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A manifestly covariant and local canonical operator formalism of non-Abelian -

‘ gapge theories is presented in its full detail. This formalism, applicable to
Yang-Mills theories as well as to gravity, not - only provides us a transparent
understanding in the scattering theoretical aspects, but also makes it possible
to discuss other important problems directly related to the (Heisenberg)
operators and the state vectors: As for the former; the physical S-matrix
unitarity is proved quite generally on the basis of the representation of the
algebra of the BRS charge, and asymptotic field analysis is explicitly performed

for some examples. As for the latter, the problems of observables and the

well-definedness of charge operators are discussed and clear results are obtained,
where the locality and covariance of the formalism are indispensable. - Ob-
servables are shown to be invariant under the BRS transformation as well as
the unbroken global gauge groups. By analyzing the structure of “Maxwell”
equations in YM theories, the converse of the Higgs theorem is found to hold.
This turns out t6 lead to a remarkably simple criterion of quark confinement
in QCD. The present formalism is found useful also for the U(1) problem
and the charge universality proof in the Weinberg-Salam model. = General
theory of indefinite metric quantum fields is developed to some extent.
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Chapter 1

Introduction

§ 1.1. Motive and Outline

A view, which may be interpreted, in a sense, as a revived and revised
version of Einstein’s ‘“‘geometrization” programme of physics, becomes recently
prevailing in elementary particle physics, with the increasing experimental
data supporting the Weinberg-Salam (W.S.) model in the weak-electromagnetic
interaction as well as the quantum chromodynamics (QCD) in the strong
interaction:® Namely, all of the four types of the interactions rtﬂing the na-
ture, not only electromagnetic and gravitational but also strong and weak in-
teractions, are intermediated by gawuge fields universally. Apart from the
gravitational interaction described by the metric tensor ¢, (x) or. the vierbein
field e “(x) which has a non-compact gauge group, all other gauge fields are,
in the geometrical language, the connection fields® of compact non-Abelian
gauge groups of internal symmetries [SU(2) XU () for W.S. model and
SU(3) for QCD, etc.], which are called, ,usualiy in physies, Yang-Mills
(YM) fields. ,

So the present physics requires a consistent and powerful formalism of
non-Abelian gauge theories on a sound basis.” We will present, in this paper,

a manifestly covariant and local canonical operator-formalism of non-Abelian

gauge theories in its full detail. In this formalism initiated in Ref. 3), we can
directly deal with the Heisenberg operators and the state wvector space as
well as its subspace of physical states. Accordingly, this formalism not only
gives us a satisfactory and transparent understanding in such scattering theo-
retical aspects as the physical S-matrix unitarity, but also enables us to discuss
such problems as the physical observables, the well-definedness of charge
operators and so on. The latter point is very important. The analysis of
the general structure of non-Abelian gauge theories is first made possible in
this formalism where we can utilize with slight modifications the useful con-
sequences derived from locality and covariance in the general quantum field
theory with positive definite metric. On the basis of such apparatus, we can
attack the outstanding problem of quark confinement, and will, in fact, find
a simple and clear criterion of confinement of colored particles.

The non-Abelian character of YM field has been shown to be crucial for
the peculiar property of asymptotic freedom® (which explains the Bjorken-
scaling and its violation® in the deep-inelastic scattering of leptons off nu-
cleons), and further, is supposed to hold the essential key for the solution of

6

the quark-confinement problem.® This very non-Abelianness, however, has
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-simulta-neously caused many difficulties in quantizing such gauge theories as
YM field and gravity. In fact, they have long been so far treated only in

the path-integral formalism for lack of consistent (Heisenberg-) operator for-

malisms except for those in such non-covariant and non-local gauges as Cou-
lomb, axial and timelike-axial 'sauges. To be sure, the path integral method
has yielded many such successful results as the correct Feynman rules in-
cluding the famous Faddeev—Popov (FP) ghosts,;” the Ward- Takahashl (WT)
identities and the proof of renormalizability of the theory,” etc., and it enables
us to calculate some Green’s functions and transition amplitudes, perturba-
tively. But, the absence of the notions of the state wvector space and the
Heisenberg operators. in' this formalism' obstructs us to get an insight into the
general and fundamental aspects of the logical structure of the theory in a
non-perturbative fashion. The understanding of the aspects of this sort seems
quite necessai*y not only. for the explanation of the Higgs mechanism in a con-
sistent way with the Goldstone theorem, as ailready’ done in the Abelian case,”
but also for the theoretical investigation of the quark confinement, in both of
which the problem ‘what are physical and observable? should be clarified:

Next, -as for the covariance and the locality, we should recall that with-
~out these principles even the renormalizations could not be carried out in a
complete form for lack of simple kinematics to determine the forms of countet-
terms. As is seen from this example, the relativistic kinematics following
- from the covariance and the locality'furnishes us with some prospects to the
unsolved problem restricting the forms of possible solutions. . From a more
pragmatic viewpoint also, non-covariant gauges are not convénient for practical
calculations and have appreciably worse ultraviolet properties than the local
covariant gauges. Furthermore, the locality combined with - the covariance

©  which means the analyt-

leads to the validity of the dispersion relations,
icity in p-space, while the spectrum condition with covariance and locality con-
cludes the analyticity in z-space, naniely, analyticity of the Wightman func-
tions.”” ™ From this analyticity, such far-reaching results are derived, as
Reeh-Schlieder theorem,” ™ PCT theorem™ ™ and Borchers classes,™ ™ the

relation between cluster property and uniqueness of the vacuum,®

general theorems about the symmetry™ ™" 20, 22)

and so on. ‘

Thus, in order for us to approach such difficult dynamical problem as quark
confinement in OCD, as well as to consolidate the foundation of Weinberg-
Salam model, it is desirable and even crucial to formulate first the canonical
formalism of YM fields in the framework of relativistic covariant local quantum
field theory, which enables us to utilize such general and useful apparatus as
the above. % |

Several attempts to construct such canonical operator formulations of YM
tlheoryin covariant gauges have been made so far. ‘All those attempts®® ™~

made before Ref. 3), however, have failed 'in giving satisfactory formulations

and some’
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especially by the following crucial two defects: First, the hermiticity of the -

Hamiltonian and Lagrangian is violated, and hence, the (pseudo-)unitarity
of (full) S-matriz also breaks down. Second, the consistent subsidiary con-
dition(s) to ,specify the physical subspace invariant under time-evolution is
not given. The former defect comes from the incorrect hermiticity assign-
ment to the FP ghosts. With such non-hermitian Hamiltonian, one could
not obtain a consistent Helsenberg operator formalism from the beginning.
The latter one is related to the complicated non-Abelian “character which
hinders the straightforward application of Gupta-Bleuler subsidiary condition

to the YM case. - The key for the solution of this problem is given by the

charge of BRS transformation® providing, essentially, a.global version of
the local gauge transformation. These points will be explained in detail in
§1.2. ’ ‘ - ‘

The contents of this paper are organized as follows: In the first half
(Chaps. IINIV) We present basic framework of the present formalism and deal
mainly with the scattering theoretical aspects of theory. On the basis of
these, in the latter part (Chaps. V~VII), various interesting contents of gauge
theories are revealed in full use of the genexzal consequences of covariance and
locahty ’

In §1.2, we explam physzcalzry criteria which state indispensable condi-
tions for a theory to be consistent and physlcaﬂy meaningful. In connection
with it, we present the correct hermiticity assignment to FP ghosts and the
consistent and concise,subsidia‘ry condition specifying the physical subspace.

Chapter II is devoted to the presentation of basic ingredients of our formal-
ism. The Lagrangian density of the system to be discussed, its BRS sym-
metry and other symmetries are presented. Some of the consequences of the

BRS symmetry, for example, “Maxwell” equation of motiori, the W.T. identi-
ties, etc., are derived there. ' ' .

Through the unitarity proof of the physwal S-matrix in Chap II1, the role
of the BRS invariance as a gauge invariance is made clear, which operates to
“confine” the unphysical particles into the physically invisible unphysical world
by the mechanism which we call “quartet mechanism”. In Chap. IV, the es-
sence of the general discussions made in Chap. III is elucidated through various
example models including the gravitation theory. \ :

- In Chaps. V and VI, where the physical contents described in H .y of the
YM theory remaining after the “confinement” of the unphysical particles are
examined, another aspect of the gauge (BRS) invariance shows itself in the
" notion of the observable (Chap. V) and the dynamical consequences of the
“Maxwell” equation are discussed (Chap. VI). Here, the local covariant for-
malism exhibits its significance by allowing the general techniques developed
in the Appendix to function effectively. These énalyses reveal the interesting
- features of thg global gauge symmetry in the YM theory concerning the Higgs
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6 T. Kugo and 1. Ojima

phenomenon, the color confinement and their relations with the mass spectrum
.of the theory. -

In Chap. VI, some other applications of the formalism are discussed: the
@) pi'oblem from the consideration of ‘local’ gauge invariance, the univer-
sality of the electric charges in the Weinberg-Salam model and other topics.

Some discussions are given in the final chapter. '

In the Appendix, some of the useful consequences of the general theory
of relativistic quantum fields obtained in the positive definite metric cases, are
extended to the cases with indefinite metric.

§ 1.2. Indefinite Metric and Physicality Criteria

As is well-known in QED, one should inevitably bring in an indefinite
metric into the theory in order to quantize gauge fields in a Lorentz covar-
iant manner.” This means the presence of megative probabilities which

might damage the probabilistic interpretation of the quantum theory. More-

over, the quantization of the YM theory (én’d also of thé gravitation theory)

requires the introduction of the unphysical fields called Faddeev-Popov (FP)
ghosts” with wrong spin-statistics relation. Thus, the main problem in the
covariant quantization of .gauge fields consists in how these unphysical negative
norm states as well as such unphysical particles as FP ghosts can be “confined”
so as not to come out in the physical world.

For this purpose, we recall a former example‘of the Abelian gauge theory,
es/pecially the Nakanishi-Lautrup (N.L.) formalism® as a prototype‘ of satis-
factory formulation in the Abelian case. The N.L. formalism is an elegant
canonical formulation in covariant gauges which provides an extension of the

‘Gupta-Bleuler (G.B.) formalism*” in Feynman gauge. In the N.L. formalism, |

this problem of unphysical negative-norm states is solved in the following way.
First, since gauge must be fixed before quantization, we add, to the original
local-gauge-invariant Lagrangian density _[, of the system, the following gauge
fixing term: '

Lop=Bo,A*+aB/2. (1-1a)
Then, the total Lagrangian to -be quantized is
,[;:,Es—i’.,fc;p. i (llb)

The auxiliary, gauge-fixing multiplier field B, which becomes a canonical
momentum variable conjugate to A,, satisfies the following equations:

0“A,+aB=0, S (1-2)
0B=0, ° 1-3)
and obeys the commutation relations:

|
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Chap. I Introduction | 7

[B(x), By]=0, , ' (1-4a')
[A.(@), B&)]=—i0,D@—y).  (1-4b)

By Vlrtue of (1-3), the positive and negative frequency parts (in other words,
the annihilation and creation parts), B™ (z) and B (x), of the B field can
be defined without any inconsistency with the time evolution of the system.
Now, we can select the physical states |phys) from the total state vector
space CJ) with an indefinite ‘metric > by a subsidiary condition:

B (2) lphysy=0, . - @5
which is equivalent, by (1-2), to a more familiar one
"4, (@) [phys>=0, 1-5)

as long as a=0.® Then, the physical subspace Y onys= {|phys>} consisting
of all the physical states is shown to satisfy the following two conditions:

(i) The physical subspace CVonys is invariant under the time evolution
of the system, namely,

Hc(/phys - Cvphys : : (1 . 6)

holds for the Hamiltonian H (= P,: generator of time translation).

(i) The inner product {|> is positive semi- deﬁnzte in CVphys

7)€ OV gy =T [WY=0 | | @

/

Under the usual hermiticity assignment to field. operators the above Hamil-
tonian f{ is duly hermitian:

©)  m—m, RO P U 1-8)

which implies (on the assumption of asymptotic completeness), the (pseudo-)
unitarity of the total S-matrix S with respect to the indefinite metric P

(0" \ S'S=88'=1. (1-8")
In this case, the condition (1-6) can be rewritten as , . v
) ST=S W= Ve Can
or "equivalently ‘ | |

@) R | a7

where CP&:eut is the physical subspace of the Fock space of in- and out-states.

¥ The a factor in B=—a7'9“A, clearly indicates the reason why the’ GB subsidiary con-
dition (1-5”) does not work well for Landau gauge (a:‘—O)
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Since, as shown in the following theorem, these three cond1t1ons (O)N(u) are
‘sufficient to guarantee the consistent physical interpretation of theory (at least,
in its scattering theoretical aspects), we call them the physicality criteria of

~ theory.

Theorem 1.1. If the theory satisfies the following three physzcalzty cri- .

~ teria, for the Hamiltonian H and the physmal subspace CVphys in the total
state vector space C{/ having indefinite inner product <[>,

(0) hermiticity of the Hamiltonian: H'=H, 1
[or (0”) (pseudo-)unitarity of the total
‘S-matrix: S'S=S8"=1]

@G). finvariance»of Cl)pnys under the time development, ' (1-9)
[or () STWoys=S"Vypnye=Vptys]

(i) posmve semi-definiteness of the inner product
in CVphys,

then, the physical S-matrix Sphys can be defined consistently in the (com-

: pleted) quotlent ‘space

phys_CVphys/CVO (CYy: the zero-norm subspace of €V nys) (1-10) *
- (which is a Hilbert space with pos1t1ve definite metrlc), and the unitarity
" of S,y holds: ; ; :
SphysSphys"‘SphvsSphys 1 (1 '11)

o Proof) First, by the Cauchy-Schwarz inequality due to (i) of (1 9
[(1 -1, the zero-norm subspace C{/, of CVpnys defined by ‘

S el € W > =0}, o (1-12a)
is orthogonal to.ex;ery vector in C/ e (see, (A:7) in Appendix A):
CVO_]__ C(]phys . . | _ (1 : 12b)

" Hence, two state vectors |&> and |Z>+ |y (|X>EC(/0) of Vi nys cannot be
distinguished physically, because the difference [y) of them has no effect on any
amplitude in Oy  Then, by virtue of (ii), the (completed) quotient space
1-10), H e = 0 pnge/ Vo of Cnys with respect to C/, becomes a Hzlbcrt
space equipped with posztwe definite metric defined by

(DT>=L01%> ‘ ’ o ' (1-13?

® The symbol V¥V in (1-10) means the completed space of V 1nclud1ng all the hmxtmg states
of Cauchy 'sequences inV. .
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for |0>= 0>+, !zlf> TS+ e C(/phys/cv0 (105, [F>E Wy . Next, the
condition (1') [derivable from (i)] allows us to deﬁne the physzcal S-matriz
Spnys in H s by the relation: '

Sonyel®>= S0 for [0>=10>+VhE Wpye/ Vs (1-14)

One can easxly check the ummrzty of onys (1-11) by the condition (07). In
fact, e. g, ‘
- PP NN - ‘ o
<§V|S$hysSphys|ﬂ7>:<S§”|S@>=<S§”|S@>=<WSTSIQ>:<W@>:<W!@>-
‘ ‘ \ N
By Theorem 1. 1 QED in the N.L. formalism," “which satisfies the above

physmahty criteria, is assured to give a con51stent theory succeedmg in “con- A
fining” all the unphysical negative norm states. ' Here the crucial point in the

‘N.L. (or G.B.) formalism resides in the subsidiary condition” (1- 5) (or
(1-5')): By the conditions (1-5) and (1-4b) together with the zero-norm
property (1-4a) of the B-field, the observable photon modes are reduced to
the transverse ones® alone (with positive norms). ‘ »
On the basis of the above observation, several attempts have been made
at formulating' the YM theory with such subsidiary conditions as 0"A,) "
" |phys>=0 or B’ |phys>=0 similarly to (1-5). Inthe YM theory, however,
the corresponding B-fields no longer satisfy a free field equation because of
non-linear self-coupling of the YM fields. Consequently, the requirement
(1- 5) in this case becomes inconsistent with- the time evolution of the system
and the condition (ii) is violated. The transversahty condition like 1. 5) can
serve at best as the condition for the one-particle asymptotic physmal states.?
Once many-particle states are set up, transitions from the initial states con-

' sisting solely of physical partlcles into the final states containing such unphysi- -
cal particles as FP ghost pairs*® can easily occur. Thus, in order to find out

the correct subs1d1ary condition for non-Abelian gauge theories, we should/re—
examine the essence of the sub51d1ary condition (1- 5) for QED, instead of
imitating it in its outward appearance. The crux for this problem is provided
by the remarkable symmetry found by Becchi, Rouet and Stora* in the quan-
tum theoretical Lagrangian with the gauge fixing térm as well as the FP ghost’

term—BRS symmetry. As will be shown in Chap. II, thls symmetry is the .

® In the case of the Abelian Higgs model, the subsidiary condition (1-5) expels the Goldstone
boson instead of longitudinal . component of A, from the physical World as an unphys1cal
particle.” ~ ‘!

Someone claims that FP ghosts do- not appear in the initial and final states because they
go tound only internal lines. But this is merely a tautology. In an operator formalism,

*k

=

every particle appearing in thg'intermediate states of the unitarity relations has its own .

asymptotic field and state appearing in both of initial and final states. The reason why
the amplitudes with FP ghosts in the initial and ﬁnal states make no contribution to the
physmal processes, should be clarzﬁed
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10 k . T. Kugo and 1. Ojima

invariance under the BRS ¢ransformation obtained, essentially, from the local
gauge transformation by replacing the infinitesimal transformation parameter
0* (x) with Ac®(x), and can be viewed as the quantum theoretical version of
the local gauge invariance, because it reproduces all the W.T. identities which

compensates the local gauge invariance lost through the quantization procedure. -

Hinted by the fact that Eq. (1-3) crucial for the consistency of the subsidiary
condition (1-5) also reproduces all the W.T. identities in the Abelian gauge
theory, we can adopt the following subsidiary condition®*” for the non-Abelian
cases in terms of the generator Qp of the BRS transformation: A

Qylphysy=0. (1-15)

As will be shown in ChapT I1, this subsidiary condition (1-15) reproduc'es the

one, (1-5), in the case of the Abelian gauge theory, thus (1-15) is a natural
extension of (1-5). ,

 The next crux is the condition (0, Which has been believed incorrectly
to be violated in the YM theory.® ™ Without this condition (0),* however,
it 1is almost impossible to prove the unitarity of the physical S-matrix Spuys.
This mistake has arised frorn the follovvmg hermiticity assignment for the FP

.28)~26), *k 3k )

ghosts: ‘ \
C'=C and CT'=C, = (@116

which is easily shown to lead to a non—herﬁlitian Lagrangién and Hamiltonian:
Lt L and H'-H.

It is this very hermiticity assignment that has hindered us to construct a
covariant canonical formalism of the YM theory in a consistent and transparent

manner. What we have found is that, if we adopt the following assign-

)
ment: ROME 2

Ct=C and C'=-C i a-17)
or equivalently
ct=¢c and &=z - (1-18)

with the redefinition of FP ghosts as

# Such a theory that (0) is not satisfied shows several pathological features, for instance,
the time dependence of the hermiticity character of operators: (et pe
#etHiole=iHt  Thus, without this condition (0), we cannot obtain a consistent Heisenberg
operator formahsm, from the beginning.

#%) The authors of Ref. 26) insisted on the equivalence of the assignment (1-16) and another
one, Ct=—C and C'=C, similar to (1:17) on the basis of their “R- transformation” (FP-
ghost charge conjugation). This is not the case because the “ R-transformation” is ot a
symmetry transformation of the non-Abelian gauge theory. ‘

SHEY T i H gt tH L
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Chap. I Introduction - 11

C=c¢ and C=iz, ‘ (1-19)

instead of the conventional (but wrong) one (1-16), the condition (0) -is, in

fact, verified. As will be shown in Chayp. III, it is, more strongly, indispensable
for the whole consistency of the theory. Then, on the basis of these important
results (1-15) and (1-18), we can formulate and develop the local covariant
quantum theory of non-Abelian gauge fields (the YM fields as well as the
gravitational field) in quite a consistent and general manner, as will be done
in this paper in its full detail.
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Chapter 11

Basic Ingredients of the Formalism

§ 2.1. Local Gauge Invariance:

“We -present here our general formé{lism explicitly for the Yang-Mills type -

gauge theories based on a compact Lie group G.- [As an ‘example of other
type of gauge theory, quantum gravity will be discussed in § 4.3.] Compact
Lie groups are reductive, and hence G is given by a direct product

G=1IG., - (2D
where the G,.s are simple groups or, otherwise, one-dimensional Abelian

groups. Corresponding to the decomposition (2-1), the generators X" of the
Lie algebra & of G are given by the totality of the generators of the Lie

,élgebra g, of G, Therefore thejstru\cture constant ™ of &, defined by

f ' [Xa, Xb] — ‘Z'fabc)cc’ » ’ (2 . 2)
is given as .
fabc {fa“”” if X* X*and X4, - (2-3)
0 otherwise ‘ ‘ ‘ ‘ ‘

by the structure constant f,** of the “component” algebra 4.. :
Now we consider the system of gauge fields A," interacting with arbi-

a

trary matter fields denoted generically as ¢; which. may consist of fermion -

and/or boson components. The Lagrangian density L;(A, ¢) [or, more weak-
ly the action A,= [d‘z_[;] of the system has an invariance under the local
gauge transformatlon the mﬁmtesnnal form of which is written as

6AA _aAa+gabfbchcAd DabAb o (2'43.)
Oupi=ig ATy (2-4b)

Here /1“ A% (x) is a space-time dependent parameter of the Lie group G, and

the T%s stand for the (reducible, in general,) representation matrices on ¢ of

the generators X”. Since one coupling constant g, can be associated with each -
“component” group G, in (2-1), the coupling constant matrix ¢* in (2-4)

has a diagonal form:

@— 3%, (when X“€4,). | . (2-5) -

Hereafter we will often use the matrix- and vector-notation in order to avoid -

/
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Chap. Il Basic Ingredients of the Formalism ‘ 13
cumbersome indices a or i:
(AXB)“ f’”’”AbBc A- B A*B*,
(Mg) ;= My, (gA)“—g“"Ab, .etc ~ (2-6)
So, for example, the gauge transformation (2-4) can be rewritten concisely as

044,=0,44+9A, X A= DA
(‘)‘AgazzA-ngp.

Note also the relation (gA)-B=A-(¢B) due to (2-5).

§2‘2'; Lagrangian of YM Theory and Its Canonical Quantization -

The Lagrangian density for quahtum gauge theor}; should include a gauge
- fixing term accompanied by the well-known gauge- compensating FP ghosts.
- We, therefore, take it as

'

L= LA )+ Lovt Ler, - en
LA )= 1 P P4 Lo D) (2:72)
Lep=—0"B-A,+ (,/2) B-B, @)
Lop= —i0' Dic. | | EERCECH
where | | | ‘
Fro=0,4,—0,4,+94,X A, | (2-8a)
D=0, iA,-gT)g. - (2-8b)

Since (2:7b) is rewritten as

Lep=—

2 % _1_ ‘ﬂ 2_ 12 AP
ﬂ)+2<B+doaA”> 0" (B- A7),

the present galjge fixing is equiifalent to a more familiar covariant gauge ﬁxing
term — (0"4,) 2/2a, at the level of equation of motion and of Feynman dia-

grams. The introduction of fhe multiplier fields B® however, will play an
1mportant role below in assuring the mlpotency of the BRS charge without
use of equations of motion. We have introduced the factor 7 in front of the
- FP ghost term (2-7c¢) in order to treat both FP ghost ¢ and ¢ as hermman
fields under our new hermiticity assignment® (1-18): -

ct=c, ct=z. - (1-18)

Hermiticity assignment for other fields are taken as usual;ie., A=A, B'=B

220z 1snbny Lz uo 3senb Aq 0€15161/L°99'SdLd/E ) L'oL/!op/é|o!ue/sd1d/ujo:)'an'O!Luepe:)e//:Sduu woly papeojumo(



14 v T: Kugo and I Ojima

and so on. Note here that, only when this hermiticity aSsignmen’c (1-18) for

the FP ghosts is adopted, the Lagrangian L of (2- 7) becomes hermitian and '

hence, the total S-matrix is (pseudo-) unitary: “
Lif=r, SST=88=1. (2-9)

The Euler-Lagrange equations of motion for A,, B, ¢ and ¢ are

D*F,,=0,B—gj,—ig (8, X ¢), L (2410a)
0“A,+a,B=0, ' - (2-10b)
0"D,c=D"9,c=0, S (2-10¢)

where the matter current j, is defined by

Je=—i(T), @(6{) . (2109

In order to give canonical (ant1—) commutation relations (CCR or CAR),
we need the canonical conjugate momenta, which we define as

=0.L/0B"=— A, | . (2-11a)
ﬂikE?’)’l / 8A{k“ =F¢, (k=1,2,3) | | (2-11b)
o= (0/0¢:) L , ' ~ (2-11c)
ro= (0)06% L= +it®, ‘ @-11d)
o= (0)05) L= —i(e+gAXd)® 2-11e)

For these momentum variables 7,° conjugate to @,(=B% A", ¢;, c*, ), we

take the following CCR or CAR as usual:

(7" (%, ), @5 (y, )] 2= — 00" (x—y), |
[nwl(xa t),ﬂ'mJ(.')’a t)];:[@,(x, t)’@-f(y’ t)]:F:Q’ . (212>

where the anti-commutators (+) are taken only between fermion fields. Espe-
cially we regard the FP ghosts ¢ and ¢ as fermion fields. For simplicity,
however, we adopt the convention of taking- commumtofs ('—) in (2-12)
between any one of FP ghost fields and any one of ferrmon matter ﬁelds in
0.

