing but the transformation yroperties (3 ·15) which we hq.ve 

found above for the quartet representations. Therefore, also their (anti-) 

commutation relations are proved to be identical to (3 ·16) by essentially the 

same reasonings as a hove: Equations (3 · 20) as a resuh of the present W. T. 

identity (3 ·1'7b), which corresponds to the "W.T. identity" (3 ·13) above, 

conclude 

by virtue of the Greenberg-Robinson theorem (Appendix C). All the other 

(anti-) commutators among X• (3, r and r except for [xa (x), l (y)] are found 

to vanish from the FP ghost number conservation and (3 ·17a); e.g., 

(3. 24b) 

These equations (3 · 24) just coincide with (3 ·16) when they are rewritten by 

introducing the creation and annihilation operators. Thus we have found gener­

ally the existence of '.'elementary quartet" for each group index a: (3a; ra and 

ra represent "elementary" asymptotic fields of Heisenberg operators of the 

multipliers Ba (x), the FP ghosts ca (x) and anti-ghosts ca (x). In the ex-
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Chap. Ill Proof of Unitarity of the Physical S-Matrix 31 

amples in Chap. IV, xa will be found to be identified with the longitudinal 

component of A/ (x) for the symmetry unbroken Yang-Mills case, and with 

the Goldstone mode of Higgs scalar field for the case of SU(2) Riggs-Kibble 

model. These "elementary quartets" will play an important role in the 

general discussion of spontaneous breakdown of global gauge symmetries in 

Chap. VI. 

§ 3.2~ Quartet Mechanism 

Consider the case where exist a variety of quartets all of which satisfy 

the BRS transformation property (3 ·15) and have the metric structure (3 ·16), 

as well as the usual genuine physical particles with positive norm. Then, the 

total Fock space CV spanned by those particles is full of negative metric. 

Even then, however, we can prove that, in the physical subspace CV phys 

specified by the condition QBiphys)=O, any members of any guartets always 

appear only in zero-norm combinations and hence that CV phys has positive 

semi-definite metric. Thus, any quartet members can never be detected with 

finite probability in our world CVvhys: Quartets are always confined! To 

prove this is the subject of this section. 

We call any quartet members unphysical particles (states). As for the 

BRS-singlet particle states, they are assumed to be made orthogonal to the 

unphysical particle states, which is always possible. The sector of states 

which contain n unphysical particles in sum aside from arbitrary number of 

genuine physical particles, is called the n-unphysical-particle sector. Since we 

are ~onsidering the case in which there exist arbitrary variety of quartets aside 

from many kinds of genuine physical particles, we should understand that the 

index k (or l) in (3 ·15) and (3 ·16) stands also for the kind of the quartets 

as well as other quantum numbers. By the help of the inverse of the metric 

matrix r; of (3 ·16), the projection operator p<n) onto the n-un physical-particle 

sector can be written inductively as 3
) 

p<n) = (1/n) ( -{1,/P<n-l)xk-xktp<n-l)Sk-(J)klsktp<n-l)Sl 

+ irkt p<n-n.,;(k- i'j\t p<n-l)rk) (3· 25) 

for n = 1, 2, ·· ·, where the summations over the repeated indices k and l are 

understood. p<o) is of course defined as the projection operator onto the zero­

unphysical-particle sector [i.e., the subspace spanned solely by the genuine 

physical particles, say ¢a], which has positive metric by assumption and is 

denoted as $-Cphys· p<o) is explicitly given by 

p<ol = ~ (1/m!) (¢t¢t' "rPlmiO)<OI¢am'"rPa
2
rPa)' (3. 26) 

m 

because of their diagonal metric structure, [¢a,¢/]+= Das [ (3 · 6)]. Note that 

the p<nl's are orthogonal projection operators which are orthogonal to one 
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32 T. Kugo and I. Ojima 

another and complete (on the assumption of asymptotic completeness): 

p<n) p<m) = p<m) p<n) = IJmnp<n), 

00 

_Ep<n>=1. 
n=O 

(3 · 27a) 

(2. 27b) 

(3· 27c) 

By using the BRS transformation properties (3 ·15) of quartets, we can 

:prove the following important properties of p<n> :3
> 

[QB, p<n>] ~ 0 for n = 0, 1, 2, · ·' . (3. 28) 

The proof goes by induction. First, [QB, p<o>] = 0 is trivial because the com­

mutativity of QB with the genuine physical particles ¢en [QB, ¢a] = 0, and the 

explicit form (3 · 26) of p<o> lead to QBp<o> = p<o> QB = 0 by QB I 0) = 0. Next we 

calculate the. COmmutator [QB, p<n>] by Using (3 ·15), (3 • 25) and the induction 

assumption [QB, p<n- 1>] = 0, 

_:_n[QB, p<n~l=Sktp<n-n (_:_irk)+ ( -irkt) p<n-nsk 

+ irktp<n- 1> Sk + iSktp<n-l)rk = o. 

This finishes the proof of (3 · 28). By virtue of this equation (3 · 28) together 

with the BRS transformation property (3 ·15), we can rewrite p<n> into the 

following remarkable form: 

for n>1; 

R<n> = ----c:- (1/n) C'i'ktp<n- 1>Xk + xktp<n- 1>fk + {j)klSkt p<n- 1>rl). (3. 29) *) 

From this it follows directly thae> 

(3· 30) 

for any physical states Vif), Vig)E CVphys satisfying the subsidiary condition 

(3·1), QBif)=QBig)=O. From Eq. (3·30), we can see the following things: 

(i) In the orthogonal decomposition of V!f)E cvphys according to the number 

n of unphysical particles, 

00 

·lf)=P(O)If)+ 2: p<n>lf)' (3. 31) 
n=l 

the norm of I f) is determined solely~ by the first component p<o> I f) E !f{phys 

and all the others have zero-norm by (3 · 30): 

(3· 32) 

· *) It was pointed out by Professor K. Fujikawa that p<n> can be rewritten into this con~i~e 
form (3 · 29) . 
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Chap. III Proof of Unitarity of the Physical S-Matrix 33 

Thus, the physical subspace CV phys has positive semi-definite metric, as far as 
I 

the positivity of physical-particle norm is assured. This finishes the proof of 

the third physicality criterion (ii) of (1· 9), and hence the physical S-matrix 

is proved to be unitary. We note here also the following ispmorphism: 

C{) phys/ C{) o ~ JJ{ phys ( = p<o> CV) , (3. 33) 

I where CVo is the zero-norm subspace of cvphys defined by (1·12a). Further, 

since (3·27c), (3·,29) and QB2=0, together with the help of p<o>CV0=0 (by 

definition) , lead to 

00 00 

C{) o = 2: p<n> CV o = 2: p<n> CVo 
n=O n=l 

C i: p<n> C{) phys = {QB, i: R(n)} q} phys C QBC{) C C{) 0' 

n=l n=l 

' we find the following equalities: 

00 

C{) o = 2: p<n> OJ phys = QBC{) • (3. 34) 
n=l 

(ii) Since it is instructive to see explicitly whc;tt type of combinations of 

unphysical particles, appear in the physical subspace q)phys• we present a com­

plete list of them up to 2-unphysical-particle sector in Table I. [ Cxk• {3k, rb rk) 

in· Table I stands for the operators of quartet satisfying (3 ·15) an? (3 ·16) .] 

Notice that any states in p<n>q;phys (n>1) can easily be constructed as QBin) 

from arbitrary n-unphysical-particle states: In); indeed, when n>1, 

00 . 

p<n> C{) phys = p<n> (2: p<m>) C{) phys =·P(n) QBC:::V = QB (P(n) C{)) · 
m=l · 

by the 'orthogonality (3·27b) of the p<m)'s and· (3·34). All the states in 

Table I are constructed by this method; e.g., QE[ktrztla> = ({3ktrlt- rktszt) Ia). 

Also from this form QBin>, we see very clearly that the unphysical-particle 

states in C(J phys have indeed zero~norm by the nilpot_errcy QB2 
= 0: 

(3· 35) 

(iii) If we start fro~ an initial stat~ I i) E cv phys ( = cv~hys)' the final state 

Table I. List of unphysical-particle states contained in C(J phys· Ia) (f.!JC phys) 

stands for an arbitrary state c~nsisting of physical particles alone. 

iQ.=-1 Q.=O iQ.==l iQ.=2. 

p<tl C(J phys - Sr/la) rktla> -

p(2l C(J phys (pktf,t -rktp,) Ia> pktp,tla), . . /3.~:tr,tla), . 
rrhztla> C/3.~:t'X,t +irktr,t) Ia> Cxktrzt +rktx,,t) Ia> 
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34 T. Kugo and I. Ojima 

If)*> after scattering also remains in the physical subspace CV phys ( = CV~~~s) 

by the conservation of QB. Note, however, that the subspace ..J-[phys = p<o> CV phys 

1s not invariant under the time-evolution: ..J-C~~ys=Pl~CVphys=/=:P~~tCVphys 

= ..J-C~h~s· Namely, even when we start from an initial state li) E ..J-C~~ys 

contammg no unphysical particles, the final state If) generally has non-vanish­

ing components P~~ilf) of n-unphysical-particle states which are really pro­

duced by such processes as FP-ghost pair creations. The important point is 

that such unphysical particles are produced only in zero-norm combinations 

as is assured by (3 · 30) or (3 · 35) . If the conventional wrong hermiticity 

assignment (1·16) was adopted, this was not , the case. We here show a 

crucial example indicating the incorrectness of (1·16). Since the "elemen­

tary" quartets are shown to always exist, the state ((3ktXzt + i'f\trzt) Ia)= 12) in 

Table I with x, (3, r and r of the elementary quartet for instance, will be 

produced by interactions (and have zero-norm (212) = 0 in our hermiticity as­

signment). Note the following correspondence between the FP ghosts with 

our hermiticity assignment (1·18) and the conventional one (1·16) (the con­

ventional FP ghosts are de11_oted by capital letters for distinction), 

cas(x) =:ECrkgk(x) +rktgk*Cx)); icas(x) =i :ECrkgk(x) +rktgk*(x)), 
k k 

t - - t 
cas(x) =:E(Tkgk(x) +Tktgk*(x)); cas(x)=:E(Tkgk(x) +Tktgk*(:x;,)), 

k ' k 

(3· 36a) **) 

1n conformity with the corresponding hermiticity assignments (1·16) and 

(1·18), respectively, and hence 

Therefore, correspottdingly to the above state 12), the state 

(3. 36b) 

(3 · 36c) 

(3. 37) 

is produced in the conventional case, which, surprisingly, has a negative norm 

(for k=f=:l) !: 

(3· 38) 

Although this could be seen more easily in (3 · 35) which manifestly shows 

that the· zero~norm property breaks down if QBt¢cQB, we have preferred to 

*> For definiteness, we should say that the initial and final states are understood to be written 

in the in-state and out-state bases, respectively: li)=li in) and 1/)=1/ out>. Of course, 

in the Heisenberg picture, any state vector Ia) does not change in itself through time 

evolution: Ia)= lfout)=li in)=2J~=oP~~tli in). 

**> Here {gk(x)} is a suitable wave packet system of massless particle. [See Chap. IV.] 
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Chap. III Proof of Unitarity of the Physical S-Matrix 35 

give an explicit example state with negative norm which is really produced 
in the sea ttering process. 

(iv) For any Green's functions of gauge- (BRS-) invariant operators, any in­
termedi~te states containing unphysical particles cannot contribute at all to 
their spectral functions. In fact, for example, if rJ)i(x) (i=1, 2) are gauge­
invariant, i.e., 

(3· 39) 

then 

and therefore, the contribution of n-unphysical-particle intermediate states to 
the spectral function vanishes by (3 · 30) : 

for n>1. (3· 40) 

Thus we have proved that the unphysical particle~, i;e., any quartet mem­
bers cannot be detected at all in the physical subspace due to their zero-norm 
combinations. This mechanism that a particle essentially decouples from the 
physical sector by forming a quartet is called quartet mechanism.ll This 
mechanism is supposed. to take place rather generally, not only in the usual 
unphysical particles of the longitudinal and scalar components of gauge fields: 
Indeed it should take place in the famous U(1) problem (§ 7.1), and it can 
give a key mechanism even for the , color co~finement problem in QCD1

> 

(§ 6.2). 

§ 3.3. Comments on Subsidiary Conditions for the Case of Non-Simple Gauge 
Groups 

Now we discuss some arbitrariness in setting the subsidiary conditions for 
the cases of non-simple gauge group G. In such cases G can be decomposed 
into two factor groups: 

(3. 41) 

where we need not assume that G1 and G2 are simple. [So, if one wants 
complete reduction of the form (2 ·1), one can iterate the procedure (3 · 41) .] 
Consider the cases where the gauge fixing terms for the gauge groups G1 and 
G2 are chosen to decouple to each other, i.e., the gauge fixing terms for G 1 are 
invariant under the G2 gauge-transformations and vice versa. , [This is the case 
in our symmetric gauge fixing (2 · 7b) .] Then, our BRS charge Q~ and FP 
ghost charge Qc for the total group G are decomposed into those for each 
group G 1 and G2 as 

(3· 42) 
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36 T. Kugo and I. Ojima 

i:md these. Q)Pc and Qfj)c are separately conserved. As has been seen in the 
- ' , J f I 

, 

preceding section, the single subsidiary condition (3·1), QBiphys)=O, is suf-

. ficient to specify such physical subspace qJ phys that the isomorphism (3 · 33), 

q;phys/CVo~ 3Cphys' holds. However, here corresponding to the decomposition 

(3 · 42), there exist a variety of choices of subsidiary conditions if bne prefers 

to make the physical subspace smaller; for examples, one can define 

cv:fiy~ 2 3lphys > ¢=:;> QB (1) lphys > = QB (2) lphys > =':::: 0, 

cv:rd:t cl, c2 3 I phys > # QB (1) I phys) = QB (2) I phys > 
I 

= ac (1) lphys) = Qc (2) lphys > = 0' 

an~ so on, where the superscripts attached to qJ phys's for distinctton indicate 

the subsidiary conditions imposed. It is not difficult to see the following in­

clusioh relations of them: 

(3-43) 

More explicit relations are shown in Fig. 1. Note here that 

q;B,ci _ qJB1oB2,ci f . ' 1 2 
phys- phys . or z = ' ' 

because by virtue of the commutation relations 

(3. 45) 

the condition QBiphys) :::::Q/1> lphys) = 0, for instance, necessa~ily implies 

QBw jphys) = [iQc <D, QB]Iphys) = 0 and QB<2
> lphys)=(QB- QB0 >)Iphys) = 0, also. 

By way of illustration, we cite simple states contained in .the regions IrvVII 

of Fig. 1: 

B 

Fig. 1. Jnclusion relations (3 · 43). Three empty regio~s denoted by 0 

appear due to the equality Q~ = Q., (ll + Qc <2
l. 
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Chap. III Proof of Unitarily of the Physical S-Matrix 37 

I 3 Cxk (l)tr/2>t + rk (l)tXL <2>t) Ia>, 

II3 C/3k o>t'XL <2>t + i)\ wtr/2)t) I a)' 

III 3 rk <ntrL <2>tJa)', 

IV 3 rk (l)f (/3l (2)tr m·(2)t- rL (2)t/3m (2)t) /a)' 

V3/3kwtrL<2>tJa), 

VI 3 r k o> t /3 L <
2> t I a> , 

VII3 /3k wt !3L <2>t I a) . 

(3. 46) 

We should note that these varieties of~ choices of subsidiary conditions are 
relevant only to the size of zero-norm subspace C{) 0 in each q; ph;s. Indeed, 
it is evident from the arguments in the preceding section that the isomorphism 

cv~ysl cv / ~. 3{ phys (3; 47) 

holds for any physical s'ubspaces in (3 · 43), denoted by cv;hys generally. We 
prefer, however, our original physical subspace cvphys (= cv~hys) specified by a 
single subsidiary condition (3 ·1), QB/phys) = 0. Aside from the fact that it 
is the simplest choice and makes the theoretical analysis easy, it allows us to 
take a wide variety of gauge fixings: The gauge fixing terms for G1 gauge­
group need' not be invariant under the G2 gauge-transformations and vice versa. 
In fact, in the cases when the groups G1 and G2 are mixed with each other 
by the gauge fixing terms, the charges Qii!c and Q1~)c can no longer be defined 
separately. For instance, this i~ the case in the 'tHooft-Feynman gauge in 
Weinberg-Sala.m model. 4

> Therefore, w~ always take only one subsidiary con­
dition (3 · 1) hereafter. 
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Chapter IV 

Scattering Theoretical Analysis 

in Some. Examples of Gauge Theories 

In this chapter we discuss explicitly the following· model 
1

theori~s: I 

SU (2) Riggs-Kibble model with spontaneous symmetry breaking, II pure 

Yang-Mills theory of a simple gr:oup withopt spontaneous symmetry breaking 

and III gravity. Throughout this chapter we assume the asymptotic complete­

ness in terms of the "elementary" fields. We analyze the . properties of 

asymptotic fields of the "elementary" particles as follows: First, the general 

forms of the 2-point functions of Heisenberg fields are obtained by the re­

quirements of Lorentz covariance ·and BRS invariance alone. The discrete 

spectrum parts of them uniquely determine the commutation relations of the 

asymptotic fields by virtue of the Greenberg-Robinson theorem (Appendix C). 

The commutation relations lead to the equations of motion of the asymptotic 

fields, in view of which we choose a complete set of the mutually inde­

pendent modes, physical ones and unphysical ones. The properties required 

in the previous chapter are explicitly shown to be satisfied; that is, all the 

physical modes have positive norm and are orthogonal to all the unphysical 

modes which fall into quartets sa'tisfying the BRS transformation property 

(3 -15) and the metric structure (3 ·16). Further we will obtain the explicit 

asymptotic form of the BRS charge QB which will clarify once more the re­

lationship of the present subsidiary condition QB\phys) = 0 and the Gupta­

Bleuler condition (a.u A.u) <+l \phys) = 0 or its generalization B<+l (x) \phys) = 0 by 

Nakanishi and Lautrup0 for the Abelian case. 

§ 4.1. SU(2) Riggs-Kibble Model 

We discuss, following Ref. 2), the SU(2) Riggs-Kibble modeP) as a typi­

cal and the simplest Yang-Mills theory with spontaneous breaking of the 

gauge symmetry. The Lagrangian density is given in (2·7), in which the 

group· index a runs over a= 1, 2, 3 and the matter Lagrangian density .Lmatter 

is explicitly given by 

.i matter =I a /ff - ~ gra A': a?JII
2

- v (lflt?f!). (4·1) 

Here lJ! is a complex isospinor scalar field and the potential part V (lflt?f!) 1s 

adjusted so that the vacuum expectation value of ?JI becomes 
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ChaP .. IV Scattering Theoretical Analysis 39 

So it is convenient to parametrize the field 7Jf as follows in term~ of </J, called 
(real) Higgs scalar, and xa (a= 1, 2, 3), called Goldstone bosons: 

(4·2) 

The BRS transformations for these matter fields </J and. xa are given by 

rJf = [iJ.QB, </J] = -A (g /2) X. c' 

ox= [iJ.Qn,x] =J.(g/2) [(v+</J)c+xXc]. 

(4· 3a) 

(4· 3b) 

We should note here a peculiar property of this SU(2) Riggs-Kibble model 

that it retains an unbroken global SU (2) symmetry whi~h is different from 
the spontaneously broken global one corresponding to the local gauge sym­

metry. With respect to this remaining SU (2) symmetry, </J and xa are iso­

singlet and triplet, respectively. One of. the T-W.T. identities, (2 · 47), 1s 
rewritten in this case as 

and the others (2·48a) and (2·48b) remain unchanged: 

or I oB = fjll All+ aoB' 

fi"' or +ior =O. 
oK"' oc 

(4·4b) 

(4·4c) 

The source functional (2 · 39) has the following form for the present case: 

Y[J, K] = s d 4
x[J/l·Ail+J"'f+Jx·x+Jc·c+J-c·c+Je·B+K/l·D/lc 

+ (g/2) {-K"'x·c+Kx· [(v+</J)c+xxc] ~Kc· (cXc)}]. (4·5) 

Now we begin the analysis of 2-point functions. From (4· 4b) we obtain 

r (2)ab (k) =a 
B,B 0, 

Taking account of Lorentz covariance, the remaining global SU(2) symmetry, 
the FP ghost number conservation and ( 4 · 6), we define the one-particle-ir­
reducible (lPI) 2-vertices (i.e., the inverse propagators) as follows: 

*l ···I o represents to take the value setting all the arguments equal to zero. 
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40 T. Kt.igo and I. Ojima 

Av B X 

\A" (g"v- kk:v)A(k2
)+ kk:vB(k2

) ik" ik"C(k
2)! 

B 

X 

c 

cyo 0 

0 PF(k2
) i 

c 

0 

o ik2r (k2
) 

0 
: -iPr(k2

) o 

(4·7) 

We have omitted here the parts containing ~which is de~oupled from others. 

Further we define 

(4· Sa) 

(4•8b) 

where F.T. means Fourier transforms. Th~ identity 

which follows from (4· 4c), indicates 

(4·10) 

Equation (4·4a) with operation ojoclc=C=O is 
'B=if!=O 

(4~ 11) 

We obtain the following two equations, differentiating ( 4 ·11) with res~ect to 

A/ <md xa: 

And hence 

B (k2
){J) (k2

) = C (k2
) ( (k2

), 

C (k2
) {J) (k2

) = F (k2
) ( (k2

). 

' I 

Inverting the matrix r<2l, (4·7), we obtain the propcigators: 

(4·12a) 

(4·12b) 

(4·13) 
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X 
=OaoX 

c 

Chap. IV Scattering Theoretical Analysis 

0 

0 

C ~-aoB 

k2F k2F k 4F 

c 

0 

0 

0· 

(4·14) 

where use has been made of the W.T. relation (4·13), and k4= (k2
) 

2
• 

41 

From (4 ·14), one can deduce the vacuum expectation values of comm.uta-
tors: 

<DI [ Ap" (x), A}(y)] JO> =0'"'[- iZ,(g,, + :n-'&/1,) A (a:- y; m') 

+iL8/JvD(x-y) -iaof)PfJ,E(x-y) 

- i soods<J (s) (g pv + s-lfj p8,) Ll (x- y; s) ], 
+0 . 

<OI [A/ (x), Bo(y)] IO) =- ioabf)PD (x- y), 

<OI [Ba(x), xb(y)J IO)=oab[ -iM1D(x-y).-i s+~ds<JBx(s)LI(~-y; s)], 

, <OI [A/(x), xb(y)] !O)=oabaoap[ -iM2D(x-y) +iM1E(x-y) 

-is+~ ds<JAX (s) 4 (x- y; s)], 

<OI [xa(x), xb(y)J !O)~oab[ CZx-aoMa)iD(x-y) +iaoM/E(x-y) 

+ i J+~ ds<J X~ ( S) LJ (X- Y ; S) J, 

I ! 

<OJ {ca(x), c0 (Y)} !O)=oab[ -Z3D(x-y) -1-~dsif(s)LI(x-y; s)], 
(4·15a) 

. where use has been made of the invariant dipole function E.(x), some proper­
ties of which are explained in Appendix .D: 
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42 T. Kugo and I. Ojima 

In addition, we can write 

<OI [¢ (x), ¢ (y)] IO) = iZ~Lf (x-y; m/) + i J dsrJ~~ (s) L1 (x- y; s), 

(4·15b) 

and all the vacuum expectation values of other commutators than (4·15) 

vanish owing to the global SU(2) symmetry and/or the FP ghost number 

conservation. In (4·15), the vector mass m is defined by the pole position 

of A-1 (s), i.e., A. (m2
) = 0, and the various quantities are defined as follows:*> 

Zs - 1==- (d/ ds) A (s) 1s""m2, Zs - 1==r (0)' zx-
1==F (0)' 

L- 1 
· A(O), M 1==C(O)/F(O), 

M2== (d/ ds) Re (C (s) / F (s)) ls=O• Ms== (d/ ds) Re (B (s) / F (s)) ls=o, 

rJ (s) · n- 1 Im (A - 1 (s)) - Z3o (s- m 2
), 

rJBx (s) =- s(J Ax (s) ==- (ns) - 1 Im (C (s) / F (s)), 

r5xx (s) ==- (ns) - 1 Im (F- 1 (s)) + a 0 (ns2
) -

1 Im (B (s) / F (s)), 
I 

(f (s) ==- (ns) - 1 Ini (r- 1 (s)). (4·16) 

We assume that the LSZ asymptotic conditions hold, and hence the asymptotic 

fields are defined by the weak limit:**)·***) 

A,a (x) ~zs1/2A,aas (x)' B(x) ~zB1!2Bas (x)' 
Xo-++' oo 

X (x) ~zx1/2Xas (x)' ¢ (x) ~z"'~/21fs(x)' 

c (x) ~Z/ 12 cas (x), c (x) ~Z 3
112 cas (x), (4·17) 

where 'as' stands for 'in' or 'out'. and the renormalization con.stant ZB is taken 

as ZB==L-1' =A (0) for convenience. TP.ese asymptotic fields are~ of course, 

supposed to have their supports in time-like and/ or light-like regions in the 

momentum space, and hence ·their (anti-) commutation relations should be c­

nurribers according to the Greenberg-Robin,son theorem [see Appendix C] .. 

Thus the discrete spectrum parts of ( 4 ·15) determine their . (anti-) commuta­

tion relations as follows: 

[A/8 (x), Avas(y)] = -i(g,av+m-28i1v)Ll(x-y; m 2
) 

+iK8,a8vD(x-y) -ia8p.8vE(x-y), 

*> We notice that Zs = i- f':;:'o dscJ (s) and L=Zs/m2 + f':;:'o dscJ (s) / s. 

(4·18a) 

_ **> Henceforth, we will omit the group index a of the fields A"a' Ba, x"', ca and ca. 

***> We assume here that all Z-factors are positive. This is always true in the perturbation 

theory. 
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Chap. IV Scattering Theoretical Analysis 

[A/s (x)' Bas (y) J = -iK112()!1D(x-y)' 

[Bas (X) ' Bas (y) J = 0 ' 

[Bas (x) 'Xas (y)] = -iD(x~y)' 

[A/s(x), xas(y)] = -iaN8
11
D(x-y) +i(aK-112) a~E(x-y), 

[xas (x), xas (y)] = (1-2aNK- 112
) iD(x-y) +iaK-1E(x-y), 

{cas (x)' cas (y)} =- D(x-y)' 

[ </Jas (x), </Jas (y) J =iLl (x- y; me/) 

(4·18b) 

(4·l8c)' 

(4·18d) 

(4·18e) 

(4·18f) 

(4·18g) 

(4·18h) 

43 

and all the commutators of other combinations vanish. . Here we have defined 

K=L/ Z3 = (Z3ZB) -I, a ao/ Z3 , 

N= (Z3/Zx) 112M 2= (K112Z 3/Zx) M3/2, 

(4·19a) 

(4·19b) 

and have used theW.T.relation (4·13) fork2 =0,.B(O)F(O)=C2 (0),and the 

equalities 

A (0) = B(O), (4· 20a) 

!!__(ReB(s))l =29(0) !!__(Re C(s))l 
ds F(s) s=o F(O) ds F(s) s=o· 

(4·20b) 

The equality ( 4 · 20a) is implied by the singularity-free assumption of Ti~Av (k) · 

at k2 =0. Equation (4·20b) can be derived, by the help of B(k2)/F(k2
) 

= (C(k2)/F(k2
))

2 from (4·13), on the reasonable as~umption Im(C(s)/F(s))ls=o 

= 0. In fact these two assumptions are satisfied in any order of the pertur­

bation theory. The last equality in (4·19b) is a consequence of (4·20b). 

The present assumption of asymptotic completeness means that the asymp­

totic fields A/s, </Jas, Bas, xas, cas and -cas are complete without bound states. 

Therefore, we can deduce from the commutation relations .(4·18) the follow­

ing equations of motion for the asymptotic fields by the help of their irreduci­

bility: 

DBas= Dcas= o-cas= CD +mcp2) f~O' 

Dxas= -aK-1Bas .. 

(4· 21) 

(4· 22) 

,This equation ( 4 · 22) indicates that xas becomes a dipole g'host field except for 

the Landau gauge case (a= 0). The massive Proca field, say U/s, contained 

in A/s can be separated from t,he unphysical modes as follows :4
) 

U as= A as_ ( I K-aN) ~Bas_ /K~ .. as 
/1 - /1 'V u /1 'V UpX • (4· 23) 

Then, in fact, we can easily convince ourselves that*> 

*> In deriving (4·24b), we need the relation L=Zx/M1 2
, which is guaranteed by the W.l'. 

relation (4·13) and the equality (4·.20a). Note also that Eq. (4·19b) is indispensable for 

the consistency of (4·24b) with (4·23), (4·18e) and (4·18f). 
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44 T. Kugo and I. Ojima 

(0 + m2
) U/s (x) = 0, · fPU#as (x) = 0, 

[uf.lascx), uJ)as(y)J = -i(gp.v+m-20/Yv)J(x-y; m 2
), 

•, 

(4· 24a) 

(4· 24b) 

and the commutators of Up. as· vyith other fields ·Bas, xas, cas, -cas and _</las all 

vanish. : Thus AP. as satisfies 

(4· 25) 

Now, all this information enables us to construct the Fock space of asymp­

totic fields, which is identified with the total state vector space CV on the 

assumption of asymptotic completeness. The creation and annihilatioh opera­

tors for the Proca field U/s and the (real) Higgs scalar <j;as are defined as , 

usual by using suitable complete sets of wave packets, and are denoted as 

U) (Ua) and <j;pt (<f;p), respectively. Since the Goldstone· boson xas is a dipole 

ghost field now as is seen in (4 · 22), we need some manipulation to treat it. 

Let us define ;;cas field as follows: 

(4·26) *) 

where the operator g) <112
> is defined by (D · 20) or (D · 3) in Appendix D. By 

the equality (D·4), O.fl)<112>f(x) =f(x) ifDf(x) =0, and (4·22), the xas also 

becomes a simple pole field: 

(4· 27). 

Since all theJour fields Bas, ;;cas, cas and cas become massless simple pole fields 

· now, we can detine their creation and annihilation operators in the usual man­

ner by using a common wave· packet system {gk (x)} [see Appendi;x: D for 

the property of {gk (x)}]; especially, the annihilation operators for ;;cas field 
' ' ' ,·, 

. are defined by 

(4· 28) 

Then, one can easily show qy the help of (D~22) and (4·26) that, · 

as ( as) K-1 (h Bas) · Xk = gk, X -a . b , (4· 29a) 

(4; 29b) 

where the dipole wave packet system {hk} 1s defined in (D · 20) as hk 

. =g) (1/2) gk. 

The comniutation relations (4·18f~h) and (4·24b) which we have found 

*> Of course, this xas is non-covariant and non-local (with respect to the asymptotic fields), 

which is, however, harmless. 
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Chap. IV Scattering Theoretical Analysis 45 

above lead to the following. commutation relations of the creation and annihila­

tion operators: 

u {3t cjJ,/ Xzt Bzt Czt Czt 

Ua Oap 0 

c/Jp 0 0 pi! 

0 

Xk (1- 2aN K-1
1

2
) o kt -okz 

0 (4· 30) 

Bk -okz 0 
0 

ck 0 
0 io kZ · 

ck -iOicz 0 

In deriving ( 4 · 30) , we have utilized Eq. (D · 22) . These commutation rela­

tions completely determine ~he metric structure of the total state vector space 

CV. We notice here. that the modes Ua and <jJp have positive norm and the 
• I 

other four (xkas, Bkas, ckas, C/Cas) .have indefinite metric which is exa-ctly the same 

form as is found in (3 ·16). generally for the quartet Cxk, {3k, rk, rk). We will 

in fact see that Ua and <jJp are BRS-singlets and Cxkas, Bkas, ckfi-S, ckas) really 

belong to quartet representation. 

In order to show this, we determine the BRS. transformation of those 
I 

asymptotic fields. As is explained in detail in Appendix: C, any well-defined 

symmetry transformation on Heisenberg fields (Jh denoted by 

induces a linear transformation on the asymptotic fields. This asymptotic 

transformation is determined by 

where the asymptotic form .(tJ([)i) as can be read by inspecting the discrete spec­

trum parts of 2-point .. functions: 

Discrete .spectrum part <OIT(J(J),c (x) ({)1 (y) IO) 

= <OIT(o({)i) as(x) (f)/S (y) IO). (4· 33) 

I~ our case of BRS tran'sformation, the original Heisenberg field transforma­

tions are given by (2·16) and (4·3). We easily s,ee that 

oA.u(x) = [iA.QB, A/(x)J="A.D,uc(x) 

~ (oA.a) as (x) = A.w (0) 8 .aZ/ 12 ca~ (x), (4· 34a) 
lxol-+oo 

o<jJ(x) = -A.(g/2)x·c-' ----~(o</J)as(x) =0' (4· 34b) 
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46 T. Kugo' and I. Ojima 

iJB (x) = 0 ----------')> (iJB) as (x) = 0, 

iJc (x) =-A (g/2) (c X c)------')> (iJc) as (x) = 0, 

iJc (x) = iJ.B(x) -----)- (iJc) as (x) = iAZB112 Bas (x). 

(4· 34d) 

(4 · 34e) 

(4· 34f) 

Equations (4·34a) and (4·84c) are due to the fact that there are no (bound­
state) single-particle poles in the channels iJAJt and iJx other than those caused 
by "elementary" FP ghost cas bythe present assumption, and their coefficients 
(J) (0) and ( (0) come from· 

<OITiJx cjO) IJ2F <OITccjO) 
iJKxiJc 

with the definitiC?ns ( 4 · 8) . Equations ( 4 · 34b) and (4 ~ 34e) follow from the 
fact that th~re exist no bound state poles in the composite channels X· c and 
c X c. Thus from the general formula ( 4 · 32), Eqs. ( 4 · 34) and the definitions 
of asymptotic fields ( 4 ·17), we obtain "": 

[QBr, Xas (x) J = ~ icas (X)' 

{QBr, cas (x)} =Bas (x)' 

(4·35) 

(4· 36a) 

(4· 36b) 

(4· 36c) 

where use has been made of the 'renormalized' BRS charge QBr = (Z3/ ZB) 112QB 
defined in (2·22). In deriving (4·35) and (4·36), we have used the defini­
tion of U/s, ( 4 · 23), and the relations 

(4· 37) 

which are assured by the W. T. relations ( 4 ·10) and ( 4 ·12) together with the 
definitions ZB=A(O), z.~,- 1 =F(O), z~- 1 =r(O) in (4·16) and K= (ZBZ3)-

1 in 
(4·19a) and the relation A(O) =B(-0) stated in (4·20a). 

As is expected, ( 4 · 35) indicates that the Proca field Ufl as and the real 
Higgs ·scalar field ¢ are physical particles of BRS-singlet representations having 
positive norm by ( 4 · 30). The BRS transformation property ( 4 · 36) is noth­
ing but that of quartet, (3 ·15), and hence the Goldstone boson xas, the scalar 
Bas, and the FP ghosts cas and cas (for each of omit.ted group indices a= 1, 2, 3) 
are found to belong to quartet representation. Thus we have finished the 
proof of the unitarity of physical S-matrix'. defined on Hphys=C{Jphys/C{}0 which 
is isomorphic to the Hilbert space .!f{phys spanned solely by the physical par­
ticles Ufl and ¢. Just similarly to Abelian Higgs model,4

> the Higgs phenom-
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Chap. IV Scattering Theoretical Analysis 47 

enon m the present non-Abelian case also is understood without any In­

consistency with the Goldstone theorem: The Goldstone bosons surely exist 

but become undetectable unphysical quartet members, while the gauge bosons 

acquire non-vanishing mass and are physical. 

We add two comments here: (i) By the help of the present assumption 

of asymptotic completeness, the BRS charge OBis expressed in terms of asymp­

totic :fields as 

(4· 38) 

This form in fact reproduces the asymptotic transformations ( 4 · 35) and ( 4 · 36) 

and even the original transformations on Heisenberg :fields as is proved in 

Appendix C generally. It is interesting to note that this expression ( 4 · 38) 

for QBr has just the same form as that of Abelian case (2 · 30). This clearly 

indicates that our· present formulation provides a very natural extension of the 

Gupta-Bleuler (or the Nakanishi-Lautrup) formalism for the Abelian case. 

(ii) By comparing (4·23) with (3·21a), the x-field of the "elementary" quar­

tet found by the general discu.ssions in the preceding chapter is given in the 

present model explicitly as 

(4·39) 

where ~he xas representing the present Goldstone mode should not be confused 

with X of (3 · 21a). 

§ 4.2. Pure Yang-Mills Theory without Spontaneous Symmetry Breaking 

We analyze. here the pure Yang-Mills (YM) theory based on a simple 

group G suffering no spontaneous symmetry breaking, following Ref. 5) , but in 

a little simpler manner. Of course, the massless YM theory suffers from 

serious infrared divergences which may have deep relevap.ce to the confinement 

mechanism of quarks as is currently expected. We, however, disregard the 

infrared problem here for simplicity and make a formal analysis of asymptotic 

:fields. 

The Lagrangian density is given by (2 · 7) with .£matter discarded. The 

propagators are given as the same form as ( 4 ·14) in the preceding model, 

where the group index a should be understood to run over a= 1, 2, ···, n 

=dim (G), and the Goldstone :field X is simply discarded. The function 

A -l (k2
) in ( 4 · 14) now has a massless pole and hence we rewrite it as 

(4· 40) 

By performing the same procedures as in the preceding section, we :find, for 

the asymptotic :fields 
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48 T. Kugo and I. Ojima 

AIL (x) ~zst/2A/Las (x)' B (x) ~za-t/2 Bas (x)' 
lxol--"00 

the following commutation relations: . 

[A/s(x), Avas(y)J = -i(gfLv-KfJJ}v)D(x-y) 

+i (1-a) fJiivE(x-y), 
I 

[A/s(x),Bas(y)J = -ifJILD(x-y), 

[Bas (x) ' Bas (y) J = 0 ' 

{cas (x) ' cas (y) } = -"--- D (x ~ y) . 

Here we have defined 

(4·41) 

· (4· 42a) 

(4. 42b) 

(4· 42c) 

(4·42d) 

(4· 43) 

and other quantities in the same way as bef0re': Z3 -
1=r(O) and a· a 0/Z3• 

Note that Ze is taken in the prest:;nt case as ZB===Z3 -
1

• Equations (4·42) 

together with the asymptotic completeness assumption lead to the equations of 

motion: 

(4· 44a) 

(4·44b). 

(4·44c) 

We can now construct the asymptotic Fock space. Noting that the. vector 

field A/s is dipole field generally except for Feynman gauge (a·= 1), we ex.­

tract a (non-covariant and non-local) simple pole field JC as from AIL as in a way 

similar to ( 4 · 26) : 

AtLits(x) =AtLas(x)- (1-a)fJIL.fD<112>Bas(x). (4· 45) 

Then, (4·44b) and (4·44c) become, by help of D.fD(112>B=B [(D·4)], 

DA/s=O; 

f)IL A/Las + Bas = 0 . 

(4·46a) 

(4·46b). 

Now we define the creation and annihilation operators of vector field AtLas by· 

the wave packet system {fk,c/} artd of scalar fields Bas, cas and cas by a com­

mon system {gk}: · For the annihilation (creation) operators A~~~ (A~~t) ,, 

Aas = (f /L A as) =i sd8x+. /L* (x) 8 A as (x) 
k,l1 k, 11 ' /L J k, 11 0 If ' 

A/s (x) = :E (A~~ 11 fk~tL (x) +h. c.), 
k,l1 

(4·47a) 

(4. 47b) 
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Chap. IV Scattering Theoretical Analysis 49 

(4· 48) 

and so on. These two wave. packet' systems {f~c./} and {g~c} are constructed 

in Appendix D so that their mutual relations simplify the formulas below. 

These modes A~~cr (0" = 1, 2, L, S) and B1cas are not all mutually independent, as 

is evident from (4· f16b) which in fact says that 

Bas= A as,S=""' :yjSi1 A as ( = Aas ) 
1c 1c ~'I Tc,l! Tc,L' 

(4·49)*) 
11 

where use has been made of the definition of 'lj [ (D ·15)], (D ·19b) and 

(D ·19c). Thus the scalar polarization 'modes A~cas.s are nothing but B1c modes. 

So A/s and Bas are fully described in terms of the transverse modes A~~cr= 1 , 2 

( =- ATcas.l1=l, 2
), *) the longitudinal modes A~cas,L ( = A~~s) and B1c alone. In­

deed, 'we. find from ( 4. 45) ' ( 4. 4 7) rv· ( 4. 49) that 

(4· 50) 

where the dipole wave packets h~c (x) are defined in (D · 20): . HJ 012
l gk (x) 

=h~c (x). Noting that the commutator ( 4 · 42a) is rewritten by help' of the 

identity (D · 8) as 

( 4. 51) 

we find from ( 4. 51)' ( 4. 42brvd) the following commutation relations for the 

creation and adnihilation operators: 

A!. r=I, 2 Az• Lt 

Ale, tf=1,:1 IJ kL{J tfr: 

0 
0 

0 --------------'-----·------------- ------------·----------------

(4-52) 

0 
0 

- iiJ TeL 0 

where (D · 18) has been utilized. 

Beside the LSZ reduction formula 6
) for the transverse modes of the usual 

form, 

<Ak.o-=1,2a outiT(; .. ) l/1in) 

=<a out IT( .. ·) At~o-=1;21/1 in)+ 

*l Note the positions of the suffices cJ=l, 2, LandS; e,g., A~:L=A}; 8 • 8 ~Af; 8 s=A); 8 •L. 
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50 T. Kugo and I. Ojima 

we should note the following formula for the longitudinal modes :7>.s> 

<Ak·La Ol.ltiT ( · ··) 1/1 in) 

=<a outiT(···)Akin.LI/3in) 

+iS d4xZ3 -
112fkL,.u (x) *Dx<a out IT (A.u (x) ···) 1/3 in) 

-i(l-a) s d4xZa+ 112 [fkL,.u(x) *a/-h~* (x) ox] 

X <a outiT(B(x) ···) 1/3 in). (4· 53b) 

The BRS transformations of asymptotic fields are determined in exactly 

the same way as has been done in ( 4 · 34) in the preceding section. We find. 

by using the renormalized charge QBr = Z/12ZB - 112QB= Z/12Z 3
112QB, 

This leads to 

[QBr, A.uas(x)] = -i8.ucas(x), 

{QBr, Cas(.~)} =Bas (x), 

[QBr, Bas(x)] = {QBr,cas(x)} =0. (4·54) 

(4· 55b) 

Thus we see from the commutation relations (4 ·52) and the BRS transforma~ 

tion property that the transverse modes A~~()"= 1 , 2 are really physi~al particles 

of BRS-singlets having positive norm and the longitudinal mode Akas,L together 

with the scalar modes Bk and FP ghosts ck and ck belong to quartet repre­

sentations.. Hence also in this pure YM case, the physical S-matrix unitarity 

has been proved. 

We should add a comment here. The above construction of physical 

transverse modes manifestly depends on the Lorentz frame to which we refer. 

So is the Hilbert space !/{phys spanned by the transverse modes alone. Our 

proof of unitarity of the physical S-ma trix Sphys defined on CV phys/ CV a = Hphys' 

however, has a frame-independent meaning. Our· physical subspace CV phys is 

specified in a Lorentz invariant manner by scalar charge QB and hence its 

positive semi-definiteness of metric as well as the spaces CV phys' CV 0 and Hphys 

have Lorentz-invariant meanings, even when the proof is given by referring 

to a specific. Lorentz frame. 
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Chap. IV Scattering Theoretical Analysis 51 

§ 4.3. Quantum Theory of Gravity 

The application of the present formalism to quantum gravity is essentially 

straightforward, although some complications occur in the kinematical calcula­

tions. Nakanishi initiated this task and has been researching the total struc­

ture of quantum gravity in detail in his succeeding papers. 9> Nishijima and 

Okawa10
> discussed the BRS transformation and charge in quantum gravity. 

Here we briefly summarize the results according to Ref. 11), only in which 

the properties of asymptotic fields are analysed in detail. 

The Einstein Lagrangian density of the gravitational field is 

Introducing the Goldberg variables 

we can rewrite ( 4 ·56) as follows as usual: 

.£E= .£~+att.fD", 

.£~==1C-
2
V- g g")J cr~vr~).- r~prt;.) 

- (2 ) -2 c-Pii- - 2>1- 11>1- P- 1 -PI1- - ) ~ -tt!C~ -v). - IC g g;.ttg!Cv- UfC U;. gttv- 2 g gtt!Cg).v upg ulig , 

.fD"---"JC-2y _ g (g"v r~). _ gPii r~li) 

= IC-
2 (! g"vga;pOv(t'" + Ov(}"v) • 

(4· 56) 

(4·57) 

(4· 58) 

(4· 59a) 

(4· 59b) 

In terms of g}J.v, the (Lie derivative corresponding to) general coordinate trans­

formation is written as 

(4· 60a) 

(4·60b) 

·Then, as the Lagrangian density to be quantized, we adopt the following one: 

.£ = .£~+ .£GF+ .£FP' 

.£GF==- (21C) -lgttV(fjttBv+8vBtt)- (ao/2)r;"vBttBv, 

.£ FP==- (i/2) (f) "ev +Ovett) D"vpcP, (4·61) 

where r;"v is the Minkowski metric: r;"v = diag. ( + 1, -1, -1, -1). Due to 

the presence of .£ GF + .£ FP• the action f d 4x.£ of the quantum system ( 4 · 61) 

is no longer invariant under the. general coordinate transformation ( 4 · 60) . 
Instead, this system ( 4 · 61) has the invariance under the (global) BRS trans­

formation, which is defined by 

(4· 62a) 
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52 

and satisfies 

· T. Kugo and I. Ojima 

0 J:_ E1 = -f) tt (}.tCcllJ:_ E + 0 g)ll) , 

0 (J:_GF+ Xpp) = 0, 

o S d4xJ:_'= 0. 

(4· 62b)' 

(4· 62c) 

(4· 62d) 

(4· 63) 

The Noether current JBtt corresponding to the BRS tr:an$formation ( 4 · 62) 
is9l~lll 

).JBP= 4 -(of}) ()(J:_ -fJ;.g)-;.)) +JCACP J:_E+o9JP, 
lll={g,c,c} a(apf])) . 

(4. 64) 

and the conserved charge OB= f d 3xJB0 implements the transformation ( 4 · 62) :9l 

(4· 65) 

Now, in what follows, we consider the gravitational field httv on the 

background Minkowski metric IJilv: 

i (4· 66) 

The analysis of commutators, equations of motion and BRS transformation 

properties of the asymptotic fields by ·using Lo~entz covariance and W.T .. 

identities, can be also performed for this case in exactly . the same way as in 

· the two preceding YM theories. Here, however, we only cite its bri~f outline. 

The interested readers should consult Ref. 11) for the detailed presentation of 

it. 

We. assume the following asymptotic condition: 

h pv Z 1j2 /1-V 
~ 3 lf?injout, 
Xo->±oo 

B ~ z -1j2(.) injout 
p 3 jJ P· . ' 

.P 2 ~ 1;2 ll 
C ~ 3 Yinjout, C

- ~ z~ 1j2r- in:jout 
p ' ' 3 p • (4·67) 

The asymptotic :fields cpllV, and [3/l tog~ther with ytt and r ll turn out to be a 

tripole field and dipole fields, respectively, in much contrast to the free theory 

described .by the quadratic parts of the starting Lagrangian (4· 61). Tn terms 

of the 4-dimensional momentum representation, such as 

VJilv (x) = (27r) - 312 s d 4pl9 (P0
) [9ttv(P) e-ipx + 9lv (P) eipx], (4. 68) 

we de,compose lf?ttv into the physica'l modes and the unphysical ones, in such 
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Chap. IV Scattering Theoretical Analysis 53 

a Lorentz frame that the. 4-n:iomentum p/.1 takes the form P/.1= (p0
, O,O,p3

).: 

cp/ (p) =: ifJ12 (p) ' (4·69) 

x,(p) =(if2p,) [<Poo(P)- e-L,~~L~1,2L,)p,}',(P) ]. 

xi(p) = icpiO (P) /Po (i = 1, 2), 

Xa(P) = (ij2p,) [<P .. (p) - ( L, -l ~ ~ ~1, 2 L,) P.')<P'• (p)], ( 4 · 70) 

where L 1, L 2 .and L 3 are some constants determined dynamically. The BRS 
transformation of the asymptotic fields is found by much use of W.T. identi­
ties to read 

[QBr, cp/(p)J =0, (i=1, 2) 

[QBr, 'XP (p)] = -ir/.1 (P), {QBr, f/.1 (p)} = (]/.1 (p), 

[QBr, (]/.1 (p)] = {QBr, r/.L(p)} = 0 · ~ 

(4·71) 

(4· 72a) 

(4· 72b) 

The (anti-) commutation relations of these asymptotic fields· are given by 

3dpv(P) =- (r;pv+L?PtPv)o(P2
)- (Lt/2)PtPvo'(P2

). (4·74) 

This coincidence of the commutators, [x/.1 (P), (]} (q)] =i {r/.1 (P), r} (q)} = 
3dpv(P)o4 (P-q), is a direct consequence of BRS transformation law (4·72). 
We notice that the BRS transformation ( 4 · 72) and the commutators ( 4 · 73) for 
the fields Cx/.L(P),(]/.L(P),rit(p),r/.L(P)) coincide in their forms with those of 
quartet presented in (3 ·15) ahd (3 ·16). Hence one can, prove in quite the 
same way as in Chap. III that the present quartet Cx.a, /311 , rf[, r /.1) always con­
spires to form zero-norm combinations in the physical subspace C{J phys specified 
by QBJphys) = 0. Alternatively~ if one wants, one can redefine the present 
dipole fields )(p, /3/.1> r/.1 and r /.1 such that they become simple pole fields, and 
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54 T. Kugo and I. Ojima 

then, can prove that the BRS transformation (4·72) and commutators (4·73) 

reduce to exaCtly the same ones as (3 ·15) and (3 ·16) .- Thus the physical 

S-matrix unitarity is established also in quantum gravity. 