Here we should note the following two points: First, concerning
(2-11a), we have considered that the time-component gauge. fields A," are noz
canonical coordinates but the momentum variables conjugate to the B¥s. If

® Either commutator or anti-commutator can be adopted between two different species of
fermion fields without altering physics by virtue of the well-known Klein transformation.
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Chap. II Basic Ingredients of the Formalism 15

we treated the A,"s also as independent coordinate variables, Eqs. (2-11a),

bt =ns"+ AL =0, together with ¢2“EnO“EaI/aAO“ =0, would become the

second class constraints of Dirac’s classification. Then, CCR (or CAR)
should be obtained by the help of the Dirac bracket, defined as

{a, B} p={«, B}P“ {a, &%} P‘(C_l) i {leja, Bye,
OCy=1{p" 8" e, Gj=1,2) | (2-13)

instead of the usual Poisson bracket {«, 8} . This Dirac’s procedure, however,
gives just the same CCR (or CAR)’s as those obtained by the above simpli-
fied treatment.* Further, even if our starting gauge fixing Lagrangian _Lgp
(2-7b) was changed by the following replacement:

—0“B- A, 0B 9"A,+ (v —1)0"B- A, (219

with an arbitrary real w, this Dirac’s method would produce the same results.
Second, in (2-11), we have adopted the left-differentiation convention with
respect to the anti-commuting number & such as the FP ghosts or fermion
components in ¢;; that is, the differential operator (9/0£) has a property

(0/0§) AB=[(0/0¢) A1 B+ (—1)"4A[(8/0¢) B], (2-15)

where A and B are any monomials in the commuting and anti-commuting num-
bers and p, is the number of factors anti-commuting with & contained in A.
[Remember that we are taking the convention that the fermion matter fields
in @, if any, commute with the FP ghosts.] Correspondingly to this conven-

tion of left-differentiation, the Hamiltonian density I should be constructed as

ﬂ::@ﬂfml‘“ .,L'

but not as H =m,'@;— L. This is because the variation of the Hamiltonian
density 0 =00s"+ O0ms’— 0L has to be independent of the velocity varia-
tion 00; while 6L =00;(0/00,) L +06;(0/06;) L by the left-differentiation
rule (2-15). |

§ 2.3. BRS Symmetry as a “Local Gauge Invariance” in Quantum Theory

Due to the presence of Lgr+ Lpp, the Lagrangian density £ (2-7) is no
longer invariant under the local gauge transformation (2-4). The essence of
the local gauge invariance is, however, inherited by the quantum theory in
the form of the following global symmetry. Namely, Becchi, Rouet and
Stora® have found a remarkable invariance of the quantum system _L (2-7)
under a global transformation, called the BRS transformation nowadays, from

® An analogous situation indeed occurs in the CAR of Dirac field ¢: In the usual treatment,
the variable #p* is not considered a coordinate but a momentum 7, conjugate to ¢. -
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16 S ' T. Kugo and I. Ojima

which all the Ward-Takahashi- (W.T.) identities can be derived very simply.
The BRS transformation is given by replacing the parameter A*(z) in (2-4)

“by A¢*(x) for the ordinary fields A,* and ¢; and by supplementing the trans-
formation properties of ¢, ¢ and B as follows: '

DAL() =Dy (), |  @16a).

0p(@) =ite @ 4Tp), (2-16b)
P () = —1g (e () X () /2, (2-160)
az(x)’ziw(x), | | - (2-164d)
SB(x) =0, (2169

where 2 is an zx-independent parameter anti-commuting with the FP ghosts ¢
~and &. The BRS invariance of the Lagrangian density .L (2-7) in fact fol-
lows directly from the local gauge invariance of _[;(A, ¢) and the properties

5(D) =0, 0(cxc)=0. ~ (2-17)

Equations (2-17), which provide examples of the nilpotency of the BRS charge
- stated beloyv? can be easily checked by noting that the strucfure-constant
matrices (Zf%) yo=1f"" satisfy the commutation  relation (2-2) with X" sub-
- stituted by if* and that the FP ghosts ¢ and ¢ obey Fermi-statistics. :
The Noether current of the BRS transformation given by

oL .. 0L

) L. L 1 N |
J B Do Y (c- 0T = X L= B- :
v iy T 0 ‘”’? 8(0%0) 2 x0T 500

| (2-18) -

can bé‘ shown to be conserved (9“J,°=0) and to be rewritten as® \ \
JE=B- D¢ _ 0,B-c+ (i/2) 90,5 (c X o) — (Fuc) ‘ (2 -19)

by the help of the equations of motion (2:10), The corresponding conserved.

_ charge'QB (BRS charge) -

Qp= j dx[B-Boc+gB- (A X0) + (i/2) g‘aoé‘_- (cxo)], | (2-20)

generates the BRS tfansformation; that-1is,
[i2Q5, 0:(2) 1 =00:(z), (2-21)

where @; staﬁdé for A,, ¢;, B, ¢ and ¢, and 00; is given by (2-16). It will
be convenient for later use to introduce the renormalized BRS charge Qp
defined as v ) |
| Q5= (Z+/Zs) Qs (2-22)
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Chap. II Basic Ingredients of the Formalism : i7

which in fact generates a renormalized BRS transformation
[i2Qy", T7] = iA B

for the renormalized fields Ere”:Za"mc and B*'=Z,"2B,

- We have another important conserved charge in this system (2:7). One
easily notices that the FP ghost number is conserved. Unlike the conserva-
tion of the usual fermion number, however this FP ghost number conserva-
tion is not attributed to the invariance under the phase transformatlon c—e'lc
and ¢—e *z. In fact, such a phase transformation is incompatible with our

- fundamental hermiticity assignment (1-18) to ¢ and ¢. Instead, an invariance
exists under the scale transformation, ¢—>e’c and ¢—e ¢, consistent with the

~ hermiticity of ¢ and . The corresponding conserved current and charge are
given by '

Jf=i(E-Dye—0,cc), C(2-23)
chijdsx[5-506+g5- (AX0)]. (2-23b)

This charge Qc, called FP ghost charge, indeed generates the above sca]e trans-
formatlon on the FP ghost fields:

[0, ¢ ()] = (@), |
Qe t (@] =—z). . @2

The FP ghost number is identified with the'eigenvalue of the operator :Q,.

The following simple algebra of Qp and Q; can be obtained from their
definitions:

$ {05, Q5 =Qs*=0, _ . (2-25a)

[Q., Q5] =Qs, . (2-25b)
[Q.Q]1=0. o (2-25¢)

Equation (2-25a) -expresses the remarkable nilpotency property of the BRS
transformation and is easily confirmed as follows:

2i2(Qp)* = [z'/IQB, fazsx( B-Dyc—0,B- c'+_;_ g0z (¢ % c))]’
= j‘d"x<—003-66+00(65) -—i—g-l(CXC)> =0
where §B=08(D,c) =0(cXc) =0 [(2-16¢), (2-17)] and (2-16¢c, d) are used.

Equations (2-25b) and (2-25¢) say only that the charges Qp and Q, carry
the FP ghost num‘bersk iQ.,=1 and iQ,=0, respectively. ‘ '
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18 : T. Kugo and 1. Ojima

Now some remarks are in order. The hermiticity assignment (1-18) to
FP ghosts plays an important role also here in assuring the consistency of the
formulation: First, the charges Qp and Q, are hermitian only when our as-
sigment (1-18) is adopted:

Qp'=0Q3, Q'=0Q,. ' | | (2-26)

Under the conventional hermiticity assignment c¢'=iz [(1-15)], Q' and Q.
become quite other quantities having no simple algebraic relations to Qp and
Q., respectively, and further are not assured by equations of motion to be
conserved. This contradicts the conservation of Q' following from (d/dt)
<alQ4'18> =<B| (d/dt) Qslad* =0, which should hold as far as Qg is well-
deﬁned Further the conventional assignment (1-15) contradicts also the
BRS transformation (2-16): In fact, since the transformed field ¢/ =c¢+0c
should have the same hermiticity property as the original one ¢, the relation
(0¢) =107 is required to hold for the conventional case, while

(0c)t= —%(C X ¢) 1A=~ — AB(x) =0z .

As for the 3551gnment ct=¢, c'=c, the BRS transformation is quite consistent
with 1t, if the “anti-commuting number” A obeys the ‘rule

A =0t . . - (2-27a)
for arbitrary operator () and is “pure-imaginary”:
=2 ' (2-27b)

We assume these properties (2-27).% Of course, if one wants, one can avoid
" the explicit use of such “anti-commuting numbers” by rewriting the BRS trans-
formation (2-21) as

[i05, 0:(x) ] :=0"0:(x), (2-28a) -

where 8’0, are the BRS transform 00;(z) with A factored out (ie., 00

=10"@;) and the anti-commutator (+) is understood if @; contains odd number
of FP ghost fields. From such a standpoint, the use of the “anti-commuting
number” 1 may be understood as being purely for convenience’ sake to write

(2-28a) compactly as
(1105, 0;(2) ] =20"0; () =00, (x) . ‘ © (2-28b)

"% One should also assume that there are an infinite number of such “anti-commuting numbers”
anti-commuting with one another, in order to perform the BRS transformations successively.
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Chap. I1 rBasz'c‘Ingredz'ents of the Formalism 19

§ 2.4. Subsidiary ‘Condition, “Maxwell” Equation and Some Other Sym-
metries of the Theory

As explained in Chap. 1, the total state vector space C{/ in the covariant

- gauge theories necessarily contains negative norm states; i.e., [ has an indef-
inite metric. In order to obtain a physically meaningful theory, we should

specify the physical subspace CU) 4= {Iphys>} so that it satisfies the physica-

lity criteria (1-9), as explained in the Introduction. In Abelian gauge theo-

ries, CUnys was specified by a concise subsidiary condition 1-5): B (x)

|phys) =0 (or (0A)™® (x)|phys>=0). Happily and surprisingly enough, we

can really specify the physical subspace CVpnys by a very simple subsidiary

condition also in case of general (non-Ableian) gauge theories: CV ohys = {|phys)>}

is specified by?? "

Qslphysy=0. @29

This condition, intuitively speaking, expresses the gauge-invariance of the physi-
cal states in C{/ ;... It is indeed analogous to the G.B.-N.L. condition B ()
Iphys>=0 where the B(x) field [or more precisely, [dzA(x) 3,B(x) with
[JA4=0] in Abelian case represents a generator of local gauge transformtion,
while Qp is a generator of the BRS’s version of local (non-Abelian) gauge
transformation. In fact, we can show here that the condition (2-29) really
reproduces® the subsidiary condition B (x) |phys> =0 under the special circum-
stances of Abelian gauge theories: Peculiar points to the Abelian case are
that the structure constant vanishes and no group indices appear, and hence
~ the multiplier field B and the FP ghost fields ¢ and & becomev completely
Jree as is seen from Egs. (2:10): []B=[Jc=[1é=0. Further the BRS
charge (2-20) becomes quite simple as follows:

0= f &z Biyc: =i 3 (c' Bu— By'cy).  (2-30)
. % ‘

where B,'(B,) and c¢,'(c,) are creation (annihilation) opérators of the B and
c fields, respectively, referring to some wave packet system {g,}. This is
possible because B and ¢ are free. The free property of FP ghosts ¢ and &
implies that the total state vector space C|/ can be decomposed persistently
into a direct product C{) = C))’ R C))pp where C{/’ is the usual state vector space
consisting of particles other than FP ghosts and CVgp is the Fock space span-
ned by ¢ and ¢ alone. Further, since the FP ghosts are redundant from the
beginning in the Abelian case, we can restrict ourselves to the sector contain-
ing neither ¢ nor ¢ ghosts: CP’®[0>pp, which is isomorphic to the usual

state vector space CI)’ of Abelian gauge theory. Thus by using (2-30), the
subsidiary condition (2-29) reduces to :

Q5 (Iphys)®10>p) =1 25 Bilphys)®leepee=0. (2-31)
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20 : T. Kugo and L. Ojima

Here |c,>=¢,'10>, of course. By the linear independence of |cy, we obtain
B,|phys>=0 for all %,

which is nothing but the Nakanishi- Lautrup condition B (x) Iphys) 0 (for
all x) for the Abelian case. ‘
: Interestingly, the present subsidiary condmon (2-29) turns out to glve,
in a much simpler form, a natural extension of that of the Abelian cases,
applicable to any gauge theories. The condition (2-29) provides an important
basis in our formalism on which we develop all the discussions hereafter.
We should notice here that we have already implicitly assumed that the
BRS charge Qp is well-defined. As is evident from the general discussions
in Append1x B, this is equivalent to any one of the followmg statements:

G  Qsl0>=0, L (2-32a)
(i)  The vacuum is physical; [0>€ Wpuye, (2-32b)

(iii)-\ The BRS symmetry corresponding to Qp suffers from no
spontaneous symmetry breakdown . (2-32¢)

The first equation (2-32a) will be often utilized henceforth.

[Digression: Historically, such a type of subsidiary condition as (2-29)
was first discussed by Curci and Ferrari. »° Unfortunately, however, they
adopted the conventional (and hence mcorrect) hermiticity assignment (1-16)
for the FP ghosts and did not introduce the gauge-fixing multiplier field B(x).
These defects have caused difficulties in giving an explicit expression for the
BRS generator Qjp satisfying hermiticity and nilpotency. Hence they gave up
to' construct the generator) Qj explicitly and 'simply assumed the very ex-
istence of Qp as well as many BRS transformation properties of the asymptotic
fields without any justifications. ‘However these assumptions contradict one
another as was seen before. Although they observed in Ref. 4) that the Lag-
rangian becomes hermitian under a similar hermiticity assignment to (1-17),
they did not adopt it in Ref. 3). This fact shows that they did not recognize
the fundamental importance of the assignment (1-17) o

We shall see in Chap. III how the physical S-matrix unitarity is assured

generally by the subsidiary condmon (2-29). Explicit examples will be dis-

cussed in Chap. IV. The condition (2-29) is really sufficient to prove the physi-
cal S-matrix unitarity. However, if one prefers specifying the physlcal sub-
space as small as poss1b1e then one can add one more subsidiary condition: ek

Qulphysy=0, N (233

where ' O, is, of course, the conserved FP ghost charge (2-23). This condi- ,

tion works only in reducing the physical subspace to the vanishing-FP-ghost-

number sector and hence will not be imposed in this paper unless it is explicitly

~
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Chap. II Basic Ingredients of the Formalism ' 21

mentioned,

By virtue of the symmetric gauge -fixing choice (2-7b), the invariance of
L:(A, ¢) under the global gauge transformation is preserved by L (2.7):
that is, the Noether currents of the global gauge transformation, :

= (AXF) i+ (A X B)*—i (6 X Do) +i (@, X )", (2-34) .

are conserved (0¢J,*=0) because of the 1nvar1ance of ,,f under the following
global gauge transformation:

[ide-Q,@(x)]:&sX@(x)A for 0=A,, B,¢ and ¢, |
[i0e-Q, ¢ (x)] = —ide- Ty (), ‘ (2 35)

where the ‘global (‘color’ or ‘flavor’) charges Q° are of course given by Q°
= [d’zJ)" and the matter currents j,° are defined by (2-10d). Note that this
global invariance would not be manifest (if any in physical sector) under asym-
- metric gauge-fixing choices such as Regauge. As was first noted in Ref. 5)
the equation of motion (2-10a) is rewritten into the following remarkable
form by the use of the BRS charge Qp and Eqgs. (2-16), (2-21) and (2-34):

OFyu+9J,=1Qs D}, ) (2-36)
Thls equation clearly shows that the ° classmal’ Maxwell-type equatlon
<f1' (O"F,,+g9J,) lfz> U : (2-37)

~ holds for any phys1ca1 states ]f1> | f2) € CVpnys specified by (2-29). Equation
(2-36) will play an important role in the discussions of observables (Chap.
V) and of the spontaneous symmetry breakdown and color confinement (Chap.
- VI), and will be referred to as “Maxwell” equation there. It should be kept
in- mind that the J,”s are the currents of global color transformatlon in QCD
usually supposed unbroken.

Aside from other possible contmuous symmetries such as chiral symmetry,
ﬂavor symmetry, etc., the present system _ (2-7) has also the basic discrete
symmetries P, C and T if the original Lagrangian L:(A, ¢) has. We only
note here the PCT symmetry: If the Lagrangian L matter (¢, 0,0) defines a
PCT invariant theory Wlth a suitable PCT . transformation law for the matter

fields ¢;, then _[ (2 7 is invariant under the followmg anti- lznear PCT
’transformauon :®

AP (@) = — A, (),
B**T(z) = B*(~z), |
PCT: | (2-38)

T (2) = —c* (—2),

£FT (2) =% (— ).
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22 T. Kugo and 1. Ojima

- [An extra minus sign in front of FP ghost field ¢* should be noticed.] Then,
~ we can safely suppose the existence of the anti-unitary PCT operator @ satisfy-

ing

©105=10>, (2-39)
=1, \ (2-39b)
1 00, (z) @ =0FT (z), . e (2-39)

where @;"°T (x) stands generically for the fields (2-38) supplemented by the
PCT-transformed matter fields ¢,f°T(x). Under the PCT transformation, the

BRS: charge Qg the FP ghost charge Qe and the generators Q" of the global
gauge transformation behave as follows:®

0Q:0=0;, | -  (2-40a)

00.0=—0,, \ " (2-40b)
- BQ*0=—Q" ‘ - (2-40c)

Note that the BRS transformation (2-16) [or (2-'21)—_“ ‘is consistent with the
PCT transformation (2-38) and (2-40a). / ‘

§ 2.5. BRS Invariance and Ward-Takahashi Identities
The Ward-Takahashi (W.T.) identities for Green’s functions can be

derived quite simply by use of the BRS charge Qjz:  Since Q3|0>=0 (2-32a),

we obtain
0=<0[[74Q5, T (O (xy) -+ On(x:)) 110>

:1§1<OIT(@I (xl) "'@Fc—l (x}H) 6@10 (xk) @Ic+1 (xp+1) On (:Cn)) [O> » »
' ' - (2-41)
where the (J,(x)’s are arbitrary field operators or their local products. All
the W.T. identities for Green’s functions are exhausted by Eq. (2-41).

In order to obtain the W.T. identities for the generating functional of one-
particle-irreducible (1PI) vertices, consider a source functional .#:

ST, K= Jd4x(Jﬂ-Aﬂ+Ji¢i+jc-c+JE-a+JB-B |

. )

+ K, Dc+iKi(c:9T) ypy— 1 Korg (e X)), (2-42)

where J,, J;, K, and K, are “anticommuting c-number sources” and J,, J;, Jp
and K, are c-number sources. [For fermion matter components, K; are com-

‘muting and J; are anti-commuting. The use of “anti-commuting c¢-number:

sources” is purely for convenience’ sake also here.] By the nilpotency of Qp,
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Chap. 11 Basi'c Ingredients of the Formalism 23

(2-25a), *we have

[1Qs, D*c] = [1Qs, c-gT¢] = [2Qs g (cXc)1=0, . (2-43)

and hence obtain

=it (@017 (- Dretidite-T) ugy

—I—%jc-g(cXc)’—iJE-B)expiy[J,K]IO>. (2-44)

Differentiations with respect to sources J reproduce the W.T. identities (2-41)
for Green’s functions of field operators. [The differentiations with respect -to
“anti-commuting c-number sources” obey the left-differentiation rule (2-15).]
The generating functionals W and I” of connected Green’s functions and of
1PI vertices are defined, respectively, as v '

exp iW[J, K]={0|T exp i ¥ [J, K] 0>, (2-45a)
I' o, K]|=WI[J, K] —J®;, (2-45b)
0= (6/0Jp W[J, K], ' (2-45¢)

where J; stands generically for J,, J;, J,, J; and Jp, and the c-number argu-
ments @; of I should not be confused with the corresponding Heisenberg
operator. By using the dual relations in the Legendre transformation

—J; for the commuting sources,
/0091~ muting 2-46)
+J for the anti-commuting sources,
we can derive an identity for I” from (2-44):”
or or +‘6T or _l_b‘]—' or ZE-B——‘—O. (2-47)
04, 0K* 0¢; 0K; 0c 0K, 0c

Here the cumbersome integration symbol [d'zr is omitted. »
On the other hand, the equations of motion (2-10b) and (2-10c) and
CCR (2:12) lead to the equations for I':

or

55 =04 +aoB | (2-48a)
L oI .or | |

it =0. : 2.48b

6K"+ oc ( )

These are the well-known results. These equations (2-47) and (2-48) will
be much used in the analysis of the asymptotic ﬁelds in Chap. IV, and will be
referred to as the FWT identities. ‘
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Chapter 1II

Proof of Unitarity of the Physical S-Matrix

—“Confinement” of Unphysical Particles by Quartet Mechanism

§3.1. Representations of the Algebra of QB and Q,

In order to estabhsh the phys1ca1 S-matrix unitarity, 1t is sufﬁc1ent to
prove that the three physicality criteria (1- 9) are all satisfied in our present
formulation, as has been stated in Theorem 1.1 in § 1.2: First, (0’) of the
physicality criteria (1-9), ie., the (pseudo-)unitarity of the total S-matrix,
SSt=S8'S=1, holds as noted in (2-9) by virtue of our correct hermiticity as-
signment (1-18) to the FP ghosts. Second, (i’) of the physicality criteria

out

(1-9), i.e., the invariance of physical subspace under the time evolution, CI/J%s .
=Cpin ., also holds. This is because the present physical subspace CVonys 15

specified by the subsidiary condition (2-29),
Qzlphys)=0 | NCRY

in terms of the conserved (and scalar) charge Qp, and hence, is manifestly
invariant under the time evolution as well as under the Lorentz transforma-
tion. Thus we have only to prove the third criterion (ii) of (1-9),i.e., the
positive semi-definiteness of metric in CY) onys Which is not so trivial as the others.
For this purpose, we should analyze the metric structure of the total state
‘vector space C|/ and the physical subspace C'(/phs}s explicitly for each of con-
crete models. We can, however, discuss the general feature of the metric
structure to a considerable extent so]ely by analyzing the irreducible repre-
sentations of algebra (2-25) of Qp and Q.: ‘

${Q5 Qs = Q5" =0, : (3 - 2a)
[iQ., Qz] =Qs, ~ (3:2b)
[O., Q.]=0. o (3-2¢)

On the basis of such analysis, we will find quite a generél mechanism, called
“quartet mechanism”, by which the unphysieal particles having non-positive
norms - are made undetectable completely in the physical world (Hpuys
- CVthS/CVO) ' '

We assume that the BRS charge Qp as well as the FP ghost charge Q.
does not suffer from spontaneous symmetry breaking, and hence Q3z|0>=Q,[0>
=0, of course. So any one-particle states, physical or unphysical, are classified
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VCkap. IIT Proof of Unitarity of the Physical S-Matriz _ 25

into the irreducible representations of the algebra (3-2). We assume also that
these one-particle states are created (or annihilated) by the asymptotic fields
which correspond to certain (interpolating) Heisenberg fields, composite or
elementary. Because of the nilpotency (3-2a) of Qp, the irreducible represen-
tation is at most two dimensional, and hence, singlet or doublet. As will be
seen in Chap. V, the charge Qp (as well as Q,) is commutative with other
conserved quantities such as the energy momentum P, the angular momentum
M®, the global (‘color’ or ‘flavor’) charges Q“ and other possible charges, if
any. Therefore, the particle multiplet of an irreducible repre/sentation can be
_simultaneously assigned ‘such quantum numbers. Taking account of these

pomts we find only three types for the structure of part1c1e multlplet realiz-

ing the algebra (3 2):
¢ phys1ca1 particle = BRS-singlet,
(II) singlet pa1r= “FP-conjugate” pair of two BRS-singlets, (3-3)
(IIT) quartet =“FP-conjugate” pair of two BRS-doublets. '

Singlet representations. In order to show (3-3) explicitly, we begin

with the analysis of singlet representations of (3-2). Let us denote one-

particle states by |k N> where N represents the eigenvalue of FP ghost
charge 7Q, and % stands for all other quantum numbers, e.g., mass, momentum
(or wave packet states), spin and internal quantum numbers, etc. If a state

|k, N satisfies =
Qzlk, N>=0 . (B39

and there exists no state |> such that Qzlx>=|k, N),'then, |k, N> trivially
forms a basis of singlet representation of (3-2), and is called BRS-singlet.
Now we discuss two cases N=0 and N0, separately.

()  Genuine physical particle (N=0). The creation operator ¢, ae- ‘

fined by |k, N=0)>=¢,'|0), commutes with Qp by Eq. (3-4):*
[Qn ] = [Qs, 4] =0, (3-5)

where we have used the ' hermiticity of Q. Thus, since ¢, is gauge- (or
BRS-)invariant and has vanishing FP ghost 'number, ¢z represents genuine
physical particle which freely appears in the physical subspace T/, specified
by (3-1); Qglphys>=0. Therefore, for a consistency of theory, ¢; should
have positive norm: ‘

[bo b]o= +00, o (3-6)

*) Since‘Eq. '(3+4) leads only to Q28:'10>=[Q35, ¢:'1/0>=0, one may suspect that [Qz, ¢']
might be a linear combination of some annihilation operators. This is, however, impossible

because <0}[Qs, ¢:']=—<0[4s'Qz=0.
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26 . ‘ T. Kugo and 1. Ojima

where [ is another possible value for %, and the anfi—commutator (+) is under-
stood for fermions of course. We assume here the positivity (3:6), which
should be assured in each explicit model.