We should add a remark on the mode counting in the above. Among 

the ten components of 9Jtv (p), two are physical transverse modes cp/ (i = 1, 2) 

of BRS-singlet and the other eight are unphysical ones falling into members 

of the quartet; that is, the four modes x~-~ (P) represent essentially the "longi­

tudinaF' components of 9Jtv and the other four /3~-~ the redundant spin 1 com­

ponents of (jJ Jtv· 

Finally we note that in Landau gaug~ the 10 components of the gravita­

tional field are proved12
) to represent exactly massless particles identified as the 

10 Goldstone bosons responsible for the spontaneous breakdown of GL (4) 

invariance up to the Lorentz invariance, which is due to the background Min­

kowski metric 1JJtv=<Oigflv(x) IO). 
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Chapter V 

Ohservahles in the Yang-Mills Theory 

and Quark Confinement 

--Physical Contents Described in Hphys--

§ 5.1. Concept of the Observable and Gauge Invariance as Its Criterion 

55 

So far, we have discussed the scattering theoretical aspects of the gauge 

theory, namely, the asymptotic states and the asymptotic fields. The physical. 

ly meaningful quantity treated there is only the physical S·matrix, which has 

been proved in Chaps. III and IV to be a unitary operator in Hphys = C{J phys/ C{J 0• 

Although such unphysical particles as FP ghosts may come out in the final 

states with non·vanishing s.matrix elements from the initial states containing 

no unphysical particles, they appear in C{J phys only in the zero·norm combina­

tion ( E C{J 0), as has been shown explicitly in Chaps. III and IV. Since the 

zero-norm subspace C{J 0 is orthogonal to C{J phys ((A· 7) in Appendix A), 

(5·1) 

those unphysical particles make no contribution to the scattering processes in 

C{J phys· Thus, all physical scattering processes are completely described in 

Hphys= C{Jphys/CVo, where zero-norm physical states lx)E C{J 0 containing un­

physical particles are regarded as negligible objects: 

lx>= lx)+C{Jo=O in Hphys Clx)ECVo). (5·2) 

These situations can be paraphrased in a rather general fashion as follows. 

Defining the transition probability T (?Jfh ?J!"2) between two physical states 

j?J!"l), j?J!"2) E C{J phys by 

Definition 5.1. (5·3) 

we obtain, from (5 ·1), the following relation: 

(5·4) 

Namely, the transition probability T (?J!"1, ?J!"2) in CV phys is independent of the 

choice of the representative vectors I?J!"i)E C{Jphys in the equivalence classes !P\) 
with respect to CVo and it is really a function T depending on pairs of equiv­

alence classes . I fJJ i) E Hphys = C{J phys/ C{J o: 

T: Hphys X Hphys~R+ 

T(ifth W2) =T(?J!"h ?J!"2) = I<?J!"li?J!"2)1 2= l<'P"li'P"2)! 2
• (5·5) 
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56 T. Kugo and I. Ojima 

Then, as for the problems concerning the transition probabilities like the scat­

tering theoretical problems, we can safely make all discussions in the Hilbert 

space Hphys=:-C{lphyf!/C()0, neglecting zero-norm st~tes lx)EC{l0 as in (5·2). 

Besides the transition probability, however, there are many physical quan­

tities to be measur~d, for instance, the energy-mom~~tum vecto~ PP, and so on. 

If we want to describe, in the Hilbert space Hphys; every physical process con­

sistently. according to the ordinary principles of quantum theory, any state 

lx) E C() 0 which corresponds to the null vector in Hphys should make no physical 

effects iri the measurement of physical quantities. Now, since our starting 

point is. not the quantum theory in Hphys but the field theory formulatedin the 

state vector space C() with an indefinite metric, ~e should write down the con­

dition required for the consistent measurement in Hphys in terms of the operators 

A in C(). If a zeroTnorm physical state I x) E C() 0 were transformed by a 

physical quantity A into such a state lx') ~ Alx> that 

(5· 6) 

·then the measurement of A could not be described consistently i~· Hphys, b.ecause 

.the state lx) E C() 0 which is regarded as the null vector in Hphys makes a non­

vanishing contril).ution in (5 · 6). So, we require a physical quantity A to 

satisfy the following equality: 

(5·7) 

As. was shown in Ref. 1), the condition (5 · 7) agrees with the one which 

guarantees the usual connection between the transition probability and the ex­

.pectation values of observables in the quantum theory. In: the usual quantum 

theory formulated in the Hilbert .space with a positive definite metric, we know 

that the relation 

(5·8) 

holds, where the expectation value of the observable A in the state I?P') is 

denoted as 

E (A; ?P') =<WI A I?P') (5 · 9) 

and PID denotes the projection on the state l<b) 

Namely, the transition probability T (<b,.?P') is nothing but the expectation value 

E(P!IJ; ?P') of a special type of observable PID corresponding to the yes-no ques­

tion about the state Ia>). Conversely, sin~e every observable A which is a. ;elf­

adjoint operator admits. the speCtral resolution 
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Chap. V Observables in the Yang-Mills Theory and Quark Confinement 57 

A=~ anP(J)n = ~ ani<Dn)<<D~I*) (5 ·11) 
n n 

with A I <Dn) =an I @n), the expectatio~ value E (A, P") can be reconstructed from 

the knowledge of the transition probabilities: 

E (A; ?ff) = ~ an<P" I<Dn)<<DniP") = LJ anT (<Dn, P") · (5; 12) 
n n 

Thus, in order to maintain the relations (5 · 8) and (5 ·12) with (5 · 9) in our 

Hphys also, Eq. (5 · 4) should imply the equality 

(5·13) 

which is really equivalent to (5 · 7). Thus, the conditions (5 · 7) and (5 ·13) are 

the equivalent expressions of a necessary condition for the consistent measure­

ment of a physical quantity A. It can easily be checked that. the energy­

momentum operator P If. satisfies the condition (5 · 7) as follows. First, since 

the BRS charge QB (2 · 20) 1s a translationally invariant Lorentz scalar, we 

obtain 

(5·14) 

as a consequence of which the state PP.I<D) with I<D)E q;phys belongs to q;phys: 

I 

QBPp.I<D)= [QB, P!f.] I<D)+PttQBI<D)=O -===->Ptti<D)EqJphys· (5·15) 

Then, we obtain, from (5·1) and (5·15), 

(5·16) 

In what follows, we call an observable any operator A (hermitian or no.t) 

satisfying ( 5 · 7) . 

Definition 5.2. An operq.tor A is called an observable if it satisfies 

<xI AI~)= <([)I Alx> = o 

or equivalently . 

<<D + xl AI<D +x> = <<DI AI<D)=E (A; <D) 

for any I <D) E q; phys and I x> E cv 0· 

(5·7) 

(5·13) 

Now, as easily understood from the above argument of the "observability" 

of PM the concept of the observable is closely related to the notion of gauge 

invariance, since the BRS charge QB .in (5 ·14) is. essentially a generator of 

*> Precisely speaking, (5 ·11) should be written in general as 

A= fA dP(A.), dP(A): spectral measure 

. in order to !reat A with continuous 
1 

spectrum as well as discrete one. 
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58 T. Kugo, and I. Ojima 

"local" gauge transformation in quantum theory. In Ref. 1), the following 

four notions of the gauge invariance are introduced for the operators in QED: 

(i) gauge independence: < ([)1 +XII A I ([)2 + x2> = < ([)11 A I ([)2) 

for l@i)ECVphys, lxi)ECVo 

(ii) weak gauge in variance: A q) 0 c q) 0, At q) 0 C q) 0 , 

(5 ·17) 

. (5 ·18) 

·(iii) gauge in variance: A CV phys C CV phys, At CV phys C CV phys , (5 · 19) 

(iv) strict gauge invariance: gauge invariance (iii) augmented by 

the condition [A, (lFvtt-jtt] =0. (5·20) 

I 
One can easily see, of these conditions, that the statement I becomes stronger 

the/ latter it is in the list, and that the weakest one (i) agrees with the con­

dition (5 · 7) for the observable. Note that the condition (iii) allows us to 

define an operator A in Hphys = CV phys/CV 0 by the equation 

(5. 21) 

In the N.L. formalism of QED where a physical state lphys) is specified 

by the condition 

B<+> (x) lphys)=O, (1·5) 

the condition (iv) 1s equivalent to the following one: 

(iy') [A, B(x)] =0. (5. 20') 

This is due to the Maxwell equation 

~here B (x) 1s the Lagrange .multiplier field satisfying 

(1·2) 

Furthermore, the above four conditions in the Abelian cases are distinct from 

one another, namely, each latter one is truly stronger than the former one. 

For example, the energy-momentum Ptt satisfies (iii) but not (iv): 

Contrary to this case of QED, the weakest condition (i) in our formalism 

based upon the BRS symmetry is really equivalent to the stronger one (iii), 

which is rewritten equivalently as 

[QB, A] qJ phys = [QB, At] q) phys = 0 · (5 ·19') 
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Chap. V Observables in the Yang-Mills Theory and Quark Confinement 59 

Here QB is the Klein transform of the BRS charge QB: 

QB= e±~rQcQB • (5. 23) 

Proposition 5.3.2
> In the gauge theory with the BRS symmetry gener­

ated by the BRS charge QB, the condition (i) for an operator A implies 

the condition (iii) . 

Proof) If an operator A satisfies (i), or its equivalent (5 · 7), we obtain 

for any vector I f) E q) and for any I([)) E CV phys: 

because the state lx)=QBif) belongs to C(/0 : 

QB1x)=QB
2
1f)=0, 

<xlx> = <fiQB2 1f> = o. 

(5·24) 

(5· 25a) 

(5. 25b) 

Since the inner product of q) is assumed to be non-degenerate [(A· 2) in Ap­

pendix A], (5 · 24) concludes 

(5· 26) 

which is nothing but the condition A q) phys C qJ phys· The condition At q; phys 

c q) phys follows in quite the same way, and hence, we arrive at the condition 

~D. D 

Thus, in our canonical formalism of the gauge theory,. the three notions of 

gauge invariance (i) I'"'V (iii) are all equivalent. This criterion can be further 

sharpened for local observables in the following way. 

Proposition 5.4.2
> If A is an local observable, namely, an operator 

A E 9: (())*> satisfying one (and, consequently, all) of the conditions (i) I'"'V 

(iii) [i.e., (5 ·17), (5 ·18), (5 ·19), (5 ·19')], then it satisfies the equality 

[QB, A] =0' (5·27) 

which implies, conversely, (i)rv(iii). Namely, a local operator AES:(l)) 

is an observable if and only if it satisfies (5 · 27). 

By comparing (5 · 27) with (5 · 20') in view of· the corresponding subsidi­

ary conditions (2 · 29) and (1· 5) , the condition (5 · 27) should be interpreted 

as the one for strict gauge invariance. Namely, the condition for a local opera­

tor to be an observable agrees with the condition of strict gauge invariance 

in our formalism. The proof of t!J.e above proposition can be made easily by 

*> 9 (()) is the polynomial algebra generated by the field operators smeared with the testing 

functions with their compact supports in the finite space-time region (). (See, (A ·18) in 

Appendix A.) 
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60 T. Kugo and I. Ojima 

using the following interesting lemma. 

Lemma 5.5.3
> If A is a local operator E g' (LJ) m. our theory satisfying 

the condition 

(5· 28) 

then it satisfies (5 · 27), namely, A is a local observable. If we denote the 

set of local observables belonging to g (LJ) by <-_}{ (LJ), the following 

equality holds: 

g (LJ) IO) n q; phys = J{ (()) IO) .. (5. 29) 

Proof) Since we have assumed that the vacuum 10) is a physical c.state, 

namely, 

(2· 29) 

we obtain from (5 · 28) 

(5· 30) 

. By decomposing A, which is a polynomial of smeared field operators, into the 

part A 1 with even powers of FP ghosts and the one A2 with odd powers, 

(5 · 30) can be written as 

(5. 30') 

Owing to the linear independence of the states with different eigenvalues of 

Qc, (5 · 30') is decomposed into the following two equations: 

[QB)·Al] 10)=0, 

· {QB,A2}!0)=0. 

(5·31a) · 

(5. 31b) 

By (5 · 31), [QB, A 1] and {QB, A 2} are, respectively, local-anticommutative and 

local-commuta,tive operators E :1 (LJ) annihilating the vacuum, which vanish 

themselves by the well-known Reeh-Schlieder theorem (Corolliuy A· 5 in Ap­

pendix A): 

(5. 32) 

Thus, we obtain (5 · 27) 

[QB, A]= [e±trQcQB, A1 +A2] ~ e±trQc([QB, A1J+ {Q~, A2}) =0. D 

Proof of Proposition 5.4) Let A be a local observable satisfying (5 ·19'), 

then it satisfies (5 · 28) because of (2 ·29). By Lemma 6.5, we obtain· (5 · 27). D 

In the above, it is worth while rem'arking that the very mo.dest require­

ment (i) [ (5 ·17) or (5 ·13) J for the natural relations (5 · 8) and (5 ·12) be-
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Chap. V Ob'servables in the Yang-Mills Theory and Quark Confinement 61 

tween the transition probabilities and the expectation values in the ordinary 
I . 

-quantum theory to be preserved leads us to the condition (iii) of. gauge in-:-

variance (5 ·19') for a physic~! quantity A. Especially, this requirement for 

a local observable A is reduced to the salient algebraic condition (5 · 27) of 

gauge in variance: 

which can be examined directly by use, of the canonical commutation relations 

· without recourse. to the dynamical information of Green's, functions, etc. This 

shows the pertinence of our formalism of the gauge theory, especially, of the 

choice of the state vector space Hphys = C{) phys/ CV 0 in which every physical 

process should be described. In this context, it may be instructive to note 

another evidence for the consistency of the choice of the subsidiitry condition 

(2· 29) 

Reversing the direction of the above arguments, let us select the observable 

A by the principle of gauge invariance: 

(5· 27) 

.and require the observables to be represented m a Hilbert space H. Then, 

QB is an observahle 

(5. 31) 

whose representation QB in H with a positive definite metric is nothing but 

0, 

(5· 32) 

because of the nilpotency of QB (2· 25a): 

(5·33) 

Thus, the subsidiary condition (2 · 29) can almost be said to be demanded by 

the principle of gauge invariance (5 · 27) for the observable. 

§ 5.2. "Maxwell" Equation and Structure of Local Observables 

--Local observables as group invariants-. - . 

In the N.L. formalism of QED, t~e field strength Fp.v and the electrom'ag­

netic current jP. satisfy the condition (iv) of strict gauge invariance. which is 

equivalent to (5 · 20'): 

[Fp. 11 (x), B-(y)] = -i (8p.8v-8v81.c) D(x-y) = 0, 

[jp. (x), B(y)] = [8 11Fvp. (x) '-Op.B(x), B(y)J = 0, 

(5 · 34a) 

(5·34b) 
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62 T. Kugo and I. Ojima 

and hence, they are (strictly gauge invariant) observables. For these obs~rv­

ables, we obtain the Maxwell equation in Hphys: 

from the equation of motion 

(5. 35b) 

or 

(5· 35c) 

On the contrary, the equation of motion (2 ·lOa) for the YM field 

(2·10a) 

contains an unphysical term - ig8 tJc X c which cannot be neglected even in 

the matrix elements between phyE;ical states. The matter current j/ defined 

in (2 ·lOd), however, cannot be conserved by itself 

(5· 36) 

ahd the conserved Noether current J/ of the global gauge symmetry is given 

by 

J/=j/+ (A 11 
X FvtJ)a+ (AIJ X B)a-i(cX D!Jc)a+i(8/JcXc)a 

= [j/+ (A 11 XF11tJ)a]- {QB, (AtJXc)a} +i(8tJcXc)a, (5·37) 

which also contains the same unphysical term 8;c X cas the above. As noted 

in Chap. II, we obtain the "Maxwell" equation (2 · 36) 

\as a consequence of which the equation 

(5· 39) 

holds fori@), i?fi)EC{}phys, similarly to (5·35c). It might seem, however, that 

the question how to interpret the unphysical term i (8/Jc X c) contained in 

(5 · 37) remains unsettled. The answer to this question is the following: In 

the non-Abelian case, the field strength F~ 11 and the Noether current J/ of the 

global gauge symmetry are not observables in contrast to the Abelian case, 

[QB, F~ 11 ] = ig (c X FtJv) a=/=0, 

[QB, JtJ a] = - i8 11 (c X FvtJ) a=/=0 , 

(5· 40) 

(5· 41) 

and such a type of equation as (5 · 35a) does not hold m Hphys of this c~se. 
Consequently, the unphysical term. i (8/Jc X c) a makes no trouble, because the 
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Chap. V Observables in the Yang-Mills Theory and Quark Confinement 63 

J/'s themselves are unphysical and cannot be observed in the physical world. 

This consequence is not an accidental situation, but can be viewed in a more 

general context. Namely, the following theorem asserting the group in.vari­

ance of local observables holds in our formalism: 

Theorem 5.6. 2
>' 4

' Every local observable A commutes in Hphys with the 

global charge Qa of the unbroken*> global gauge symmetry: 

(5. 42) 

In order to prove this theorem, we should first examine the global charge 

operator Qa of the global gauge symmetry defined (formally) by 

(5. 43) 

Lemma 5.7. If a conserved current Jp. of the form 

(5· 44) 

'With a local (or anti-local) operator Kv" yields a well-defined charge Q 

(5· 45) 

then the charge Q is nothing but 0 .. 

Proof) Let cp be a 1 OGal opera tor be 1 onging to 9: ( lJ) : cp E 9: ( lJ) . Taking 

a sufficiently large R>O, we obtain 

QcpiO)= [Q, cp]+IO)±cpQIO) 

= [QR, (/) J +I 0) (5. 46) 

according to the general theory of the conserved charge in Appendix B, where 

a well-defined charge Q is shown to annihilate the vacuum 

QIO)=O. (B·l) 

Since, roughly speaking, QR is the volume integral of J0 within the region 

lxi<R,**) the commutator (or anti-commutator) [QR, cp]+ vanishes for a s·uf­

ficiently large R>b owing to the local (anti-) commutativity of KiO and p: 

[QR, cp] +"--' J d 3xa/' [KiO (x), cp] + =, J dS~i [KiO (x), cp] + = 0 (5· 47) 

or precisely, 

*' The whole group symmetry may be broken spontaneously, in which case (5·42) holds for 

the charges of the unbroken subgroup of the remaining symmetry. 

**' As for the preCise definition of QR; see (B · 9) ......__ (B ·11) in Appendix B. 
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64 T. Kugo and I. Ojima 

[QR, ¥?] = sd4Xar(X0)fR(x) [aiKiO(x), 9] =F 

=- J d4xar(x0
) aifR (x) [KiO (x), q>] =F = 0, (5. 47') 

because supp aifRc {xER3
; R<lxi<2R}. Thus, we obtain for q>/O)Eg(l}) /0) 

Q(qJ/0)) =0' (5: 48) 

and hence, 
r 

<WIQ(q>/0)) =0 fox V/W)EC{) ~ (5· 49) 

By :virtue of the Reeh-Schlieder theorem (Theorem A.4 in Appendix A) 

q; =g (0) IO) w, (A-24') 

we arrive at the conclusion 

<WIQ/(/))~0 for vj(f)), IW)EC{), (5· 50) 

which is nothing but the statement: Q = 0. 
(' 

0 

Applying this Lemma 5.7 to the conserved current [QB, J/] in (5 · 41) [Kvtt 

, Corollary 5.8. The global charge Qa [ (5 · 42)] 1s a (non-local) observable 

as long as it is a well-defined charge, namely, aslong as the global gauge 

symmetry corresponding to the charge Qa is not broken spont-aneously*>. 

Now we prove Theorem 5.6: 

-Proof- of Theorem 5.6) Let A be a local observable Eg (0): 

\ 

As is seen from the argument made in tP.e proof of Lemma 5.5, A can be 

assumed without loss of generality to satisfy either [QB, A] = 0 or {Qe, A} 

~ 0. Then, the "Maxwell" equation (5 · 38) tells us the equality 

[gJoa, A]= C-aiFfo+ {QB, (Doc)a}, A] 

=: [aiFfo, A]+ [QB, [(Doc) a, A] =FJ ± + [ (Doc)a, [QB, A]+]± 

" 
*> If the corresponding symmetry is broken spontaneously, the volume integrals 

Qa= J d 3xJoa and [QB, Qa] = -i f d 3x8i (cxF~.o)a 

become ill-defined owing to- the massless contri~utions from the Goldstone , particles and 

we cannot say anything definite about these charges. 
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Chap. V Observables in the Yang-Mills Theory and Quark Confinement 65 

corresponding to [QB, A]+= 0. Thus, for any R>O, we obtain 

[gQRa, A]= S d 4xaT(x0)8ifR(x) [Ffo(.x), A] 

(5· 52) 

+ [QB, S d 4
xaT(x

0
)fR(x)[(D0c)a(x), AJ+]±. ' (5·53) 

By taking · R>O sufficiently large, ·the first term vanishes by the local corn­

. rnutativity, and hence, we obtain 

=0 (5·54) 

Since we have assumed that the symmetry ?orresponding to Qa is not broken 

spontaneously, we obtain from (5· 54) 

(5. 55) 

which concludes the following equality for the observable Qa (see Corollary 

5.8): 

[gQa;.A] =0 Ill Hphys. (5·42) D 

Now, we investigate the structure of the observables in more detail. The 

canonical energy-momentum tensor Tp.v is given by 

and satisfies the commutation relation 

. (5·57) **) 

,, 

Hence, in v1ew of the criterion (5 · 27) for the local observable Tp.v. is not an 

*> In (5·56), the summation of (/)J should include all the fields Ap, B, c, c and <fJi· In particular, 

the contribution from the conjugate Dirac spinor ip should be summed equally along with 

¢, if they are contained in <fJi· , 

**> If we adopt the gauge fixing term _[~F=BafJPA/+ (a/Z)BaBa, Eqs. (5·43), (5·44) read as 

(5·561
) 

and 
(5·57') 
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66 T. Kugo and I. Ojima 

observable. There exists, however, a physically more reasonable definition of 

the energy-momentum tensor, namely, the symmetric energy-momentum tensor 

@ p.v defined5
l by 

(5· 58) 

(5· 59) 

w,here .J! is the local-Lorentz invariant Lagrangian density obtained from the 

original one .L (2 · 7) by replacing the flat Minkowski metric IJp.v and the 'de­

rivatives 8 P. by 

(5· 60a) 

and 

8 11 ~17 11 (general-and local-Lorentz covariant-derivative), (5·60b) 

respectively. e/ is the vierbein component and IJab = diag. ( + 1, -1, -1, -1). 