(A1) Singlet pair (N=+0). If N=0, then {k, N|k, Ny=0 due to the
conservation of FP ghost number 7Q, So there should exist some “FP-
conjugate” state, say |k, —N), which has the FP ghost number — N and
{k, — NIk, l\7>3&0 because, otherwise, the state |k, N> by itself cannot produce
any poles in any Green’s function as the intermediate state and hence cannot
appear from the first as a one-particle asymptotic state, which should exhibit
its existence in the poles of some Green’s functions. Such “FP-conjugate”
state |k, —N) is wunique under the normalization

G ~NIENy=1, 3-7)

as far as £ contains a maximal set of quantum numbers by which particle states
are discriminated. [Indeed, even if one finds many states {|/, — N} satisfying

{l, —Nlk, N>50, one can construct only one state satisfying (3-7) by

Schmidt’s orthogonalization method.] Further, this “FP-conjugate” state must
also be a BRS-singlet:

C Qulk, —N)>=0 | (38
with no state |%)> satisfying Qpl*)> =1k, —N). Indeéd othérwise |k, — N>

belongs to a BRS-doublet and then the original |k, N) also turns out to fall

into another BRS-doublet as will be seen in the next case (III) soon below.
This contradicts the first assumption that |k, N> is a BRS- singlet So, in this
case, the representation becomes a singlet pair, “FP- conJugate pair of two
BRS-singlets. Introducing the creation (and annihilation) operators by

|k, N>=0'[0>, |k, —N»>=G,'[0),
We’ obtain be (3-4) and (3-8)

[Os, 0k == [Q5, 0] == \ (3-9a)
and their hermitian conjugates. Further Eq. (3-7) and the equations
<k, N|k, N>=<k, — Nk, —N»=0 due to FP ghost number conservatwn lead to
the following (anti-) commutation relations:

0401 5= 0wt |

[0%, 0]+ =[0% 0.']:=0, (3-9b)

arrd their hermitian conjugateks. Here, in (3-9a) and (3-9b), the commutator

(=) [the anti-commutator (4)] should be taken for even [odd] N. Precise-
ly speaking, in deriving the commutation relations (3-9b), we can obtain
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Chap. III Proof of Unitarity of the Physical S-Matrix 27

only the vacuum expectation values of them. However, by the present as-
sumption that the operators 0y, 0i', 0% and 7.' belong to the asymptotic fields
corresponding to certain Heisenberg fields, we can use the Greenberg-Robinson
theorem [Theorem C.1 in Appendix C] which assures that the (anti-) commuta-
tors of asymptotic fields are c-numbers, and hence conclude (3-9b).

If this type of multiplet would appear in the theory, a consistent formula-
tion would not be possible. Despite that the particles ¢, and 0, have non-
vanishing FP ghost numbers N (5-0), they appear freely in the physical
subspace CY) onys because of (3-9a), if they exist. They not only break spin-
statistics connection (for odd N), but also violate the positive semi-definiteness
of metric also in the physical subspace; for example, the states (6,/—a;") 0>
=[1> satisfying Qz|1>=0 have negative norm (1/1>=—1. Even if we fur-
ther restrict the physical subspace by imposing one more subsidiary condition
(2-33) of vanishing FP ghost number, Q,.|phys) =0, the examples of negative
norm states are easily constructed for odd N; e.g., 0,/6,/|0>=|2) satisfies
Qz12>=0Q,|2>=0 and has negative norm, <2|2>= —1! Therefore, although
this singlet-pair representation seems quite admissible from the algebraic con-
sideration alone, we cannot construct a physically meaningful théory if such
particles appear: The physical S-matrix unitarity breaks down and the proba-
bility-interpretation becomes quite impossible. Fortunately, in the explicit models

(Yang-Mills, SU(2) Higgs-Kibble and gravity) discussed in Chap. IV, we

will find no ‘evidence for such singlet pairs to exist. Especially, the “elemen-

tary” FP ghosts fall into the quartet considered in the next case (III) but
not into this singlet pair. Further, if we do not stick to the covariance, such
gauges as axial gauges with no I'P ghosts are possible, so, from this fact, we
may expect that a general proof of the absence of singlet pairs will be given

in the near future. So we here simply assume that no such singlet pairs ap-

pear, and henceforth discard them.

Doublet representations. 1f a state |k, N> satisfies Qpl|k, N>=~0, then,
|k, N> and |k, N+1>=Q3|k, N} form a basis of BRS-doublet representation of
the algebra (3-2): ' ‘ “

Oslk, N>= B, N+15. (3-10)
The nilpotency (3-2a), Q*=0, together with (3-10) leads to
Oull, N+1>=0. (3-11a)
Since this state |k, N+1) has vanishing norm,
(b, N+ 1|k, N+1>=<k, N|Qglk, N+15=0, (3-11b)

by using the same reasoning as the above in the case (II), we can conclude
that the state |4, N+1)> must have a wnique “FP-conjugate” state, say
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28 - T. Kugo and 1. Ojima

|%, - (N+1)>, which has the-FP ghost number — (N+1) and satisfies
Kk, — (N+1) [k, N+1>=1. ’

And further, this “F P-conjugate” state |k, — (N+1) > also belongs to andther

BRS-doublet, because the state |, — N defined by
| Qslk, — (N+1) > =k, =N, (3-12)
does not vanish due to a “W.T. identity”: C '
Cky Nk, — N> =k, NIQglk, — (N+1)>
| ok, N+1k — (N+1)>=1. | (3-13)
Thus, the BRS-doublet representations are always realized iz pairs: ({|#, N,
e, N+ 15}, {1k, — (N+1)>, |k, —N>}). This provides the third and final

’_tyPe}of possibility for the representations of algebra (3-2). We call this
“FP-conjugate” pair of two BRS-doublets simply a quartet and discuss its

metric structure and BRS transformation property because it gives quite an
interesting and general mechanism of “confinement” of unphysical particles.”

(ITT)  Quartet. Let us introduce the creation operators defined by
Ik, N>EkaIO>, “]k’ ——N>EBI&'TIO>> . ’ N
ilk, N+ 1>=7!10>,  — |k — (N+1)3=F'10>, (31

~ and the annihilation operators by their hermitian conjugates. We can regard .

the FP ghost number N as even without loss of generality, by exchanging
one BRS- doublef of the pair for another if necessary. Then, from the defini-
~ tions (3-10) and (3-12), we find the BRS transformatlon propertles in the
same way as before,

[Qs 5] = =T - (3-15a) ,
Qs Td =8, | . (3:15b)

and hence, from the nilpotency Qg*=0, , ' ,
| [Qs, 2] = {Qs, 7} =0. | (3-15¢)

“WT 1dent1ty” (3-13) and the FP ghost number conservation, together.

: W1th Greenberg Robinson theorem (Appendix C), are sufficient for us to con-
clude the following (anti-) commutation relations: '

XZT BI.T TZT TLT
e[+ Dr “61‘:1; .

Aglc —'61471 0 : . |
------------------------- e =, - (3-16)
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Chap. III Proof of Unitarity of the Physical S-Matriz 29

where the anti-commutators are understood only in the sector of 7 and 7 which
have odd FP ghost number + (N-+1). All the vanishing matrix elements,
except for [Bi, 8,'] =0 which is derived from the nilpotency Q7 =0, are the
results of FP ghost number conservation. wy; in (3-16) represents the value

of the commutator [y, '] which remains undetermined from the algebraic

" considerations alone,®” but it need not be specified for our purpose fortunately.

- We have thus shown from the algebraic consideration that there can exist
the quartet representations, i.e., the BRS-doublet pairs, satisfying the BRS
transformation property (3-15) and having the metric structure (3-16).
Here, we note an example of the quartets, present always in the theory, con-
taining each “elementary” FP ghost pair as their members, for each group
index ‘a’. We call these quartets the “elementary quartets”.” Now, note the
following two W.T. identities:

(O|TB* (z) B (y) 05> =<01{Qa, T'(B“(x) & ()} 10>=0, (3-17a)

COIT A, (@) B'(5) 10y —i<0|T'(D,0) * () & () 10> ,
={0|{Qs T (A, (@) 2 (»))}10>=0,  (3-17b)

" where use has beén made of Qz/0>=0 and the BRS transformation (2-21)
with (2-16). We recall the‘equatio’ns‘o‘f motion (2-10¢) and (2-10b),

8" (D,e)*=0, L (3-18a)
A+ @B =0, | (3-18b)
and the equal-time commutation r’elations, |
i{(Doc)“(':c> 2 (Y) } ayey, = 1070 (x — ), (3-19)
[ @), B 0) Laver, =078 (v—).  (3-19)

~ which are nothmg but CAR ‘and CCR (2- 12) with (2-11). It follows from

these (3-18a) and (3-19a) that |
0,40/ T (D,0)" ()3 () |05 =0 (2 — 30 O1{ (Die) () , () } [0
=i (=)
Hence we obtain, taking account of (3-17b) also, |
F.T.0IT (D,0)* () 8 () [0y = i0%p,,/ 2, (3200
FTCOITA (2) B 3) [0y = —0%p,/¢,  (3:20b)

where the Fourier transform F.T. is defined by the operatmn fd"‘xe‘p("'” v,

* Of course, if N5£0, 0ua=0 by the FP ghost number conservatmn In all important cases, -

however, N=0,
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30 _ T. Kugo and I. Ojima

Equation (3-20b) can be directly obtained also by utilizing EQS. (3-18b) and
(3:19b) together with the help of (3-17a). ‘

The pole structures of Egs. (3-20) imply the existence of massless asymp-

totic fields (for each group index a) which are defined as follows:

Al @)= =00 @)+, (321
B (x)*=§"(x) + -, (3-21b)
(D)™ (2)® = 0,7 (2) + -, @l
(@)= =F (@) + -, | (3-21d)

where use has been made of the notation

@ (x)* = w-limit @ (x) - (3-22)

Zog—>F 0

- with the superscript ‘as’ representing ‘in’ or ‘out’, and the dots (--+) stand for

the other possible asymptotic fields irrelevant to the poles in (3-20). The
BRS transformation (2-21) with (2-16) for the Heisenberg fields A,*, B
(D,e)*.and ¢° determine the following BRS transformation properties for the
asymptotic fields in (3:21) [see Theorem C.3 and .(C-25) in Appendix C]:

[iOs " (@] =7 (%), {i0s T (@)} =if"(x),  (3-23a)
{iQz, 7" ()} =0, [iQs B*(x)]=0. (3-23b)

These equations (f rewritten in terms of the creation and annihilation opera-
tor) are nothing but the transformation properties (3-15) which we have

found above for the quartet representations. Therefore, also their (anti-) -

commutation relations are proved to be identical to (3-16) by essentially the
same reasonings as above: Equations (3-20) as a result of the present W.T.
identity (3-17b), which corresponds to the “W.T. identity” (3-13) above,
conclude .

[ (@), B ()] =i0"D(x—y), (), ()} = —6"D(x—y), (3-24a)

by virtue of the Greenberg-Robinson theorem (Appendix C). All the other
(anti-) commutators among vy, £, 7 and 7 except for [y*(x),%"(¥)] are found
to vanish from the FP ghost number conservation and (3-17a); e.g.,

[8* (), BN =Ar" (@), "W} =7 @, 7"} =0. (3-24b)

These equations (3-24) just coincide with (3-16) when they are rewritten by
introducing the creation and annihilation operators. Thus we have found gener-
ally .the existence of ‘“‘elementary quartet” for each group index a: 5% 7* and
7" represent “elementary” asymptotic fields of Heisenberg operators of the
multipliers B”(x), the FP ghosts ¢*(x) and anti-ghosts ¢*(x). In the ex-
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Chap. II1 Proof of Unitarity of the Physical S-Matrix 31

amples in Chap. IV, »* will be found to be identified with the longitudinal
component of A,%(x) for the symmetry unbroken Yang-Mills case, and with
the Goldstone mode of Higgs scalar field for the case of SU (2) Higgs-Kibble
model. These “elementary quartets” will play an important role in the
general discussion of spontaneous breakdown of global gauge symmetries in

Chap. VL

§ 3.2. Quartet Mechanism

Consider the case where exist a variety of quartets all of which satisfy

the BRS transformation property (3-15) and have the metric structure (3-16),
as well as the usual genuine physical particles with positive norm. Then, the
total Fock space C{/ spanned by those particles is full of negative metric.
Even then, however, we can prove that, in the physical subspace C{/nys
specified by the condition Qglphys>=0, any members of any quartets always
appear only in zero-norm combinations and hence that CU/ . has positive
semi-definite metric. Thus, any quartet members can never be detected with
finite probability in our world /., Quartéts are always confined! To
prove this is the subject of this section.

We call any quartet members unphysical particles (states). As for the
BRS-singlet particle states, they are assumed to be made orthogonal to the
unphysical particle states, which is always possible. The sector of states
which contain 7 unphysical particles in sum aside from arbitrary number of
genuine physical particles, is called the n-unphysical-particlfe sector. Since we
are considering the case in which th»ere'exist arbitrary variety of quartets aside
from many kinds of genuine physical particles, we should understand that the
index 2 (or I) in (3-15) and (3-16) stands also for the kind of the quartets
as well as other quantum numbers. By the help of the inverse of the metric
matrix 7 of (3-16), the projection operator P™ onto the n-unphysical-particle

sector can be written inductively as®¥ ;
P('n) — (1/71) (___ kapmfl)xk '—X'IcTP(ngl).‘Bk o wklﬁka(n—l)Bl
+i7 PP — i PP 1) - (3-25)

for n=1, 2, ---, where the summations over the repeated indices 4 and [ are
understood. P® is of course defined as the projection operator onto the zero-
- unphysical-particle sector [i.e., the subspace spanned solely by the genuine
~ physical particles, say ¢,|, which has positive metric by assumption and is
denoted as Hopyee P is explicitly given by ' \

PO=31(1/ml) (H ol Hl00ld0,bebe)s  (3:26)

because of their diagonal metric structure, [@qs, @s']z=0a; [(3-6)]. Note that
the P™’s are orthogonal projection operators which are orthogonal to one
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32 e ~ T. Kugo and L Ojima

another and complete (on the assumption of asymptotic completeness):

(Pm))z P® P"?’T | ' "‘ (3-278)
- pw P(m)_ pm P(n) 0 P™, ' .(2-271:))
gﬂ P —1. o . (3-27¢)

' By using the BRS transformation properties (3-15) of quartets, we can
prove the following important properties of P™:® -

[Qz P®]1=0 for n=0,1,2, . (3-28)

;
The proof goes by induction. First, [Qz, P®] =0 is trivial because the com-
mutativity of Qp with the genuine physical particles b [Osp, b =0, and the

explicit form (3-26) of P® lead to QpP® = P®Q,=0 by Q5/0>=0. Next we
. calculate the commutator [Qp, P™] by using (3-15), (3 25) and the induction

assumption [Qg, P* "] =0, |
| —n[Qa PP) =8I0 (—ir) + (—ir P,
+ZT P(n I)B +Z‘8 P(n 1) =O

This finishes t‘l‘le proof of (3-28). By virtue of this equation (3-28) together
with the BRS transformation property (3-15), we can rewrite P™ into the
following remarkable form:

- P®={Qz R™} for n=>1;
R® == (1/n) 7P Pyt P 1’rk+wklﬁk’rP<“ 7). (3-29) ®
From thls it follows directly that® |
CfIPPlg>=0 for n>1 ' (3-30)

for any physical states V| f),V]g>ECVpl;ys satisfying the subsidiary condition

(3-1), Ozl f>=03lg>=0. From Eq. (3-30), we can see the following things: '

i) In the orthogonal decomposition of ¥|f>& Cl/ 06 according to the number

n of unphysmal particles,

1F>=POLH+ S PO, (3-31)

the norm of |f> is determined solely by the first component P®|f>& Honys

and all the others have zero-norm by (3-30):

CFIFY=CFIPOLF>=<POS, PO f5=0. (3:32)

'® It was pointed out by Professor K. Fu_ukawa that P™ can be rewritten into this concise
- form (3-29).
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Chap. I Proof of Unitarity of the Physical §-Matriz 33

Thus, the physwal subspace C(/phys has positive sem1—deﬁn1te metric, as far as

the positivity of physmal-parucle norm is assured.
the third physicality criterion’ (ii) of (1-9),

is proved to

This finishes the proof of
and -hence the physical S-matrix

be unitary. We note here also the follovvingisomorphism:

phys/CVO -

phys (

P(O) CV)

(3-33)

where C{/, is the zero-norm subspace of C{/ g defined by (1-12a). Further,

since (3-27c),

definition), lead to

(i) Since it is instructive to see. explicitly what type of combinations of

CUO — i;OP(n)C-(/Q — i: P'(n)cvo

c Z P(n) CVphyS

(3:29) and Qg =0, together with the help of P(’”CV =0 (by

{QB! Z R(n)} Cvphysc QBCV C CVO ’

CYy= 2:1 p® CVﬁhys = QBCV .

(3-34)

unphysical particles, appear in the physical subspace C{/ uy, We present a com-

plete list of them up to 2-unphysical-particle sector in Table L ’

[(ch, B> To> Tr)

in' Table I stands for the operators of quartet satisfying (3- 15) and (3 16).]
Notice that any states in P™C/ .o (n=>1) can easily be construc‘ced as Qpln>
from arbltrary n-unphysical-particle states' |#>; indeed, when n=>1,

P(n)

bq}phys — P(n) (mz—l P(?ﬁ)) CVthS

by the brthogonali"cir (3-27b) of the P™5 and (3-34). All

Table I are constructed by this method; e.g., Q7T )=

— PP Q) = 0y (PP ).

the states in

BT — 78D |C¥>

Also from this form OB|n> we see very clearly that the unphysical- partlcle

(i) If we start from an 1n1t1a1 state ]z>ECVphys( PR, the final state

(104 @alny) =<mlQIn> =0,

states in C{/ ;. have indeed zero—norm by the nilpotency Qz’=0:

(3-35)

Table 1. List of unphysical- partlcle states contained in Vppgs. | (e.ﬂ( phys)
stands for an arbitrary state consisting of physical particles alone.
iQo=—1 Q.= iQ.=1 iQo=2
PO | N ey -
POV GiI=ri8010) | (58 AN L RN BT
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34 ‘ “ T. Kugo and 1. Ojima

| f>* after scattering also remains in the physical subspace CVpuys (= Vi)
by the conservation of Qz Note, however, that the subspace. ﬂ[phys—P“”C(/phys
is nmot invariant under the time-evolution: R ye=P thys#PoutCVphys

ot . Namely, even when we start from an initial state |2> € H s

containing no unphysical particles, the final state |f) generally has non-vanish-
ing components P((,ﬁ?cl F> of n-unphysical-particle states which are really pro-
duced by such processes as FP-ghost pair creations. The important point is
that such unphysical particles are produced only in zero-norm combinations
as is assured by (3-30) or (3-35). If the conventional wrong hermiticity
assignment (1-16) was adopted, this was not the case. We here show a
crucial example indicating the incorrectness of (1-16). Since the “elemen-
tary” quartets are shown to always exist, the state Bl + 767D lad=12) in
Table I with y, 8, v and 7 of the elementary quartet for instance, will be
produced by interactions (and have zero-norm <2(2>=0 in our hermiticity as-
51gnment) Note the following correspondence between the FP ghosts with
our hermiticity assignment (1-18) and the conventional one (1-16) (the con-
ventional FP ghosts are denoted by capital letters for distinction),

¢ (x) = Z (rx% () +7:79:* (x)) ic™ (z) =1 Z (T9: (2) +T4'9:* (%)),

0 0
c= (x) Z (Fkgk (x) + Tk]\gk* (x>> C* (x) 2 (rlcgk (x) + ]_'k*gk* (.2:) ),
@3- 36a) *%)

in conformity with the corresponding hermiticity assignments (1-16) and
(1-18), respectively, and hence

roly ol ol loly, (3-36b)
{76 1 = — A7 Ty = 0 AT % Ty = — AL, I} =0t - | (3-36¢)
Therefore, correspondingly to the above state |2), the state '
| B = @'+ TeTH 1> (3-37)
is produced in the cenventional case, which, surprisingly, has a negative norm
(for k=£D)!: :
@By =@My = ~Kalay<0.  (3:39)

Although this could be seen more easily in (3-35) which manifestly shows
~that the zero-norm property breaks down if Qz'écQz, we have preferljed to

# For definiteness, we should say that the initial and final states are understood to be written
in-the in-state and out-state bases, respectively: =1 inp and |f>=|f out>. Of course,
in the Heisenberg picture, any state vector |a) does not change in itself through time
evolution: |ap= |fout)=|i inp= En_oPé?,’tlz inp. - k

*#) Here {gr(x)} is a suitable wave packet system of massless partlcle [See Chap. IV.]
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Chap. III Proof of Unitarity of the Physical S-Matrix 35

give an explicit example state Wlth negative norm which is really produced
in the scattering process.

(iv) For any Green’s functions of gauge- (BRS-)invariant operators, any in-
termediate states- containing unphysical particles cannot contribute at all to
their spectral functions. In fact, for example, if @, () (Z=1,2) are gauge-
invatiant, ie., : ’

[Qs, 0:(x)] =0, ‘ (3-39)
then ' ‘
’ Q50 (x) Iphys)=0 = 0, () [phys) < Y

phys »

and therefore, the contribution of n-unphysical-particle intermediate states to
the spectral function vanishes by (3-30): '

{phys’|0; (z) P", (y) [phys)=0  for n=>1. (3-40)

Thus we have proved that the unphysical particles, i.e., any quartet mem-
bers cannot be detected at all in the physical subspace due to their zero-norm
combinations. This mechanism that a particle essentially decouples from the
physical sector by forming a quartet is called quartet mechanism.” This

mechanism is supposed.to take place rather generally, not only in the usual .

; unphysical particles of the longitudinal and scalar components of gauge fields:
Indeed it should take place in .the famous U(1) problem (§7.1), and it can
give a key mechanism even for the color confinement problem in QCD?

(§62)

§ 3.3. Comments on Subs1d1ary Condltlom for the Case of Non- Sunple Gauge
Groups

NOW we discuss some arbitrariness in setting the subsidiary conditions for

the cases of non-simple gauge group G. In such cases G can be decomposed
into two factor groups: ' '

G=G,XG,, ’ (3-41)

where we need not assume that G, and G, are simple. [So, if one wants

complete reduction of the form 2. 1) one can iterate the procedure (3-41).]
" Consider the cases where the gauge fixing terms for the gauge groups G; and
G, are chosen to decouple to each other, i. e., the gauge fixing terms for G, are
invariant under the G, gauge-transformations and vice versa. [This is the case
in our symmetrlc gauge fixing (2- 7b).] Then, our BRS charge Qp and FP

ghost charge Q, for the total group G are decomposed into those for each
group G, and. G, as

QB = QB(I) + QB(z)s Qc Qcm + Q (2) (3 . 42)
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36 L ’ “T. Kugo and L Ojima

and these. O, and QF, are separately ‘conservec\l ,As has been seen in the
precedmg section, the single subsidiary condition (3-1), Qplphys>=0, is suf-
" ficient to specify such physical subspace CU/ uys that the isomorphism (3-33),

phys/ CVo== Honys, holds. However, here correspondmg to the decomposition
(3 42), there exist a variety of choices of subsidiary conditions if one prefers.

to make the physical subspace smaller; for examples, one can deﬁne

CPEe= lphy5> & Q" |phys)=03" lphyS> 0,
C(Yﬁﬁ et o |thS> & 0" IthS> QB(Z) [phy5>
o =0 lphy3> -0, [phys) = 0,

and so on, where the superscripts attached to CY) onys s for distinctipn indicate
the subsidiary conditions imposed. It is not difficult to see the following in-

clusion relations of them:

(VB ) -
CVphys‘ECVghysD Cvgﬁggz'c (IV + VII) - CV‘E yiz'cl o (V II) Dﬂphys‘ .
BB DY Vi (V+VID) |
ol apeeVILVID) |
| » | (8-43)
More exp11c1t relatlons are shown in F1g 1. Note here that
B —cyBe for i=1,2, (3-44)

because by virtue of the commutation relations ,
0.0, Q5] =Q5®, [iQ.7, Qa]l =Qs”, - (3-45)

the condition Qylphys>= Qc(”|phys> 0, for instance, necessarily implies
0, |phys) =[iQ.", Qs]lphys) =0 and Q5® |phys)>=(Qz— QB“’)IthS> 0, also.

By way of illustration, we cite simple states contained in the regions INVII;

of Fig. 1:

Fig. 1. Inclusion relations (3-43). Three empty reglons denoted by @
appear due to the equality Q.= Q M Q.®,
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15 (@7 @+ 7,1, @) | |

IIE (B (6024 (2)1-_|_Z7. (1)1—7,. (2)1) la>

III = 7, (1)1-7, (2)#Ia> ‘

VSR @O~ 128, >, (3:46)

Va8:2 P ay, |

VISR o8 a),

VIS 8,18, ac)
We should note that these varieties of. choices of subsidiary conditions are
relevant only to the size of zero-norm subspace C{/, in each CVphys Indeed,
it is evident from the arguments in the preceding sect1on that the 1somorphlsrn

phys/CVO —j[phys o - ; (347)

holds for any physical subspaces in (3- 43) denoted by CP&ys generally We
prefer, however, our original physical subspace Y onys (= CVphys) specified by a
single subsidiary condition (3-1), Qp|phys>=0. Aside from the fact that it
is the simplest choice and makes the theoretical analysis easy, it allows us to

take a wide variety of gauge' fixings: The gauge fixing terms for G, gauge-

group need not be invariant under the G, gauge-transformations and vice versa.

In fact, in the cases when the groups G, and G, are mixed with each other
by the gauge fixing terms, the charges QfF). and QF, can no longer be defined
separately. For instance, this is the case in the ’t Hooft-Feynman gauge in
Weinberg-Salam model.? Therefore, we always take only one subsidiary con-
dition (3-1) hereafter. k
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Chapter 1V

Scattering Theoretical Analysis
in Some Examples of Gauge Theories

Tn this chapter we discuss explicitly the following model ‘theories: I
SU(2) Higgs-Kibble model with spontaneous symmetry breaking, II pure
Yang-Mills theory of a simple gr‘oup' without spontaneous symmetry breaking
and III gravity. Throughout this chapter we assume the asymptotic ‘complete-
" ness in terms of the “clementary”’ fields. We analyze the .properties of
asymptotic fields of the “elementary” particles as follows: First, the general
forms of the 2-point functions of Heisenberg fields are obtained by the re-
‘quirements of Lorentz covariance  and BRS invariance alone. The discrete

spectrum parts of them unlquely determine the commutation relations of the

asymptotic fields by virtue of the Greenberg- Roblnson theorem (Appendix 0.