Further, g in (5 ·58) is defined by 

(5. 61) 

In our case, @ p.v defined from (2 · 7) *l according to (5 ·58) agrees with the one 

obtained by the Belinfante method adding to Tp.v the spin angular~momentum 

density term Sp.v=,C8.L/8(8P.cpi)) (.Sp.v)/cpi(.J;p.v: spin matrix) 

and Is found to be 

!Ulphys = F . FP + 1. g F . FP6 +@matter 
'{!) fJ.V fJ.P V 4 fJ.V Pt1 1[!1 fJ.V • 

@r;)vatter is the matter part obtained from .L matten for instance, 

®r::vatter=qrp.(i8v+rJ i-J.aAva) q-gp.vq[rP(i8p+g i AaAPa) -m]q 

+ t 8P (qrp6" p.vq) + t i8P [q (2rpg p.v ~ rvg p.p- r fJ.g vp) q] ' 

m the case of QCD: 

(5· 62) 

(5· 63a) 

(5·63~) 

(5· 63c) 

(5·64) 

*l If one make~ the replacement (2·14) in the Lagrangian density, the obtained result is not 

changed at all. @ f.IV for this case is quite the same as (5 · 62). 
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Chap. V Observables in the Yang-Mills Theory and Quark Confinement 67 

With (5·63a) and (5·63b)~ we can show that 

(5. 65) 

Thus, @ 11v is an observable as it should be, as a trivial consequence of which, 

the Lorentz generators M 11v= f d 3x (x 11®ov- xv®o11) as well as the energy-momen­

tum vector P 11 = f d 3xT011 = f d 3x@011 are observables: 

(5· 66) 

By (5 · 66) , the Poincare covariance of the theory m Hphys is ensured. The 

consequence (5 · 65) also guarantees the local measurement of the energy 

momentum: 

(P")R= S d 4
xar(x

0
)fR(x)®o"(x), 

[QB, (P#) R] =0. (5· 67) 

Here, we remark the structural feature of @ 
11

v in (5 · 63) that @ 11v consists 

of the following two parts. The first part @~~ys which is an observable in 

itself contains no such unphysical fields as c, c and B, and coincides with the 

energy-momentum tensor derived from the Lagrangian density ..£ s without the , 

gauge fixing terms nor FP ghosts. The second one contains unphysical fields 

c, c and B in such a ,form that it vanishes in the physical subspace CV phys· 

This is a physically reasonable result. It should be noted, however, that the 

unphysical second part @ 
11
v- @~~ys, which makes no contribution in the physical 

world Hphys, plays an essential role in the conservation of ®11v. Without this 

part, @PhYs itself cannot be conserved as an operator in CV: 

As an operator m Hphys, @~~ys coincides with @11v: 

@ = @phys 
/IV /IV ) 

(5. 68) 

(5. 69) 

"' ~ 
and, of course, it is conserved: a 11 @~~ys = ()11@ 11v = 0 in the Hilbert space Hphys· 

This situation is similar to the one encountered in the analysis of the S-matrix 

in Chap. III: Such unphysical particles as FP ghost pairs turn out to be pro­

duced easily even from initial states without unphysical particles, while they 

are contained in the filial states with zero norm, and· hence, they do not ap­

pear in the physical world Hphys· In short, if one simply neglects such unphysi­

cal fields as c, c and Bin this formalism, the invariance under the time evolu­

tion or Lorentz transformations is violated by zero norms,. which make no 

effects in Hphys· However, since one cannot attain Hphys directly without passing 

through the underlying qJ and CV phys, such unphysical fields as c, c and B 

are indispensable for formulating the theory covariantly at every step. 
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68 T. Kugo ·and I. Ojima 

In the caE;e of QCD, some other examples of observables (hermitian or 

not) are given by. 

qTq, 

q_r(ia"'+g 
2
2
a A/ )q, ( -ia"'q+qg 

2
a A/ )rq; 

2 . 
(5 · 70a) 

(5·70b) 

where [T, Aa] = 0. The first group (5 · 70a) consists of local gauge invariant 

color singlets. Although the observables in the second group (5 · 70b) are 

color non~singlets, they are all trivial ones, that is, they reduce to 0 in ·Hphys, 

in accordance ·with Theorem 5. 6. 

From the examples (5 · 63) , (5 ~ 68) and (5 · 70) , we conjecture that . every 

trivial local observable A has such a form as 

(5·71) 

and that a non-trivial local observable A is written as the sum of some 

trivial observq.bles ahd a local gauge invariant operator F composed of A/ 
and cpi without Ba, ca, ca: 

(5·72) 

Although the general proof of (5 · 71) and (5 · 72) has not been ?iven yet, we 

can prove the following proposition on the assumption of asymptotic complete-
. ) 

ness. 

Proposition 5. 9.*) Let A be a local observable, then A can be written 

in the form 

(5·73) 

with some operator R. pco) is the projection operator onto !/{phys defined 

i~ (3 · 26) of Chap. III. 

Proof) As before, we can assume that either [QB, A]= 0 or {QB, A}= 0 

holds: [QB, A]+ =0. Then, making use of the completeness relation (3 · 27c) 

*) This proposition was found in discussions with Mr. H. Hata. The authors would like to 

thank him .. , 
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Chap. V Observables in the Yang-l'vfills Theory and Quark Confineme'!t 69 

p<ol + L: p<nl = 1 
n~l 

with p<n> = {QB, R<n>} (n> 1) (3 · 29), we obtain 

A __:_ ~ p<m) AP(n) ' 
m,n 

= p<O) AP(O) + E {QB, R(m)} AP<O) + E p<m) A {QB, R(n)} 
m:2:1 m:2:0 

n:2:1~ 

= p<O) AP(O) + [QB, E R(m) AP(O) ± L: p<m) AR(n)] ± • 

m:2:1 m:2:0 
n:2:1 

(3 · 27c) 

(5·74) 

In (5 · 7 4), ~e have used the commutativity [QB, p<n>J = 0 (n>O) (3 · 28). D 

Corollary 5. 10. Let A be a trivial observable, then A has the follow­

ing form: 

A= e±"Qc [QB, R] 

with some operator R. 

Proof) Since A satisfies the equation 

we obtain 

(5 ·75) 

(5. 76) 

(5·77) 

This 1s because p<o> C{J = 3-Cphys C C{J phys holds. (5 · 77) is nothing but 

p<o> AP<o> = 0 . (5 · 78) 

D 

The above decomposition (5 · 73) tells us that such contributions from unphysi­
cal fields are cancelled in physically meaningful ob~ervable quantities and that 
our theory is really a theory of the YM field in spite of the presence of 

those auxiliary unphysical fields. 

§ 5. 3. Characterization of localized physical states as groul? invariants 

--Absence of localized colored physic;al states--

As a remarkable conclusion obtained from Theorem 5. 6, the following 
theorem stating the absence of localized colored (charged) physical states in 

QCD (QED) can be proved. 

Theorem 5. 11.3>.B> , Let /cb) be a localized physical state, namely, a physi­

cal state /@) E CV phys written by a suitable local operator r:p E ::F (LJ) with 
finite space-time region LJ in such a form as 

(5. 79) 
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70 T. Kugo and I. Ojima 

Then, !@) E Hphys satisfies the condition 

(5· 80) 

for the global charge oa of the unbroken global gauge symmetry. 

Proof) Since i@)=q;IO) is a physical state: QBI@)=QBcpiO)=O, Lemma 

5. 5 tells us that q; is a local observable. Then, by virtue of Theorem 5. 6, 

fP satisfies, for the unbroken charge Qa, 

and hence, 

D 

Thus, every localized physical state in QCD (QED) is a color singlet 

(chargeless state) as long as the global color symmetry (globaL U(1) sym­

metry) is not broken spontaneously. Needless to say, the above statement 

concerns only localized physical states ( E g (LJ) IO) II C(l phys) and says nothing 

about non-localized physical states. In fact, if (5 · 80) held for every physi­

cal state without ,any restriction, then the electron in QED could not exist 

in this world. In the case of QED, what Theorem 5. 11 tells us is that the 

char'ged physical state cannot be realized in a finite space-time region because 

of the long-range Coulomb tails. sl 

However, one should note that the gap between the localized state and 

the non-localized state is made subtle by the Reeh-Schlieder theorem [(A· 24') 

in Appendix A]: 

C(l =~..- =S:IO)j_j_ 

=S:(LJ) IO) ... =S:(LJ) IO)j_j_. (5. 81) 

Owing to this theorem, every state in CV can be approximated by localized 

states as closely as one likes (in the sense of the arbitrary admissible topology 

r, the weakest one of which is the weak topology (w)). So, one can surely 

approximate ~my non-localized physical state by localized states. If this ap­

proximation can be done for every physical state using localized physical 

states exclusively~ then the color confinement is achieved. Namely: 

Proposition 5. 12.3
) If the equality 

(5. 82) 

holds, every physical state I@) E CV phys satisfies the equality (5 · 80) for 

the global charge Qa of the unbroken global gauge symmetry: 

(5. 80) 
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Chap. V Observables in the Yang-Mills Theory and Quark Confinement 71 

Remark: Note that, by (5·29) of Lemma 5. 5, the equation (5·82) is 

equivalent to 

cvphys=cJZ(u) 10)7:" (=cJl(u) IO)l.l.), (5. 82') 

from which the Reeh-Schlieder property in Hphys with respect to the local ob­

servable algebra .Jl (u) follows: 

. (5·83) 

The conclusion (5 · 80) of Proposition 5. 12 can really be obtained from this 

condition (5 · 83) weaker than the one (5 · 82) : 

Proof of the implication (5 ·.'83) ==? (5 · 80) By the assumption (5 · 83), 

for any giVen I (/j)', I?Jf) E cv phys *) and 8 >O, there exists (jJ E Jl ( u) such that 

I<~IQa(liff)-910)) l<s. 

Since Qarp IO) = [Qa, (jJ] IO) = 0 by Theorem 5. 6, we obtain 

I<~IQaliff)l <s for Vs>O, 

which says 

or equivalently (5 · 80). 

(5 ·84) 

(5. 85) 

(5· 86) 

D 

From this result we know that the Reeh-Schlieder property (5 · 83) 

should not hold in the case of QED in order to secure the existence' of the 

electron in this world. In this connection, it may be instructive to remark 

the role of the Reeh-Schlieder property played. in the proof of Lemma 5. 7. 

In fact, if this property in Hphys with respect to any local field algebra held 

for QED, then the Maxwell equation (5 · 35a) in Hphys would lead us again 

to the .absurd conclusion: 

electric charge Q = 0 m Hphys , (5. 80') 

according to Lemma 5. 7, b~cause the electromagnetic U(l) symmetry should 

not suffer from spontaneous breakdown. Thus, iJ?. order to get rid of this 

pitfall, any type of the Reeh-Schlieder property should be invalidated in QED. 

On the contrary, (5 · 83) is desirable for QCD. If it holds, the physical 

world Hphys of hadrons is described according to the principles of the ordinary 

local quantum field theory completely in terms of the color singlet local ob­

servable fields c:A (u)) identified with the hadron fields. 

*) Precisely speaking, IF) should belong to the domain, Dom (Q"') t, of (Q") t. 
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72 T. Kugo and I. Ojima 

§ 5. 4. Confining q-q Potential and Cluster Property 

In the intuitive picture of the quark confinement, quark and antiquark 

q, q should:be intermediated by a ~tring-like object which produces a q-q poten­

tial not decreasing at infinity to confine quarks inside the hadron. This mean~ 

the failure of the cluster property, while it was proved by Araki, Hepp. and 

Ruelle7
> · that the cluster property should hold in a Lorentz covariant local 

field theory .with a unique vacuum. From these circumstances, one would like 

to conclude that quark confinement contradicts the usual framework of the 

local field theory. In such a quantum field theory with an indefinite metric 

as the present case, however, this is not the case as was pointed out by 

Strocchi.4
> It can be understood by the following generalization4

> of the cluster 

property theorem obtained by Araki, Hepp and Ruellen to the indefinite metric 

case. 

Theorem 5. ,13' [S~rocchi]: On the assumption of 

( i ) covariance under translations, 

(ii) local commutativity, 

(iii) uniqueness of the vacuum 

and (iv) the spectrum condition 

{ 

a) with a mass gap (0, M), 

or 

b) without mass gap, 

one obtains an inequality: 

I(OIB1(x1)B2,Cx2) jO)-<OIBl{xl) IO><OIB2Cx2) IO)I 

<{· ~[~]-'~'expC-M[(']) [~]'
8

(1+ 1~'1/[~]), ··· a) 

C'[~J-2[~]2N(l+ 1~01/[~]2), ... b) 

where 

I 

(5· 87) 

Bi (xi) = J d 4x/ · · ·d4x;<i)fi (x/, ·· ·, x;(i)) (/j (x/ +xi)·· .(Jj (x;(i) +xi), 

f£ E g) (R4r(i)) [Cooiunctions with compact support], 

The above (/j is a generic notation for fields and N is a suitable non-nega­

tive integer dependent on the_ B/s. [~] is defined as the shortest space­

like distance between ~ and a certain compact set which depends on the 

, supports of the f/s. If the Fourier transform h12 (P) of 

(5 ·88) 
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Chap. "{,T Observables in the; Yang-Mills Theory and Quark Confinement 73 

I 

is a measure, as in the case with a positiv;e metric,7>.s> the integer N is 0 
and thus the cluster property holds7

> whether with or without mass gap . 

. Proof) [See, Ref. 4) .] D 

The above theorem tells us that the cluster property may fail without 
contradicting the usual axioms of quantum field. theory only in the case with 
an indefinite metric and wi.thout mass gap (N=/=0 in the case b) of 
(5 · 87)). Here ·note that the m~ss spectrum in the assumption (iv) refers to 
the one in the whole state vector space qJ and that the physical spectrum 
in Hphys may have a mass gap also in the case b), as is expected for quark 
confinement in QCD as well as for cases ·with the Higgs phenomenon. 9 >~1l> 

As an example case of (5 · 87), we consider the case of the gauge field · 
' 

I 

A 1, and its fie~d strength F'-'v in QED. Setting 

. <OIA'-' (x) Av (y) jO) 

we obtain 

=<OIA'-'(x)Av(Y) jO)_:_(OjA'-'(i:) jO)(O!Av(Y) !O) 

=g'-'vF(x-y) +8'-'avG(x-y), 

Since F'-'v m QED is an observable, we obtain 

(OjF(f) *F(f) jO)>O, 

where. 

F(f)= S d 4xF,w(x)f"v(x) with f"~ E.9'(R4
). 

(5. 89) 

(5. 90) 

(5· 91) 

Thus, the Fourier transform of (OIF'-'v (x) .z:P.,. (y) !O) is a measure and, by b) of 
(5 · 87) with N = 0, F (~) damps at. infinity at least as . ""'[~] - 2

• (Note that 
8'-'8vG(x-y) in (5·89) is an unphysical gauge part.) 

On the contrary, since F:v in QCD is not an observable as has been 
shown in § 5. 2 (5 · 40), and since such a simple relation between (5 · 89) and 
(5·90) does not hold, no restrictions for pab(x-y) in (O!A/(x)A}(y)jO) 
corresponding to the F (x- y) in (5 · 89) are obtained. In the case with N> 1 
for b) of (5·87), the q-q potential obtainedfrom(O!A/Gx)A/(y) IO) may not 
decrease at infinity (confining q-q potential) and then, it could happen that 
the gluon fields A/ have no asymptotic field (gll]on confinement). The fol­
lowing theorem12

> suggests more convincingly the failure of the cluster proper­
ty for unobservable quantities. 

Theorem 5. 14. 12
> Let A 1 and A 2 be local operators belonging, respec-
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74 T. Kugo and I. Ojima 

tively, to g (L\) and g (lJ2) satisfying the following two conditions: 

(i) A 1 (x) A 2 (y) is an observable for any x, y E R\ where Ai (x) 

=U(x) AiU(x) - 1 with the translation operator U(x), · 

(ii) A 1 and A 2 satisfy the cluster property in the sense that 

lim I<OI91A1U(x) A292IO)-<OI91A 1IO)<OIA292 IO)I =0 (5·92) 
-.x2-->+oo 

holds for any*l local operators 91 and 92, 

then, both A 1 and A 2 are local observables. 

Proof) Since A 1(x)A2(y) E9:((lJ1 +x) U (lJ2 +y)) 1s a local observable 

according to (i) , Proposition 5. 4 tells us the equality 

(5. 93) 

which is equivalent to 

(5. 93') 

because of [QB, U(x)] = 0. Since [QB, 9 1] and [QB, 92] for any local operators 

9I> 92 are also locaL operators, we bbtain, from (5 · 93'), (2 · 29) and (5 · 92), 

0 = lim <OI91 [QB, A1U(x) A2] QB92IO) 
-.x2-->+oo 

= lim <Ol91QBA1U(x) A2QB92IO) 
-.x2-->+co 

= lim <OI [9t. QB] A1U(x) A2[QB, 92] IO) 
-.X2-->+oo 

=<OI [9r, QB] AliO)<OIA2[QB, 92] IO) 

=<Oi91QBA1iO)<OIA2QB92iO), 

from which at least one of the following equations holds: 

or 

Consider the case of (5 · 95a), then we obtain 

(5· 94) 

(5 · 95a) 

(5. 95b) 

(5· 96) 

*l It is, in fact, sufficient that this (5 · 92) holds only for local operators (/J1, ({Ja of the form 

<pi= [QB, <p/], as is seen from (5·94) in the following proof. 
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Chap. V Observables in the Yang-Mills Theory and Quark Confinement 75 

by virtue of. the Reeh-Schlieder property (A· 27) : 

By Lemma 5. 5, Eq. (5 · 96) implies 

[QB, Al] =0' 

which yields, by the help of (5 · 93), 

0 = [QB, Al] A2 + Al [QB, A2] = Al [QB, A2] . 

Thus we have*) 

The same arguments apply also to the case (5 · 95b). 

(5· 97) 

(5· 98) 

(5. 99) 

D 

From this theorem, we know that, if local operators A 1 and A2, at least 
one of which is not an observable, define an observable of the form 
A 1 (x) A 2 (y), then the cluster property (5 · 92) for A 1 and A 2 is really broken 
down. The failure of the cluster property means that the correlation between 
A 1 (x) and A 2 (y) cannot be switched off, however far they are separated 
(- (x- y) 2 ~ + oo). This implies that it is impossible for us to detect the 
quanta of A 1 and A 2 separately. 

Thus, although the physical states are specified by a non-local condition 
(2 · 29) : QB I phys) = 0, in terms of the val ume-integra ted charge QB, such a 
kind of difficulties as the "behind-the-moon" problem13

) does not arise in our 
formalism: Namely, we need not worry about the possibility of such a state 
that it is physical as a whale whereas it can be divided into widely separated 
unphysical two subsystems, like an FP ghost on the earth and an anti-FP 
ghost behind the moon. This is because, if such separation can be performed 
satisfying the cluster property, which would require these two subsystems to 
be detected separately, they should, by Theorem 5. 14, be physical in them­
selves from the beginning. On the other hand, if those subsystems are unphys­
ical, then the failure of the cluster property due to Theorem 5. 14 prevents 
us from performing on the earth the detection of the FP ghost in a manner 
independent of the anti-FP ghost behind the moon, which physically means 
nothing but the impossibility of the detection of this FP ghost. In this way, 
the failure of the cluster property in the unphysical world operates to 
protect unphysical particles from being brought to light. 

On the other hand, the cluster property for local observables is ensured 
in the physical space Hphys= CVvhys/CVo with the Positive definite metric, 
where the system of local observable algebras :JL (t/) will safely belong to the 

*) Precisely speak;ing, we should assume that local field algebra '3 (LJ) does not contain a 
zero divisor, because, among the operators in CV, there exists such a nilpotent operator 
as QB: QB2=0 but QB~O. 
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76 T. Kugo and ~· Ojima 

category characterized by the usual Haag-Kastler-Araki axioms. 14>' 15
), *> In this 

situation, if (the representation of) the algebra ~of quasi-local obse:rvables*) 

is reducible in Hr>hY:s•. the superselection rule holds1
>.'14l, 

16
> and group non-invar­

iant physical states may appear, as expected for the case of QED. On the 

contrary, the condition (5·83): Hvhys=Jf(lJ) IO), from which the color con­

finement Qa = 0 follows (Proposition 5. 12), is equivalent to the condition of 

the irr'educibility of (tl;.e representation of) ~ in Hphy:s· In any case, if 

only we can show the color . confinement: Qq.= 0 in Hphy:s• then t;he above 

Theorem 5. 14 ,guarantees that every thing goes well about the quark con­

finement: The failure of the cluster property in the unphy~ical colored 

sectors prevents colored objects from coming out of colorless hadrons to be 

detected, permitting only the color singlets to appear in the physical world 

Hphy:s· In this colorless physicaf world Hph':/s• the validity of the cluster prop­

erty enables us to p~rform physical measurements on the earth witho~t wor­

rying about the things behind the moon. In the next chapter, we will discuss 

the prob~em of color confinement: 'Qa=O in Hphy:s• contrasting .it with th~ 

Higgs phenomenon. 

*> .Precisely speaking, the Haag-Kastler-Araki axioms are formulated in terms of the bounded 

operators, which should be obtained, in a certain canonical manner, from the unbounded 

ones treated here. "Quasi-local observables" are defined, in the former version, as the 

operator-norm -limits of local observables. 
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Supplement of the Progress of Theoretical Physics, No. 66, 1979 

Chapter VI 

Global Gauge Symmetry and Structure 

of the Associated Charges and Currents. 

§ 6. 1. Massive Gauge Bosons and Higgs Phenomen'on 

77 

In this chapter, we discuss the consequences about the global gauge sym­

metry derivable from the '~Maxwell" equation (2 · 36). This equation 

tells us that the current gJ
11

a consists of two parts, 

and 

:::~vFa =Q a u p.v- fl. 

ea.ch of which is conserved: 

(6·1) 

(6·2) 

(6·3) 

(6·4) 

These currents, therefore, yield (formally) conserved charges Ga and Na: 

Ga= s dsxgoa = s d3xfJiF~i' (6·5) 

Na= sd3x/oa = s d 3x {Qs, (Doc) a}, (6·6) 

and the global charge Qa (5 · 43) of the global gauge symmetry 1s the sum 

of these two conserved charges: 

(6·7) 

The characteristic forms (6 · 5) and (6 · 6) of these charges Ga and Na reveal 

some interesting aspects of the global gauge symmetry with the charge Qa, 

in the light of the Goldstone theorem1
). The various versionsof this theorem, 

Theorem B. 2, Corollaries B. 3 and B. 4 in Appendix B, state that the follow­

ing three conditions concerning a conserved current JP. a:nd its global charge 

Q are all equivalent: 

(a) Q-f d 8xJ0 is a well-defined cha~ge; 

(b) Q does not suffer from spontaneous symmetry breakdown; 

(c) J 11 contains no discrete massless sPectrum: \OIJ11 i?l'(P2 =0))=0. 
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78 T. Kugo and I. Ojima 

Lemma 6.1. 3
> If a linear combination, Q/=a/Q/=aaA8vF;v, of Q/'s 

with some coefficients aa A contains no discrete massless pole, 

< 0 I g f-1 A I?]! (P2 = 0) > = 0 ' (6·8) 

or equivalently, if the global charge GA given by 

GA= J d 3xQ/ -aaAGa (6·9) 

1s a well-defined charge, then GA is nothing but 0: 

(6 ·10) 

Proof) The equivalence of the condition (6 · 8) to the well-definedness 

of GA is . stated above (Corollary B. 4 in Appendix B). Then, this proposition 

1s nothing but the previous Proposition 5.7 applied to the case with Kv11 

-rv Apa 
-L-l-a pv•' D 

Now, we utilize the information (3 · 21), (3 · 23) and (3 · 24) about the 

massless asymptotic fields constituting the "elementary" quartet. First, note 

that the xa (x) field in A/ (x) as makes no contribution to F;v (x) as owing to 

the anti-symmetry of its suffices f1 and v, and that the contributions to F;v (x) as 

come from the (massless or massive) genuine vector fields U/ which are 

assumed to be contained in A/ with the weight aAa 

(6 ·11) 

The coefficients aAa should properly be taken into account, in the cases with 

particle mixing, so that the U/'s represent particles with definite masses. 

We suppose that, for the eigenchannel of U/, F~v (x) as is given, with some 

coefficients aa A,*> by 

(6 ·12) 

Then, from this and Lemma 6.1, we obtain, 

Corollary 6.2. If uf-1 A is massive, then GA = 0. 

Next, in order to examine the charges Na, we have to introduce dynamical 

parameters uba <,lefined as the pole residues of gA" X c at P2 
= 0: 

g (A" X c) a (x) as= ubaf) /tb (x) + ... ' ,· (6·13) 

which can be estimated by the formula due to (3 · 21c) and (3 · 24): 

*> Owing to the contributions from the term g Att X A., the matrix aa A is, in general, neither 

the inverSe of fi.Aa rlOr unitary. 
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Chap. VI Global Gauge Symmetry and Structure of the Associated 79 

s d 4 xe~P<x-v)<OIT[(D~c)b(x)g(Avxc)a(y)] IO) 

= -UbaP~Pv/P
2
+ ···. 

Then, we obtain 

(6·14) 

(6·15) 

Lemma 6.3. 3
) The conserved current ~a J;a yields a well-defined charge 

of the form ~aNa= f d 3
x~a :.f7t, if and only if ~a satisfies 

(6·16) 

or equivalently 

(6 ·16') 

Proof) By Corollary B. 4 of the Goldstone theorem m Appendix B, a 

necessary and sufficient condition for ~aNa to be a well-defined charge is given 

as 

(6·17) 

for any massless 1-particle state IW (p2 = 0) ). Using the relation 
\ 

<o I <b (x) 11-partiele > = <o I <b (x) as 11-particle > (C·3) 

which follows from the Yang-Feldman equation (C · 2), we can obtain, from 

(6·3) and (6·15), 

<OI~a J;a (x) IW (p2 = 0) > = ~a<ol {QB, (Df.lc) a (x)} IW (P2 = 0) > 
= ~a<OI (Dt~c) a (x) QBIW(P2 

= 0)) 

= ~a<OI (Dt~c) a (x) asQBIW (P2 = 0)) 

=~a (aca +uca) 8/<0irc (x) QBIW (P2 = 0)). (6·18) 

Since the only non-vanishing matrix element<Oirc(x)QBI?l'(p2 =0))in (6-18) 

is given by taking IW (P2 = 0)) = l (y) IO), with the help of (3 · 23a) and 

(3 · 24a): 

< 0 I rc (X) QB Cl (y) I 0 >) = < 0 I rc (X) [QB, l (y) J I 0 > 
= < o I rc Cx) C- i rb (y) ) I o > 
= -acbD+ (x-y), (6·19) 

*l The dots (···) represent other possible massive components contained in (Dt<c)a. 
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80 T. Kugo and I. Ojima 

the condition (6 ·17) in question turns o.ut to be equivalent to the condition 

(6 ·16), as Is easily seen from (6 ·18): 

(6· 20) 

D 

Corollary 6.4. 3
> If det (1 +u) =FO, every charge eNa is an ill-defined 

charge suffering from spontaneous breakdown, except for the trivial ~a 

=0. The .Goldstone boson responsible for the spontaneous breakdown 

of Na is given by l corresponding to the suffix oba + uba=FO. 

Corollary 6.5. 3
> If u = -1, ~aNa for any ~a is a well-defined charge. 

Remark. In the Abelian case where the structure constant fabc=O, the 

term (g Aft X c) a= g fabc A,}7:C vanis.hes from the beginning, and hence, ut in 

(6 ·13) is identically zero: 

u=O. 

Thus, the condition of Corollary 6.4 is always satisfied: :det(1+u) =det 1 

=l::FO, and the charge N = f d 3x{QB, D 0c} = f d 3x80B is not well-defined. 

In the case det (1 + u) =#=0, we obtain the following consequence: 

Theorem 6;63
> (Converse of the Higgs theorem). .. If det (1 + u) =FO, for 

each eigenchannel of the massive gauge bosons U/, the global gauge 

symmetries corresponding to the charges QA = aa AQa are broken span-

, taneously. 

Proof) From Corollary 6.2, GA = 0 follows for each massive ufi A' and 

hence, we obtain 

(6. 21) 

" A , 

Since (a/,···, anA) $0 for the very existence of the massive gauge boson ufi ' 
Corollary 6.4 asserts the spontaneous breakdown .. of the charge QA: 

. . 

=-a/ (oba+uba) 8/D+ (x-y)=FO. (6·22) D 

Here, a few remarks are in order: 

Remark. i) If a= (abA) :=:: (aaA (oba + uba)) (A, b = 1, .. ·, n) is a non-sm­

gular (n, 11:) -matrix [where n is the dimension of the Lie algebra of the gauge 

group G], we can identify the Goldstone boson responsible for the spontaneous 

breakdown of QA with XA defined by 

In fact~ it satisfies 

A_ ("'-1) a a x = a Ax . (6. 23) 
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Chap. VI Global Gauge Symmetry and Structure of the Associated 81 

(6· 24) 

for any channel B and the ma~sive-gauge-boson channel A. In the example 

;of the SU(2) Riggs-Kibble model discussed in Chap. 4, we already know the 

explicit form of symmetry breaking: 

A.aa,as= J Kf).aXa,as+ ( J K-aN) f).aBa,as+ U.aa,as, (6 · 25a) 

(6. 25b) 

where the ?t'as's are the asymptotic fields of the "elementary" unphysical 

Goldstone bosons. (6· 25b) is a consequence of a certain global SU(2) sym- · 

metry remaining even after the symmetry breaking.· Equation (6 · 25a) agrees 

with the one (6 ·11) in the general context, by the following identification as 

1~ noted in ( 4 · 39) : 

(6. 26) 

smce the mixture of Ba,as components in (6 · 26) causes no qhange in (3 · 23a) 
and (3 · 24a) by virtue of [QB, Ba,as] = [Ba,as, Bb,as] = 0. 

ii) Note· that, in the above Theorem 6.6, the spontaneous breakdown of a 

charge QA is .in one-to-one correspondence with the appearance of a massive 

gauge boson U/. This should be compared with the result obtained in Ref. 

4): There, occurrence of the spontaneous breakdown of some global charges, 

has been proved only in the case where the gauge bosons acquire different 

masses within a group multiplet. By such a result, we can neither say any­

thing about the case where the gauge bosons acquire a common mass within the 

group multiplet, nor even about Abelian case. In contrast to it, the above 

theorem asserts the spontaneous breakdown of a particular charge Q& cor­

responding to each massive gauge boson U/ irrespectively of its mass value. 

It is suitable to comment*> here on the. usual misunderstanding about the 

"Schwinger mechanism" by which the gauge bosons are believed to become 

massive without spontaneous symmetry breaking5>: In fact, the original . 

Schwinger mechanism found in the Schwinger model 6> is nothing but a Higgs 

phenomenon as was explicitly shown by Ito7
) and Nakanishi.n Furthermore, 

since our Theorem 6.6 is always applicable irrespectively ?f the detailed mass 

generation· mechanism, the massive gauge boson, which is caused by the 

"Schwinger mechanism" (if any) or by other ones, necessarily implies the 

spontaneous breakdown of global symmetries. 

iii) O~e should not draw, from Corollary 6.2, such a conclusion that the 

spontaneously broken charge QA vanishes in Hphys: 

~-

gQA=6C;NA=NA = {QB~~-aA s dsx(Doc)a} =·0' 

*l This comment is d.'\le to Professor. Nakanishi, to whom the authors are indebted. 
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82 T. Kugo and I. Ojima 

"because (unless det (1 + u) = 0) the limit R-H>O of the "local charges" gQRA, 

N 1/ does not yield a well-defined charge gQA = NA, owing to the massless 

contributions l to NA (6 · 22). For a finite R>O, the local charge NRA 

={QB~fd
4 xar(x 0 )fR(x)aaA(D 0 c)a(x)} gives a trivial observable: 

~ A 
N R = 0 ~ in Hphys , (6· 27) 

whereas, in this case, the local charge GRA cannot vanish contrary to the 

global one GA = 0, and hence, gQRA and GRA are not observables separately. 

Next, we consider the case where the global gauge symmetry of the 

charge QA remains unbroken. According to Coro,IIary B. 4 in Appendix B, 

we should have, in this case, 

0 = ( 0 I g Jtt A I ?J! (P2 = 0) ) = ( 0 [ g tt A I ?J! (P2 = 0) ) + ( 0 I~ A I ?J! (p2 = 0) ) ( 6 · 28a) 

or equivalently, 

. (OiaaA8vF;vl?f!(p2 =0) )= -(Oivf/I?J!(P2 =0)) 

=- aa A<OI (Die) aQBI?J! (p2 
= 0) >. (6. 28b) 

It may happen, however, that this equation (6·28) is not satisfied in spite of 

the absence of the spontaneous breakdown, as is seen explicitly in the case of 

QED.s>,s> This is due to the massless contribution from aaA8ttf3a remaining in 

gJ# A with some weight (. In the case det (1 + u) =FO, the problem can be 

settled3> by the following modification of the detinition of the current and the 

charge: 

g]oA(x) =gJoA(x) -(foA(x), (6 · 29a) 

gQA= S d 3xgJoA(x) = S d 3x(gJoA(x) -(foA(x)), (6·29b) 

where the constant ( is adjusted so that the massless contribution in gJ/ is 

exactly cancelled out by the subtraction of (foA. The constant ( in QED is 

given by ( = 1-Z 3• In this context, the case ( = 1 corresponds to the spon­

taneous breakdown, which is equivaLent to the appearance of the massive gauge 

boson U/ as is shown by Theorem 6.6. Namely, if one wants to make the 

charge gQA well-defined, then it is nothing but zero: gQA = J d 3x (gJ0A- JoA) , 

= GA = 0, while non-vanishing QA requires (=#=1, which makes QA ill-defined 

owing to the remaining massless contribution. 

Thus, if det (1 + u) =FO, the unbroken symmetry should be realized with 

(=Fl. In this case, Q.a / (1- () should be adopted as the generator of the 

· global symmetry, in place of the original Qa which is ill-defined by massless 

contributions. In fact, one can easily check the following commutation rela­

tions :3
> 
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Chap. VI Global Gauge Symmetry and Structure of the Associated 83 

[gQa, q; (x) J =- g (1- () Taq; (x), 

[gQa, gQb] = ig (1- () fabcg(}. 

(6 · 30a) 

(6. 30b) 

By this modification, the "Maxwell" equation (2 · 33) Is merely changed as 

(6· 31) 

which preserves the whole arguments made previously by the replacement of 
J/ and g / by J /I (1- () and g /I (1- () , respectively. 

The condition for the charge Qa to be well-defined is now given by 

(6· 32) 

which shows that F;v should contain massless component, in order to keep the 
global gauge symmetry unbroken, as long as det(l+u)=f=O [see, (6·17) and 
(6 ·19)]. This can be understood in the following way. According to Theo­
rem 6.6, every gauge boson U/ = U/ contained in A/ should, in this unbroken 
case, remain massless and, in fact, we know already in ( 4 ·50) that the U/ 
( = A.a a, as) contains not only the transverse co~ponents but also the scalar 
components (certain combination of) ;3a.*) Since [;3a,xb];EO by (3·24a), we 
obtain 

[U.ua (x), l (y)] ;EO, (6· 33) 

which explains (6 · 32) for /W (P2 
= 0)) = l (y) /0), 

<O/fPF~ 11 /P' (P2 
= 0) )oc<O/ 0 U/-fJJ)vUva/W (P2 

= 0) )=f=O. (6· 34) 

Thus, the two ill-defined charges Ga I (1- () and Na conspire to give a well­
defined charge gQa in the combination ca I (1- () + Na owing to the cancella­
tion of the massless contributions of (3a. From this, we know that the term 
goa= fY F~i in the integrand of gQa should not be discarded merely for the 
reason of its spatial divergence form. The massless particles can contribute 
on the surface at infinity, making the charge ca broken spontaneously. 

§ 6. 2. Color Confinement 

Now, we discuss the case det (1 +u) = 0, which may occur only in the 
non-Abelian case. From Lemma 6.3; we obtain 

Proposition 6. 7. 3
) Let U/ be a massive gauge boson. If the coefficients 

aaA(a=1, ... , n) vanishes in this channel A: 

*l For massless channel in (6·11), precisely speaking, neither U 11A is a genuine vector nor 
XA= (a- 1

) a AXa is a scalar, and only the sum a 11 A==:U,/ + fJ11XA transforms properly as a vector. 
In fact, Eq. (4·50) shows that xA(x) =2Jk(akLgk(x) +h.c.) is the longitudinal component 
of a

11
A. 
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84 T. Kugo and I. Ojima 

(6'· 35) 

the charge QA is well-defined in spite of the massiveness of U/. 

Proof) Since, by Corollary 6.2, GA = 0 follows from the massiveness of 

U/, Lemma 6.3 tells us that the charge 

(6· 36) 

is well-defined, if (6 · 35) holds. D 

In the case of QCD, we can· obtain a concise criterion for the color confine­

ment as follows: 

Theorem 6.8.3
> If the following two conditions are satisfied in QCD, 

(6· 37) 

and (B) the global color gauge symmetry with charges gQ2 is unbroken, 

or ~quivalently, 

(A) together whh (B') fJV F~" contains no massless discrete pole, 

then, the color confinement is realized: 

in Hphys. (6_·. 38) 

Proof) By ·Corollary 6.5, all the charg~s Na are ensured to be well­

defined by the condition (A). Then, from the condition (B) and_ the equation 

(6 · 7) , every charge Ga becomes well defined, and hence, ~by Lemma ·6. 1, it 

is nothing bqt 0: Ga = 0. Thus,. we obtain the equation for the well-defined 

charges 

(6. 39) 

which asserts. the consequence (6 · 38). Jhe equivalence of the two Gcmditions 

(B) and (B') on the condition (A) is easily seen from the equation· (6 · 7). D 

Corollary 6.9.3
> If the condition (A) together with the following one 

holds, 

(B") all. the gauge . bosons A .a a become mass1ve 

then, the color confinement (6· 38) holds. 

Proof) (B") implies (B'), and hence, the conclusion follows immediately 

from Theorem 6.8. D 

In QCD, it is a very important problem whether the global col~r sym­

metry remains intact or is broken spontaneously. One usually supposes that 

this symmetry is not broken spontaneously, because; otherwise, one cannot 

imagine such simple quark-configurations as qlj and qqq for hadrons, and fur-
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Chap. VI Global Gauge Symmetry and Structure of the Associated 85 

ther, the quark confinement, if any, cannot be assured by the color-singletriess 
of physical states. So, it seems natural to assume that the color symnJetry 
zs not broken spontaneously. 

If we adopt this assumption, we know from (6 · 32) that the iluons U/ 
should remain massless unless det (I+ u) = 0. . In this case, their transverse 
components may not be forbidden to appear as physical particles, on the mass­
'shell of which the infrared divergences arise inevitably in an formidable man­
ner. 9>. *> Thus, as long as the color symmetry is assumed to be unbroken, the 
requirement of 1 + u = 0**) seems almost in~vitable, and we have arrived at the~ 
two conditions (A) and (B) of Theorem 6.6, which leads us to the conch.I­
sion of the color confinement. Here, one may doubt the possibility of the 
condition u= ~I: By small changes of the number and/or interaction type of 
matter fields, the dynamically determined parameter/ u would be easily per­
turbed to shift from _:__I, even if it ~as just set on the desired value -I at 
first. There are, however, some such possibilities as the following example10

) 

of uba which may exhibit its stab~lity against such perturbations as the above: 

(6· 40) 

where g (P2
) is the effective coupling at P2

• J'he present parameter uba 1s 
given by uba = uba (p 2 = 0). In the weak coupling limit of (6 · 40), it is re­
duced to the perturbatively reasonable form: 

(6: 41) 

If g (P2
) satisfies the condition expected' in the renormalization group method: 

(6. 42) 

then (6 · 40) will reproduce the desired form (6 · 37), irrespectively of the 
~ value of the constant r and of the rate, of rl approaching infinity. This arbi­

trariness in the constant r and in the b.ehavior of (} 2 tending to infinity would 
endow the condition I+ u = 0 with a cons~derable extent of stability. Of 
course, further detailed investigations are ·needed concerning the question 
whether I + u = 0 really satisfies the stability of this sort. 

The assumption (6 · 42) crucial for the above example argument of (6 · 40) 
is the familiar anticipation known as the "infrared slavery" .w Since· this 
means a strong coupling at long distances, it must have a tight connection 
with the failure of the cluster property discussed in § 5. 4 from the view­
point of the confining q-q potential. For the sake of the failure of the cluster 

*> In the perturbative apprdaches made in Ref. 9), the infrared divergences are shown to 
survive, in the on-shell renormalization scheme, after the cancellations of those appearing 
in the off-shell renormalization. · 

**> By the unbroken color symmetry, the condition det(l+u) ~0 is strengthened to l+u=O. 
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86 T. Kugo and I. Ojima 

property m the channel <OIA/(x)A/(y)~IO), it 1s sufficient that F.T. 

<OIA 11a (x) A/ (y) IO) behaves as ~1/ (P2
) a with a>3/2, 

(6. 43) 

and the case a= 2 of a massless dipole 1/ (p2
) 

2 corresponds to the "linear 

potential" case. Ip. view of the condition (B') of Theorem 6.8 necessary for 

the well-definedness of the charge Ga = J d 3xfi F~i, we notice. here the following 

contrast: The condition (B') requires a weaker singularity at P 2 =0 in (6· 43) 

(with smaller a, a<1), whereas the stronger one (with larger a, a>3/2) 

is more favorable for the failure of the cluster property (and infrared slavery). 

These two requirements are really compatible to each other because the 

Green's function (6 · 43) i_n fact has two independent components, namely, the 

transverse and longitudinal parts: In this connection, one should first. recall 

that the isotropic linear q-q potential is J:ZOt so convenient Jar the string-like 

picture of the confinement which seems to have a directional dependence deter­

mined by the q-q configuration. Next it may be instructive to refer to the 

remark made by Frenkel and Taylor12
) that the components of YM field re­

sponsible for ·the peculiar property of asymptotic freedom is only the longitudi­

nal one in /Coulomb gauge whereas other transverse ones contribute destruc­

tively to the asymptotic freedom similarly to the usual inatter fields .. Thus, it 

seems likely that the components responsible for the failure of the cluster 

property differ from those which could contribute to (fJV F;v) as or to the charge 

Ga = J d 3 xaiF~ which should vanish: The former components may be identi­

fied with the "longitudinal" one X= AL and the latter would be "transverse", 

if any. In other words, the failure of the cluster property in the unphysical 

world realizes the condition u = -1 making the charge Na well-defined, while 

the absence of the infrared tails in the physical world protects the charge ca 
from being ill-defined. Both of these cooperate to achieve the color confine­

ment. This contrast reminds us of th~ situation encountered in § 5. 4, where 

the former operates to confine unphysical particles and the latter guarantee~ 

the physical measurement independent of the "behind-the-moon". These ob­

servations may give us some clues to the understanding of the naive string 

picture and of the notion of complete anti-dielectricity of the vacuum. 

As for the possibility of (A) and (B") discussed in Corollary 6. 9, some 

comments might be necessary. One might suspect that the very existence of 

massive gluons having colors is contradictory to the conclusion (6 · 38) of color 

confinement, which is, however, not the case. The colored particles can exist 

as asymptotic fields, but only in the quartet representations. It is the subject 

of the next section to ·discuss this point in some details. 

§ 6. 3. Color Confinement from the Viewpoint of Quartet Mechanism 

. The quartet mechanism, by which .particles essentially decouple from the 
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Chap. VI Global Gauge Symmetry and Structure of the Associated 87 

physical sector as has been discussed in Chap. 3, can be found to take. place 
by a simple criterion. . Consider a BRS transformation 

(6· 44) 

where X (x) is an arbitrary Heisenberg operator with vanishing FP ghost 

number . (iQc = 0) and <?? (x) is its BRS transform having iQc = + 1, then the 

following theorem holds. 

Theorem 6.10. 13
) If the operator <?? (x) m (6 · 44) has an asyp1ptotic 

field r(x)' 

(6· 45) 

then, the following holds: 

(i) The operator X (x) in (6 · 44) also has an asymptotic field, say X (x), 

and the pair Cx (x), r(x)) forms a BRS-doublet: 

(6. 46) 

(ii) There exists another Heisenberg operator <?? (x) with the FP ghost 

number iQc = -1, which has the asymptotic field r (x) "FP-con­

jugate" to r(x). This r (x) also forms another BRS-doublet: 

{Qn, r (x)} = (1 (x)' (6· 47) 

where (1 (x) 1s supplied as the asymptotic field of the Heisenberg 

operator 93 (x) with iQc = 0, defined by 

{Qn, <?? (x)} = 93 (x). (6. 48) 

(iii) These two BRS-doublets ( {x (x), r (x)}, {r (x), (1 (x)}) constitute a 

quartet having a common mass, spin and color indices, and hence 

these asymptotic fields appear in the physical subspace only in zero­

norm combinations (confinement). 

Proof) In view of the BRS transformation (6 · 44) , the existence of as­

ymptotic field r (6 · 45) for <?? necessarily implies the existence of X also for 

X which should satisfy (6 · 46), as is explained in (C · 24) and (C · 25). Next, 
since the assumed asymptotic field r of <?? should appear as a pole in a certain 
two-point Gree~'s function, there should exist (at least one) such Heisenberg 

operator <?? 'conjugate' to <?? that the propagator <OIT<?? (~) !(? (y) !O) has the 
pole at the mass m of r-field: 

I 
- 1 

F.T. <o T<?? (x) Y? (y) JO) =- Z + ··· ~ . . p2_m2 
(6·49)*) 

*l Equations (6·49), (6·51) and (6·53) are explicitly written for the case of scalar fields, for 
simplicity. 
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88 ·T. Kugo and I. Ojima 

This indicates the existence of asymptotic field r for ~. Note the following 

W.T. identity: 

O=<OI {QB, T(X(x) ~ (y))} [0) 

=<OITX(x)$ (y) IO)-i<OIT~ (x) W (y) IO), (6. 50) 

where use has been made of (6·44), QBIO)=O and the definition (6·48), 

iB = {QB, ~}. Equations (6·50) and (6·49) lead to 

' . . . 1 
.. F.T. <OITX(x)iB (y) [0)= -iZ + ... , 

. . p2-m2 

which says the existence of 'asymptotic field (3 (x} for tHe operator !13 (x). 

Defining these asymptotic. fields by 

X(x) ~Z 112
x(x) + ... , !13 (x) ~Z 112 {3(x) + ... , 

~ (x) ~Z 112
f(x) + ... , (6·52) 

we can easily see· that (6 · 47) holds as 1n (C ·15), and can derive 

[x(x),(3(y)]=iD(x-y) and {r(x),f(y)}=-D(:;;-y) (6·'53)*)· 

from · (6 · 49) and (6 ·51) by virtue of Greenberg-Robinson theorem (Appendix 

C). iAll other (anti-) commutators- between X, (3, r and r, except for 

[x (x), X (y)] are found to vanish from ·the FP ghost number con,servation 

and 'the nilpotency QB2 = 0; e.g., 

[(3(x), (3(y)] = {r(x), r(y)} = {r(x), f(y)} =0. (6. 54) 

One may notice that these logics presented here are identical to those utilizedr 

in Chap. III in showing the presence of the ''elementary" quartet. In fact, the 

present· BRS transformation property (6 · 46) and . (6 · 47), and the commuta­

tion relations (6 ·53) and (6 ·54) exactly coincide with those [ (3 · 23) and 

(3 ° 24)] for the "elementary" quartet and I hence also with those [ (3 •15) and 

(3.·16)] for the general quartet. D 

Theorem 6.11. If the operator ~ (x) in (6 · 44) has no asrmptotic field 

and X (x) has its asymptotic .field xas (x), then 

which implies that xas_particle appears in the physical subspace C{) phys, and 

xas (x) becomes ' 

(i) ~ BRS-singlet physical particle, with positive norm, 

or otherwise, 

(ii). a zero-norm particle having such a BRS-doublet partner rx(x) with 

FP-ghost number iQc = -1 that 

*l See the footnote on p. 87. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.6

6
.1

/1
9
1
5
1
3
0
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Chap. VI Global Gauge Symmetry and Structure of the Associated 89 

(6. 56) 

Proof) Equation (6 ·55) directly follows from (6 · 44) as. in (C ·15). As· 

we have seen in Chap. III, any asymptotic field becomes BRS-singlet or other­

wise doublet. Hence X (x) should represent either (i) or (ii) in the above. 

D 
In the preceding section, we have shown in Theorem 6.8 that the color 

confinement really takes place in the case u = - 1 and unbroken color sym­

metry: In fact, the color charges Qa vanish in Hphys, or equivalently 

(6· 57) 

' by the remarkable equality (6 · 39), 

(6· 58) 

What does this color confinement imply on the character of asymptotic fields? 

We know already· from the arguments in Chap. III that any asymptotic field 

is either a BRS-singlet or a quartet member. The color confinement (6 ·57) 

or (6 ·58) means that 'the colored asymptotic fields, if any, should belong 

to quartet representations: In fact, the BRS-singlet (and hence physical) 

particles, denoted by ¢h are necessarily color singlets. This is because Eq. 

(6 ·57) with j?F) = ¢itjO) and Ia>) = ¢/10) leads to 

0=(0J¢iQa¢/J0)=(0J¢i[Qa, ¢/] JO) 

(6· 59) 

by using the normalization [¢i; ¢/] = Oij, which says that all the representa­

tion matrices Tfi of color charges Qa on the particles ¢i should vanish. On 

the other hand, the quartet particles denoted by (:(i; (3i, ri and ri)'' can have 

color charges consistently to (6 ·58); e.g., [Qa, xi] = - TfiXi with Ta=/=0. In­

deed, Eq. (6 ·58) only dictates the following forms for Qa and Ma: 

(6· 60a) 

where use has been made of the metric ·matrix (3 ·16) for the quartets 1 and 

. the symbol /""'../indicates an equality restricted on the Fock space spanned by all. 

- the asymptotie fields. Hence both of (6 · 60) become exact equalities if the 

asymptotic completeness holds. Thus, these, arguments explicitly show that 

the color confinement (6 · 38), Qa = 0 in Hphys, is really a confinement, the con­

~sistency of which is guaranteed by the quartet mechanism found in Chap. III. 
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90 T. Kugo and I. Ojima 

We already know the existence of one color-octet of 'elementary' quartet. 

Further, there may exist asymptotic fields even for the quark fields q (x) and 

the vector parts of gluon fields A.u (x). In this case, we see from Theorem 

6. 11 and the BRS transformation 

that the quark (vector gluon) asymptotic fields, if they exist, should neces 

sarily be accompanied by bound-states of FP-ghosts and quarks (gluons) in the 

chamiels of ca (x) ;..aq (x) (A.u (x) X c (x)). Note that the formations of such 

bound-states are possible only in non~Abelian cases, because the FP-ghosts are 

completely free in Abelian cases. This point agrees with the previous observa­

tion that the confinement condition (A) u = -1 in Theorem 6.8 can be realized 

only in· non-Abelian cases. 