The commutation relations lead to the equations of motion of the asymptotic
fields, in view of which we choose a complete set of the mutually inde-
pendent modes, physical ones and unphysmal ones The properties required
in the previous chapter are explicitly shown to be satisfied; that. is, all the
physical modes have positive norm and are orthogonal to all the unphysical
modes which fall into quartets satisfying the BRS transformation property
(3-15) and the metric structure (3-16). Further we will obtain the explicit
asymptotic form of the BRS charge Qp which will clarify once more the re-
lationship of the present subsidiary condition QBIphys> 0 and the Gupta-
Bleuler cond1t10n (0 A,) P |phys)> =0 or its generalization B (x) lphys> 0 by
Nakanishi and Lautrup® for the Abelian case.

$4.1. SU(2) HiggsKibble Model

We discuss, following Ref. 2), the SU(2) Higgs-Kibble model® as a typi-
cal and the simplest Yang-Mills theory with spontaneous breaking of the
gauge symmetry. The Lagrangian density is given in (2-7), in Which the

group index a runs over a=1,2,3 and the matter Lagrangian density Imatter

is explicitly given by

L mater =| 0,7 -——2—gf“A “zzf] v @w). @

Here ¥ is a complex isospinor scalar field and the potential part V(@'Y) is
adjusted so that the vacuum expectation value of ¥ becomes

W= (7).
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Chap. IV  Scattering Theoretical Analysis 39

So it is convenient to parametrize the field ¥ as follows in terms of ¢, called
(real) Higgs scalar, and y*(a=1, 2, 3), called Goldstone bosons:

7@ =2 L@ i@}, @y
The BRS transformations for these matter fields ¢ and 3* are given by
09=[i2Q5, §] = —A(g/2y-c, (4-3a)
Or=idQu 7] =2/2 [w+Petyxcl. (4-3b)

We should note here a peculiar property of this SU(2) Higgs-Kibble model
that it retains an unbroken global SU(2) symmetry which is different from
the spontaneously broken global one corresponding to the local gauge sym-
metry. With respect to this remaining SU(2) symmetry, ¢ and y* are iso-
singlet and triplet, respectively. One of the I'-W.T. identities, (2-47), is
rewritten in this case as ‘ o

OF O O OI \ OI' oI O 0L 4T p_o

(4-4a)
0A, 0K* 0¢ 0K, 0y 0K, Ooc 6K oc
and the othérs (2-48a) aﬁd‘ (2-48b) remain unchangedf
0T'/0B=0"A,+ a,B, (4. 4b)
or |, .or : '
0*——+i° = =0, 4.4
bKF oz (4:40)

’The source functional (2-39) has the following form for the present case:
FL[J, K] = jd‘*x[Jﬂ-A”+J¢¢—]-Jx-X'—{—jc-c—i—JE-E—l—JB-B+K,,-D"c
+ @/ {—K, - c+ K- [+ P)ct+yXc] =K (eXe)}]. 4-5)

Now we begin the analysis of 2-point functions. From (4-4b) we obtain

(Z)ab(k>_ J‘d‘ixeﬂc(a; Y) 62]—' _6ubzk (463) %)
6A (x)0B(y) |y :

g (k) =a, Ff??f:” (k) =0. ; \ (4-6b)

Taking account of Lorentz covariance, the remaining global SU(2) symmetry,
the FP ghost number conservation and (4-6), we define the one- partlcle Air-
reducible (1PI) Z2-vertices (i.e., the inverse propagators) as follows:

¥ .o represents to take the value setting all the arguments equal to zero.
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4%21) %bj ( k) 6ab

o

A, By e

‘A, <g,,,,—- kkk )A(k2)+ o ”B(lez) ik, ik,,C(kZ)%
—1ik, \ (798 0 | 0
« | —ikCG 0 kZF(kZ)
¢ , . R ‘o‘ i )
: ’ ik 0 )
| (4-7)

We have orﬁitted’here the parts containing ¢ which is decoupled from others.
Further we define .

ot

/F.T.——————,—Mﬁ‘”"k a), EY, | ‘ 4.8a) ‘
, 6K'ua§cb . IRy (&) ’ | ( a)
T ‘
F.T. - =0“¢ (k%), 4:8b) -
G NG

where F.T. means Fourier transforms. = The identity

0,2 ("L /0K, () 0 () |) =0T /0 (D)0 W) o, (4:9)
which follows from (4-4c)k, indicates | |

o (F) =7 &), | | (4-10)

Equatlon (4 4a) with operat1on 0/ 66! et is :

By
or o oI - O°T ~ |

ol - =0, (411
<6A # 0K, 0" 0. 0K “6c> Zsz?, : ( : )

We obtam the followmg two equations, differentiating (4 11) Wlth respect to
A, and X :

C BB o) =CEIE), . (4129
CE) o (&) =F (E) L (*). ,  (4-12b)

 And hence | | -
| B(kz)F(kZ):"CQ(kz).»’ ' o L (4-13)

Inverting the matrix I’ @ (4-7), we obtain the propégators’:

iF.T0IT (@70) 0y = (I'®) 3
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A,, . 'B VA c c

CREN ks c )
A <g"”."_l/;T>A B T
—ik, /B 0 ~C/EF: o
.. C C 1 _ B
: L —ik, ‘ 0=
g i BF BF EF ,
c L
0 Er
—i
. =t o
‘ R )
| (4-14)

where use has been made of the W.T. relation (4-13), and k= (B2
- From (4-14), one can deduce the vacuum expectation values of’ commuta-
tors: ‘ k '

<OI[A,(2), A2 (»)]]0y =0 “_b[ —iZs (@t m™0,0,) 4 (x~y; m?)
+ iLéﬂﬂpD (=) ~iad DB (2 =)

i [0 Gt 0,0 4o 9,
QU4 @), B ()]110y= =is™0,D(z-3), | |
OB @), 20110 =0 ~iM.D (e —9) =i [ dstsy @4@;_;; 9]
OILA @), 2110 eaabau@y[~iMzD (2= 9) +iME(z—y)
i [T a9 ‘
ol (2, 2 (01105 =0%] (Z,—~ M) iD (z—3) +icsM{E (e—)
) +-if+°;dsaxx<s>4<x%y;s>]v,, |
OILB* (), B'(x)110y=0, |
O @, 2010 = 0| ~ 2D (z—) j ast ) 4939

(4-152)

.where use has been made of the 1nvar1ant dlpole function E(x) some proper- -

ties of which are explamed in Appendix ‘D:
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42 o T. Kugo and I. Ojima
CE(x) =— (0/0m®) 4(x; m®) |maco » OE@=D®.

In addition, we can write

<0[[¢ (=) ,rsb(y)] 0> =iZ,4(x—y; m?) +i fdsﬁ¢¢ () 4(x—v39),
| (4-15b)

and all the vacuum expectation values of other commutators than (4-15)

vanish owing to the global SU(2) symmetry and/or the FP ghost number
conservation. In (4-15), the vector mass m is defined by the pole position
of A7'(s), ie., A(m? =0, and the various quantities are defined as follows:*

Zy7 = — (d/ds) A(S) lyemss 25 =7(0), Z,'=F(0),
L7'=A(0), M,=C(0)/F (),
M= (d/d$)Re(C(5) /F(5)) lyuty M= (d/ds)Re(B(8)/F(5)) ls=0,
¢ (s) =n"Im (A7 (s)) — Zad (s—m?),
O (8) = — 5.4 (5) = — (29) " Im (C(5) /F ()
Grn(5) =— (25) " Im (F2(5)) + e () 7 Im (B(s) /F (5)),
F@== @) I (). (416)
We assume that the LSZ asymptotic conditions hold, and hence the asymptotic
fields are defined by the weak limit:*#) %+ '

A, (x) —> Z A= (), B(z) >Zi*B*(x),

X(x) -_>Zx1/2 as(x)’ ¢(x) _>Z¢1‘/2(,-b’as (.ZC),
¢ (@) 710 (2), T(x) =2, (x), co (4-17)

where ‘as’ stands for ‘in’ or ‘out’ and the renormalization constant Zz is taken
as ZBEL*I\:A(O) for convenience. These asymptotic fields are, of course,
supposed to have their supports in time-like and/or light-like regions in the
momentum space, and hence their (anti-)commutation relations should be c-

numbers according to the Greenberg-Robinson theorem [see Appendix Cl..

Thus the discrete spectrum parts of (4-15) determine their (anti-) commuta-

tion relations as follows:

[Aﬂas (.Z') 4 Auas (y)] =—1 <g/w + m—zaﬂax) 4 (.23 — ¥ mz)
. 14K3,0,D(x—y) —iad,d,E(x—v), (4-18a)

0 We notice that Zy=1— [ dso (s) and L=Zs/m*+ [Fe dso (s) /s.
_ *® Henceforth, we will omit the group index a of the fields Al B, x* ¢* and ¢°
#%9 We assume here that all Z-factors are positive. This is always true in the perturbation

theory.
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[A5(), B*()] = —iK"8,D(x—y),  (4-18b)

[B*(x), B*(y»)]=0, S | | \(4-18@"
[B*(2), (] =—iD(x=y), (4-18d)

LA (@), 7 (] = —iaN0,D(xz—y) +i(aK™")0,E(x—y),  (4-18e)
[ (@), ¢ 0 ] = 1—2aNK™*)iD(z—y) +iaK'E(zx—y), (4:18f)

@), W} =—D—y, | (4-18g)
[y @), g D] =id@—y;mS | (4-18h)

and all the commutators of other combinatior;s vanisH. ‘Hére we have defined
K=L/Zy=(ZZp) "', a=ao/Z, ' (4-19a)
N=(Z/Z)"*M,= (K"*Zy/ Z,) M/2 , ' (4-19b)

and have used the W.T. relation (4-13) for £*= O,,B(O)F(O)v =C?(0), and the

‘equalities

A(0) =B (O) , » ‘ (4-20a)
£<R6&> _oCO) d <R C@) (4-20b)
ds F(5)/ |s=0 F (0) ds F(s)/|s

The equality (4 20a) is implied by the smgulanty free assumptlon of I'P ”(/e)‘

at £2=0. Equation (4-20b) can be derived, by the help of B(/ez)/F(kz)
= (C(¥) /F (¥))? from (4- 13), on the reasonable assumption Im (C(s) /F(s) )ls=o
=0. In fact these two assumptions are satisfied in any order of the pertur-
bation theory. The last equality in (4-19b) is a consequence of (4-20b).
The present assumption of asymptotic completeness means that the asymp-
totic fields A,%, ¢, B*, y*, ¢* and 7 are complete without bound states.
Therefore, we can deduce from the commutation relations \(4-18) the follow-
ing equations of motion for the asymptotic fields by the help of their irreduci-
bility: : , ' ,
DB“ Ce*=0c*= (O +m,) ¢=0, ‘ (4-21)
Oy*=—aK'B*. o (4-22)

/This equation (4-22) indicates that y* becomes a dipole ghost field except for
the Landau gauge case (a¢=0). The massive Proca field, say U, contained
in A, can be separated from the unphysical modes as follows:®

S=A~ (VK—aN)9,B*— VKo™, o (4-23)

Then, in fact, we can easily convince ourselves that®

* In deriving (4-24b), we need the relation L=Z,/M,?, which is guaranteed by the W.T.
relation (4-13) and the equality (4-20a). Note also that Eq. (4-19b) is indispensable for
the consistency of (4-24b) with (4-23), (4-18e) and (4-18f).
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([:I-{-mz)Uas(x) O O”Uas(x) ‘ \ (4-24a)
[Uas(x) Uas(y)]———z(g#,,—l-mz@ dy)d(x vy m 2), '(4-24b)

~~and the commutators of UaS'Wlth other fields B, P aa and ;pas,éll
vamsh Thus A, satisfies

(D+m2)Aas—[wK aN) m?— CNK 19, Bas+\/Km6,4X
aﬂAa=+m/K 'Be=0. | | . (4-25)

NOW, all this information enables us to construct the Fock space of asymp-
/totlc fields, which is identified with the total state vector S$pace 1) on the

- assumption of asymptotic completeness. The creation and annihilation opera-
tors for the Proca field U,* and the (real) Higgs scalar ¢ are defined as .
usual by using suitable complete sets of wave packets, and are denoted as

UHU,) and ¢, (), respectively. Since the Goldstone boson % is a dipole
ghost field now as is seen in (4-22), we need some manipulation to treat it.
Let us deﬁne 72 field as follows:

~as as+ aK-—lQ(I/Z)BaS ) : . (4 26) %)

‘where the operator Q(m) is deﬁnedv by (D-20) or (D-3) in Appendi)t D. By
the equality (D-4), [19D"?f(x) =f(x) if [/ (x) =0, and (4-22), the 7* also

- becomes a simple pole ﬁeld,: _
Og==0. o L @2n

Since all the. four fields ‘B*, #*, ¢* and cas become massless simple pole fields
' now, we can deﬁne their creatlon and ann1h11at1on operators in the usual man-
ner by ‘using a common wave' packet system {gx(x)} [see Appendix D for
the property of {g.(x)}]; espec1a11y, the annlhllatlon operators for xas field

.are deﬁned by _ . o ’
| 0= (g, 1) = jdg xgk*(x) f'%x“ (@). 3 - (4-28)
Then, one can easily show by the help of (D-22) and (4- %) that |
0= (G ™) —aK” ' (P ,B®), ’ (4 .292)
7 @) =22 (9. () — KBy R

where the dlpole wave packet system {hy} 1is deﬁned in (D -20) as h,c
Q(l/Z)

* Of -course, this ¥2¢ is non- covarlant and non-local (Wlth respect to the asymptotlc fields),
' which 1s,,however harmless. -
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above lead to the following commutation relations of the creation and annihila-

tion operators:

. UBT ¢D‘T o “?ClT BLT ¢! C"LT,
Udf 0ug 0 : o | o B
N i 0
(!’F 0 6!’” o
1— 2a¢NK V20w — Ok
Xe | ( ) 0 Kl ; 0 . (4-30)
0 ................... PRI .....................

In deriVmg (4-30), we have utilized Eq. (D-22). Thesek commutation rela-

tions completely determine the metrlc structure of the total state vector space

Cl). We notice here that the modes U, and ¢, have positive norm and the

other four (ys*, Bi®, ¢i™, ¢x™) ‘have indefinite metric which is exactly the same
form as is found in (3-16) generally for the quartet (s Bres Tios T) + We will
in fact see that U, and ¢, are BRS- s1nglets and (Xfc , B2, ¢, E,;‘S) really

belong to quartet representation.
In order to show this, we determine the BRS- transformation of those

‘as’ymptotlc fields. As is explained in detail in Appendix C, any well-defined

syminetry - transformatlon on Heisenberg fields @;, denoted by

000, 0.1 =00 (), @y

induces a linear transformatwn on the asymptotlc ﬁelds This asymptotic -

. transformation is determined by

000, 07 ()] = @0) = (x), - @

where the asymptotic form (§@;)®* can be read by inspecting the discrete spec-

trum parts of 2-point functions:

Discrete .spectrum part <0|T00;(x)0; (y) |O> ‘
={0[T (5@) = () 0, (v) |0) . o (4-33)

i

- In our case of BRS tran/sformation, the original Heisenberg field transforma-

tions are given by (2- 16) and (4- 3) We easily see that

(‘)‘A”‘ (x) = [i2Q3, A ()] = }LDﬂc (x) ’ .
(6Aﬂ) as (x) =0 (0)0 Zsl’ 2cas (x) ‘ (4-34a)

"Z'DI—‘)-{—OO
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8¢ (x) =

—l(g/Z)X c-

s (O = () =

| (4-34;b)\

Oy (x) =4(g/2) [ (v+ sb) ctyX C] - (5x) = (2) =L (0) Z,%c™ (x) (4-34c)
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0B (x) = ' (5B) ¥ (x) = (4-34d)
Cc(x) = ~l 9/2) (c Xe)— (66) B(x) = : (4-34e)
0c (x) =il B(x) ———— (6 c)*®(x) = z(IZB“ *B*(x). | (4-34f)

Equations (4-34a) and (4-34c) are due to the fact that there are no (bound-
state) single-particle poles in the channels 0A, and 0y other than those caused

by “elementary” FP ghost ¢* by the present assumption, and their coefficients
w(0) and £(0) come from '

' 1 o:r _
0|7T0A 0= 0 0
©IT94, 70y =21 co0|Tez|0,

u0¢

: ~ oI _
<0 ==
L0|T'd0y cl0> 5K 60<O,chlo>

. x i

with the definitions (4-8). Equations (4-34b) and (4:34e) followy from the
fact that there exist no bound state poles in the composite channels y-¢ and
c¢Xc. Thus from the general formula (4. 32) Eqgs. (4-34) ‘and the deﬁmtlons

of asymptotic fields (4- 17), we obtaln =
0, U @] = [0 ¢ @]=0, - (4-35)
(05, (@)] = —ic™ (2), | (4-360)
05,7 (2)} = B*(@), SN (4-36b)
[Q, B*(@)] ={Q4, c*(2)} =0, (4-360)

where use has been made of the ‘renormalized’ BRS charge Qp = (ZS/ZB) 20,

defined in (2-22). 1In deriving (4-35) and (4-36), we have used the defini-
tion of U, (4-23), and the relations

Z80) ) (ZsZ) = 2y (0) / (ZuZaK) =1, B Y. 1)

which are assured by the W.T. relations (4-10) and (4 12) togetherbwnh the
definitions Zz= A (0), Z, "-—F(O) Z,'=7(0) in (4- 16) and K= (ZzZ,) ' i
- (4-19a) and the relation A(0) =B(Q) stated in (4-20a).

As is expected, (4-35) indicates that the Proca field U, and the real

Higgs scalar field ¢ are physical part1cles of BRS-singlet representations having
positive norm by (4-30). The BRS transformation property (4-36) is noth-
ing but that of quartet, (3-15), and hence the Goldstone boson x*, the scalar
- B*, and the FP ghosts ¢* and ¢* (for each of omitted group indices a=1, 2, 3)
are found to belong to quartet representation. Thus we have finished the
proof of the unitarity of physical S-matrix defined on H yye=C1 ngs/ Vs which
‘is isomorphic to the Hilbert space Hypnys spanned solely by the physical par-
ticles U, and ¢. Just similarly to Abelian Higgs model,” the Higgs phenom-
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enon in the present non-Abelian case also is understood without any in-
consistency with the Goldstone theorem: The Goldstone bosons surely exist
but become undetectable unphysical quartet members, while the gauge bosons
acquire non-vanishing mass and are physical.

We add two comments here: (i) By the help of the present assumption
of asymptotic completeness, the BRS charge Qp is expressed in terms of asymp-
totic fields as ’ 7

QB’I' — Jd“"x: B (x) .50655 (.:L‘) c—g Z (Ckasf . Bk;as— Bkas'r, ckas) . (4 . 38)
3 ’ .

This form in fact reproducés the asymptotic transformations (4-35) and (4-36)
and even the original transformations on Heisenberg fields as is proved in
Appendix C generally. It is interestiﬂg to note that this expression (4-38)
for Q" has just the same form as that éf Abelian case (2-30). This clearly
indicates that our present formulation provides a very natural extension of the
Gupta-Bleuler (or the Nakanishi-Lautrup) formalism for the Abelian case.
(ii) By comparing (4;23) with (3-21a), the y-field of the “elementary” quar-
tet found by the general discussions in the preceding chapter is given in the
present model explicitly as

w in (3-21a) =Z;/2[§/Kxas+yv(\/f—aN> B>, (4-39)

where the 4 representing the present Goldstone mode should not be confused
with y of (3-21a).

§ 4.2. Pure Yang-Mills Theory without Spontaneous Syrﬁmetry Breaking

We analyze here the pure Yang-Mills (YM) theory based on a simple
group G suffering no spontaneous symmetry breaking, following Ref. 5), but in
a little simpler manner. Of course, the massless YM theory suffers from
serious infrared divergences which may have deep relevance to the confinement
mechanism of quarks as is currently expected. We, however, disregard the
infrared problem here for simplicity and make a formal analysis of asymptotic
fields. ’

The Lagrangian density is given by (2-7) with _[ e discarded. The
propagators are given as the same form as (4-14) in the i)receding model,
where the group index a should be understood to run over a=1,2,--, 2

=dim(G), and the Goldstone field y is simply discarded. The function

A“l(ké) in (4-14) now has a massless pole and hence we rewrite it as
1/ A =1/RA (). ‘ (4-40)

By performing the same procedures as in the preceding section, we find, for
the asymptotic fields '
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A, () ———>Zsl’2A “(2), B(x)—>Z "B*(),

¢ (@) > 2% (z), ¢ (2) > 2,5 (2), - (4-41)
the following commutation rel‘ations:_

(4%, A7) =~ G- K8,0,) D(x—y)

: 4i(l—a)0,0,E(z—y), (4-42a)

(A=), B*0)] = ~i0,D@—y,  (4-42)

[B*(x), B*(y)] =0, ‘ L (4-420)

@, Wy ==DE-».  (4-424)

Here we have defined | | ' |
X Z=A(0), K=A(0) (d/ds)Re /A =0 - 43)

and other quantit‘ies in the same way as before: '/sz"ly—zr(O), and a=a,/Zs.
Note that Zjz is taken in the present case as Zz=Z, '. Equations (4-42)
together with the asymptot1c completeness assumption lead to the equatlons of

motion: ;
DBas_Dcas_‘DEas_O o | (4-44a)
OAS=A-a)oB°, O aead)
| aﬂA;SJrozBas—_-o. (4440

We can now construct the asymptotic Fock space. Noting that the. vector
field A, i$ dipole field generally except for Feynman gauge (x=1), we ex-

~, tract a (non- covariant and non- local) simple pole field A as from A2 in a way

similar to (4-26): |
A# @) = A= (@) — 1-0) 0,97 B @), (4-45)

Then, (4 .44b) and (4-44c) become, by help of (1D*B=B [(D-4)],
4,=0, - @ 46a)
A@+B=0. | . (4-46b)

Now we define the creation and annihilation operators of ve_ctor field Av,fs, by~

the wave. packet system {f% .} and of scalar fields B, and z° ‘by a com-
mon system {gk} For the anmhllatlon (creatlon) operators A‘;‘CSJ(A?CS,D

AT = (oot A =i [czﬂxfk;aﬂ* ) 502;*? @,  (4-47a)

A2 @) = D (ABFiu@) +he), ey

220z 1snBny Lz uo1senb Aq 0£LG1L61/L'99'SAL/EY L L 0L/10p/oIE/sd)d/woo dno-ojwapese)/:SdRy Wolj papeojumod



Chap. IV Scattering Theoretical Analysis a 49

and for B, ¢; and ¢,

Bys= (00 B, B(2) = 2 (Bi0e @) +he), : (4-48)

and so on. These two wave packet systems {f% .t and {g.} are constructed
in Appendix D so that their mutual relations simplify the formulas below.
These modes A%,(0=1,2,L,S) -and B> are not all mutually 1ndependent as
is ev1dent from (4-46b) which in fact says that

Blc = A SEZ 773”142?4(: Ak,L) , [ (4_ 49) *)

where use has been made of the definition of 7 [(D-15)], (D-19b) and
- (D-19c). Thus the scalar polarization modes A% are nothing but B; modes.
So A,*® and B®* are fully ~described‘ih terms of the transverse modes A%;_1»

(=— A% ,* the longitudinal modes A*"(=A%;) and B, alone. In-

deed, we find from (4-45), (4.47)“~‘(4-49) that
L AR@ =D ARAL@ A DA |
+ZBk[ka,u(x)+(1 C()@hk(x)]}—}—hc ’ (4 50)

where the dipcle wave packets hy(x) are defined in (D-20): =.@(m)g (x)
=h; (x). Noting that the commutator (4-42a)" is rewritten by help of the
\1dent1ty (D-8) as

[4, as(x) A= )]=—i(g.—Ko @)D(ac*y) ' (4-51).

we find from (4-51), (4- 42b~d) the followmg commutation relations for the
creation and annlhllatlon operators: :

B . L
Al,r=l,2 Ay t BI.T Cer CzT

Ak,d=1,2 010 5e : ' 0

Ag® — K0 — 6“‘ 0 v '
o 1 3 o 0 idy

& L =il O

where (D-18) has been utlltzed ,
- Beside the LSZ reduction formula® for the transverse modes of the usual
form, !

T o'utuﬁzﬂ(---) 8 in)
 ={@out|T () AR, ,|Bind +

* Note the positions of the suffices 0=1, 2, L and S; e.g., A;%,SL=A S S%Ak =Ap> £,
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; +i jd“st_‘/sz,,,"* (z) %« out|T'(A,(x) ) |find>, (4-53a) |

we should note the following formula for the longi’cudina\l modes:""®

(A ta out.[T(...) 18in>
=<{a out|T (---) A™E|Bin)>

ny jd4y¢Zs‘1/2Jka"‘ (2) *[1%a out] T(A, (@) ) 8 in)

—iQ—a) [@wz LA @0 —ht @ O]
X<Laout|T'(B(x) ) |Bin). - (4-53b)

The BRS transformations of asymptotic fields are determined in exactly
the same way as has been done in (4-34) in the preceding section. We find,
by using the renormalized charge Q" =272, 2Qp= 7 Z,"Qp,

[Q5, A, ()] = —i0,e™ (@),
{05, T @)} = B (2),

[0, B @] = {0y, ¢ ()} =0. (4-54)
This leads to | o
[Qs, Ari2] =0, - (4-55a)
(O, ST —inee, OF 5B
(04, B = Q47 e} =0. (4-55b)

Thus we see from the commutation relations (4-52) and the BRS transforma-
tion property that the transverse modes A%,_;, are really physical particles
together

as, L

of BRS-singlets having positive norm and the longitudinal mode A,
with the scalar modes B, and FP ghosts ¢; and ¢, belong to quartet repre-
sentations, Hence also in this pure YM case, the physical S-matrix unitarity
has been proved. v ) /

We should add a comment here. The above construction of physical
transverse modes manifestly depends on the Lorentz frame to which we refer.
So is the Hilbert space Y,y spanned by the transverse modes alone. Our
proof of ugitarity of the physical S-matrix S,y defined on m=thys,
however, has a frame-independent meaning. Our ‘physical subspace CU/ g is
specified in a Lorentz invariant manner by scalar charge Qp and hence its
positive semi-definiteness of metric as well as the spaces Tl ngs Vo and Hopys
have Lorentzinvariant meanings, even when the proof is given by referring
to a specific Lorentz frame. '
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' §4.3. Quantum Theory of Gravity

The application of the present formalism to quantum gravity is essentially
straightforward, although some complications occur in the kinematical calcula-

tions. Nakanishi initiated this task and has been researching the total struc-

ture of quantum gravity in detail in his succeeding papers.” Nishijima and

Okawa'” discussed the BRS transformation and charge in quantum gravity.
Here we briefly summarize the results according to Ref. 11), only in which
the properties of asymptotic fields are analysed in detail.