Some comments are in order: (i) Since the quartet mechanism takes place 

) in this color confinement, the physical S-matrix unitarity is automatically as­

sured to hold. (ii) The confinement by Theorem 6.8 holds irrespectively 

of the presence or, the absence of quark asymptotic fields. One may, however, 

prefer the case where the quark fields have their own asymptotic fields, be­

cause the asymptotic completeness can hold only in such case. In fact, if the 

quark fields belonging to fundamental representatiqns of SU(3) color group 

do not have their asymptotic fields, then the quark Heisenberg fields them­

selves will not be expressed by other asymptotic fields of non-fundamental re­

presentations alone. 
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Chapter VII 

Miscellany of Other Topics 

§ 7. I. U(1) -Problem 

Now many physicists believe that the strong interaction in the hadron 

world can be described by an SUe (3) color gauge theory, namely, QCD. The 

Lagrangian density of QCD is written as (2 · 7) with the matter part given by 

r QCD - [ • ~' ( 1 !:i · A a A ·a) J 
.,1...-matter=q zr 2uj£-zg2 j£ -m q' (7 ·1) 

'in terms of quark fields q. In the limit of vanishing mass matrix m, this 

system has a chiral U(1) symmetry besides the desirable chiral' SU(N1) flavor 

symmetry and the exact SUe (3) color symmetry. The Goldstone theorem1
) 

tells us that there appear N/ Goldstone bosons after the spontaneous break­

ing of the U(N1) chiral symmetry. Further, Weinberg2
) has shown, by using 

the usual technique of current algebra in the case m=/=0, that an isoscalar 

pseudoscalar 9oldstohe boson (say, U(1) Goldstone boson) should exist with 

a mass comparable to the pion mass /170 if it is a physical particle. There is 

no such a particle in reality. So the U(1) Goldstone boson must not appear 

as a physical particle in QCD. This is the U (1) problem.2
l,al 

Hereafter, we restrict our considerations to the case of chiral symmetric 

limit m = 0. As is well-known, the U(1) axial-vector current suffers from an 

anomaly of the Adler-Bell-Jackiw type, 4
l which modifies the conservation law 

of the gauge-invariant current j/ to read 

(7. 2) 

This, however, implies the existence of another conserved but gauge-variant 

current J/, defined by 

(7 · 3a) 

(7. 3b) 

Since the added anomalous term X~' commutes with the quark field q at equal 

times in any .covariant gauges, one can derive chiral U (1) Ward identities of 

the usual form such as, e.g., 

8/<0/T(J/(x)(/Jr5cjJ(O)) /0)=2io4 (x)<O/(/JcjJ(O) /0). (7 ·4) 

Equation (7 · 4) clearly indicates that the U(1) Goldstone boson must exist and 
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92 .. T. Ku,go and I. Ojima 

produce a massless pole in this Green~s function, because <¢<P )=/=0 in our real 

world by which the chiral S[[(N1) symmetry is spontaneously broken. Thus, 

the anomaly by itself does not necessarily give a way out of the U (1) problem. 

The U(1) Goldstone boson, ~ay x, the existence of which is enforced by the 

chiral. U (1) Ward identity (7 · 4) in any covariant gauges, is suitably 'defined 

by the following equation in the LSZ sense: 

J 5 ~ (x) ~zt12 0 .uxout;i~ (x) + .... (7 ·5) 
Xo->±oo 

Here the dots ( · · ·) indicates the other possible massive bound-states in this 

channel J 5.u, which are commutative with massless pseudoscalar X and hence 

need not be considered. The superscripts out arid in are omitted. for simplicity 

hencefo;rth. 

The. above argument, essentially the same as the Goldstone theorem, l) does 

not claim that the existing U (1) Goldstone boson X is a physical particle, and 

therefore, we have yet a good chance to solve the U(1) problem in QCD: 

Especi~Ily, since the conserved current J/ in (7 · 5) is /gauge-variant, its as-. 

ymptotic field X can really be unphysical. Our present formalism developed 

so far provides us in· fact a very suitable framework to discuss the fate of this 

U(1) Goldst<;me boson X· Especially the quartet mechanism explained in Chaps. 

III and VI is directly related to this problem. We will obtain below the follow­

ing results 5
) by analyzing the meaning of SUe (3) -gauge-invariance in-terms of 

the BRS charge Qe: 

(i) The U(1) Goldstone boson X does not appear as a physical particle at all 

if and only if the FP ghost forms a 
1

massless bound-state with the gauge-boson 

(gl uon) in a pseudoscalar channel. 

(ii) This decoupling of X from the physical sector is caused by a mechanism 

of 'Goldstone quartet' including the FP ghost-gl uon bound state as a member 

of it. 

(iii) If the strong interaction were described by Abelian gl uon gauge theory, 

the chiral U(1) Gold,stone boson would necessarily appear as a physical par­

ticle. 

(iv) The 'Goldstone quartet' mechanism become equivalent to the 'Goldstone 

dipole' one proposed by Kogut and Susskind3
), only in a special case, i.e., the 

Abelian gauge theory in two dimension (the Schwinger model6
)). 

Now we begin the analysis. Define a new Heisenberg operator C(f.u (x) 

by the BRS· transformation of the gauge-variant J/: 

~.u (x) = [iQe, J5.u (x)], 

=- (N1g
2/8rc2

) E.uvprrOvC • OpA.,. (x). 

(7 · 6a) 

(7 ·6b) 

Note that all the contributions to this commutator come from the anoma]ous 

term x.u given by (7 · 3b) in J/: [iQe, x.u] = C(f.u. · In view of the commutator 
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Chap. VII Miscellany of Oth~r Topics 93 

(7 · 6a) and the definition (7 · 5) of U (1). Goldstone boson X' we see that the 

following two cases should be discussed separately: (A) The case wh~n 

· Cj?fl (x) has a pseudo-scalar massless asymptotic field corresponding . to a FP 

ghost-gluon bound-state, and (B) .the case of no such' massless asymptotic field 

in Cj?fl. 

First consider the case (A). In this case, we have a pseudo-scalar mass­

less asymptotic field r (x)' defined by 

~fl(x) ~zt12frr(x) + ... 
l.xol_,.oo 

with the same renormalization constant Z112 as in (7 · 5), and obtain the follow-· 

ing BRS transformation relation fr<;>m (7 · 6a): 

[QB, x (x)] :-- ir (x). (7 ·7) 

This relation is nothing but (6·46) which· we have found in Theorem 6. 10 

in § 6~ 3 as a necessary and su:ffic'ient condition for the quartet mechanism to 

take place. Accordingly, this. BRS-doublet (x, r) necessarily has a partner 

doublet, say (f, (3), and they all become unphysical . particles by forming a 

quartet which cannot contribute to any physical quantities in the physical sub­

space C{J phys specified by QBJphys) =0, as has been stated in detail in Ch:ap. III 

below (3 · 30). The partner doublet (f, (3) can be found by following the rea­

soning in the proof of Theorem 6.10. Since ~{1 (x) has a massless pseudo­

scalar asymptotic field, it must develop a massless pole in the 2-point Green's 

function as 

(7 ·8) 

at least for some operators ~v which create the same quantum numbers ~s ~v 

annihilates. It will be instructive- to cite here some candidates for '?v; e.g., 

(7·9) 
etc. 

The B,RS transform of this ~fl.. defines another operator 93/J.: 

(7 ·10) 

which is explicitly written as 

(7 ·11) 

correspondingly to the two examples of <?!?"'in (7 · 9). The BRS-doublet (f, (3) 

is the asymptotic fields .of these operators <(!?P. and 9JP.: 
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94 T. Kugo and I. Ojima 

<f?l.l(x) ~z 112
8/.lf(x) + ···, gjt.t(x) ~Z 112 8/.l/3(x) + .... 

I xo 1---"oo 
(7 ·12) 

This quartet (x, /3, r, f) is called 'Goldstone quartet', hereafter. 

Next consider the case (B) where no massless pseudoscalar asymptotic 

fields is contained in the operator <(?t.t (x) ( = [iQB, Jl (x)]). Then, from the 

asymptotic form of Jl (7 · 5), we conclude in this case that 

(7 ·13) 

Note that this U(1) Goldstone boson X cannot be a member of BRS-doublet, 

namely, there is no field fx satisfying {iQB, fx} =x· The reason is as follows: 

First, if some fx exists, then X has vanishing norm, [x (x), X (y)] = 0. Second, 

since the operator (/ir5</J clearly cannot contain the l~particle state fx ,having 

FP ghost number iQc = -1, (/) r5</J contains only (BRS-invariant) x-field, if any. 

Since also J5t.t contains only x-field by the definition (7 · 5), the massless pole 

required in the chiral U(1) Ward identity (7 · 4) cannot be produced by this 

zero-norm x-field. This contradicts the first assumption that the x-field is a 

U (1) Goldstone boson responsible for the massless pole required in (7 · 4). 

Thus we see from (7 ·13) and from these arguments that the U(1) <;ioldstone 

boson X in this case become BRS-singlet (gauge-invariant)! As far as the 

SUe (3) -gauge (BRS) invariance of the system is concerned, no other massless 

particle non-commutative with X (x), is necessitated to exist. Thus we con­

clude that the U(1) Goldstone boson X (x) should have positive norm in order' 

for the theory to be physically interpretable and has necessarily to appear as 

a physical particle in the world. This conclusion is inevitable as far as we 

take it for granted to assume that only the gauge invariance is relevant to the 

fate of the U(1) Goldstone boson. 

In Abelian gauge theories, the FP ghost ?-nd anti-ghost become free' and 

have n,o interactions with other particles, as is apparent from the fact that 

they have the Lagrangian - i8t.tc · 8 t.tc instead of - i8t.tca · Dt.t abcb. So they can­

not form any bound-states at all, and hence the composite operator <(?t.t (x) 

defined in (7 · 6b) has no asymptotic fields. This corresponds to the case (B) 

discussed above. Therefore, we obtain an important conclusion: If the 

strong interaction is described by an Abelian gauge theory, the chiral U(1) 

Goldstone bo~on has to appear as a physical particle in the world. ,Since 

we have no chiral U(l) Goldstone boson in this real world, the Abelian 

gauge theory <?f strong interaction should be rejected. 

In two (space-time) dimensions, the situation is rather different. Since it 

is instructive to analyse the model in 2 dimensions by our machinery presented 

above, we here discuss the Schwinger model 6
> briefly. 

AI though the Lagrangian has exactly the same form as in 4 dimensions, 

an essential difference appears in the form of the ABJ type anomaly: 

fJt.tj5t.t= (N,g/2n) fuvFt.tv, 
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Chap. VII Miscellany of Other Topics 95 

which is linear with respect to Fttv in clear distinction from the quadratic one 

(7 · 2) in 4 dimensions. Hence th~ ·quartet of operators J/, <tf'tt, <tf'~ and gjtt 

are given very simply in this case as 

<f?tl= [iQB, Jl]=- (N,gjn) Ettvf)vc, 

<tf'tt=- (N1gjn) EttvfJvt5, 

gjtt = {QB, <tf'tt} = - (N,g /n) Ettvf)vB. 

(7 ·14a) 

(7 ·14b) 

(7·14c) 

(7 ·14d) 

We notice that <tf'tt really in this case has a massless asymptotic field supplied 

by the elementary (and free!) FP ghost c. Hence the Schwinger model re­

alizes an example of the 'Goldstone quartet' corresponding to the case (A) 

above. The Goldstone quartet of asymptotic fields for the operators (7 ·14) 

can now be given explicitly:·· 

-AL X- injout' 

r=c, r='f (7 ·15) 

with the renormalization co~stant taken as Z 112 = N 1gjn. Here iff indicates the 

'conjugate' :field to ([) (peculiar to 2 dimensions) satisfying 

(7 ·16) 

and Afn;out stands for the asymptotic fields of longitudinal component of Att. 

Thus we see from (7 ·15) that the present Goldstone quartet is nothing but 

the 'conjugate' of the elementary quartet {A\ B, c, c}. So here the decou­

pling of the latter quartet assures the physical S-matrix unitarity and simultane­

ously implies the decoupling of the Goldstone quartet at issue. 

Here ·we should note: Due to the fact that the FP ghost is completely 

free in this Abelian case, the norm cancellations among the quartet (AL, B, 

c, c) in fact occurs in the subset (AL, B), as is well-known since the Gupta­

Bleuler formalism. Since AL (k) "-/ A 0 (k) -'-- A 1 (k) and B (k) "-/ A 0 (k) + A 1 (k) 

when klleh they form a pair of positive metric .{11 and negative metric A 0• 

Thus their 'conjugate' :fields X= AL and /3 = B also form a Goldstone pair 

between which norm cancellations occur. This is nothing but 'Goldstone di­

pole' called by Kogut-Susskind. 3
) They further proposed that this 'Goldstone 

dipole' mechanism may take place even in QCD. We, however, know now 

that the 'Goldstone dipole' mechanism is just a special form realized only in 

the Schwinger model (2-dimensional Abelian 'model) of our general quartet 

mechanism; 

Since we believe that the U(1) problem can be understood in QCD, we 

strongly expect the existence of massless pseudoscalar bound-state of FP-ghost 

and gluon in the channel <tf'tt (7 · 6b). If this is proved, then, this 'Goldstone 
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96 T, Kugo and I. Ojima 

quartet' provides us the first non-trivial (namely, dynamical) example of quar­

tet, which may support the previous idea of quark and gluon confinement due 

to the formation of .the FP ghost-quark and FP ghost~gluor;t bound states.n 

Finally we should co,mment on the current belief that the U(1) problem 

was resolved by instanton. s> It is no~ correct; namels:, the instant on by itself 

cannot assure the unphysicalness of the U(1) Goldstone boson X which is 

contained in J/' because of the chiral U(1) Ward identity (7 · 4). No one has 

ever proved in the framework of "ins tan ton physics" in a satisfactory manner 

that the X really contained in the gauge-variant current J/' is not contained 

in the gauge-invariant one, j/, although this problem has been discussed by 

many authors. 9> 

§ 7. 2. Universality of Electric Charge in Weinberg-Salam Model 

The Weinberg-Salam (W.S.) model based on SU(2) X U(1) shows remark­

able agreements with (almost) all the experiments up to now. 10
> Especially 

.the recent neutral-current experimenta'l data have excluded various variations 

of. weak-intera~tion models11
> other than the original W.S. model with the GIM 

mechanism supplemented . 

. A little lengthy Lagrangian of W.S. model is now well known, and is 

o:rp.itted here. We remark that such asymptotic-field analysis as was done 

in Chap. IV ·explicitly for YM theories with symmetry broken and unbroken 

can be performed also for this W.S. model. Th~ result is, however, trivial,. 

although some complications occur owing to the mixing of two gauge bosons 

in the neutral channel: Fo\ the symmetry-broken parts and unbroken 'U(1)' 

part of the SU(2) X U(1) grqup, the situations are quite similar to the broken 

SU (2) Riggs-Kibble model C§ 4. 1) and the unbroken YM modyl (§ 4. 2) , re- · 

spectively. · . . . 

Here we want to discu;;;s only the problem of (electric-)' charge univer­

sality in W.S. model. We mean by charge universality that the on-shell 

coupling constants of photon to the charged fields are univeqal. This 

should be proved also in the W.S. model because the absolute values of the 

charges of electron. (or muon) mid proton are known> to coincide, with quite 

a good ,accuracy. This problem was trivial in the case of QED. The Ward 

identity, which is very simple in the Abelian case, assures the proportionality 

of the bare. coupling co~stants ei0 for the chc;trg~d fields ¢i to the on-shell 

coupling constants ei: 

(7·17) 

where we should recall that quantum numbers qi of the charge operator,Q, 

of course, determine the bare coupling constants ei0 as ei0 
= e0qi and that 

(7 ·18) 
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Chap. VII' Miscellany of Other Topics 97 

Since, the proportionality constant Z/12 or . Z/2e0 is independent of the matters 

¢i, Eq. (7 ·17) proves the charge universality~ 

In the W.S. model, the W~ T. identities become quite complicated and the 

proof of such proportionality relation as (7 ·17) is made diffi~ult by the non­

Abelian character of this, model. In fact, the proof of such proportionality by 

use of W.T. identities was accomplished only in the Landau gauge12
>'

13
> and the 

unitary gauge.*> In the other covariant gauges, only the charge conservation 

law in arbitrary scattering processes, 

I: ei= I: e1 , 
i< {out-going} ' j • {in-coming} 

(7 ·19) 

was derived from the W.T. identity as yet. 13
> This conservation law (7 ·19), 

which can be proved also from more general S-matrix theoretical arguments 

alone as was done by Weinbetg,14) is not sufficient unfortunately for the charge 

universality proof; for instance, in the case where the muon (p.) and electron 

(e) numbers are separately, conserved, one cannot derive the equality ett = ee 

from (7 ·19) alone even when e} = ee0
• 

Now we give the proof of the proportionality 

(7. 20) 

by the machinery of the present formalism,. in the W.S. model in arbitrary 

covariant gauges respecting the original global symmetry SU(2) X U(1), name­

ly in such type of gauges as (2·7b): 

(7. 21) 

where the index 'a runs over 0 (corresponding to U(1)) and 1, 2 and 3 (of 

SU (2)) . This proof was first given by Aoki. 13
), 

15
) We present it m a more 

complete form. Let us recall the "Maxwell" equations (2 · 36) : 

~vFo _ 1 r J o {Q ~ -o} 
U pv- 2 g' p - B' U pC • 

for a= 1, 2, 3 , (7 · 22a) 

(7. 22b) 

Owing to the spontaneous breakdown of SU(2) X U(1) to 'U(1) ', only one 

charge operator, say electric charge operator Q; can be well-defined and is 

usually (and formally) written as 

(7. 23) 

In v1ew of this combination, the 0- and 3-components of "Maxwell" equations 

(7 · 22) are combined to produce 

*' There exist, in the unitary gauge, some doubts in the renormalizal;>ility, and hence, m the 

well-definedness of it. 
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98 T. Kugo and I. Ojima ' 

where the following definitions are used: 

Fttv= (g' F!v + gF~v) I .j g2 + g'2' 

.A";= {QB, [g' (D/tc) a+ ga /teo] ;.J g2 + g'2}, 

eo=_ gg' I .J g2 + g'2 . 

(7 ·24) 

(7. 25) 

(7. 26) 

(7 ·27) 

Both of the formal charges f d3x (J0
8 + ~ J 0°) and f d 3x/ol e0 may be identified 

with Q of (7 · 23), since both, of them formally reproduce the commutation 

relations (7 ·18) as is easily assured by using the canonical commutation rela­

tions. As has been explained in § 6. 1, however, neither of them provides a 

well-defined charge because of the massless one-particle contribution from the 

'elementary' quartet members (3a (a= 3 and 0). By the assumption that one 

symmetry corresponding to the combination (7 · 23) remains unbroken, a certain 

linear combination of the above formal two charges 

(7. 28) 

similarly to (6 · 29), must provide a well-defined charge, when the constant 

( ( =f=1) is suitably adjusted so that the massless contribution in (J 0 ~ + J 0°l2) is 

cancelled by that in (fol e0
• Since (7 · 28) clearly reproduces the commuta" 

tion relations (7 ·18) , we see that the well-defined charge (7 · 28) gives a 

desired correct expression for the electric charge operator Q formally given 

by (7 · 23). According to . (7 · 28), the ".Maxwell" equation '(7 · 24) is now re­

written as 

(7. 29) 

This equation sandwiched between two physical 1-particle states li) and If) 

( E CV phys) leads to · 

(7. 30) 

where use has been made of the following equation: 

<fJ.A";Ji) = (fJ {QB, *} Ji) = 0 (7. 31) 

due to (7·26) and QBif)=QBii)=O. 

Applying f d4xeikx to both sides of (7 · 30), we consider the limit ktt~o. 

First, similarly to the soft-pion technique, all the contributi?ns to the l.h.s. of 

(7 · 30) remaining in this ktt~o limit come from the massless one-particle in the 
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Chap .. VII MiscellC~rny of Other Topics 99 

channel F
11v, na!llely, the photon. The one-photon contribution can be esti­

mated by the asymptotic form of F 11v: 

(F ) as= Y(:::::l A ph._() A ph.)+ ... 
11v . V 11 v v 11 , (7. 32) 

where A/h. represents the ren6rmalized photon asymptotic field and the dots 
( · · ·) stand for the other massive particles irrelevant here. The constant Y 
can be evaluated by the pole residue, for example, of 

F.T. <OITF11v(x)Fp6(y) jO) 

=- P'(pf1ppgv6+PvP6gf1p-PvP'pgM-PJl6gvp)/P2 + ···. 

Noting that (7 · 32) says 

F.T. <OITF11v(x) Afh·(y) !O)=iY(P11gvp-Pvg 11p)/P2
, 

we easily see that the l.h.s. of (7 · 30) becomes 

lim Jd4xeik:l:<fl8v Fv" (x) I i) I (1-- () 
k->0 

= [Y I (1- (:)] lim (277:) 4,rJ4 (P1 - pi) · e fi (pi+ P1)" , 
p! ->pi 

(7. 33) 

(7. 34) 

where e1i and (pi+ p1
) 11 are the renormalized on-shell photon coupling constant 

and the kinematical factor of the proper vertex <fiA/h·ji)amp., respectively. 
Next, since the well-defined charge operator Q is given by (7 · 28), the time­
component (,u = 0) of the r.h.s. of ('7 · 30) produces 

(7 ·35) 

where use has been made of (7 ·1~). The normalization convention adopted 
in (7 · 34) and (7 · 35) is <f I i) = (2rc) 32P0i(]1i(]

3 (pf-pi) . By comparing (7 · 34) 
and (7 · 35), we obtain 

(7. 36) 

This result indicates not only that the on-shell photon coupling constant Is 
diagonal with respect to the types of matter, but also the desired proportional­
ity (7 · 20) since the constants ( and Y are' manifestly independent of i and 
f. This finishes the ·proof of the charge universality. 

The above result (7 · 36) is obtained for arbitrary covariant gauges of the 
type (7 · 21). In Landau gauge, only in which such proportionality as (7 · 36) 
is proved also by the W. T. identity method, our result (7 · 36) can easily be 
assured to cqincide with that due to the W.T. identity method. We should 
finally note the crucial step (7 · 31) in the above proof. Equation (7 · 31) here 
has represented in a very concise form all the necessary information which 
is buried in many complicated W. T. identities in the case of usual proof by 
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100 T. Kugo and I. Ojima 

the W. T. identity method. From this example also, we see that , th~ "Max­

well'~ equation (2 · 36) and the subsidiary condition Qelphys) = 0, in our canoni­

cal operator formali~m, are really powerful and useful. 

§ 7. 3. Some Other Problems 
I 

There are some other probler:p.s (or topics) which. have not been touched 

upon up to now in this paper. We pick up and discuss some of them briefly 

here. 

Superfield treatment of BRS symmetry. This type of approach was 

initiated by the authors of Ref. 16), and is made more complete by Fujikawa 

in Ref.· 17). 

The basic idea of the S'uperfield approach is to realize our fundamental 

algebra (2 · 25) of Qe and Qc as a kind of ~conformal' one on. 'superfields', say 

(]) (x, ()), defined in a fictitious five-dimensional (super-) space (xfl, ()), where 

the coordjnate () as wei( as the transformation parameters iA. of the BRS trans­

formation should be , taken as ('real') elements of the G~assmann algebra. 

Consider the following transformations similar to the usual conformal ones:· 

Ue (A) (J)(x, ()) Uet (A) =,(]) (x, ()+A), 

Uc (p)(J) (x, B) U/ (p) = edP(J) (x, eP()), 

(7 · 37a) 

(7. 37b) 

. where p 1s a usual real number, A==iA. is a 'real' Grassmann number, and 

(7. 38) 

The parameter 'd in· (7 · 37b) is called the BRS-dimension of (]) (x, ()), which 

will be related to the FP ghost number soon below. Directly from the con­

formal-type ·definitions (7 · 37) of operations q£ the unitary operators (7 · 38} 

on the arbitrary superfield (]), we can easily conclude the commutation rela­

tions, 

[A1QB, A2QB] =0' 

[ iQc, AOe] =AQ;a , 

(7 · 39a) 

(7. 39b) 

(T· 39c)· 

which are quite equivalent to our fundamental algebra (2· 25). Let us see 

this situation more explicitly. First, since ()2 = 0, the Taylor expansion of 

(]) (x, ()) ·with respect to () produces,· generally, 

(]) (x, ()) =X (x) + ()~ (x). (7. 40) 

Then, the 'super-translation' (7 · 37a) induces the following transformation on 

these component fields X and ~: 
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C:hap~ VII Miscell~ny of Other Topics 

UJ3(A)X(x) UBt (A) =X(x) +AY? (x), 

' UB (A) Y? (x) UBt (A) = Y? (x), 

the 'infinitesimal' form of which is written by using (7··38) as 

[AQB, X(x)] = AY? (x), 

[AQB, Y5 (x)] =0. 

The 'dilatation' transformation (7 · 37b) gives 

, Uc (p) X (x) U/ (p) = edp X ( x) , 

Uc (p) Y? (x) U/ (p) = e<d+l;PYJ? (x), 

or, infinitesimally, 

[iQc, X(x)] =dX(x), 

[iQc, Y? (x)] = (d + 1) Y? (x). 

101 

(7. 41) 

(7 ·.42) 

(7 ·43) 

(7. 44) 

From these, we explicitly see that the· two Heisenberg fields X and Y? form 
a 'BRS-doublet' [by (7 · 42)] and have FP ghost numbers d and d + 1 [by 
(7 · 44)], respectively. Noting this, we can now cast our ordinary fields into 
superfields; e.g., 

af/.a(x,{}) =A/(x) +{}(-iDf/.c)a(x),, (d=O) 

f])i(x,{}) =Jpi(x) +{}gc·TiJCfJJ(x), (d=O) 

;ya (x, {}) = ca (x) + {}Ba (x), (d = -:-1) 

rya(x,{}) =ca(x)•+{}(g/2) (cXc)a(x). (d= +1) (7. 45) 

As is evident from these examples of superfields, the present super-conformal­
symmetry (7 · 37) is realized as a non-linear representation. By this reason, 
superfield theoretical treatment is not quite useful in practical calculations. A 
formal simplicity attained by the introducti~n of BRS-superfields, however, is 
often proved usefulm and brings us such convenience that we can retain mani-
fest BRS-covariance in all the stages of calculations. So this techniqu~ may 
find its important applications in the' future. · As an example of such simplicity, 
we only note here that the ga1,1ge-fixing term LGF• (2·7b) and the correspond­
ing FP · ghost term ~ FP• (2 · 7 c) , can be combined and rewritten by the use 
of superfields (7 · 45) compactly as follows: 

s d
4
x (L GF + L FP) = sd4

xd{} [- fJP'ry (x, {}).a~ (x, {}) + ~o;y (x, {}). 8ei)i (x, {}) J. 
(7. 46) 

The gauge-fixing invariance of physical contents. It is very important 
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102 T. Kugo and I. Ojima 

and necessary to prove that the physical contents of theory are not altered by 

the choices of gauge-fixing conditions at all. -In the scattering theoretical as­

pects, it should be proved that the physical S-matrix is independent of gauge­

fixing condition.s. We show in 'the following that the usual proof*> given by 

't Hooft and Veltman18> and Lee 19
l can be easily transcribed into the present 

formalism. 

Let us consider the response of arbitrary Green's functions under an in­

finitesimal change of gauge-fixing condition. Take a gauge-fixing with arbi­

trary gauge-fixing function F (F= 811-AP- for our previous gauge-fixing (2 · 7b) ], 

.J:GF+.J:FP=B·F+ a0B·B+ic·O'F (7·47) 
. 2 ' 

where o' means the BRS transformation with A factored out: o'F= [iQB, F], 

and consider its arbitrary infinitesimal change: 

[Note that the change of gauge parameter a 0 to a 0 + Lla0 

by simply taking LIF=.da0 ·B/2.] The (arbitrary) 

<OJT(l)1(/)2 .. ·aJniO)=G containing no FP ghosts receives, 

(7 · 48) ~ the following infinitesimal change: 

LIG = <O IT[B · .dF + ic · o' (.dF)] (1)1(1)2 ... (J)niO) 

=<OJT{QB, c ·.dF}([)1(1)2 ... (J)njO) 

n 

(7. 48) 

can be considered 

Green's function 

under the change 

= ~ <OIT(c·.dF)(J)l ... (J)i-1 (o'fDi)(J)i+l ... (J)niO), (7. 49) 
i=l 

where_ the integrations over the argument x of B · .dF, etc. are understood, and 

use has been made of QB[O) = 0, (J'(J)i = [QB, (l)i] and an important equality 

B · .dF + ic · o' (.dF) = {QB, c · .dF}. (7. 50) 

In obtaining the on-shell S-matrix, the i-th leg of Green's function G 1s 

multiplied by the Klein-Gordon operator D + mi2 and by some pol~rization 

vector, and its momentum Pi is set on the mass-shell Pl =:= m/. Note that 

o' (J)i is a composite operator accompanied by the FP ghost, which does not 

have 1-particle pole exactly at P/ = m/, in general. Only in the case (J)i = AP-, 1 

the BRS transform o' All= D/1-c contains the 1-particle pole term 8/1-cas, which, 

however, does not contribute to the physical S-matrix owing to transversality 

of physical polarization vectors. Accordingly, in order that JG can contribute 

to the on-shell S-matrix, o' (J)i in (7 · 49) must be combined with the term c · .dF 

*> As will be discussed later, such a type of proof may. be criticised from the standpoint of 

the operator formalism. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.6

6
.1

/1
9
1
5
1
3
0
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Chap. VII Miscellany of Other Topics 103 

of iQc = -1 and produce the original i-th. particle pole; that 1s, the (c · JF) ·. 

( o' ([)i) opera tor in (7. 49) is effectively replaced by the original one-particle 

field oZ/12
@i where 

(7. 51) 

which is nothing but a change of wave-funCtion renormalization constant Z/12 

under (7 · 48) as is easily seen. Thus, we find that all the changes of on-shell 

amplitudes are absorbed into those of wave-function renormalization constants, 

and hence that the physical S-matrix remains unchanged. Here we cite an­

other proof which is much simpler than the above one and interesting [although 

the present. authors cannot be convinced of its correctness completely]: The 

S-matrix of physical particles is given by the matrix elements 

(7. 52) 

where Ia out) and IS in) are composed of physical particlesalone, and hence, 

Similarly to (7 · 49), the infinitesimal change of the matrix elements (7 ·52) 

under the ga uge..:fixing change (7 · 48) is evaluated as 

<a outiB· JF+ic. o' (JF) I Sin)= <a out I {QB, c. JF} IS in)= 0. (7. 53) 

This finishes the proof. 

Also for physical quantities other than those in scattering theory, like 

the expectation values of observables between two physical states~ we can 

prove the gauge-fixing independence just similarly to the above. We should 

note, however, that such usual proofs as shown here may be incomplete. In 

order to explain this, let us reconsider the first one of the above proofs more 

carefully. We have implicitly understood there the following equality: 

F+JF(O IT([)/+JF .. ·([)nF+JFIO)F+JF = F(O IT L1 (.L GF + ..£ FP) ([)/ .. ·([)nFIO)F. 

(7. 54) 

We are not quite sure of its validity. The reason why we have written the 

indices F and F + ilF carefully is that we should distinguish the fields and 

the vacuum in one gauge-fixing from those in another. Namely, to each gauge­

fixing, there corresponds a set of field operators and state vector space quite 

different from one another. Thus the field operators in one gauge-fixing can­

not be expressed by those in another gauge-fixing. Hence, in order to prove 

the gauge-fixing invariance in more satisfactory manner, it is necessary to 

enlarge the state vector space cv so that we can consider the transformation 

of the gauge-fixing within a given CV., Such an enlargement is supposed to 

be accomplished by the introduction of many auxiliary fields. In fact, Yoko-
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I 104 T. Kugo and I. Ojima 

yama20
> has succeeded in doing this in the case of Abelian gauge theory. By 

introducing two auxiliary fields (other than the multiplier B) called gaugeons, 

he constructed a state vec~or space in which the cl1ange of the parameter a 0 

of covariant gauge-fixi:ngs in (2 · 7b) can be rea~ized as a , transformation of 

field operators. He extended his gaugeon formalism t~ the non-Abelian case 

also.2ll In this case, however, it is successful '"at present only in a special 

family of gauge-fixings with a gauge parameter aa as a group vector [in con­

trast to the scalar parameter a 0 in our gauge-fixing (2 · 7b )] . The introduction 

of such a group vector parameter ha.s a serious disadvantage in violating the 

manifest group symmetry. 

Applications of the present formalism to other gauge theories. The 

·present formalism has been .applied successfully not only to YM theor:les based 

on internal symm~tries (hence, of compact grouPs) but also to gravity based 

on a non-compact group, ~s. has been seen in Chap. VI. We expect that it is 

always applicable to any meaningful gauge-theory. Recently, it was applied 

in an elegant form 'by Nakanishi22
> to gravity based on vierbein formalism 

which, therefore, includes spinor matter fields. Later, the supergravity23
> was 

also formulated within the framework of our formalism in Ref. 24) and the 

physical S-matrix unitarity was established in any covariant gauges. 
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· Chapter VIII 

Discussion 

We have presented the manifestly covariant and local canonical operator 

·'formalism in full detail. In many exanwles we have seen that the present 

formalism really provides us po"\Verful tools with which we can .reve.al. the 

possible structures of dynamics in arbitrary gauge theories. Among others, we 

should note -the following two basic. ingredients or 'tools': ' . . 

(i) the subsidiary condition, QB I phys) = 0 , (8 · 1a) 

(ii) the "Maxwell" equation: fl'F11v=gJ11 -{QB,D11c}, (8·1h) 

both of which appear quite elementary. Nevertheless, the former (i) tog~ther 

with the nil potency QB2 = 0 led to finding of 

(iii) quartet mechanism , (8·2) 

and the latter (ii) combined with the former (i)' with the help of consequences 

in general theory of local covariant quantum fields, made· it possible to derive 

both of an interesting result statir~g 

(iv) any local observables are color-singlets (group invariants), 

and the following remarkable criterion of color (i.e., quark and gluon) con­

finement: 

(v) u = -1 with unbroken global color symmetry. (8· 3) 

These (iii), (iv) and (v) are quite non-trivial and important results which 

could not be obtained so easily in such other formalism as the path-integral 

formulation. We emphasize again here the generality of the quartet mecha­

nism to confin~ any type of 'unphysical' particles_; for example, apart from 

such trivial ones as the longitudinal and scalar 'components of gauge bosons, 

the Goldstone bosons in the presence of gauge bosons (Higgs phenomena), the 

U (1) Goldstone boson in the U (1) problem (irrelevant to Higgs phenomenon), 

and even, the very quarks and gluons (if their asymptotic fields exist and the 

confinement is realized by (v)). Recall also that the peculiar · fo_rm of our 

"Maxwell" equation was useful in the proof of electric-charge universality in 

the W.S. model. 

Since the logicp.l structure ~f non-Abelian gauge theories has ~een clarified 

in the present formalism to a large extent, we should examine whether or not 

the 'possibilities' proposed in this paper are realized in QCD .. For example, 

the presence of massless pseudoscalar bound-state in the channel E11vp 118vc · 8.aA 11 , 

which is a necessary and sufficient condition for the U(1) problem to be 
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106 T. Kugo and I. Ojima · 

solved, must be assured directly. As for the long outstanding problem of 

quark confinement, we want to prove that the criterion (8. 3) is really satis­

fied. Of course, it will require a more detailed information of dynamics. As 

was explained in Chap. VI, the criterion u = -1 is closely related to the in­

finite effective coupling constant at the infrared limit. In this connection, it 

will be interesting to. clarify the logical relationship between our criterion 

(8 · 3) and the others based on more intuitive pictures of confinement (e.g., 

the Wilson criterion1
J 'based on the string picture2

)). To find out such rela­

tionship might help us also to prove our criterion directly. further, if con­

finement is 'proved', for instance, by the Wilson\ criterion. in the future, then, 

such relationship will be very helpful for us to convince ourselves of the logi­

cal consistency of the confinement theory, because such consistency, especially 

the physical S-matrix unitarity, is already assured in our present formalism. 

The instanton phys1cs,3
) which has been much developed recently, is not 

touched upon in this report. Although we are not sure that the quark con­

finement problem can be solved by the instanton technique alone, one should 

notice that the semi-classical approximation using instanton solutions is useful 

as a new computational method. 4
) In order to solve various dynamical prob­

lems, such non-perturbative methods are absolutely necessary to be developed. 

Another important problem which has not been discussed at all is the 

"flavor dynamics"; namely, how many quarks (and leptons) there are, how 

the structure of their interactions is and why they exist as they are in the 

nature. 5
) We have no clear ideas at present. We, however, expect that all 

'the interactions cari be described by simple gauge theories, and our present 

formalism is applicable to any type of gauge theories. So, as is seen in the 

eve (conserved vector current) . hypothesis which has been successfully 

pr·oposed ori the basis of the knowledge of renormalization theory, the insight 

into the gauge theories attained by the present formalism may some. day lead 

to a brilliant idea to determine the structure of flavor dynamics. 
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Appendix 

General Aspects of, Indefinite-Metric 

Quantum Field Theory 

In this appendix, we collect some useful consequences of the general 

theory of relativistic quantum fields 1
l,lal extended to the cases with an in­

definite metric. 

A. General Postulates of the Relativistic Quantum Field Theory with an 

Indefinite Metric and Their Consequences 

The state vector space gJ of our indefinite-metric quantum field theory 

Is required to satisfy the usual postlilates1
l of quantum field theory apart 

from the positivity assumption of the metric, namely, 

(0) Principles of the quantum theory (apart from the positivity), 

(i) Poincare covariance, 

(ii) Spectrum condition,. 

(iii) Local (anti-) commutativity. 

In connection with the postulate (0), the space q; is required to be a 

topological vector sPace with an · (indefinite) inner product <I> separately 

continuous with respect to its topology r. If this inner product <I) is degen­

erate, namely, if there exists some non-zero vector lw)E q; orthogonal to C{l, 

<wiP") = 0 for v IP") E C{) , (A·l) 

such a vector lw) as the above has no physical effect and is an irrelevant 

object according to the principles of the quantum theory. So, we can assume, 

without loss of generality, the inner product <I) is non-degenerate, namely, 

a vector lx) satisfying the condition (A ·1) is nothing but the null vector: 

<wiP") = 0 for VIP")E q; ==? lw) = 0. (A·2) 

By the assumption (A· 2) , for any zero-norm vector ('neutral vector' in the 

mathematical terminology2l) · lx) orth()gonal to. itself 

<xlx)=O, (A·3) 

there should exist some vector [P") E q; not orthogonal to it: 

<xiW)=FO. (A·4) 

It may be instructive to note that the coexistence of the above two conditions 

(A· 3) and (A· 4) implies2
l the indefiniteness of the inner product <I): 
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108 T. Kugo and I. Ojima 

-

(@1@)~0 in C{). 

While the inner :Broduct (I) is non-degenerate zn the whole CV, it may be 
degenerate in the subspace of CV, for example, 

Lemma A.l Let qp be a Positive (semi-definite) subspace of' CV. 
Then, every neutral vector in CW is orthogonal to CW: 

. CWo {lx)ECW; <xlx)=O} _L CW. (A·5) 

The same conclusion as (A· 5) holds for the case with a negative (semi­

definite) subspace CUJ. 

Proof) By the semi-definiteness of the inner product in CW, the Cauchy­

Schwarz inequality holds in CW: 

I<([) IW)I <I<([) I@) 1112
1 (7fll7fl) 1112

, (A·6) 

from which (A· 5) follows. [] 

Thus,' the zero-norm subspace CVo of the physical subsp,ace ·q;phys (2·29) is. 

orthogonal to · CV phys: 

CV oj_ CV phys, (A·7) 

because CV phys is pos1t1ve semi-definite as is proved in Chap. III. The above 
(A· 3) and (A· 4) tell us that for any zero-norm physical state lx) E CV 0 there 

is some unphysical state IW) $. CV phys not orthogonal to it: 

(A ·8). 

By' (A: 8) we know that the suqspace CV 0, and hence CV phys• have no o,:-thogo­
nal projection to themselves. 

The next problem is the topology of CV, which has been assumed to make 

the inner product (I) separately continuous. Such a topology is called a 
. partial majorant.~l From various points of view,. it seems natural and con­
venient to impose the additional requirement on the topology 7: that it should 

be an admissible topology,2
) the weakest one of which is the weak. topology 

(w) .2
) Namely, the linear functional (jJ on CV is continuous with respect to 

7: if and only if (jJ is written in the form: 

by some vector I@)E CV. The following lemma, which 1s familiar ·in the 

cases of the Hilbert space, holds: 

Lemma A. 2 
ity ' 

• I - • 

Let CW be an arbitrary subspace of CV. Then, the equal.., 
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General Aspects of Indefinite-Metric Quantum Field Theory 109 

(A·9) 

holds for any admissible topology r of C{l, where CW.L 1s defined by 

CW_[= {!(f)) E C{l; ((f)!P") =0 for Vj?Jl)E CW} (A·lO) 

· and CW" is the closure of CW with respect to the topology r. 

Proof) See, Ref. 2) . D 

Corollary A. 3 Let CW be any pense subspace of C{) with respect to an 

admissible topology r: 

(A·ll) 

Then, any vector orthogonal to CW 1s 0: 

(A·12) 

Proof) The first equality is due to the equality 

(A·13) 

and (A: 9) . The third one follows from the assumption (A· 2). D 

As· for the postulate (i) of the Poincare covariance, we assume such 

'ordinary ingredients1
) as the unitary representation U (a, A) of the Poincare 

·group and as the fields cpi (x) covariant under the Poincare transformations, 

and so on. In some respects, however, we can do so, for the time being, only 

in a formal sense, owing to lack of the positivity. For example, the unitarity 

of U (a, A) . means the unitarity with respect to the in-definite inner Product 

<I>, which, contrary to the unitarity with respect to the positive definite inner 

product, neither necessarily implies that the operator U (a, A) is a bounded one 

nor that U (a, 1) can be written in the form 

(A·14) 

Since no correspondent of the spectral ·resolution theorem~*) valid in the Hil­

bert space, has beEm proved yet in the indefinite metric cases, the precise 

meaning of such an expression as eiP"a" is not so clear, T1;uts, the relation 

between the energy-momentum operator PP. and the translation operator U(a) 

is a symbolic one. These situations may seem to endanger the postulate (ii) 

of the spectrum condition, which can, however, beformulated in the following 

form without any difficulties. 

First, let us recall that the fields (/Ji (x) are not operators by themselves 

but operator-valued (tempered) distributions .which become operators by smear-

*) See, SNAG thedrem in Ref. 1). 
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110 T. Kugo and I. Ojima 

ing with test functions: 

(A·15) 

Precisely speaking, we should have a common dense domain Q in q; of any 

operator of. the form (A ·15) with fE .Y (R4
) *l and of .any U (a, A), stable 

under these operators cpi (f) and U(a, A), where the term "dense" means 
"dense in any admissible topology r of C{l", namely, 

lt=!J.l..l.=C{l. (A·16) 

Further, the· linear functional 

(A·17) 

should be continuous for any 1@), IP')EQ with respect to the topology of 
.Y ( R 4

) • We denote, as 9: and g ( lJ) , the polynomial algebras genera ted by 
the operators of the form 

r 
r---"----, 

with fE .Y (R 4r) and with fE g) (LJ X · · · X lJ), *l respectively. . In the case that 

lJ c R 4 
is a finite space~time region, we call an element of 9: ((}) an local 

operator taking account of the local (anti-) commutativity postulate (iii). 

Here we add a further postulate (iv): 

(iv) Existence of the cyclic vacuum: There exists a vector IO)EQ 
(vacuum) invariant under any translations, 

U(a) IO)= IO) (A·19a) 

or 

(A·19b) 

which is' cyclic with respect to 9:: 

(A·20) 

Now, the spectrum condition (ii) is postulated m the form 3
l as 

for any 1@), IP') EgiO), or equivalently as 

*l .9' and 9J here represent the spaces of test functions decreasing rapidly and having compact 
supports, respectively. See the te~tbooks of the theory of distributions or Ref. 1). 
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General. Aspects of Indefinite~ Metric Quantum Field Theory 111 

(A·22) 

where wil·"ir c,;h .. . ,;r-1) is defined by 

<OI'f:?il (x1) ''''Pir (xr) !O)= wil···ir(x1-x2, ···, Xr-1-xr) (A·23) 

upon the basis of the translational invariance of the vacuum (A ·19a). Ac­

cording to the well-known techniques/> (A· 22) combined with the postulates 

(i) and (iii) allows us to continue wil···ir c,;h .. ·, ,;r-1) analytically to the com­

plex,analytic function wil"··ir((1, ···, Cr- 1) in the permuted extended tube, in 

much the same way as the. positive metric cases. This analyticity property 

furnishes us with powerful techniques, the well-known one of which is the 

Reeh-Schlieder theorem :4>. 1
> · 

Theorem A. 4 _(Reeh-Schlieder theorem) , For any open set lJ of space­

time, the equality 

(A·24) 

holds for any admissible topology 7:. On the assumption (iv) of the 

cyclicity of the vacuum (A· 20), we obtain 

(A·24') 

or 

(A· 24") 

Proof) By the "Edge-of-the-Wedge" theorem, we obtain 

(A·25) 

from the equality 

(A·26) 

r 

for jE .fJJ (LJ X··· X LJ), namely, 

(S:(LJ) !O)) .L= (9:!0)) .L. (A·27) 

By virtue of Lemma A. 2, Eq. (A· 27) tells us 

g (LJ) jO) r = (9: (LJ) !O)) .L.L = (9:!0)) .L.L = S:!O) ". 0 

Combining the above theorem with the postulate (iii) of local (an:ti-) com­

mutativity, we obtain the following corollary. 
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112 T. Kugo and I. Ojima 

Corollary A. 5 If lJ is an open set of spac~-time whose causal comple­

ment LJ' defined by 

lJ'=the interior of the set {xER4
; (x-y) 2<0, f~r 'v'yElJ} (A·28) 

is not empty, and cpE<;f(lJ), then 

cp]O)=O (A·29) 

implies cp == 0 on the assumption of (iv) . In particular, smce LJ' fo~ . a 

bounded open set lJ is not empty, any local operator cp E<:l (lJ) annihilat­

ing the vacuum is vanishing in itself. 

Proof) It is sufficient to consider the case with fields satisfying the local 

commutativity, since the cases containing both local commutative. and anti­

com~utative fields can be treated in a similar manner with slight modifica­

tions. From (A· 29) and the local commutativity, we obtain 

o =(WI </Jcp I O) =<WI cp</J I O) (A·30) 

for a,ny IW)E.Q and any </JE<;f(lJ'). Thus cptjlJI) belongs to c;F(LJ') 10)-'-, 

which 1s nothing but 0: 

CA· 31) 

by virtue of Theorem A. 4: 

. <:J(LJ') IO)r = q;, (A·32) 

and of Corollary A. 3. Then, we obtain, from (A· 31), 

for VlaJ)EJJ, (A· 33) 

which says 

cpla>) = 0 for· vja>) E.!J (A·34) 

or 

(A·35) 

by virtue of the denseness of .Q (A ·16) and of Corollary A. 3. D 

Next, we comment on the postulate (iv) of the cyclicity of the vacuum, 

which is nothing but a natural requirement that every state in a field theory 

should h.~ described in terms of fields. In the positive metric cases, it is well 

known 1 l,fil~Tl that, on the ass,umptions (i) /"'.../(iii), this condition (iv) 

(iv) cyclicity of the vacuum 

1s equivalent to the following three conditions equivalent to one another: 
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(iva) irreducibility*> of the field algebra <3:, 

(ivb) uniqueness of tlie vacuum, 

(ivc) cluster property. 

The implication (iv) ,=?(iva) ,5>. **> which is a consequence of the spectrum con­

dition, has not proved yet in the general cases with indefinite metrics. But 

this holds also in these cases on the assumption of asymptotic completeness, 

because one can prove (iv) =?(iva) in a Fock space, as will' be seen in Ap­

pendix C. The cluster property in the indefinite metric theory has already 

been discussed in § 5. 4 from the viewpoint of the quark confinement. 

The problem that we want to discuss is the implication (iva)=? (ivb) in 

the indefinite metric cases. The proof given by Borchers6> in the positive · 

metric cases is based upon the consequence of a .profound theorem-the PCT 

theorem.n,s> This theorem, obtained from the analyticity combined with the 

Lorentz invariance (ii) , clarifies the relation between the locality (iii) and the 

PCT symmetry, the important discrete symmetry of the theory: The PCT 

in variance of the theory is equivalent to . the weak local commutativity which 

is a weaker condition than the local commutativity. Since this theorem pre­

supposes the validity of the spin-statistics theorem/> however, it does n.ot hold 
. . 

generally in the theory with an indefinite metric which invalidates -th~ spin~ 

statistics theorem allowing the existence of such scalar fermions as the Fad­

deev-Popov ghosts, for example. ll;l the case in question of our Yang-Mills 

theory, the PCT symmetry does hold with a slight modification as has been 

shown in § 2. 4. Namely, the invalid~ty of the spin-statistics theorem due to 

the Faddeev-Popov ghosts is harmless except the minor. change of their PCT 

transformation law (2 · 38). From this fact and the reconstruction theorem9>,tol 

valid also in cases with indefinite metric, we ~an safely assert the existen~e 

of the antiunitary PCT operator @ defined (at least in SJ) by 

@10)=0, 

@([)i1 (xl) · · .([)~,r (xr) I 0) = ([)~CT Cx1) .. . (J)frCT(xr) I 0) , 

and satisfying 

@J2=1 (in Q), 

@f])i (x)@ = f]J/cT (x). 