The Einstein Lagrangian dénsity of the gravitational ﬁeld is

Le=E"=gR, g=det(g,). (456
Introducing the Goldberg variables
0"=V=00", Gu=0u/V—=0; §°G=0," (4-57)
we can rewrite (4~’56) as follows as usual: ,
Le=Lt+0,D", o B (4-58)
Lh=r =Gg" (T4l —T%, T o
= (2r) (@ Gaulion— 206°0,°G gﬂv—é 0 Guslin) 0,970, (4-59a)
D'=k"*/—=g@"T— ""1""0 |
=72 (3 5 Gus0f +0,5") . ~ (4-59b)

~ﬂy

In terms of §*, the (Lie derivative corresponding to) general coordinate trans-
formation is written as

09" (%) =’ () = (x) = D", (4-60a)
DP, =005+ 50, 00— 00— (0™ . ~ (4-60b)
"Then, as the Lagrangian density to be quantized, we adopt the following one:
L=2Le+ Lop+ Lep, | | |
Ler=— 2r) 7§ (0,B,+0,B,) — (/2) 1”B,B, ,
Lrep=— (i/2) (0,&,+0,c,) D", (4-61)

where 7 is the Minkowski metric: 7*=diag. (+1, —1, —1, —1). Due to
the presence of Lgp+ Lpp, the action [d'z [ of the quantum system (4-61)
is no longer invariant under the. general coordinate transformation (4-60).

Instead, this system (4-61) has the invariance under the (global) BRS trans- -

formation, which is defined by

0" = KAD™ ¢, S (4-62a)
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dc'= —KlcDct, o (4-62b)
0c,=ilB,, (4-62¢)
0B,=0, = @620

and satisfies

0Ly = —8, (e Lo+ 0D, |
- 0(Lort L) =0, R

é‘jd“x,f o. (4-63
The Noether current Jz* corresponding to the BRS transformation (4 62)
1S9)~11)
A 2 o R
I 0(L-0,T >) +mﬂ,£'E+ag)ﬂ (4-64)
0="G 0. 0(0.0) : o .

and the conserved charge Qp=[d’xJ5" implements the transformation (4-625 2
[i1Qs 0]=00. . = . (4-65)

Now, in what follows, we consider the gravitational field A* on the
background Minkowski metrlc i

5" = 1"+ Kh®. R B (4-66)

The ana1y31s of commutators, equations of motion and BRS transformation

properties of the asymptotic fields by ‘using Lorentz covariance and W.T.

identities, can be also performed for this case in exactly .the same way as in

" the two precedmg YM theories. Here, however, we only cite its brief outline.

The interested readers should consult Ref. 11) for the detailed presentation of

it. - ‘ : | ‘ \ ‘
- We assume the: followmg asymptotlc condition:

h# > Zs ¢1n/out 5 B —)Z —1/213 1n/out

Zo—r koo

c* — Zs /ZTiﬂn/ot;t ’ Cu >Z 1/2“#“‘1/0“1: ' 4- 67)

The asymptotic fields ¢*, and §, together with 7* and 7, turn out to be a
tripole: field' aﬁd dipole fields, respectively, in much contrast to the free theory
described by the quadratic parts of the starting Lagrangian (‘4-61).' In terms
- of the 4-dimensional momentum representation, su“ch as

T

on(2) = (2) > [0 @) Low @re =+l @), (@4-68)

we decompose @, into fhe physical modes and the unphysical ones, in such
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a Lorentz frame that the 4momentum p* takes the form p“— @, 0,0, ;b“)

» ¢1T@> (¢u (P) P (P)) /2, o ) ) / . L
0" (0) =¢u (D), o | (4-69)

06) = /29 [0up) — (1 Lt e 2L 20), (;b)}

R

5@ =6/29 [pu(e) (BT LRI )] a7y

@) =ige®) /b (i=1,2),

‘where L, L, and Ly are some constants determined dynamically The BRS
transformatlon of the asymptotic fields is found by ‘much use of W.T. identi-
ties to read \ ‘

Q4,07 )]1=0, (=12 \ 47D

[05, @] =—ir®), {Q¥,Tu(®)} =B, ®), (4-72)
[, B.(2)1=4Q5", 7 @®}=0. - (4-72b)
The (antl)cornmutatlon relations of these asymptotic fields are glven by
oM@ W@ B (Q) | 71(@) )
0B (00 ) 0 |
W@ | g%ycp) 0 o
L@ |, He® 0 s X 0% —a),
T4 (P) . 0 0 ~ i (2)
74 (2) N RN 0
: ‘ | (4-73)
where )
M @) == (Lt L) 5 (5°) — (Lo/2) 6,05 (5). (4:74)

This coincidence of the commutators, [Xﬂ(p) B )] =i{r.(®), yj(q)}—~
M PO (P—q), is a direct consequence of BRS transformation law (4-72).

We notice that the BRS transformation (4-72) and the commutators (4-73) for

the fields (. (2), B.(0), 1. (), 7.(®)) coincide in their forms with those of
quartet presented in (3-15) and (3:16). Hence one can prove in quite the
same way as in Chap. III that the‘pr\ésent quartet (yu, Bu Tw T4) always con-
spires to form zero-norm combinations in the. physical subspace VCVphys specified
by QBIphys> 0.  Alternatively, if one wants, one can redefine the present

dipole fields Xu> Bu» 7o and 7, such that they become simple pole fields, and -
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then, can prove that the BRS transformation (4-72) and commutators (4-73)
reduce to exactly the same ones as (3-15) and (3-16). Thus the physical
S-matrix unifarity is established also in quantum gravity.

We should add a remark on the mode counting in the above. Among
the ten components of ¢,,(p), two are physical transverse modes 0" (i=1,2)
of BRS-singlet and the other eight are unphysical ones falling into members
of the quartet; that is, the four modes v, (p) represent essentially the “longi-
tudinal” components of ¢,, and the other four 3, the redundant spin 1 com-
ponents of @,,. ‘ - ‘

Finally we note that in Landau gauge the 10 components of the gravita-
tional field are proved™ to represent exactly massless particles identified as the
10 Goldstone bosons responsible for the spontaneous breakdown of GL(4)
invariance up to the Lorentz invariance, which is due to the background Min-
kowski metric 7,,=<0lg,, (x) [0).
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Chapter \
Observables in the Yang-Mills Theory
and Quark Confinement

——Physical Contents Described in Hg—

§ 5.1. Concept of the Observable and Gauge Invariance as Its Criterion

So far, we have discussed the scattering theoretical aspects of the gauge
theory, namely, the asymptotic states and the asymptotic fields. The physical-
ly meaningful quantity treated there is only the physical S-matrix, which has
been proved in Chaps. IIT and IV to be a unitary operator in Hypye= CV nye/ V.
Although such unphysical particles as FP ghosts may come out in the final
states with non-vanishing S-matrix elements from the initial states containing
no unphysical particles, they appear in CJ/ ¢ only in the zero-norm combina-
tion (€C)y), as has been shown explicitly in Chaps. III and IV. Since the
- zero-norm sbbspace CV, is orthogonal to C{/ . ((A-7) in Appendix A),

GlO>=0 for |0)E Ve, I>EV,, (6D

those unphysical particles make no contribution to the scattering processes in
CVonygse  Thus, all physical scattering processes are completely described in
Hpyo=CVnys/ Vo, where zero-norm physical states ly>& C, containing un-
physical particles are fegard’ed as negligible objects:

D=+ D=0 in Haw (0D, (6-2)

These situations can be paraphrased in a rather general fashion as follows
Defining the transition probabzlzty TW,7, between two physical states
D, [¥2> € WVpnys by

Definition 5.1. T, V) =KT VD% S (5-3)
we obtain, from (5-1), the following relation:
T (?F1 + X1s T‘z + Xz) = T(Tla ?Fz) for |?Fz> & Cvphys’ IX’L> S C(}o . (5 ) 4)

Namely, the transition probability T, ¥,) in CJ4 is independent of the
- choice of the representative vectors |¥;> & Cl/_ ;.. in the equivalence classes !?]71>
with respect to Cl/, and it is really a function 7' depending on pairs of equiv-
alence classes l@'i>erhy5: CV ongs/ Vo

T": th‘ys X thys__>R+ ‘ ’
TW,0) =TW, V) =|KTWD= KT T (5-5)
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Then, as for the problems concerning the transition probabilities like the scat-
tering theoretical problems, we can safely make all discussions in the Hilbert
space Hyye= Cl/ nys/ CV, neglecting zero-norm. states ]X>ECV0 as in (56-2).

- Besides the transition probability, however there are many physical quan-
tities to’be measured for instance, the energy-momentum vector P,, and so on.
If we want to describe, in the Hilbert space Hpy,, every physical process con-

- sistently accordlng to the ordinary principles of quantum theory, any state
|X>E CVO which corresponds to the null vector in Hypy, should make no physical
effects in the measurement of physical quantmes Now, since our starting
point is ‘not the quantum theory in H,yy but the field theory formulated in the
state vector space C{/ with an indefinite metric, we should write down the con-
dition required for the consistent measurement in M in terms of the operators
A in €. If a' zeromorm physical state |y)>eCl, were transformed by a
physical quantity A into such a state |y’> =A1X> that

<@|x(>=<@|A]X>§EO, b, for, some |0) &€ Vynys o (’5-'6)

“then the measurement of A could not be described cons1stently 1n H ohys because
the state |X>ECV0 which is regarded as the null vector in thys makes a non-
vanishing contribution in (5-6). So, we require a physical quantity A to
satisfy the followmg equality: . -

(O Al =yl Ay =0 for VIOSE Vs, Vi>EDy. (BT
As was shown in Ref. 1), the condition (5-7) agrees with the one which
guarantees the usual connection between the tfansition probability and the ex-
pectation values of observables in the quantum theory. In the usual quantum
theory formulated in the Hilbert space with a positive definite metr1c we know

that the relation

T, W>—|<m|w>|2 OO =EPsT) (-9

7

holds, Where the expectation value of the observable A in the state &> is
denoted as

E(A;¥) =<TI|AlT) - (5-9)
and P, denotes the prOJect1on on the state I@}
P,= ](Z)X@l o (5-10)

Namely, the tran51t10n probability T(@ ¥) is nothing but the expectatlon value
E(Py;¥) of a special type of observable Py correspondmg to the yes-no ques-
tion about the state |@>. Conversely, since every observable A which is a ‘self-
adjoint operator admits the spectral resolution

v
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A= aP =T a0 X0 - ew

with A[@n> a,|@,>, the expectation value E(A ¥) can be reconstructed from
the knowledge of the transition probabilities:

E(A4;0) = 0 aiW0.540,17> = 3 0T @., 7). G12)

Thus, in order to méiritéiﬂthe relations (5-8) and (5-12) with (5-9) in our

Hys also, Eq. (5-4) should imply the equality

CE(AT ) =E(AT) for [PYE W, bW, (5:13)

- which is really equivalent to (5-7) . Thus, the conditions (5-7) and (5-13) are
the equivalent expressions of a necessary condition for the consistent measure-
ment of a physical quantity A. It can easily be checked that the energy-
momentum operator P, satisfies the condition (5:7) as follows. - First, since

the BRS charge Oy (2- 20) is a translationally invariant Lorentz scalar, we -

obtain ~ )

[Qs, Pﬂj =0, - (5-14)

as a consequence of which the state P,|0> with |@>EC(/PhYS belongs to Cl/ pyst”

- QaP, |05 = [Qa, P,] 10>+ P,Qsl0> = 0 —==P, |@>ecums (5-15)
"~ Then, we obtain, from (5-1) and (5 15), ’
QPO =COIPl> =0 for 105E Vunye, ly>E V. (5-16)

In what follows, we call an observable any operator A (hermltlan or not)
 satisfying (5-7).

Definition 5.2'. An operator‘A is called an observable if it satisfies
Al =<olAly=0 L6
or equivalently ' o |
<@+x|A1@+x>=<@1Al@>EE<A;@ 513
for any |0>& Vg and |y>E WV, | |

" Now, as easily understood from the above argument of the observabﬂity
of P,,, the concept of the observable is closely related to the notion of gauge
invariance, since the BRS charge Qs 1n (5 14) is essent1ally a generator of

© * Precisely speaking, (5-11) should be written in general as
A= j 1dP(),  dP(): spectral measure

in order to treat A with continuous spectrum as well as discrete one.
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“local” gauge transformation in quantum theory. " In Ref. 1), the following
four notions of the gauge invariance are introduced for the operators in QED:

(i) gauge independence: {O,+x:|AlD,+y.> =0, A|D;> .
| for |0:>€ Vgnyes > E Vs (5-17)
(i) weak gauge invariance: AC),C Vo AY,C Yy, (5-18)
(i) gauge invariance: ACY 136 C Vs A*CVpl;ysC WVotys >~ (5-19)

(iv) strict gauge invariance: gauge invariance (iii) augmented by

the condition [A, &F,,—j,] =0. ‘ ‘ | (5-20)

- . / o . ' | )
~ One can easily see, of these conditions, that the statement' becomes stronger
the latter it is in the list, and that the weakest one (i) agrees with the con-

dition (5-7) for the observable. Note that the condition (iii) allows us to

define an operator A in H_ oo =CVonys/ Vs by the equation
~ o~ P ~ _ -
A|@>=A|@>, ‘@>ECVthS’ |0>:|@>+Cvoecvphys/c(}0- (521)

In the N.L. formalism of QED where a physical state |phys> is specified
by the condition

B (z) |lphys>=0, 1-5)
the condition (iv) is eduivalent to the following one: ‘
dv") [A, B(x)]=0. (5-20")
This is due to the Maxwelll equation
| . PF.—j+0,B,
where B(z) is the Lagrange multiplier field satisfying
| 0“A,+aB=0. ’ 1-2)

Furthermore, the above four conditions in the Abelian cases are distinct from
one another, namely, each latter one is truly stronger than the former one.
For example, the energy-momentum P, satisfies (iii) but not (iv):

B(+) (x) ch(jphVSZ [B(+) (.ZC) H Pﬂ] C(jphysz iauB(+) (JC) C-(}phys: O s (5' 223‘)
[B(x), P,] =i0,B (-7/') +0. : (5-22Db)

Contrary to this case of QED, the weakest condition (i) in our formalism

based upon the BRS symmetry is really equivalent to the stronger one (iii),
which is rewritten equivalently as o

[QB’ A] CVéhys = [QBa AT] C:-(}vl_ahys = O . . (5 : 19,)
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Here Qp is the Klein transform of the BRS charge Qg:
QB‘:eiﬂchB.' . | \ (523)
Proposition 5.3.2 In the gauge theory with the BRS symmetry gener-

ated by the BRS charge Qp, the condltlon (i) for an operator A implies
the condition (iii).

Proof) - If an operator A satisfies (i), or its equivalent (5-7), we obtain
for any vector |f>EC) and for any |@>EC(]phys, ‘

FIQAI0Y) = Kf1Qe) AlD) = (5-24)

because the state |y>=Qz|f> belongs to CV;:
Qsly> =0 f>=0, ‘ (5-25a)
el =<fI1Q51f>=0. | (5-25b)

Since the inner product of C{/ is assumed to be non-degenerate [ (A-2) in Ap-

pendix A]l, (5-24) concludes |
Q2 ANV 4130 =0, . (5-26)

which is nothing but the condition ACY,13eC CVpnyee  The condition ATCY y0,
C Clpnys follows in quite the same way, and hence, we arrive at the condition

(ii) . \ | nl

Thus, in our canonical formalism of the gauge theory, the three notions of
gauge invariance (i) ~ (iii) are all equivalent. This criterion can be further
sharpened for local observables in the following way.

Propositz’on 547 If A is an local observable, namely, an operator
AEF (O satisfying one (and, consequently, all) of the conditions (i) ~
@) [ie., (6-17), (6-18), (6-19), (5-19")], then it satisfies the equality

[Qs A]l=0, , (5-27)

which implies, conversely, (i)~(iii). Namely, a local operator A&Z(0)
is an observable if and only if it satisfies (5-27).

By comparing (5-27) with (5-20’) in view of the corresponding subsidi-
ary conditions (2-29) and (1-5), the condition (5-27) should be interpreted
as the one for strict gauge invariance. Namely, the condition for a local opera-
tor to be an observable agrees with the condition of strict gauge invariance
in our formalism. The proof of the above proposition can be made easily by

¥ F(O) is the polynomial algebra generated by the field operators smeared with the testing
functions with their compact supports. in the finite space-time region ©. (See, (A-18) in
Appendix A.)
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" using the followmg mterestlng lemma.

Lemma 552 If A is a local opera’mr eF(®) in our theory satlsfvmg
the condition ‘ : y
N OBAIO> 0, | NGRS
: then it satisfies (5 -27), namely, A is a local observable. If we denbte the

set of local observables belonglng to F(O) by Lﬂ (©), the following
equality holds: :

F (@) 05N CVphys A (@) |0> ~ (5-29)

'Proof) Since we have assumed that the vacuum |0> is a physical state, -
namely, ‘ | | ‘
| CQiloy=0, (2-29)
we obtam from (5-28) | A " ‘
e*"Qf[QB, A] !0> QBAIO>—e+"Q«Aei"QeO |0>=0. (5-30)

,By d‘ecomposmg A, which is a polynomial of smeared field operators, into the

part A, with even powers of FP ghosts and the one A, with . odd powers,
(56-30) can be written as ‘ :

[QB,A1]|0>+{QB,A2}|0> 0. (5-30")

Owing to the ‘klinearrmdependence of the states with different eigenvalues of
Q., (5-30) is decomposed into the following two equations: ’

[OnAlly=0, (531
Qs A} 10>=0. BN ~ (5-31b)

By (56-31), [QB, Al] and {Qjp, Az} are, respectlvely, 1oca1-antlcommutat1ve and'

local-commutative operators &% () annihilating the vacuum, which vanish
" themselves by the Well known Reeh- Schheder theorem (Corollary A 5in Ap-
- pendix A) : :

[QB, A= {Qs, A} =0. o (5-32)
Thus, we obtam (5-27) _ ‘ .
[QB: A] é‘[eichQB: Al + Az] 'z.éiﬂqc([QB’ Al] + {QB: AZ}) =O . B D

Proof of Proposition 5.4) | Let A be a local ‘observe\tble satisfying (6-19"),
then it satisfies (5-28) because of (2-29). By Lemma 5.5, we obtain‘(5-27).[]

In the above it is worth while remarkmg that the very modest requlre—
'ment (1) [(5-17) or (5-13)] for the natural relatlons (5-8) and (6- 12) be-
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tween the transition probabilities and the expectation values in the ordinary

. N \ .. ewey y - - -
v ‘quantum theory to be preserved leads us to the condition (iii) of gauge in-

variance (5-19’) for a physmal quanmy A. Especially, this requirement for
a local observable A is reduced to the salient algebraic condition (5-27) of
gauge invariance: | : 3

[QB: A] :Oa.

which can be examined directly by use, of the canonical commutation relations
without recourse to the dynamical information of Green’s functions, etc. This
shows the pertinence of our formalism of the gauge theory, especially, of the
~choice of the - state vector space H, phys = Y pnys/ Vo in which every physical
process should be descmbed. ‘In this context, it may be 1nstruct1ve to note
another evidence for the consistency of the choice of the subsuhary condition

- Qslphysy=0. @29

Reversing the direction of the above arguments 1et us select the observable
A by the principle of gauge invariance: ’

[Qs A1=0, (5-27)

and require the observables to be represented in a Hilbert space FI. Then,
Qgz is an observable

O, Qs] =€ {Qp, O} =260, =0, (5-31)
whose representation Qp in H with a positive definite metric is nothing but
0, | . | ~ |

o ;o R - L (5-32)
because of the nﬂpotency of O (2-250): | |

0,0:=0i0a=0ii=0. 63
Thus, the subsidiary condition (2-29) can almost be said to be demanded by

the principle of gauge invariance (5-27) for the observable.

§5.2. “Maxwell” Equation and Structure of Local kObser_vables
Local observables as group invariants

In the N.L. formalism of QED, the field strength F,, and the electromag-
netic current j, satisfy the condition (1v) of strict gauge invariance which is

equivalent to (5- 20) -
[P, BO)1= 00,009 D) =0, (534
(@), B)1=[0F,,(x) —0,B(x), B(»)]=0, (5-34b)
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and hence, they are (strictly gauge invariant) observables. For these observ-
ables, we obtain the Mazxwell equation in H

F,.=7., - (5-35a)
from the equation of motion | | |
OF,,=j,+0,B . | (5-35b)
or , |
@I@FL=)W>=0 for |0, WY Wy (5359

" On the contrary, the equation of mofion (2-10a) for the YM field
D’F,,= —gj,+0,B—igd,c Xc, . (2-10a)

contains an unphysical term —igd,¢ Xc¢ which cannot be neglected even in
. the matrix elements between physical states. The matter current j,* defined
- in (2-10d), however, cannot be conserved by itself

aujﬂa =—gq (Aﬂ Xjﬂ) u#o . ‘ (5 . 36)

and the conserved Noether current .J,* of the global gauge symmetry is given
by ‘

S =7+ (A XF) "+ (A, X B)*—i (X Dye) " +i(0,c X )"
=[7"4+ (AXF,)*]—{Qs, (A, X0)*} +i(0,cXc)", - 5-37)

which also contains the same unphysical term 8,c X ¢ as the above. As noted
in Chap. I, we obtain the “Maxwell” equation (2-36)

OFyu+9J," =1{Qs, (Du)}, (5-38)
- .as a consequence of which the equation
OIOF;,+9J.1¥>=0 o - (6-39)

“holds for [0, |7 & C/ g, similarly to (5-35c). It might seem, however, that
the question how to interpret the unphysical term ¢(0,cXc¢) contained in

(6-37) remains unsettled. The answer to this question is the following: In -

the non-Abelian case, the field strength F4%, and the Noether current J,* of the
global gauge symmetry are 7zot observables in contrast to the Abelian case,

[Qs, F2] =ig (X F) "0, o (5-40)
[Qs, J*] = —i@”‘(cXF,,ﬂ) =0, (5-41)

and such a type of equation as (5-35a) does not hold in H g of this cé;":;e.
Consequently, the unphysical term 7(0,¢Xc)® makes no trouble, because the
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J,”’s themselves are unphysical and cannot be observed in the physical world.
This consequence is not an accidental situation, but can be viewed in a more
general context. Namely, the following theorem asserting the group invari-
ance of local observables holds in our formalism:

Theorem 5.6.”’ Every local observable A commutes in Hny, with the
global charge Q% of the unbroken®™ global gauge symmetry:

[0°, A1 =0 in Hi,. - (5-42)

In order to prove this theorem, we should first examine the global charge
operator Q% of the global gauge symmetry defined (formally) by

o= [&asy. (5-43)
Lemma 5.’7. If a conserved current J, of tho form \
| J,=0'K,, 1 ' 5- 44)
*with a local (or anti-local) operator K,, y1e1ds a well-defined charge Q
Q= jdstL,: (a0, o (5-45)

then the charge Q is nothing but 0..

Proof) Let ¢ be a local operator belonging to F(0): o4 (0). Taking
a sufficiently large R>0, we obtain

Q<0|0> [Q ¢]—|0>+¢Ql0> _
= [Qr ¢1-10> ' - (5-46)

according to the general theory of the conserved charge in Appendix B, where

a well-defined charge Q is shown to annihilate the vacuum
Q[0>=0. _ (B-1)

Since, roughly speaking, QR is the volume integral of J, within the region
x| <R,*® the commutator (or anti-commutator) [Qp, ¢]+ vanishes for a suf-
ficiently large R>0 owing to the local (anti-) commutativity of K;, and ¢:

Qe ¢ o~ dexa;[Km @), ¢].= j dS Ko (@), ¢].=0  (5-47)

or precisely,

*) The whole group symmetry may be broken spontaneously, in which case (5-42) holds for
the charges of the unbroken subgroup of the remaining symmetry.
*%) As for the precise definition of Qg; see (B-9)~(B-11) in Appendix B.
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Qs ¢1 = [azas) s @) [0°Kw (@), ]«

= @@ 8@ Ko@), ¢ =0, (5-47")
. because supp 0'/xC {v & R'; R<|x|<2R}. Thus, we obtain for ¢|0>€F (O) |0>
Ql0y) =0, - (5:48)
~ and hence, - | /
| FIQl0Y) =0 for VT ey, (5-49)
By virtue of the Rech-Schlieder theorem (Theorem A.4 in Appendix A)
W=F©) 105", A
we arrive at the conclusion | | Lo
@I0I0y=0 for ¥Io), e, (5-50)
which is nothing but the statement: (Q=0. O

Applymg this Lemma 5.7 to the conserved current [QB, JSTin (5-41) [K,,

—z(cXF,,,,) “1, we conclude:

~Corollary 5.8. The global charge Q" ['(5-42)’] is a (non-local) observable

[Qs, Q"] =0, o (5-51) |

as long as it is a well-defined charge, némely, as long as the global gauge
symmetry corresponding to the charge Q® is mnot broken spontaneously™®’.

Now we prove Theorem 5.6: |
'b'\Plro‘of“orf Theorem 5.6) Let A be a local Qbservablé eFO):
| [0a 41~ 0.

As is seen from the argument made in the proof of Lemma 5. 5 A can be
assumed without loss of generality to satisfy either [Qz, A]=0 or {Qs, A}
=0. Then, the “Maxwell” equation (5-38) tells us the equality

[9J¢, Al =[~0'F%+ {Qa, (D)%, Al N
=~ [0Ff, AT +[Qs [(Di@)*, Al 51+ [(DD)*, [Qa. AT].

~® If the corresponding symmetry is broken spontaneously, the volume integrals
Q= [ @21t and [Qs Q1=—i [ &0 cxFu)®

become ill- defined owing to. the massless contnbutlons from the Goldstone . partlcles and
we cannot say anything definite about these charges ‘

Zz0z1snbny Lz uo 1senb Aq 0¢1.GL61/199'SdLd/EY L L 0L/Iop/aome/sdid/wod dno-ojwepeoe//:sdpy wioly pepeojumoq



Chap. V' Observablesin the Yang-Mills Theory and Quark Confinement ) 65 ’

= — [0'F5 Al + [Qa [(DD)*, A] ] R GH-D)

cdrresponding to [QB, A]$=O Thus, for any R>O, we obtain

[00:", A] = j dtatts ()0 1) [Fi(2), A]

[QB, { czdxamx")fR(x)[(Doc) (), 4] ] R <5-’53>

By taking R>0 sufficiently large, the ﬁrst term vanishes by the local com-
‘mutativity, and hence, we obtam :

O1[0Qs", AT =<0 [Qs, [d'ear (2 £2 () [(D)* (@), A]:]:i,!% |
| =0 | © for 10>, |U> & WV pongs - (5-54)

Since we have assumed that the symmetry corresponding to Q“ is not broken

spontaneously, we obtain. from (5-54) ‘

OI[gQ", ATTY=0 for [0), [F>E Ve, (5-55)

which concludes the follovvmg equahty for the observable Q“ (see Corollary
5.8): :

[0Q% A]=0 in Hyys. o (5-42) [

Now, we investigate the structure of the observables in more detail. The
canonical energy-momentum tensor 7, is given by

__or .
0070,

:—-F,,,1 -0,A'—A, 0B—-16’6Dc zaﬂE-(’Lc

aeCrnaltter 0
8 (6%¢)

and satisfies the commutation relation

av@j - g[.bvoE

..I.

140z, T,] =_@p (0,c-F,,) %O . ' (5-57)*0 E

‘ Hence, in view of the criterion 5:27) “\for the local observable T, is 70t an

® In (5-56), the summation of @; should include a/ the fields A,, B, ¢, ¢ and ¢:. In particular,
‘the contribution from' the conjugate Dxrac spinor ¢ should be summed equally along with
¢, if they are contained in ¢:.

*#) If we adopt the gauge fixing term Lhp=B%“A+ (@/2) B°B?, Eqs (5-43), (5-44) read as

0L master
T:w“'( Fﬂz+gnl) 0,A "‘lavc Duc za,,c <O+ 6(6" m) 6»("1 gnv-f (5 56’)

and : , ‘
[iQs, Ti]=0°@sc-Fop) +0,(B-Dyc) ~guwdo(B-Dc). . (6-57")

»(Pi—g,wf , ' . ‘ (5. 56) ) -
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~ observable. There exists, however, a physically more reasonable definition of

the energy-momentum tensor, namely, the symmetric energy-momentum tensor .

®,, defined® by

Opm e OL| o, [M 0, (20T
68&1,” ept =031 Oe,’ 0 (az eav) epk=0pk
=0,,, | (5-58)
0*6,,=0, | - (5:59)

where [ is”the local-Lorentz invariant Lagrangian density obtained from the
original one [ (2-7) by rep]acmg the flat Mlnkowskl metric 7,, and the de-
rivatives 0, by

N>, e, (5-60a)
and
0, —>V (general-and local-Lorentz covariant-derivative), =~ (5-60b)

respectlvely. e,” is the vierbein component and Ny =diag. (+1, —1, —1, —1).

Further, g in (5-58) is defined by
g =det (¢,"7are.)). . GeYy

In our case, @, defined from (2-7)* according to (5-58) agrees with the one
obtained by the Belinfante method addlng to T, the spin angular—momentum
density term S,= 0L/ (0%¢)) (Zw)'¢ '(Y,,: spin matrix)

On =Tt} 0 (Syus+ St So) (5-62)
| and is foﬁnd to be |
@=02— {0, 0,c- A, +0,c- Ay +0,w(Ec-B—07C A}, (5-63a)
O = F o B 41 g FPof@mates (5-63b)
@ﬁ‘,‘*‘tt“* is the matter part obtained from _L mauer, for instance,

Ot =71, (@0, 49 $2°A) a—gua[1° (@0, +9 3 2 4,") —m]q
+10° (@109 +% 10° 1T (270 — 1900~ Tu00) 41 (5-63c)
in the case of QCD:

o[:matter—q <’§‘ Tﬂa +gl—A T >q' (5'64)

# If one makes the replacement (2:14) in the Lagrangian density, the obtained result is not
changed at all. 6, for this case is quite the same as (5-62).
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With (5-63a) aﬁd (5-63b), we can show that ‘
[QOs, @%7°] = [Q5. 0,] = |  (5-65)

Thus, @,, is an observable as it should be, as a trivial consequence of which,
the Lorentz generators M,,=fd’x(x,0,,—x,0,,) as well as the energy-momen-
tum vector P,={d*zTy,= [d*x®,, are observables:

[QB, Pﬂ] = [QB: Mﬂ»] =0. . (566)

By (5-66), the Poincaré covariance of the theory in Fl is ensured. The
consequence (5-65) also guarantees the local measurement of the energy
momentum: ‘

y

P a= [ daar (27) f2 (@) 00, (2),
[Q5, (P)z]=0. S (5-67)

Here, we remark the structural feature of @,, in (5-63) that @,, consists -

of the following two parts. The first part @2¥° which is an observable in
itself contains no such unphysical fields as ¢, ¢ and B, and coincides with the
energy-momentum tensor derived from the Lagrangian density _[; Without the
gauge fixing terms nor FP ghosts. The second one contains unphysical fields
¢, ¢ and B in such a form that it vanishes in the physical subspace CVpi,ys.
This is a physically reasonable result. It should be noted, however, that the
unphysical second part ,,— @2, which makes no contribution in the physical
world Iy, plays an essential role in the conservation of ®,,. Without this
part, @®Y jtself cannot be conserved as an operator in C{/:

5’”@213“ {Qs, 0“c- F .} ?LO ' (5-68)
“As an operator in H g, @ﬁj‘;y/s coincides with 6,
0, =6, (5-69)

and, of course, it is conserved: 8"@1’1“’5 6"@,,,,—-0 in the Hilbert space H ..
This situation is similar to the one encountered in the analysis of the S-matrix
in Chap. III: Such unphysical particles as FP ghost pairs turn out to be pro-
duced easily even from initial states without unphysical particles, while they
are contained in the final states with zero norm, and hence, they do not ap-
pear in the physical world H,yy,. In short, if one simply neglects such unphysi-
cal fields as ¢, ¢ and B in this formalism, the invariance under the time evolu-
tion or Lorentz trar(lsformation's is violated by zero norms, which make no
effects in ‘thys. HoWever, since one cannot attain [, directly without passing
through the underlying C{/ and CVnys» such unphysical fields as ¢, ¢ and B
are indispensable for formulating the theory covariantly at every step.

220z 1snbny Lz uoysenb Aq 0€1L5161/1°99'SdLd/E L L 0L/10p/ejo1e/sd)d/woo dno-olwapede//:sdpy wody papeojumod



68 ‘ - - : T. Kugo ‘and L. Ojima

In the case of QCD, some other examples of observables (hermitian or

' not) are given by
\F“ Fg‘,,
gl'q,

.,_r ) ) ]'a, u - la,’ . - : .
: qF<z(’)’,,+g—2—A,‘ >q, ( za“q+qg-é—A,f >,]"q, . (5-70a) _'
={05,2%, (D,0)*=[iQs, 4,1, — %cc X 6)*={iQ3, ¢},

gc“% I'q=[Qa,I'd], —gar%c%[QB, arl,  (5-70D)

where [I,2°] =0. The first group (5‘703)‘; consists of local geuge invariant

- color singlets. Although the observables in the second group (5-70b) are’

color non-singlets, they are all trz‘vzal ones, that is, they reduce to 0 in Hnyes
in accordance -with Theorem 5. 6.

From the examples (5-63), (5:68) and (5 7()) we con]ecture that every
trwza,l local observable A has such a form .as

A=[Qa M. | <5-7i> |

" and that a non-trivial local observable A is written as the sum of some

‘trivial observables and a local gauge invariant operator F composed of A,
a 4 .

and @; without B“ , E“'
A=F (4, (ﬂ@) + [QB, M(A,, %,B c, 6)]+- , (5-72)

Although the general proof of (5:71) and (5-72) has not been given yet, we

can prove the following proposition on the assumption of asymptotic - complete-

ness.

Proposition 5 9.% Let 7A be a local observable, then A can be written

in the form
A=P®AP®+¢*[Qs R] - (5:73)

with some operator R. P is the projection operator onto H,ny. defined

in (3-26) of Chap. IIL

- Proof) As before, we can assume that either [Op, A] =0 or {‘QB, A} =
holds: ‘[QB, Al.=0. Then, making use of the completeness relation (3-27c)

® This proposition was found in discussions with Mr. H. Hata. The authors would like to

thank him.

4
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Chap.' V' Observables in the Yang—]ﬂills Theory ancZ Quark Confinement 69

P(O)‘I“Z P(n) ) , ) (3270)

n=>1

with P® = {Qs R™} (n=>1) (3- 29), we obtain
A Z P™ A P®

o P(O)AP(U) - Z .{'23’ R(m)} AP(O) -+ Z P(m)A {Q R(”)}
n>1
—POAPO [Qs, X, RWAP® £ 3] P<’”>AR<">] | (5-74)

m=>=0
n>1

In (5-74), we have used the commutativity [Op, P™] =0 (7f>0) (3-28). [1

Corollary 5 10, Let A be a trwzal observable then A has the follow-
ing form:

A=e=[0, ) NGB £)
with some operator R. '

Proof) Since A satlsﬁes the equatlon

<0)IA|1”> 0 for |o3, 7> & Vs » ‘ - (5-76)
we obtain ’ ‘ ' ' B
(FIPOAPOIGy=0  for any | £, lgpeV . 577)
This is because P = H 1y C CVppys holds. (5-77) is nothing but
| PYAPY=0.  (5.78)
\ . 0

The above decomposition (5-73) tells us that such contributions from unphysi-
cal fields are cancelled in physically meaningful observable quantities and that
our theory is really a theory of the YM ﬁeld in splte of the presence of
those auxﬂlary unphyswal fields.

§5 3. Characterization of localized physical states as group- invariants
Absence of localized colored physical states

As a remarkable conclus1on obtained from Theorem 5. 6 the “following
theorem stating the absence of localized colored (charged) physical states in

QCD (QED) can be proved.

- Theorem 5.11.>®  Let |@)> be a localized physical state, namely, a physi-
cal state |@>€ CVphys written by a suitable local operator eEF(O) with
finite space-time region O in such a form as

10>=0[0>. o (579
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70 . T. Kugo and I. Ojima

Then, [@}Ethys' satisfies the condition
Q"0y=0 - | (5-80)
for the global charge Q" of the unbroken global gauge symmetry.

Proof) Since |@>=¢|0)> is a physical state: Q30> =Qzp|0>=0, Lemma
5.5 tells us that ¢ is a local observable. Then, by virtue of Theorem 5. 6,
@ satisfies, for the unbroken charge Q°

[Q%, 2] =0,
and hence, ‘
Q*|6y= Qg 0> = [Q*, #110>+0°[0>=0. O
Thus, every localized physicakl state in QCD(QED) is a color singlet
(chargeless state) as long as the global color symmetry (global U(1) sym-
metry) is not broken spontaneously. Needless to say, the above statement

concerns only localized physical states (€% (O) |0> N OV nye) and says nothing
about non-localized physical states. In fact, if (5-80) held for every physi-

cal state without any restriction, then the electron in QED could not exist .

in this world. In the case of QED, what Theorem 5. 11 tells us is that the
charged physical state cannot be realized in a finite space-time region because
of the long-range Coulomb tails.®

However, one should note that the gap between the localized state and
the non-localized state is made subtle by the Reeh-Schlieder theorem [ (A-24")
in Appendix A]: L

Y =F[0>" =F|0>++ |
| - =20 IO>T=3<@)IO>“. . | (5-81)/

‘Owing to this theorem, every state in Cl) cdn be approximated by localized
states as closely as one likes (in the sense of the arbitréry admissible topology
t, the weakest one of which is the weak topology (w)). So, one can surely
approximate any non-localized physical state by localized states. If this ap-

proximation can be done for every physical state using localized physical

states exclusively, then the color confinement is achieved. Namely:
Proposition 5.12.» If the equality

T (05 Wye =F @) 105 (1 Vs (= V) (5:82)

holds, every physical state  |@) & Cl/ s satisfies the equality (5-80) for
the global charge Q® of the unbroken global gauge symmetry: ‘

0°l6>=0. | (5-80)
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Remark: Note that, by (5-29) of Lemma 5.5, the equation (5-82) is
equivalent to - | ‘ \
Wy =AO) 05" (= A(©O) 10>+, - (582)
from which the Reeh-Schlieder property in H,yy, with respect to the local ob-
servable algebra () follows:

Hipge=A(O)[0>. " | | : - (5-83)

The conclusion (5-80) of Proposition 5.12 can really be obtained from this.

condition (5-83) weaker than the one (5-82):

Proof of the implication (5:83)= (5-80) By the assumption (5-83),
for any given |0, [¥>e CVonys™ and €>0, there exists g/iej(@) such that

C KEIQHUB>—10%) [<e. (5-84)
Since,Q“g’El()B: [o° 7l |6>:O by Theorem 5.6, we obtain °

KT|01@>|<<e  for ¥e>0, T (5-85)
" which says . | |
(PIQ*1B>=0 for |8, |F>E Hypye,  (5:86)
or equivalently (5-80). ,, | O

From this result we know that the Reeh-Schlieder property (5-83)
should 7ot hold in the case of QED 'in order to secure the existence of the
electron in this world. In this connection, it may be instructive to remark
the role of the Reeh-Schlieder property played in the proof of Lemma 5. 7.
In fact, if this property in H_ g with respect to any local field algebra held
for QED, then the Maxwell equation (5-35a) in H e would lead us again
to the absurd conclusion: ‘

electric charge O=0 in H,,, (5-80")

according to Lemma 5.7, because the electromagnetic U(1) symmetry should

not suffer from spontaneous breakdown. Thus, in order to get rid of this
pitfall, any type of the Reeh-Schlieder property should be invalidated in QED.

'On the contrary, (5-83) is desirable for QCD. If it holds, the physical
world Iy, of hadrons is described according to the principles of the ordinary
local quantum field theory completely in terms of the color singlet local ob-
servable fields (Lﬁ(@)) identified with the hadron fields.

# Precisely speaking, |#> should belong to the domain, Dom @91, of (@91,
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§5.4. Con‘ﬁning’ g-g Potential and Cluster Property

In the intuitive picture of the quark confinement, quark and antiquark
a, g should:be intermediated by a string-like object which produces a g-g poten-

tial not decreasing at infinity to confine quarks inside the hadron. This means ‘
the failure of the cluster property, while it was proved by Araki, Hepp and.
Ruelle” that the ‘cluster property should hold in a Lorentz covariant local

field theory with a unique vacuum. From these circumstances, one would like
to conclude that quark confinement contradicts the usual framework of the

local field theory. In such a quantum field theory with an indefinite metric-

as the present case, however, this is not the case as was. pointed out by
Strocchi.® It can be understood by the following generalization® of the cluster
- property theorem obtained by Araki, Hepp and Ruelle” to the indefinite metric
case. | -
Theorem 5. 13 [S‘grocchi]i On the assumption of

(i) covariance under translations,

(ii) local commutativity,

(iii) uniqueness of the vacuum

~and (iv) the spectrum condition

a) with a mass gap 0, M),
or
b) Without mass gap,
one obtains an inéquality:
|<0| By (1) Bs () |0> — 0] By (1) [05<0| By (2) |0

(C[§17 exp(~ M [E]) [E17 (1+ [£°1/[£1), -+ a)
<4 or ’ a

<{ | ~ (5-87)
C’[flfz[f]”(lw“!$°!/[5]2), S +ee b)

Wheré
Bi(z;) = j.d{xl' e d'zia fi(zd, -, X)) O (@) + 20) -0 (T + 2),

fi€ D (R"®) [C=-functions with compact support],

E=x,— x5

The above @ is a generic notation for fields and N is a suitable non-nega-

tive integer dependent on the B/s. [£] is defined as the shortest space-
like distance between § and a certain compact set which depends on the
‘supports of the f;’s. If the Fourier transform le (p) of

Pz (§) =01 B, (z;) B, (x2) |0>—<0| B, (z,) |0><0| B, () 10> (5-88)
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is a- measure, as in the case with a positive metric,”® the integer Nis 0

and thus the cluster property holds” whether with or without mass gap. ‘

'Proof) [S/ee Ref 4).] : \ ’ , [:l

' The above theorem tells us that the cluster property may fail without
contradicting the usual axioms of quantum field theory only in the case with
an indeﬁnz'te metric and without mass gap (N=0 in the case b) of
(5-87)). Here note that the mass spectrum in the assumption: @iv) refers to
the one in the whole state vector space CI/ and that the physical spectrum
in H 4 may have a mass gap also in the case b), as is expected for quark
confinement in QCD as well as for cases with the Higgs phenomenon,®™~™

As an example case of (5-87), we consider the case of the ’gauge field

A, and its field strength F,, in QED. Setting
KolA,@AmI0y |
—<OIA (~73)A (y) [0>— <OIA (x) |0><01A ) IO>

» we obtain |
OIF (@) Foe )05 | N
- (gﬂpava gupa a gmra a + gutra aﬂ) r (x y) \ (5 * 90)

Since F,, in QED is an observable, we obtain

QOIF (H*F(FH10>=0, y (5-91)

where,

F(f)— J‘d“xF,,,(x) F#() with FreFRY.

Thus, the Fourier transform of {O0|F,, (x) F,; () 10> is a measure and, by b) of
- (5-87) with N=0, F(§) damps at. infinity at least as ~[&]™% (Note that
0.0,G(x—y) in (5-89) is an unphysical gauge part.)

On the contrary, since F% in QCD is 7oz an observable as has been
shown in §5.2 (5-40), and since such a simple relation between (5-89) and
(5-90) does not hold, no restrictions for F®(zx—y) in {0|A%(x) A (v) |0>
corresponding to.the F(x—1y) in (5-89) are obtained. In the case with N>1
for b) of (5-87), the ¢-§ potential obtained from <0|A,* (x) 4,°(y) |0> may not
- decrease at infinity (confining ¢-g potential) and then, it could happen that
the gluon fields A,* have no asymptotic field (gluon confinement).” The fol-

lowing theorem' suggests more convmcmgly the failure of the cluster proper-
ty for unobservable guantities.

Theorem 5.14.2 Le‘c A, and A, be local operators Belonging, respec-
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tively, to < (O,) and G (O,) satisfying the following two conditions:

@) A;(x) Ay(y) is an observable for any =x,y& R4,, where A;(x)
=U(x) A;U(x) ! with the translation operator U(x),"
(i) A, and A, satisfy the cluster property in the sense that

lim |<0|(01A1U(x) A2¢2|0> <O|¢1A1\0>\01A2§02l0>! (592)

—x2>+ o0

holds for any™ > local operators ¢, and ¢,

~ then, both A, and A, are local observables.

Proof) Since A;(x) A;(y) €F((O1+2) U (O:+y)) is a local observable
according to (i), Proposition 5.4 tells us the equality

[Q5, Ai () A; (»]1=0 for Vx,yE R | (5-93)

which is equivalent to

[QB;AU(.CC)AZ] 0 for VxER‘; o | (5-93")

“because of [Op, U(x)] = O Since [Qg, ¢;] and [Og, ¢»] for any local operators
@1, @. are also local operators, we obtain, from (5-93), (2-29) and (5-92),

0= lim <O|§01 [Os, AU (x) Asl Qz¢:10>

— 225400

= lim <0]¢1QBA1U(x) A:Q5¢:10)

— 22—+ 0o

~ lim Ol [¢1, O5] AU () As[Qs, 2] |0>

—22—>4 0

= <Ol [(ﬂla'QB] A, |O><O|Az [QB’ gﬂz] lo>

= <0|¢1QBA1IO><OIA2QB¢2IO> 5 (5-94)
from which at least one of the follovﬁrig equationé ‘holds:

01¢05A;|0>=0  for Yo, eF (O, C (5-95)
or | o . )
<0| A,05¢:10>=0  for Yp,&F(0)). (5-95b)
Consider the case of (5-95a), then we obtain

0»A0>=0, | (5-96)

# Tt is, in fact, sufﬁc1ent that this (5:92) holds only for local operators ¢i, ¢: of the form
¢:=[03, 9], as is seen from (5-94) in the following proof.
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‘ Ey virtue of the Reeh-Schlieder property‘ (A-27):
(F(O) 105+ = (F|0Y) *= P+ =0 RERGRr)

By Lemma 5.5, Eq. (5-96) implies

| - [Cs A]=0, , (5-98)
which ylelds by the help of (5-93), | |

0=[Qp, A A+ A, [Dp, As] = A [Ds, A (5-99)

Thus we have® ) |
[QB’ Al] :[QBs Az] =0.

The same argufnents apply also to the case (5-95b). ‘  [

From this theorem, ‘we know that, if local operators A; and A,, at least
one of which is 7oz an observable, define an observable of the form
A (x) A; (y), then the cluster property (5-92) for A, and A, is really broken
down. The failure of the cluster property means that the correlation between
Ay(x) and A,(y) cannot be switched off, however far they are separated
(— (x—y)*—>+o0). This implies that it is impossible for us to detect the
quanta of A, and A, separately.

Thus, although the physical states are specified by a non-local condition

(2:29): Qglphys)>=0, in terms of the volume-integrated charge Q3z, such a
kind of difficulties as the “behind-the-moon” problem' does not arise in our
formalism: Namely, we need not worry about the possibility of such a state
that it is physical as a whole whereas it can be divided into widely separated
unphysical two subsystems, like an FP ghost on the earth and an anti-FP
ghost behind the moon. This is because, if such‘separ‘ation can be performed
satisfying the cluster property, which would require these two subsystems to
be detected separately, they should, by Theorem 5.14, be physical in them-
selves from the beginning. On the other hand, if those subsystems are wunphys-
ical, then the failure of the cluster property due to Theorem 5. 14 prevents
us from performing on the earth the detection of the FP ghost in a manner
independent of the anti-FP ghost behind the moon, which physically means
nothing but the 1mposs1b1hty of the detection of this FP ghost. In this way,
‘the failure of the -cluster property in the unphysical world operates to
protect unphysical particles from being brought to light.

On the other hand, the cluster property for local observables is ensured
in the physical space Hypyo=C 10/, with the positive definite metric,
where the system of local observable algebras j(@) will safely belong to the

® Precisely speaking, we should assume that local field algebra 9(0) does not contain a
zero divisor, because, among the operators in €V, there exists such a nilpotent operator

as Qz: Qz*=0 but Qz40.
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category characterized by the usual Haag-Kastler-Araki axioms.”®*  In this
situation, if (the representation- of) the algebra j of quasi-local obéer\iables*’
“is reducible in Hiys, the superselection rule holds® ™ and group non-invar-
iant physical states may appear, as expected for the case of QED. On the

~ contrary, the condition (5-83): thyrszj ©) |6>, from which the color con-
finement 0%=0 follows (Proposition 5.12), is equivalent to the condition of

the irreducibility of (the representation of) A in Hyye In \7any case, if

o~

only we can show ‘the color confinement: Q%=0 in Hpypye then the above
Theorem 5. 14 guarantees that every thing goes well about the quark con-
finement: The failure of the cluster property in the unphysical colored
- sectors prevents colored objects from coming out of colorless hadrons to be
~ detected, permitting only the color singlets to appéar in the physical world
"H,,ye- In this colorless physical world Hys, the validity of the cluster prop-
erty enables us to perform physical measurements on the earth without wor-
rying about the things behind the moon. - In the next chapter, we will discuss
the problem of color ’conﬁnement: Q“=O in. H,ye, contrasting 1t with the

Higgs phenomenon.