(A·36a) 

(A·36b) 

(A· 36c) 

(A·36d) 

Using this fact, we can now conclude, from the irreducibility (iva), the unique-

*> In the case with indefinite metric, the concept of irreducibility . splits into the two concepts 

.of "subspace irreducibility" and "operator irreducibility" [see I. M. Gelfand, et al., 

Generalized Functions (Academic Press, New York-London, 1966) Vol. 5, pp. 148"-' 

150], which are equivalent to each other in the Hilbert space. Here we understand the 

term "irreducibility" to mean that both of the above two irreducibilities hold. 

**> The implication (iva)::? (iv) is trivial. 
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114 T. Kugo and I. Ojima 

ness of the vacuum (ivb) (in a rather restricted sense), which plays an 

important role in the discussions made in Appendi;._ B about the well-defined­

ness ~ondition for charge operators~· 

Proposition A. 611> · If the field algebra c_} is irreducible, there exists no 

such other vacuum*> IO') (in !J) linearly independent of IO) that 

U(x) IO')= IO') for VxER4 

' ®IO')=ei"'IO'). (wER) 

· (A·37) 

(A·38) *> 

Proof) Let there exist such a vacuum as IO'), then we can obtain one 

more vacuum IO)ap 

(A·39) 

which is normalized by a suitable choice of complex numbers a, /3 and 1s 

cyclic because of the assumption of the irreduCibility. Then, according to the 

(modified) PCT theorem in the Yang-Mills theory, the locality anq the spec 

trum conditibn of theory with the vacuum IO)ap allow us to construct the PCT 

operator ®ap referring to this vacuum IO)ap: 

@ aP I 0) aP = I 0) aP ' 

®aP(j)i
1 
(xl) ·· ·(/)ir (xr) IO)ap =.(/)~CT (xl) · ··(/)tCT (xr) IO)ap, 

@ap (AlP')+ ,ul{]))) = A*@apiP') + ,u*@apl(/)), 

@~ 8 =1 (in !J) 

®ap(j)i (x) ®ap = (])/CT (x). 

(A·40a) 

(A· 40b) 

(A·40c) 

(A·40d) 

(A· 40e) 

By (A· 36d) and (A· 40e), one can easily check the commutativity of @@ap 

with every (J)i (x). On the other hand, @@apiO)aP can be made not proportional 

to IO)ap, 

@@apiO)ap = ®IO)a8 =a* IO) + j3*ei"'IO') 

¢cai0)+/3IO')= IO)ap, 

by choosing a and /3 such that 

(A· 41) 

(A·42) 

Then, @@aP is not a c-number operator, whereas it commutes .with every (])i(x). 

This contradicts the assumption of the irreducibility, so the vacuum !O') satis~ 

*> In this context, "vacuum" means merely a translationally invariant (normalizable) state. 

· In the cases with positive metric, we need n'ot require (A·38),. while, in our case, it is 

satisfied by the states IO')=:QIO) with Q=gQa, Ga, Na, etc., discussed in Chap. VI, b~cause 

of (2·40). 
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General Aspects of Indefinite-Metric Quantum Field Theory 115 

fying (A· 37) and (A· 38) should be proportional to the original vacuum IO). 

D 
B. Symmetries, Currents and Charges 

--Well-definedness condition for charge operators and Goldstone 

theorem--

According to Proposition A. 6, the vacuum IO) is assumed, in thi~ section 

B, to be unique as the translat!onally invariant state [satisfying the condition 

of the form (A· 38)]. As an immediate. consequence of this assumption, we 

obtain: 

Proposition B. 1 Let Q be a well-defined*> conserved charge associated 

with an internal symmetry. Then, 0 annihilates the vacuum: 

QIO)=O. (B·l) 

Proof) First, note that Q is invariant under the translation, and hence 

QIO) is a translationally invariant state: 

u (x) Q I o > = QU (x) I o > = Q I o > (B·2) 

Then the uniqueness**) of the vacuum implies that QIO) IS proportional to 

IO):. 

QIO)=;qiO), q=<OIQIO). (B·3) 

Since Q 1s obtained (formally***>) ·as the volume integral of the current jfl 

(B·6) ***) 

and j"' satisfies 

(B·7) 

owing to the Lorentz covariance, the coefficient q = <OIQIO) m (B · 3) should 

vanish 

<OIQIO)=O, 

. *> 'Well-defined' means being defined in a dense subsp'lce of C{) containing· the . vacuum. 
**> Owing to the PCT invariance of the YM theory, the Noether ~urrent j,_. of the symmetry 

generated by Q 'satisfies 

GJj,_.(x) fi'J= =f j,_.( -x), (B·4) 

and hence, IO')=QIO) satisfies (A·38) with ei"'==Fl: 

GJQIO)= =r=QIO). (B·5) 

Thus, (B · 3) follows from (B · 2) and (B · 5), according to Proposition A. 6. 
***> The precise meaning of the formal expression (B·6) will become clear iri the following. 
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116 T. Kugo and I. Oji~a 

and we obtain 

QIO)=O. D 

0n the contrary, a spontaneously broken symmetry signalled by the formal 

expression 

<ol [Q, x (x)] IO)=foO (B·8) 

brings us a charge Q not satisfying the condition (B ·1): 

QIO)=foO. 

By the above Proposition B. 1, therefore, the global charge Q as the -total 

volume integral of the current (B · 6) cannot be well-defined in this case, 

whereas a 'local charge~ QR exists and generates the transformation 'locally' :12
) 

(B·9) 

(B·10) 

In the above, rs is a (1-parameter subgroup of the) symmetry transformation 

of field operators and aTE g) (R), fR E g) (R~) are such test functions that 

S dxoaT(xo) =l, 

{ 
1 (ixi<R), 

fR(x) = 0 (lxi>2R). 

(B·11a) 

(B·1lb) 

Equation (B ·10) holds for any sufficiently large R>O and independently of 

the choice of aT,I2>,ls> as a consequence of the locality and of the conservation 

law: ()#j11 = 0. Now, the intuitive expression (B · 8) of the spontaneous break­

_down ·of the symmetry rs should properly replaced by the condition: 12 >~H> 

lim <OI [iQR, q;] IO)=foO 3q;Eq(L?). (B·12) · · 
R---+oo 

The implication of (B ·12) · is well known as the Goldstone theorem12>' 14>"'16> 

which asserts the existenc~ of a massless Goldstone boson.· In the neatest 

form, this theorem can be stated as a. corollary of the following equation: 17>,Ia> 

lim <OI [QR, q;] IO)=lim((OIQRElq;IO)-<OJq;ElQRIO)) ~ 
R---+oo . R---+oo · ' 

=2lim <OIQRE1q;j0)=2lim <OIQRq;ib), 
R~oo R~oo 

(B·13) 

where E 1 is the projectio~ of the states of mass zero. Equation (B ·13) IS 

proved ·on the assumption of the positive· metric and the authors do not know 
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General Aspects of Indefinite-Metric Quantum Field Theory 117 

whether. it can be extended to the cases with indefinite metrics. To authors' 

knowledge, there exists the following statement for these cases made by 

Strocchi :3
> 

Theorem B. 2 ·(Goldstone theorem) Spontaneous breakdown of the 

symmetry, (B ·12), occurs, if and only . if the Fourier transform of 

<OI [j.u (x), If?] IO) contains a (] (p2
) singularity. 

Proof) [See, Ref. 3) .] 0 

We believe, from this theorem, that if the projection E 1 of the states of · 

mass zero can be defined also in these cases in such a form as 

(B ·14) 

Eq. (B ·13) might be verified in the indefinite metric cases. Here, a/ and 

a1 are the creation and annihilation operators ofmassless asymptotic fields and 

1Ji/ is the inverse of the 'metric matrix 'Iii= [ai, a/]+· / In any case, 

Corollary B. 3 The criterion for the sPontaneous breakdown of the 
symmetry is given by 

<OU.uiW)=FO for 3jW): massless 1-particle state. (B·15) 

Taking account of the fact that the weak topology is the (weakest) admis­
sible topology,2

> we can verify the following: 

Corollary B. 4 The necessary .and sufficient condition for the global 

charge Q given by 

<m!Q.IW) =lim <@IQRIW) (B·16) 
R~eo 

to be a well-defined charge with the dense domain ~ (()) IO) 1s that one 

of the following conditions. is valid: 

(i) lim<OI[QR,If?]IO)=O for Vlf?E~(LJ), 
R-'>oo 

(ii) lim<OIIf?QRIO)=O for Vlf?E~(LJ), 
R->oo 

(iii) <Oij.uiW (p2 = 0)) = (Oij/siW (p2 = 0)) = 0; 

(iv) QIO) = o, 

(v) Q!f?IO)=[QR,If?]IO) for Vlf?E~(LJ), 3R0>0, VR>R0 • 

(B·17) 

(B·18) 

(B·19) 

(B·20) 

(B·21) 

In (B · 19) where the Yang-Feldman equation [ ( C · 2) bel ow J is used, 

j.uas is the asymptotic form of jp.. 

Proof) (Omitted.) D 

These results show that every well-defined charge does not suffer from 

spontaneous symmetry breakihg and contains no discrete massless spectrum 
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118 'f. Kugo and I. Ojima 

and, conversely, that every charge suffering from spontaneous breakdown can­

not be well defined owing to the discrete massless spectrum-Goldstone boson. 

C. Asymptotic Fields, Asymptotic States and Their Behavior under the 

Symmetry Transformation 

-·-Greenberg-Robinson theorem and GLZ formula--

In the theory with a positive definite metric and with mass gap, the 

notions of asymptotic states and asymptotic fields have their sound basis in the 

Haag-Ruelle scattering theory. 5
),lS) Since the existence of a massless field*) 

and of an indefinite metric obstructs the extension of this theory to our pres­

ent case, we cannot but take· a naive attitude to interpret the asymptotic 

fields and states as the representatives of the discrete poles in Green's func­

tions. Namely, 

(ii') Characterization of asymptotic 1 fields and spectrum condition 

for 'them: 

Corresponding to each discrete spectrum of pttptt appearing as a discrete 

pole at P2 = mi
2 (>O) of time-ordered Green's functions in .. momentum 

space, an asymptotic field ¢ts ('as'= in or out) satisfying 

(C·1) 

with a positive integer· ri is assumed to exist. 

As for the relation between the asymptotic fields and the original Heisen­

berg fields, we assume the validity of the Yang-Feldman equation, which 

gives an expression for the asymptotic fields in terms , of Heisenberg fields: 

For example, in the case with ri = 1, it is written as 

(C·2) 

with a Heisenberg field (/)i (x) and with its source ji (x) = (0 + m/) (/)i (x) con-
' p2 2 

tairiing no discrete spectrum at = mi . From this, we obtain a convenient 

equation. 

(C·3) 

In the cases with boun.<:] states and with multipole-ghosts (ri>2), due 

modifications to (C·2) are necessary. 20
),

2
1) 

The Haag-Ruelle scattering theory22
) valid in the cases with positive def­

inite metric and with mass gap tells us that all asymptotic fields are mutually 

(anti-) local. In the present case with indefinite metric and without mass gap, 

*) As for an extension of the Haag-Ruelle theory to a certain type of massless theory with 

positive metric, see Ref. 19). 
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General Aspects of Indefinite-Metric Quantum Field Theory 119 

there has been n,o such proof.*> So, we simply assume 

(iii') Locality of asym_ptotic fields: 

All asymptotic fields are .mutually (ariti-) local. 

The correspondent of the postulate (iv) of the cyclicity of the vacuum in 

this case means nothing but the assumption of asymptotic completeness. 

(iv') Asymptotic completeness: The vacuum IO) is cyclic with respect 

to the totality of asymptotic fields: q; = q;in = q;out. 

On the assumption of (ii'), (iii') together with the Lorentz covanance 

of the asymptotic fields which follows from (C · 2), we obtain the following 

theorem, from the Greenberg-Robinson theorem,23> which can be extended21> 
1
to 

the cases with indefinite metric. 

Theorem C. 1 The (anti-) commutator [¢ias (x), ¢/s (y)] + 1s a c-number. 

Proof) [See, Ref. 21) .] D 

Thus, the space of asymptotic states is a Fock space of asymptotic fields, and 

hence, for the asymptotic fields, the cyclicity (iv') of the vacuum implies the 

irreducibility of the asymptotic fields. This is an immediate consequence of 

the following (generalized) Haag-GLZ ex;pansion formula 24
>'

25
> which gives, 

on the assumption of (iv') , any linear operator L an expression in terms of 

the asymptotic fields: 

L= ~ 0 ~n! ~~inS ( g d 3
Xa) (0 I[··· [L, ¢7~ (xt)], · ··, ¢7: (xn)] IO) 

J!···Jn 

X r; -1 r;-1 ~ x 1 ~ x,. • A_as ( ) A_as ( ) . irJ 1 " • • inJnUo • • •uo . 'f'Jn Xn • • "'f'Jr X1 • (C·4) 

In (C·4), :···: means the Wick normal product. For simplicity, we have writ­

ten the formula for the case of scalar fields satisfying the commutation relac 

tion 

(C·5) 

From (C · 4), it follows trivially that any operator L ·commuting with all the 

asymptotic fields ¢ias is nothing but a c-number: L=(OILIO)l, namely, the 

totality of asymptotic fields is irreducible. This fact implies further the fol­

lowing consequence: 

Proposition C. 2 The assumption (iv') of asymptotic completeness Im­

plies the irreducibility of the (Heisenberg) field algebra g. 

*l In the proof of the locality of asymptotic fields made in Ref. 21), there is a mistake in 
the use of the Jost-Lehmann-Dyson representation, as a consequence of which the proof 
is invalidated. 
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120 T. Kugo and I. Ojima 

Proof) Let L be any operator commuting with all the Heisenberg fields, 

then the Yang-Feldman equation (C · 2) tells us that L commutes with all the 

asymptotic fields. , Since the totality of asymptotic fields is irreducible on the 

assumption (iv') of asymptotic completeness, L is nothing but a c-number. 

D 
If we take L as a Heisenberg field (/ji (x), the Haag-GLZ formula (C · 4) 

gives us an expression for. the Heisenberg fields in ter,ms ~f the asymptotic 

fields. Taking account of the LSZ reduction formulae26
) which ~an be derived 

from the LSZ weak asymptotic 'conditions as a consequence of the Yang-Feld­

man equation (C · 2), we can rewrite the above Haag-GLZ formula in the fol­

lowing way: 

Scp = ~ 0 ~n! it,;L i~J,. J ttd4
Xa: ¢~~ (x1) · · ·¢~! (xn) :, 

n 

X IT ['lJi;;}b(Dxb+m~b)J(OjT[cp(/jJ,.(xn) ... (/jit(xl)JIO) 
b=l 

:::::: exp(¢Tr;-1KojiJJ): (OIT (cp exp iJT(!j) IO)IJ=o 

:::::: J(: (OjTcp exp iJT(!jjO), (C·6) 

where K is the matrix of Klein-Gordon operators: K::::: (KiJ) = (O'iJ (0 + m/)). 

We call this formula (C · 6) the (generalizyd) GLZ formula, which holds for 

any polynomial cp ( E q) of local (Heisenberg) operators. The operator S in 

(C · 6) is the S-matrix operator, which is written as 

S=: exp(¢Tr;- 1KO'/O'J): (OIT(exp iJT(fj) IO)IJ=o 

=: J{: (OIT exp iJr<l>!O) 
I 

(C·7) 

by setting cp = 1 m (C · 6). These GLZ formulae are useful in the discussion 

about the behavior of the asymptotic fields under the symmetry transforma~ 

tion. 

First, we note that every asymptotic field is transformed lin,early under· 

any unbroken (nonlinear) transformation of an internal symmetry. 

Theorem C. 32
n Let O'¢ts be the infinitesimal transform of the asymptot­

ic field ¢ias by the symmetry transformation generated by a well-defined 

charge Q: 

Then, 0'¢/s (x) dep.ends linearly upon the asymptotic fields ¢/s (x): 

(C·9) 

The coefficients aiJ may contain finite~order differential operators in 8 p.· 

Proqf) W,e first pote that the W.T. identity 
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General Aspects of Indefinite-Metric Quantum Field Theory 121 

(C ·10) 

~ 

follows fiom the unbroken symmetry generated by Q: 

(C ·11) 

Here we have inserted an "infinitesimal-transformation parameter" oB in order 

to treat the ordinary and "super-type" charges on the same footing. Differen­

tiating (C ·10) with respect to Jk (x), we obtain 

(C-12) 

Next, these W.T. identities (C·10) and (C·12) with the operation :J(: d~fined 

in (C·6) can be simplified as follows. When the operator : ¢/r;-1KojoJ: is 

applied to (C ·10) and (C ·12), the external sources Ji are replaced by the 

Klein-Gordon operator K with coefficient of on-shell quantity ¢: Jc-~ (¢rr;- 1K) i· 

Because of the presence of the operator (¢Tr;- 1K) i instead of Ji (x), the fields 

(J(fji (x), which generally contain non-linear terms of fields also, can be re­

placed by the linear combinations of fields with the same mass mi: 

(Jf])i(x) ==? oeaijf])j(x), (C·l3a) 
on-shell 

aiJ-~ S d 4
z<OIT[of])i(x)f])k(z)] IO)<OIT(f])k(z)f})J(Y)) I0)-

1
Ion-shell 

-(---

= i<O IT [of])i (x) f])k (y)] I O)Kmi (y) r;;;}l on-shell • (C ·13b) 

By this replacement, (C ·10) and (C ·12) lead to the "on-shell W.T. iden­

tities": 

:J(: (OIT Jro8a@ exp iJr(fjj0)=0, 

:J(: <OIT (of])k (x) + iYoBa@(/jk (x)) exp iJr@IO) = 0, 

where a denotes the matrix (ai1) commuting with K = (KiJ): 

Ka=aK. 

(C ·14) and (C ·15) are further rewritten as 

:J{ · cpr: r;- 1KoBa<OIT@ exp iJr(fjjO) = 0, 

:J{: <OITo8o@k (x) exp iJr@IO) 

= -i :J{ · ¢r: r;- 1 KoBa<OIT@(fjk (x) exp iJr@IO). 

(C·14) 

(C ·15) 

(C·16) 

(C-17) 

(C-18) 

Now, we can determine the form of o¢/n (x). Since Q is the unbroken con­

served charge, we should have 

0= [ioBQ, S] =: [ioBQ, ¢r] r;- 1 KojoJJ(: <OIT exp iY@jO) 

= :J( · o8o¢r: r;-1K<OITi(fj exp iJT(fjjO), (C·19) 
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122 T. Kugo and L Ojima 

using (C· 7). In view of (C ·16) and of the on-shell W.T. identity (C ·17), 

~we find it, sufficient for the validity of (C·19) totake IJ()(IJ¢)T=-¢TYJ- 1a7JIJ{}, 

1.e., 

(C·20) 

Using (C·16) .and the second on-shell W.T. identity (C·18),wecan further 

verify that (C · 20) really reproduces the original transformation law (C ·11) 

of the Heisenberg fields: 

. [io{)Q, S(Jh (x)] = :J( · IJ()IJ¢r: 1J- 1K<OITi(JXfh (x) exp iJT([) IO) 

= :J(: <OITIJ()IJ([)k (x) exp iJT([)!O) 

= SIJ()IJ([)k (x). (C·21) 

In the above, we have us~d the GLZ formula (C · 6) for cp = (/)k (x) aqd cp 

= IJ()IJ([jk (x). The c9mmutativity (C ·19) of Q and S ensures the equivalence 

of (C·21) to (C·11). Finally, by virtue of the Jacobi identity 

- [ [¢i (x), ¢i (y)] =F> iiJ()Q] 

= [¢i (x), [iiJ{)Q, ¢i (y)]] + + [ [iiJ{)Q, ¢i (x)]' ¢i (y)] + , (C·22) 

we can check the equality 

(C·23) 

. which proves (C · 9) with the coefficients aii expliCitly given by (C ·13b). 

At the end of this section, we note that, if the 'infinitesimal' transform 

IJ([ji (x) = [iQ, (/)i (x)] + with a hermitian 'Charge Q is shown to have a discrete 

pole at P2 = m 2 represented' by ~n asymptotic field (IJ([)i) as, then the original 

Heisenberg field (/ji (x) ~hould necessarily have a discrete pole of the same 

mass and spin as IJ([ji (x). Namely, the existence of the discrete spectrum of 

IJ([ji (x) means .fhe following: 

o = <o I"O@i (x) IW (P2 = m 2
)) = <o I [iQ, ([)i (x)] + IW (P2 = m 2

)) 

= =Fi<OI@i(x) (QIW(P2
=m

2
))), (C·24) 

which asserts the existence of the asymptotic field ¢ias (x) of (/)i (x) satisfying 

(C·25) 

Since Q is a scalar quantity, we know from (C ·15) that the mass and spin 

of ¢ias coincide with' those of (IJ([)i) as •. 

D. Properties of Dipole Functions and Wave Packet Systems 

Here some invq,riant delta-functions and wave packets related with the 
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General Aspects of Indefinite-Metric Quantum Field Theory 123 

massless dipole ghost are collected. 

We. begin with the definitions of E-functions: 

E<·> (x) =- 8 ~ 2 A<·> (x; m
2
) lm2=o 

= _!_ (172
) -l (x08o -1) D(.) (x), 

2 

(D·l) 

. (D·2) 

where E<.J. denotes E, Eh E± and EF corresponding to D<·l = D, Dh D± and 

DF, respectively. · These E-functions, in fact, suffer from infrared divergen~es 

except for E (x), and hence one should adopt a suitable infrar,.ed cutoff pro­

cedure to define th.em properly. Since such a procedure is fully described by 

Nakanishi in Ref .. · 28) , we neglect this point here for simplicity. 

First note that the integra-differential. operator If) <wl defined by 

(D·3) 

for arbitrary constant (J) works as an· "inverse" of d' Alembertian D in front 

of any simple pole functions f(x): 

DIJJ<wlf(x) =f(x) if Df(x) =0. (D·4) 

Hence, from (D · 2), the equations 

(D·5) 

hold (except for Feynman's propagation functions E<·l = EF and D<./= DF not 

satisfying QDF = 0). It is an easy task to prove the following useful formulae 

also from (D · 2) : 

E<.) (x- y) =If) 1 1 ~yD(.) (x- y) = (I!J x <112
) +If) v <v2l) D(.) (x- y), 

fJ / Ec.) (x- y) = (8 / .IJJ;/112
)- !D/112

) 8 /) D(.) (x-y), 

8/8/E(.) (x-y) = (o/ I!Jx 012)8/ + 8/ I!Jv 012)8/) D(.) (x-y). 

(D·6) 

(D·7) 

(D·8) 

Next, we introduce wave packet systems for massless scalar and vector 

fields. Let {gk} be a comp1ete set of positive frequency solutions of the 

d' Alembert equation: 

Po=lpl,· (D·9) 

where the following conditions should be satisfied, 

(D ·lOa) 

(D·lOb) 
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124 T. Kugo and I. Ojima 

Then the g ~r,' s satisfy 

(D ·11a)' 

(D·11b) 

where 

(D·12) 

By, the use of the same { rpk (p) } , we define wave packet system {f k, /} for 

the massless vyctor fields: 

"(D-13) 

where the polarization vectors c/ (p) (0" = 1 ,2, L, S) are defined as 

p • 811 (p) = 0, s (J 

0 
(p) = 0 ) . _ 

for O",r-1,2, 
e11(p) ·a~(p) =all~ 

CL
11 (p),= -iP11

= -i Clpl,p)' 

Ss
11 (p) = -iP11/2Ipl 2 

· -i(lpl, -p)/2lpl 2
• 

Defining a 'metric' f/~ by 

r;IJ~ = 

1 2 L S 

1 -1 0 

0 

2 0 -1 

L 0 1 

0 

s 1 0 

we' introduce 'contravariant' polarization vectors 8
11' 11 (p): 

Then one can easily ,check the relations as 

L: c/ (p) tl·,v (p) * = g"v, 
(J 

. 11() ( )*-~ S11 p s-., 11 p -r;IJ ... 

Then {fk./} satisfy 

(D ·14a) 

(D ·14b) 

(D·14c) 

(D·15) 

(D·16) 

(D·17a) 

(D·17b) 
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(D ·18a) 

(D·18b) 

By virtue of the cor;nmon use of {<p~c (p)} both in {g~c (x)} and {f~c./.~ (x)}, we 

have the following useful relations: 

f~c.L 11 (x) = a 11 g~c (x), 

a 11 f~c.s
11 (x) = -gk (x), 

a 11 f~c. 6
11 (x) =0 for 0"=1, 2, and L. 

(D·19a) 

(D ·19b) 

(D·19c) 

Now the dipole w~ve packet system {h~c (x)} is introduced by the defini­

tion as 

h~c(x) =ffJx< 112 >g~c(x) = (1/2) (P 2
)- 1 (x 0 a 0 -1/2)g~c(x). 

This {h~c (x)} satisfies 

(D·2Q) 

(D·21) 

(D·22) 

Here (D·21) follows at once from (D·6) with (D·11a). Equation (D·22) 

can be proved directly by using the definition (D · 20) , but it would be easier 

to utilize the identity 

and the completeness relations (D ·11a) and (D · 21). 
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