# Precisely speaking, the Haag-Kastler-Araki axioms are formulated in terms of the bounded
operators, which should be obtained, in a certain canonical manner, from the unbounded

ones treated here. “Quasi-local observables” are defined, in the former version, as the

operator-norm -limits of local observables.
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Chapter VI

Global GaugeSymmetr)\f and Structure
of the Associated Charges and Currents

- §6. 1. Massive Gauge Bosons and Higgs Phenomenon

In this chapter, we discuss the conseduences about the global gauge’sym—
metry derivable from the “Maxwell” equation (2-36). This equation

g7 =0"Fi+ {05, (D)% 6-1)
" tells us that the current gJ,* consists of two parts, | /
PFe =00 (62
and o . l '
Qs DD Y=A7 - (6-3)
eafqh of which is conserved: | | \ |
0“4, =0"4,"=0. o (6-4)

These currents; therefore, yield (formally) conserved charges G* and N™:
== jcfsxgo“ = jdsinF& 5 .o (6-5)

- j‘dsx/‘,a: j &40, (De?) %} ,\ | - 65

and the global charge Q° (5- 43) of the global gauge symmetry is the sum
of these two conserved charges:

Q' = [dzgr=Go N 6-7)
" The characteristic forms (6-5) -and (6-6) of these charges G* and N reveal
some interesting aspecfs of the globarl"kgauge‘ symmetry with the charge Q°
in the light of the Goldstone theorem®. The various versions of this theorem,
Theorem B. 2, Corollaries B.3 and B. 4 in Appendix B, state that the follow-
ing three conditions concerning a conserved current .J, and its global charge
Q are all equivalent:

(@) Q=fdxJ, is a 'well-deﬁned charge

- (b) Q does not suffer from spontaneous symmetry breakdown

(¢) J, contains no discrete massless spectrum: <O0|J,|¥ (p*=0)>=0.
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Lemma 6.1.° If a linear combination, &, *=a,*4,"=wa,*0"F%, of G,”s

with some coefficients «,? contains no discrete massless pole,
IGAT @ =0)>=0, 69
or equivalently, if the global charge G* given by
Gi= Ja”:c@{“ - @G (6-9)
is a well—déﬁned charge, then G* is nothing but 0:

G*=0. o (6-10)

Proof) The equivaience of the condition (6-8) to the well-definedness
of G* is stated above (Corollary B. 4 in Appendix B). Then, this proposition

is nothing but the previous Proposition 5.7 applied to the case with K,,

= a{aAFZ‘u' : . 5, ) ' 1:[

Now, we utilize‘ the information (3-21), (3-23) and (3-24) about the

massless asymptotic fields constituting the “elementary’” quartet. First, note
y

that the »“(x) field in A,“(x)®* makes no contribution to Fj, (x)* owing to
the anti-symmetry of its suffices # and v, and that the contributions to F¢,(x)®

~come from the (massless or massive) genuine wvector fields. U,* which are
assumed to be contained in A,* with the weight &," l

Aﬂa(x>as:aﬂxa (.Z') _I_&AaUﬂA (.Z‘) + .- (611)

The coefficients &@,* should properly be taken into account, in the cases with
particle mixing, so that the U,*s represent particles with definite masses.
~We suppose that, for the eigenchannel of U,*, F%,(x)® is given, with some
coefficients a,*,* by ‘

Fi (2)* =, F2, (x)*=0,U* (x) —0,U (x) +--.  (6-12)
Then, from this and Lemma 6.1, we obtain,
Corollary 6.2. If U/ is massive, then G*=0.

‘Next, in order to examine the charges N* we have to introduce dynamical
parameters #," defined as the pole residues of gA,X¢c at p*=0:

g (A, X (@)= =u0,7 () + -, 6-13)

- which can be estimated by the formula due to (3-21c) and (3-24):

* Owing to the contributions from the term gA,XA,, the matrix a.* s, in general, neither
the inverse of &.® nor unitary.
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- J d'ze =IO T [(Due)* ()9 (4, 2)* ()110)

= —uy P D+ . (6-14)

Then, we obtain
(Do) (x)* = (6b +2,") 0,7 (x) + -+ - (6-15)

Lemma 6.3 The conserved current §° N, yields a well-defined charge
of the form §'N°= [dPx&°H", if and only if & satisfies

@+ E =0 for all b=1, -, n (6-16)
or equivalently A
g - | |
' (1+uT)(§)=O. . (6-16")
A§" \

Proof) By Corollary B. 4 of the Goldstone theorem in Appendix B, a
necessary and sufficient condition for §”NN” to be a well-defined charge is given
as ’

QI A5 (@) [7 @*=0)>=0 (6-17)
for any massless 1-particle state |¥ (p*=0)>. Using the relation | |
0]@ (x) |1-particled = <01a7(x> aS|1-particle> ©(C-3)

which follows from the Yang-Feldman equation (C 2), we can obtain, from
(6-3) and (6-15),

COIE" A5 (@) | (5= 0) > =20 {Qs, (D, (@)} ¥ (B =0)>
=201 (D) (2) Qul? (B =0) >
=001 (D,0)* (@) *Qal¥ (0 =0) > |
=8 (08 1) 0,701F (2) QI (*=0) > . C(618)

Since the only non-vanishing matrix element {0|7° (x) Qz|% (»*=0)> in (6-18)
is given by taking |[Z(p*=0)>=y"(y)|0>, with the help of (3-23a) and
(3-24a): »
017 (2) Qs &’ () 105) =<017° () [Q5, x* () 110>
=<0l (@) (=i () [0
=—0"D, (x—v), (6-19)

* The dots (---) represent other possible massive components contained in (D,2)%
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the condition (6 17) in quest1on turns out’ to be equ1valent to the condition

(6 16), as is eas1ly seen from (6-18):

OIES @R O 10> =— (0 +uD €D, D, (x—). - (6:20)
, . , . ]

Corollary 6.4 If det(1 -HL) =0, every charge &°N® is an ill-defined |

charge suffering from spontaneous breakdown, except for the trivial &
=0. The Goldstone boson responsible for the spontaneous breakdown
of N” is given by »’ corresponding to the suffix 0,"+u"#0.

Corollaryl 6.5 If u= ?—1‘, S”’N“ for any §% is a well-defined charge.

Remark. In the Abelian case Where' the structure constant f*°=0, the

term (gA,X7¢)*=gf*ALc vanishes from the begmnmg, and ‘hence, #," in

(6 13) is 1dentlcally zero:
u=0.

Thus, the condition of Corollary 6.4 is always sat1sﬁed idet (1 +u) =det 1.

=140, and the charge N=[d*x{Qp, Dy¢} = [d’20,B is not well- deﬁned
In the case det (1 +w) #O we obtaln the following consequence

Theorem 6.6° - (Converse of the Higgs theorem). If det (1 +u) #O for
. each, eigenchannel of the massive gauge bosons U,,A, the global gauge
symmetries corresponding. to the charges O*=a, Q" are broken spon-
“taneously.

Proof) From Corollary 6.2, GA—*O follows for. each massive U,%, and
hence, we obtam '

gQ* GA+NA N* =, AN" , : ‘(6-21)

‘Since‘ (., - anA) #0 for the very existence of the massive gauge boson U,‘A,‘

‘Corollary 6.4 asserts the spontaneous breakdown of the charge QA

<OIgJ (x)x ) 10y= <01/A(x)x () 10> |
—C(aA(5b +l¢ba)amD+ (-'/U ¥) 7&0 - (6-22) ]

Here, a few remarks are in order:

Remark. ) If @= @7 = (@AG+u®) (A,b=1,-+,n) is a non-sin-
. gular (n, n) -matrix [where 7 is the dimension of the Lie algebra of the gauge
group G], we can 1dent1fy the Goldstone boson respons1ble for the spontaneous
breakdown of Q4 Wlth X defined by , ‘

| =@ - | (6-23)

'In' fact? it satisfies
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(OlgJ4 (@) () 10> = —34%0,7D, () (6-24)

for any channel B and the massive-gauge-boson channel A. In the example
-of the SU(2) nggs Kibble model discussed in Chap. 4, we already know the
explicit form of symmetry breaking:

‘ A#a,as: ,\/Kaﬂxa,as+ (\/K“CKN) aﬂBﬂ,as_l_ Uﬂa»as , (6.253)

QAocdAoc@bocd, A, | ’ (6-25b)

where the X“'as’é are the asymptotic fields of the é‘elementary” unphysical
Goldstone bosons. (6-25b) is a consequence of a certain global SU(2) sym- -

metry remaining even after the symmetry breaking. Equation (6-25a) agrees
with the one (6-11) in the general context, by the followmg 1dent1ﬁcat1cm as
is noted in (4-39): ‘

,xa_?\/z,[\/fxa,as%_ (\/K—CKN) Ba,as], L : ,‘ (6-26)

since the mixture of B™® components in (6-26). causes no change in (3-23a)

and (3-24a) by virtue of [Qp B**] = [B“?s, B"#] =0, , :
ii) Note that, in the above Theorem 6.6, the spontaneous breakdown of a
charge Q* is in one-to-one correspoﬁdence with the appearance of a massive
gauge boson U,*. This should be compared with the result obtained in Ref.

4): There, occurrence of the spontaneous breakdown of some global charges

has been proved only in the case where the gauge bosons acquire different
masses within a group multiplet. By such a result, we can nelther say any-
thmg about the case where the gauge bosons acquire a common mass within the
group multiplet, nor even about Abelian case. In contrast to it, the above
theorem asserts the spontaneous breakdown of a pai‘ticulrar‘ charge Q* cor-
- responding to each massive gauge boson U,* irrespectively of its mass value.
It is suitable to comment® here on the usual ‘misunderstanding about the
“Schwinger mechanism” by which the gauge bosons are believed to become

massive without spontaneous symmetry breaking®: In fact, the original

Schwinger mechanism found in the Schwinger model® is nothing but a Higgs
phenomenon as was explicitly shown by Ito” and Nakanishi.” Furthermore,
since our Theorem 6.6 is always applicable irrespectively of thé detailed mass
generation ' mechanism, the massive gauge bosbn, which is caused by the
“Schwinger mechanism” (if any) or by other ones, necessarily implies the
spontaneous breakdown of global symmetries. S ‘

iii) One should not draw, from Corollary 6.2, such a conclusion that the
spontaneously broken charge Q* vanishes in Fuy,:

g0 G"—i—N” N4 — {Q;, Q I d-‘*x(D.,z)'a}zo

*) This comment is dpe to Professor Nakanishi, to whom the authors are indebted.
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82 : : T. Kugo and I. Ojima

‘because (unless det(1+z) =0) the limit R—oo of the “local charges” gQgr*,
Nz? does not yleld a well-defined charge gQ*=N* owing to the massless
contributions 5’ to N* (6-22). For a finite R>0, the local charge Nzt
= {Qs, [d'zar (@) fr(x) a* (D) *(x)} gives a trivial observable: '

Nt=0 in H,, - (6-27)
whereas, in this case, the local charge Gz* cannot vanish 'contrary‘ to the
global one GA=0, and hence, gQz* and Gz* are not observables separately.

Next, we consider the case where the global gauge symmetry of the
charge Q% remains unbroken. According to Corollary B.4 in Appendix B,
we should have, in this case, :

0={0lgJ ¥ (»*= 0)»>=<0lg, AW’(P 0)>+<01/AW(P 0)> (6-28a)
or equivalently,

0lag 0 Fil¥ 0 =0) > = —<OLAAT 3 =0) >
=@l (DR QT =0 (6-28b)

It may happen, however, that this equation (6-28) is not satisfied in spite ‘of
the absence of the spontaneous breakdown, as is seen explicitly in the case of
QED.*"® . This is due to the massless contribution from «,*0,8" remaining in
gJ,* with some weight £. In the case det(l-+u) #Ob the problem can be
settled® by the following modification of the definition of the current and the
charge

AR =0T ) — @, (629
0Ot j By JA(x) = f B (T (2) — LN (@), (6-29b)

where the constant & is adjusted so that the massless contribution in gJ,t is
exactly cancelled out by the subtraction of {#3%. The constant { in QED is
given by {=1—Z2, In this context, the case {=1 corresponds to the spon-
taneous breakdown, which is equivalent to the appearance of the massive gauge
boson U,* as is shown by Theorem 6.6. Namely, if one wants to make the

charge gO* well-defined, then it is nothing but zero: gO* = [z (g — A8

=G4=0, while non-vanishing O* requires {1, which makes O* ill-defined
owing to the remaining massless contribution.

Thus, if det(1 +u) =0, the unbroken symmetry should be realized with
C%l. In this case, Q/(l &) should be adopted as the generator of the
" global symmetry, in place of the original Q* which is ill-defined by massless

contributions. In fact, one can easily check the following commutation rela-

tions:¥
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Chap. VI Global Gauge Symmetry and Structure of the Associated 83

) [90" ¢ (@) ] =—g (10 T (), ~ (6:30a)
[gQ“ 9Q" =ig A—¢) f*g0r. - (6-30b)
By this mod1ﬁcat1on the “Maxwell” equation (2-33) is merely changed as
9.5/ A=) =84,/ A—=0) +47 (6-31)

~ which presérves the whole arguments made previously by the replacement of
JS and G, by J,%°/(1—¢) and G,/ (A—&), respectively. v
The condition for the charge Q“ to be well-defined is now given by

QIPF5 7 #*=0) >/ 1—8) =<0/ (D,0) Q5T (*=0) >, (6-32)

which shows that F% should contain massless component, in order to keep the

global gauge symmetry unbroken, as long as det (1 +u) =<0 [see, (6-17) and

(6-19)]. This can be understood in the following way. According to Theo-
rem 6.6, every gauge boson U,*=U,” contained in A,* should, in this unbroken
case, remain massless and, in fact, we know already in (4-50) that the U
(=A,“*) contains not only the transverse coinponents but also the scalar
components (certain combination of) %% Since [B% "] %0 by (3-24a), we
obtain

[Uf @, @120, 33
which explains (6-32) for W(p2=0)>=xb(y)|o>
I Fi,l¥ "= o>>o<=<omUa—aa”U 7' =0)>+0.  (6-34)

Thus, the two ill-defined charges G*/(1—¢) and N* conspire to give a well-
defined charge g in the combination G*/ (1 —{) + N*® owing to the cancella-
tion of the massless contributions of §8% From this, we know that the term
G,"=0'F¢ in the integrand of gQ" should not be discarded merely for the
reason of its spatial divergence form. The massless particles can contribute
on the surface at infinity, making th‘e' charge G* broken spontaneously.

'§6.2. Color Confinement

Now, we discuss the case det(1+u«) =0, which may occur only in the
non-Abelian case. From Lemma 6.3, we obtain ' '

Proposition 6.7.° Let U, be a massive gauge boson. If the coefficients
A . . . ,
&, (a=1, ---, n) vanishes in this channel A:

® For massless channel in (6-11), prec1sely speakmg, neither U,* is 'a genuine vector nor
x*=(@").*x" is a scalar, and only the sum a,* =U,*+8,¢* transforms properly as a vector.

In fact, Eq. (4-50) shows that x*(x) =3 (ax"gx(z) +hic.) is the longitudinal component
Cof a. )
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84 . T. Kugo and L. Ojima

N GA=at (Ot =0 for a=1,--,n, - (6-35)

N\

the charge Q* is well-defined in spite of the mass_iveness of UA .

Proof) Since, by Corollary 6.2, G*=0 follows from the massiveness of
U/, Lemma 6 3 tells us that the charge '

9O =G* + N*= Nt = AN" ) 0 (6-36)

is well-defined, if (6-35) holds. = ' ~ ; | , In

In the case of QCD, we can obtain a concise criterion for the color confine-

" ment as follows:

Theorem 683’ If the following two conditions are satisfied in QCD,
(A) u= ~—1 namely = —0,", . , 6- 3'7)
and (B) the global color gauge symmetry W1th charges ng is unbroken

or equlvalently, ‘
(A) together Wlth (B"H 0”F§f, contains 720 massless discrete pole

then, the color confinement is reahzed. .
0°=0 in H,ye. B (6-38)

Proof) - ‘By Corollary 6.5, all the charges N” are ensured to be well-
deﬁned by the condition (A). Then, from the condition (B) and the equation
(6-7), every charge G* becomes well defined, and hence, by Lemma 6.1, it

s nothing but 0: G*=0. Thus, we obtam the equat1on for the well deﬁned’

charges ; ; |
00' == {0s, [FeDD @], (©)

which asse"rts\ the consequence (6-38). The equivalence of the two conditions
~ (B) and (B’) on the condition (A) is easily seen from the equation (6-7).[]

Corollary 6.9 If the eonditioﬁ (A) together with the following one

holds,

(B") all the gauge ‘bosons A,” become massive

‘then, the color confinement - (6-38) holds.

Proof) (B”) implies (B’), and hence, the conclusion follows immediately
from Theorem 6.8. : ’ ' D

In QCD, it is a very important problem whether the global color sym-

metry remains intact or:is broken spontaneously. One usually supposes that
this symmetry is not broken spontaneously, because; otherwise, one cannot
imagine such simple quark-configurations as gg@ and gqg for hadrons, and fur-
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ther, the quark confinement, if any, cannot be assured by the color- smgletness
of physical states. So, it seems natural to assume that the color symmetry
is not broken spontaneously.

If we adopt this assumption, we know from (6-32) that the gluons Us
should remain massless unless det(1+u) = .. In this case, their transverse
components may not be forbidden to appear as*physical particles, on the mass-
shell of which the infrared divergences arise inevitably in an formidable man-
ner.””* Thus, as -lo/ng as the color symmetry is assumed to be unbroken, the

requirement of 1+#z=0%% seems almost inevitable, and we have arrived at the.

two conditions (A) and (B) of Theorem 6.6, which leads us to the conclu-
sion of the color confinement. Here, one may doubt the possibility of the
condition #= —1: By small changes of the number and/or interaction type of

matter fields, the dynamically determmed parameter # would be easily per-

turbed to shift from —1, even if it was just set on the desired value —1 at
“first. There are, however, some such possibilities as the following example'®
of u,® which may exhibit its stability against such perturbations as the above:

wt P =0"g @Y/ =g @), (640
where g (%) is rhe‘ effective coupiing at p The present ‘parameter‘ uy” 1is

given by u=u,"(»*=0). In the Weak couphng limit of (6-40), it is re-
duced to the perturbatively reasonable form:

ubaN6bagz/7" . ‘ . (6: 41)
1f g (@ satisfies the condition expected in the renormalization group method:‘
_2<p2) 500 as p*’O : - . (642)

then (6 40) will reproduce the desu'ed form (6 37), irrespectively of the
- value of the constant 7 and of the rate of g approachmg infinity. This arbi-
trariness in the constant 7 and in the behavior of g tending to infinity would
endow the condition 1+4+#=0 with a cons1derable extent of stability. Of
course, further detailed investigations are  needed concerning the question
whether 1+u 0 really satisfies the stability of this sort.

The assumption (6-42) crucial for the above example argument of (6-40)
is the familiar anticipation known as the “infrared slavery” ™  Since this
means a. strong coupling at long dzstances, it must have a tight connection
wrth the Sailure of the cluster property discussed in § 5.4 from the view-
point of the corrﬁnmg q-g potentral. For the sake of the failure of the cluster

* In the perturbative approaches made in Ref. 9), the infrared divergences are shown to

survive, in the on-shell renormalization scheme, after the cancellatlons of those appearing
in the off-shell renormalization.

e By the unbroken color symmetry, the condrtlon det(1+u) = 0 is strengthened to 14#=0.
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property in the channel (0|4, “(2) Al (v) |0, it is sufficient that F.T.
<OIA () A (y) |0> behaves as ~1/(p*)* with a>>3/2,

CORTOAS @AW~/ (68

and the case @ =2 of a massless dipole 1/(»*? corresponds to the “linear
potential” case. In view of the condition (B') of Theorem 6.8 necessary for
~ the well-definedness of the charge G*= [d’z0'F, we notice here the following
contrast: The condition (B’) requires a weaker singularity at p*=0in (6-43)
' (Wlth smaller @, a<1), whereas the stronger one (with larger «, a=3/2)
is more favorable for the failure of the cluster property (and infrared slavery).
These two requirements are. really compatible to each other because the
Greens function (6-43) in fact has two 1ndependent components, namely, the
transverse and longltudlnal parts: In this connection, one should first. recall
that the isotropic linear ¢-g potential is mot so convenient for the string-like
picture of the confinement which seems to have a directional dependence deter-
mined by the g¢-g configuration. Next it may be instructive to refer to the
remark made by Frenkel and Taylor that the components of YM field re-
sponsible for the peculiar property of asymptotic freedom is only the longitudi-
nal one in Coulomb gauge whereas other transverse ones contribute destruc-
tively to the asymptotlc freedom similarly to the usual matter fields. Thus, it
seems likely that the components responsible for the failure of the cluster
[ property differ from those which could contribute to (9”F%,)? or to the charge
= [d*x0" F§, which should vanish: The former components may be identi-
ﬁed with the “]ongrtudmal > one y=A" and the latter would be “transverse”,
if any. In other words, the failure of the cluster property in the unphysical
world realizes the condition #= —1 making the charge N* well-defined, while
the absence of the infrared tails in the physical world protects the charge G*
from being ill-defined. Both of these cooperate to achieve the color confine-
ment. This contrast reminds us of the situation encountered in § 5. 4, where
the former operates to confine unphysical particles ‘and the 1atter guarantees
the physical measurement independent of the “behlnd the-moon”. These ob-
servations may give us some clues to the understanding of the naive string
picture -and of the notion of complete anti-dielectricity of the vacuum.

As for the possibility of (A) and (B”) discussed in Corollary 6.9, some
comments might be necessary. One might suspect that the very existence of
massive gluons having colors is contradictory to the conclusion (6-38) of color
confinement, which is, however, not the case. The colored particles can exist
as asymptotic fields, but only in the quartet representations. It is the subject

of the next section to discuss this point in some details.

§6 3 Color Confinement from the Vlewpomt of Quartet Mechanism

The quartet ‘mechanism, by which partlcles essent1a11y decouple from the
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physical sector as has been discussed in Chap. 3, can be found to take place
by a simple criterion. . Consider a BRS transformation

[iQs X(@)] =% (x), (64

where X (x) is an arbitrary Heisenberg 'opera‘cor with vanishing FP ghost
number .(:Q,=0) and & (x) is its BRS transform having iQ,= +1, then the
following theorem holds.

Theorem 6.10.° Tf the operator & (x) in (6-44) has an asymptotic
field 7(x),

& (2)* =27 (2) + - o (6-45)

then, the following holds:
(i) The operator X (x) in (6-44) also has an asymptotic field, say x (),
and the pair (@), 1) forms a BRS-doublet:

[0 x (®) ] =7(2). : : (6-46)

(i) There exists another Heisenberg operator & (x) with the FP ghost
number iQ.= —1, which has the asymptotic field 7(z) “FP-con-
jugate” to r(x). This 7(x) also forms another BRS-doublet:

Q5,7 (@)} =B(x), ' (6-47)

where B(x) is supplied as the asymptotic field of the Heisenberg
operator 9B (x) with iQ,=0, defined by

0% @}=B@. (6-48)
(i) These two BRS-doublets ({y(x),7(2)}, {7 (x),R(x)}) constitute a

quartet having a common mass, spin and color indices, and hence
‘these asymptotic fields appear in the physical subspace only in zero-
norm combinations (confinement).

Proof) In view of the BRS transformation (6-44), the existence of as-
ymptotic field 7(6-45) for @& necessarily implies the existence of % also for
X which should satisfy (6-46), as is explained in (C-24) and (C-25). Next,
since the assumed asymptotic field 7 of & should appear as a pole in a certain
two-point Green’s function, there should exist (at least one) such Heisenberg
operator @ ‘conjugate’ to & that the propagator {0|T'% (z) Z (¥) |0> has the
pole at the mass 7 of r-field:

1

2 mZ

F.T. <0[T%(x)‘?(y)]0>=—Z 4! (6-49)®

* Equations (6-49), (6-51) and (6-53) are explicitly written for the case of scalar ﬁelds, for
simplicity. .
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This indicates the existence of asymptotlc ﬁeld 7 for #Z. Note the following

W.T. identity: ‘ !

| 0=<0|{Q3,T(X(x)?(y))‘}|0>-. o
=<0|TX (z) B () 10>—i0|T% (z) & (y) 10>, (6-50)

where use has been made of (6-44), Qz|0>=0 and the deﬁnmon (6- 48)
B ={Qs, #}. Equations (6-50) and (6-49) lead to

. F.T. <0|TX($).@(y)|O>=—zZP 1 .., RECR O

m2

which says the existence of asymptotic field B(x) for the operator _CB(x) -

Defining these asymptotic. fields by
X(2) 2% @) 4, B @) —ZB@ 4o,
Z (x)—>7"F (x) + - ‘ ‘ (6-52)
we can casily see ‘that (6:47) holds as in (C-15), and can derive B
_[x(x),ﬁ(y)] =iD(z—y) and {r(x), 7O} =—D(x—y) (6-53)*

from  (6-49) and (6- 51) by virtue ef Greenberg-Robinson theorem (Appendix
C). All other (anti-) commutators between % B 1 and T except for

[x (@), % (] are found to vanish from ‘the FP ghost number conservation.

and’ the mlpotendy QF=0; e.g., o
[B@),8®]={r@,r(}= {T(x) T(y)} 0. - (6-54) -

One may notice that these logics presented here are identical to those utilized,

in Chap. III in showing the presence of the “elementary” quartet. In fact, the
present BRS transformation property (6-46) and 7(\6-47), and the commuta-
‘tion relations (6-53) and (6-54) exactly ‘coincide with those [(3-23) and
(3-24)] for the ¢ ‘elementary’” quartet and, hence also with those [(3-15) and

(8- 16)] for the general quartet. : » , 1

Theorem 6.11. If the operator & (x) in (6-44) has no asymptotic field
and X (x) has its asymptotic field X**(x), then :

[iQ5, X ()] =0, | | -(6 55)

' which implies that X partlcle appears in the physmal subspace 1 onyss and

Xas(x) becomes :
(1) a BRS-singlet physmal part1c1e with positive norrn,
or otherwise,

(11) a zero-norm particle havmg such a BRS-doublet partner Tx (). w1th
FP-ghost number iQ,= —1 that :

© ® See the footnote on p. 87. -
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{QB: Tx(2)} =X*(z). | ' (6 56)

vProof) Equation (6 55) dlrectly follovvs from (6-44) asin (C-15). As

we have seen in Chap. III, any asymptotic field becomes BRS-singlet or other-
wise doublet. Hence y(x) should represent either (i) or (ii) in the above.
| , | ;-4
In the preceding section, we have shown in Theorem 6.8 that the color
confinement really takes place in the case #=—1 and unbroken color sym-
metry: In fact, thecdlor charges O° vanish in H g, or equivalently

TNQIBYy=0  for VI, [0E Vypyer (6-57)

"by the remarkable equality (6-39),
Q"= {Q5, M*} with M*=¢™ jd“x(Doc‘f)“(x). (6-58)

What does th1s color confinement imply on the character of asymptot1c fields?
We know already from the arguments in Chap. III that any asymptotic field
is either a BRS-singlet or a quartet member. The color‘ccnﬁnement (6-57)
or (6-58) means that the colored asymptotic fields, if any, should ‘belong
. to quartet representations: In fact, the BRS-singlet (and hence physical)
- particles, denoted by ¢;, are necessarily color singlets. This is because Eq.

(6-57) with [#>=¢,0> and |0 =410 leads to

0=<01¢:Q"¢;'0>=<014:[Q", ¢'110>
=<0!¢-¢k*T“f|0>= s | - (6-59)

by using the normalization [¢;; ¢;'] =0, which says that all the representa- .

tion matrices 7', of color charges Q" on the particles ¢; should vanish. *On
" the other hand, the quartet particles denoted by Gpas Bi» 7: and 7;), can have
color charges consistently to (6-58); e.g., [Q% vi] = — T8y with T*=£0. In-
deed, Eq. (6-58) only dictates the following forms for Q% and M?: ‘

QBT+ T8+ 4 B! 0T+ T"0)
s J : -

+iTTH— i TET) S \ (6-60a)
MNZ (Ti TUXJ Bl XITTiJTJ + [Bt (wTa) 1 7'.7 + Tzf (Taw) 1.7:8]]) (6 : 60]3)

where use has been made of the metric ‘matrix (3-16) for the quartets, and

- the symbol ~ indicates an equality restricted on the Fock space spanned by all

- the asymptotie fields. Hence both of (6-60) 'become exact equalities if the
‘asymptotic completeness holds. Thus, these arguments explicitly show that

the color confinement (6-38), 0*=0 in H, is really a confinement, the con-

sistency of which is guaranteed by the quartet mechanism found in Chap. III.
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We already know the existence of one color-octet of ‘elementary’ quartet.
Further, there may exist asymptotic fields even for the quark fields ¢ (x) and
the vector parts of gluon fields A,(x). In this case, we see from Theorem
6.11 and the BRS transformation '

[iQ5, ¢ ()] =ige® (%) % ¢(@),

[0 A% (2)] = 0,6 (2) +9 (A, (@) X (@)*,

that the quark (vector gluon) asymptotic fields, if they exist, should neces
sarily be accompanied by bound-states of FP-ghosts and quarks (gluons) in the

channels of ¢®(x)A%q (x) (A,, () Xc(z)). Note that the formations of such’

bound-states are possible only in non-Abelian cases, because the FP-ghosts are
completely free in Abelian cases. This point agrees with the previous observa-
tion that the confinement. condition (A) #= —1 in Theorem 6.8 can be realized
only in non-Abelian cases.

Some comments are in order: (i) Since the quartet mechanism takes place
"in this color confinement, the physical S-matrix unitarity is automatically as-
sured to hold. (ii) The confinement by Theorem 6.8 holds irrespectively
of the presence or the absence of quark asymptotic fields. One may, however,
prefer the case where the quark fields have their own asymptotic fields, be-
cause the asymptotic completeness can hold only in such case. In fact, if the
quark fields belonging to Sfundamental representations of SU(8) color group
do not have their asymptotic fields, then the quark Heisenberg fields them-
selves will not be expressed by other asymptotic fields of non-fundamental re-

presentations alone.
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- Chapter VII

Miscellany of Other Topics

§7.1. U(Q)-Problem

Now many physicists believe that the strong interaction in the hadron
world can be described by an SU,(3) color gauge theory, namely, QCD. ~The
Lagrangian density of QCD is written as (2-7) with the matter part given by

r8Ra=a|ir* (L0, —igh A7) —m|a, @D
‘ 2 2
"in terms of quafk fields ¢g. In the limit of vanishing mass matrix m,; this
system has a chiral U(1) symmetry besides the desirable chiral"S'U(Z\ff) flavor
symmetry and the exact SU,(3) color symmetry. The Goldstone theorem”
tells us that there appear N7 Goldstone bosons after the ‘spontaneous break-
ing of the U(N,) chiral symmetry. Further, Weinberg” has shown, by using
the usual technique of current algebra in the case m=~0, that an isoscalar
pseudoscalar Goldstone boson (say, U(l) Goldstone boson) should exist with
a mass corriparable to the pion mass #,, if it is a physical particle. There is
no such a particle in reality. So the U(1l) Goldstone boson must not appear
as a physical particle in QCD. This is the U (1) problem.”"®

Hereafter, we restrict our considerations to the case of chiral symmetric
limit m=0. As is well-known, the U(1) axial-vector current suffers from an
anomaly of the Adler-Bell-Jackiw type,® which modifies the conservation law
of the gauge-invariant current J5* to read

0ufs" = (N1g*/321%) € F - Fys . (7-2)

This, however, implies the existence of another conserved but gauge-variant
current J3*, defined by

Ji =7+ X, (7-3a)
Xt=— (N;g*/167%) " [A,- Fou— (¢/3) A,- (A, X A)].  (7-3b)

Since the added anomalous term X* commutes with the quark field ¢ at equal
times in any covariant gauges, one can derive chiral U (1) Ward identities of
the usual form such as, e.g.,

0,7 C0IT (J¢* () Prap (0)) 105 =2i0" () 0IF (0) [0 (7-4)

Equation (7-4) clearly indicates that the U (1) Goldstone boson must exist and
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produce a massless pole in this Greehfs function, because {¢ >0 in our real
world by which the chiral SU(Nf) symmetry is spontaneously broken. Thus,
~the anomaly by itself does not necessarlly give a way out of the U(1) problem.
The U(1) Goldstone boson, say %, the existence of which is enforced by the
* chiral U(1). Ward identity (7-4) in any covariant gauges, is su1tab1y defined

I

by the followmg equatmn in the LSZ sense:

(]’5,4 (.22‘) -——,->Z1/20#X°“t/m (x) + cen | _‘ (7 . 5)

Lo—> oo

Here the dots (:--) indicates the other possible massive bound-states in this:
L channel Ji* which are commutative with massless pseudoscalar y and ‘hence

need not be considered. The superscripts out and in are om1tted for simplicity
hencefo;rth ; , : ,
The above argument, essent1a11y the same as the Goldstone theorem does

not claim that the existing U(1) Goldstone boson y is a physical particle, and -

~ therefore, we have yet a good chance to solve the U\(l)' problem in QCD:

Especially, since the conserved eur_rent J# in (7-5) is gauge-variant, its as-

ymptotic field y can really be unphysical. Our present formalism developed

‘so far provides us in fact a very suitable framework to discuss the fate of this

U(1) Goldstone boson y. Especially the quartet mechanism explained in Chaps.
Il and VIis directly related to this problem. We will obtain below the follow-
ing results® by analyzing the meaning of SU, (3)-gauge-invariance in-terms. of

the BRS charge Op:

(@ The UQ) Goldstone boson. x does not appear as a p'hysical particle at all

if and only if the FP ghost forms a massless bound-state with the gauge- boson
(gluon) in a pseudoscalar channel . ;

(ii) This decoupling of y from the physical sector is caused by a mechanism
of ‘Goldstone quartet’ 1nc1ud1ng the FP ghost-gluon bound state as a member
of it. ‘ :

(iii) If the strong interaction were described by Abelian gluon gauge theory,

the chiral U(1) Goldstone boson would necessarlly appear as a physical par-

ticle. .
(v) The ‘Goldstone quartet’” mechanism become equivalent to the‘Goldstone

dipole’ one proposed by Kogut and Susskind® only in a special case, ie., the

Abelian gauge theory in two dimension (the Schwinger model®).

Now we begin the analysis. Define a new Helsenberg operator F*(x) "

by the BRS transformatlon of the gauge-variant J;*:

& (0)=[iQs J" ()], . - (7-6a)
— (N7g*/87) €70, - 0, A, () . (7-6b)

Note that all the contributions to this commutator come from the anomalous

term X* given by (7-3b) in Ji*: [iQp, X*]=%*“. In view of the commutator
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(7-6a) and the definition (7-5) of U (1) Goldstone boson y, we see that the
followmg two casés should be dlscussed separately: (A} The case when
g (x) has a pseudo-scalar massless asymptotic field corresponding to a FP
ghost-gluon bound-state, and (B) the case of no such’ massless asymptotic ﬁeld
in g .

- First consider the case (A). In this case, we ‘have‘a pseudo-scalar mass-
less asymptotic field 7(x), defined 'by

(@) = 20 (@) + -

.Z‘o ~»00

with the same renormalization constant Z'* as in (7-5), and obtam the follow-

ing BRS transformation relation from (7-6a): ,
[Os x (@) ] = —ir(2). ‘ , (7-7)

This relation is nothing but (6-46) Whlch we have found in Theorem 6. 10
in §6.3 as a necessary and sufficient condition for the quartet mechanism to
take place. Accordingly, this' BRS- doublet (%, 1) necessarily has a partner
doublet, say (7, ), and they all become wunphysical part1cles by forming a
. quartet Wthh cannot contribute to any physical quantities in the physical sub-

space CVphys specified by Oszlphys>=0, as has been stated in detail in Chap. I

below (3-30). The partner doublet (7, 8) can be found by fpllowmg the rea-

soning in the proof of Theorem 6.10. Since #“(x) has a massless pseudo-

scalar asymptotic ﬁeld it must develop a massless pole in the 2-point Greens
function as

N

2

RT«OIT%*‘(@?”@)|o>=-z?”;1"’”+---, | 78

at least for some operators &’ which create the same quantum numbers as &~
annihilates. It will be instructive-to cite here some candldates for &7 e.g.,

_ 0,6:0,A, (x
?”(’C) =“TJ\8% o a,CoF,;,(;l(:),) ot (7'9>
The BRS transform of this #* de‘ﬁnes another operator B*:
@ = On & @h RNCET)
which is explickitly written as
== N (B0 DS

correspondingly to the two examples of Z#in (7-9). The BRS-doublet (7, B)
is the asymptotic fields of these operators %” and B
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\,

& (x) ,—T>Zwaﬂ7 @) 4+, B*(x) >ZV0"B(x) +-. (7-12)
~ This quartet (y, 3,7, 7) is called ‘Goldstone quartet’, hereafter.
Next consider the case (B) where no massless pseudoscalar asymptotic
fields is contained in the operator “(zx) (=[iQp, J5“(x)]). Then, from the
qsymptotic form of Js* (7-5), we conclude in this case that. '

Qs y(2)] =0. | (7-13)

Note that this U(1) Goldstone boson y cannot be a member of BRS-doublet,
namely, there is no field 7, satisfying {iQp, 7.} =y. The reason is as follows:
First, if some 7, exists, then  has vanishing norm, [y (x), )] —=0. Second,
since the operator (7;) clearly cannot contain the 1:particle state 7, having
FP ghost number /Q,= —1, ¢ 75 contains only (BRS-invariant) y-field, if any.
Since also Ji* contains only y-field by the definition (7-5), the massless pole
required in the chiral U(1) Ward identity (7-4) cannot be produced by this
zero-norm y-field. This contradicts the first assumption that the y-field is a
U (1) Goldstone boson responsible for the massless pole required in (7-4).
Thus we see from (7-13) and from these arguments that the U(1) Goldstone
boson y in this case become BRS-singlet (gauge-invariant) ! As far as the
SU, (3) -gauge (BRS) invariance of the system is concerned, no other massless
particle non-commutative with y(z), is necessitated to exist. Thus we con-
clude that the U(1) Goldstone boson y (x) should have positive norm in order
for the theory to be physically interpretable and has necessarily to appear as
‘a physical particle in the world. This conclusion is inevitable as far as we
“take it for granted to assume that only the gauge invariance is relevant to the
fate of the U(1) Goldstone boson.

In Abelian gauge theories, the FP ghost and anti-ghost be¢ome free and
have no interactions with other particles, as is apparent from the fact that
they have the Lagrangian —:0“c-0,c instead of —i0“c*- D,
not form any bound-states at all, and hence the composite operator %*(x)
defined in (7-6b) has no asymptotic fields. This corresponds to the case (B)
discussed above. Therefore, we obtain an important conclusion: If the
strong interaction .is described by an Abelian gauge theory, the chiral U (1)
Goldstone boson has to appear as a physical particle in the world. Since
we have no chiral U(1) Goldstone boson in this real world, the Abelian
gauge theory of strong interaction should be rejected. o

“c?. So they can-

In two (space-time) dimensions, the situation is rather different. Since it
is instructive to analyse the model in 2 dimensions by our machinery presented
above, we here discuss the Schwinger model® briefly.

Although the Lagrangian has exactly the same form as in 4 dimensions,
an essential difference appears in the form of the ABJ type anomaly:

aﬂjﬁﬂ: (Nfg/zn) Equﬂu:
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which is linear with i‘espect to F,, in clear distinction from the quadratic one
(7-2) in 4 dimensions. Hence the quartet of operators Ji*, €*, #“and $*

are given very simply in this case as

J¢=ji— (Nyg/7) €” A, , | (7-14a)
&* = [iQp, J&] = — (Nyg/7) e*0,c, @14y
@*=— (Nyg/7) e”d,c, B ~ (7-14c)

, B=1{Qp, T = — (Nyg/7) €"0,B. (7-14d)

We notice that &* really in this case has a maSsless asymptotic field supplied
by the elementary (and free!) FP ghost ¢. Hence the Schwinger model re-
alizes an example of the ‘Goldstone quartet’ corresponding to the case (A)
above. The Goldstone quartet of asymptotic fields for the operators (7-14)
can now be given explicitly:-

X:Av{;l)out: Bzﬁ,
r=¢, 7=¢ ‘ (7-15)

with the renormalization constant taken as Z?=Nyg/7. Here @ indicates the

‘conjugate’ field to @ (peculiar to 2 dimensions) satisfying
0,0 =— e, 0, 0,0=—ec,0F, (7-16)

and Af o stands for the asymptotic fields of longitudinal component of A,.
Thus we see from (7-15) that the present Goldstone quartet is nothing but
the ‘conjugate’ of the elementary quartet {A%, B,c,c}. So here the decou-
pling of the latter quartet assures the physical S-matrix unitarity and simultane-
ously implies the decoupling of the Goldstone quartet at issue.

Here ‘we should note: Due to the fact that the FP ghost is completely
free in this Abelian case, the norm cancellations among the quartet (A”, B,
¢,¢) in fact occurs in the subset (A%, B), as is well-known since the Gupta-
Bleuler formalism. = Since A*(k) ~A,(k) — A,(k) and B(k) ~A,(k) + A (k)
when Ekl|le;, they form a pair of positive metric A, and negative metric A,.
Thus their ‘conjugate’ fields X:AL and =B also form a Goldstone pair
between which norm cancellations occur. This is nothing but ‘Goldstone di-
pole’ called by Kogut-Susskind.? They further proposed that this ‘Goldstone
dipole’ mechanism may take place even in QCD. We, however, know now
that the ‘Goldstone dipole’ mechanism is just a special form realized only in
the Schwinger model (2-dimensional Abelian 'model) of our general quartet

mechanism.

Since we believe that the U(1) problem can be understood in QCD, we

strongly expect the existence of massless pseudoscalar bound-state of FP-ghost
and gluon in the channel ## (7-6b). If this is proved, then, this ‘Goldstone
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~quartet’ provides us the first non-trivial (namely, dynamical) example of quar-
tet, which may support the previous idea of quark and gluon confinement due'

to_ the formation of the FP ghost-quark and FP ghost-gluon bound states.”
Finally we should comment on the current belief that the U(1) problem

was resolved by instanton.” It is not correct; namely, the instanton by itself

cannot assure the unphyszca,lness of the U(1) Goldstone boson y which s

‘contained in Jy* because of the chiral U(1) Ward identity (7-4). No one has

ever proved in the framework of “instanton physics” in a satisfactory manner
that the y really contained in the gauge-variant current Ji* is not contained
in the gauge-invariant one. j;*, although this problem has been discussed by
many authors.® : '

§7.2. Universality of Electric Charge in Weinberg-Salam Model

The Weinberg-Salam (W.S.) model based on SU(2) X U(1) shows remark-
able agreements with (almost) all the experiments up to now."” Especially
the recent neutral-current experimental data have excluded various variations
~of Weak’-intereetion models™ other than the original W.S. model with the GIM
mechanism supplemented. - ' |

A little lengthy Lagrangian of W.S. model is now well known, and is
omitted here. We remark that such 'asymptotic-ﬁeld analysis as was done
in Chap. IV explicitly for YM theories with symmetry broken and unbroken

can be performed also for this W.S. model. The result is, however, trivial,-

although some complications occur owing to ’;he mixing of two gauge bosons
" in the neutral channel: For the symmetry-broken parts and unbroken ‘U (1)’
part of the SU(Z) X U(1) group, the situations are quite similar to the broken

SU(2) Higgs- Klbble model (é 4.1) and the unbroken YM model 8 4. 2), re-

spectively. -

Here we want to discuss only the problem of (electrzc)charge univer-

sality in W.S. model. We mean by charge universality that the on-shell
coupling constants of photon to the charged fields are universal. This

- should be proved also in the W.S. model because the absolute values of the .
charges of electron (or muon) and proton are known to coincide with quite

a good accuracy. This problem was trivial in the case of QED. The Ward
‘ 1de11t1ty, Whlch is very snnple in the Abelian case, assures the proportionality
of the bare coupling constants e; for the charged fields $; to the on-shell
coupling constants e;:

e,= 2", = Z,'"e’q; , - : (7-17)

where we should recall that guantum numbers g, of the charge operator O,
of course, determine the bare coupling constants e, as e¢;"=e’; and that

Q¢ =adl. Y ! B (7-18)
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- Since, the proportionality constant Z;'* or Z, 260 is independent of the matters
¢, Eq. (7-17) proves the charge umversahty /
In the W.S. model, the W.T. identities become quite comphcated and the
proof of such proportionality relation as (7-17) is made difficult by the non-
Abelian character of this.model. In fact, the proof of such proportionality by
use of W.T. identities was accomplished only in the Landau gauge™ '™ and the

*)

unitary gauge. In the other covariant gauges, only the charge conservation

law in arbitrary scattering processes,
Le= Z €y, - R (7-19)
ie fout-going} ' .Je{in-coming} . ‘ .

1 This conservation law (7-19),

‘was derived from the W.T. identity as yet.
which can be proved also from more general S-matrix theoretical arguments
alone as was done by Weinberg,' is not sufficient unfortunately for the charge
universality proof; for instance, in the case where the muon (#) and electron
" (¢) numbers are separately. conserved, one cannot derive the equality e, =e,
from (7-19) alone even when e’=¢e’.

Now we give the proof of the proportionality
e-:co’nstant-e-o*-—— constant- e’q; , o (7 -20)

" by the machinery of the present formalism, in the WS model in arbitrary
covariant gauges respecting the original global symmetry SU(Z) X U(1), name-
ly in such type of gauges as (2 7b):

; | ;CGF=-(6"B'“)A,‘“+92‘~°B“B“, | - (7-2D)

Where the index « runs over 0 (correspondmg to U(l)) and 1, 2 and 3 (of

SU(2)). This proof was first given by Aoki* We present it in a more

complete form. Let us recall the “Maxwell” equations (2-36):
OF=9J"—{Qs (D)%~ for a=1,2,3, (7-22a)
OF=1%9'J,—{Qp 0,2%. (7-22b)

Owing to the spontaneous breakdown of SU(Z) ><U(i) to ‘U(1)’, only one
charge operator, say electric charge operator O, can be well-defined and is
usually (and formally) wrltten as

Q=Q3+Q°/2_.‘ - (7-23)

In view of this combination, the O- and 3-components of ¢ ‘Maxwell” equations
(7-22) are combined to produce

® There exist, in the unitary gauge, some doubts in the renormalizability, and hence in the
well-definedness of it. :
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O”Fm=¢°<Ji+%Jﬂ°)+//’,1, ) (7240

Where the following definitions are used

F,= (' F+gF) /Vg+9" +g’2 (7-25)
N = {QB;[Q'.(D;@8+gaﬂz°]/~/gz+g'2}, (7-26)
d=—g9'/Vg"+¢". (7-27)

Both of the formal charges [’z (J'+% J)") and [d’z.#7/e’ may be identified
with Q of (7-23), since both of them formally reproduce the commutation
relations (7-18) as is easily assured by using the canonical commutation rela-
tions. As has been explained in § 6.1, however, neither of them provides a
Well—deﬁned charge because of the massless one-particle contribution from the

‘elementary’ quartet members $° (¢=3 and 0). By the assumption that one -

-symmetry corresponding to the ‘combinati'on (7-23) remains unbroken, a certain
linear combination of the above formal two charges- '

o= [l (84 33) resiel -0

= jdsxjoe'm' | \ o /(7 .28) |

similarly to (6-29), must provide a well-defined charge, when the constant
&(5=1) is suitably adjusted so that the massless contribution in (J,*+Jy%/2) is
cancelled by that in §A4/e. Since (7-28) clearly reproduces the commuta-
tion relations (7-18), we see that the well- defined charge (7-28) gives a
desired correct expression for the electric charge operator Q formally given
by (7-23). According to  (7-28), the “Maxwell” equation /'(7-24) is now re-
written as " ’

aquP/ (1 _ C) — eojﬂe'm' + 0//;‘: . ‘ (7 . 29)

This equation sandwiched between two physical l-particle states |2> and | f>
(e CVPhyS) leads to - -

(FIOF i/ A—0) =X FITm™ iy - (7-30)

where use hasv been made of the following equation:
1Al =< S {Qa, ¥} 5 =0 (7-31)

due to (7-26) and Qjlf>=Qzl7>=0. , ; \
Applying [d'xe™ to both sides of (7 30), we consider the limit k,—O0.

First, similarly to the soft-pion technique, all the contr1but10ns to the L.his. of

(7-30) remaining in this £,—0 limit come from the massless one- partlcle in the
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channel F,, namely, the photon. The one-photon contribution can be esti-
mated by the asymptotic form of F,,: ‘

(Fu)®=Y (0,4 —0,A™) + -, (7-32)

where A/ represents the renormalized photon asymptotic field and the dots
(++) stand for the other massive particles irrelevant here. The constant Y
can be evaluated by the pole residue, for example, of

F.T. <OIT o (2) Fop () 10
= Y’2 (p.appgvo' +Pvpnrg1{p _PprQM ;Pepagvp),/Pz + - (7 ‘ 33)
Noting that (7-32) says

F.T. (0| TF, () AP () 105 =1Y (0,000~ 2,00) /%
we easily see that the Lh.s. of (7-30) becomes

lim j d'ze" = f0F,, (%) |iy/ (1C)
=[¥Y/Q-01lim @m)9' (G~ -en(2'+ 27,0, (7-34)

where e and (p°+p7), are the renormalized on-shell photon coupling constant
and the kinematical factor of the proper vertex <f|A,|7dum,, respectively.
Next, since the well-defined charge operator Q is given by (7-28), the time-
component (#=0) of the r.h.s. of (7-30) produces

f Az e & (2) |8y =°qid  Lim (2m) 0 (&7 — ) -2, (7-35)
pl—pt

. where use has been made of (718) The normalization convention adopted
in (7-34) and (7-35) is {fli>= (2%)_32p0i6fi63 (»" —p%. By comparing (7-34)
and (7-35), we obtain

w=[A-0)/V]onca,. (7-36)

This result indicates not only that the on-shell photon couphng constant is
dzagonal with respect to the types of matter, but. also the desired proport10nal
ity (7-20) since the constants & and Y are man]festly mdependent of 7 and
Jf. This finishes the proof of the charge universality.

" The above result (7-36) is obtained for arbitrary covariant gauges of the
type (7-21). In Landau gauge, only in which such proportionality as (7-36)
is proved also by the W.T. identity method, our result (7-36) can easily be
assured to coincide with that due to the W.T. identity. method. We should

finally note the crucial step (7-31) in the above proof. Equation (7-31) here |

has represented in a very concise form all the necessary information which
is buried in many complicated W.T. identities in the case of usual proof by
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the W.T. identity method. From this example also, we see that the “Max—
well” equation (2-36) and the subsidiary condition QBlphys> O in our canoni-
cal operator formahsm are really powerful and useful

§7 . 3 Some Other Problems

‘There are some other problems (or topics) Whichv have not been touched
upon up to now in this paper. We pick up and discuss some of them briefly
here. v ‘ g ‘ 1 o
Superfield treatment of BRS symMetry. This type of approach was
initiated by the authors of Ref. 16), and is made more complete by Fujikawa
in Ref 17). ~ ‘

" The basic idea of the s’uperﬁeld approach is to realize our fundamental
algebra (2-25) of Qp and Q, as a kind of ‘conformal’ one on ‘superfields’,
O(x,0) defined in a fictitious. five-dimensional (super-) space (x,, 0), Where
‘the coordinate 0 as well as the transformation parameters 74 of the BRS trans-
formation should be' taken as (‘real’) -elements of the Grassmann algebra

 Consider the following transformations similar to the usual conformal ones: -

Us ()0, O U () =0, 0+4),  (7:37)
U0 O U@ =0 e0), (137
,,Where p is a usual real number, A=il is a ‘real’ Grassmann number, and
Us(d)=e2, U.(o)=e" ~ - (7-38)

The parameter 'd in' (7-37b) is called the BRS-dimension of O (x, 0), which
 will be related to the FP ghost number soon below. D1rect1y from the con-
~ formal-type 'definitions (7-87) of operations of the unitary operators (7-38)

on the arbitrary superﬁeld @, we can easily conclude the commutation rela-

-~ tions,
 [AQs 4] =0, (739
‘[z’Qc, AQs] =4O, AR | (7-39b)
Q. 2 =0, S (7-3%)

which are quite equ1valent to our fundamental algebra (2:25). Let us see :
this situation more explicitly. First, since 0°=0, the Taylor expansion of -

O (x,0) with respect to 0 produces,’generally,k
O (x,0) =X (x) +0% (x). | (7-40)

Then, the ‘super-translation’ (7-37a) induces the following transformation. on

these component fields X and & :
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Us() X () Ug! (4) = X (@) + A% (2,

Uy & @ U M) =% (), 741y
the ‘infinitesimal’ form of which is written by using (7-38) as

405, X ()] = 4% (2), | S

(405 % (D]=0. (7-42)
 The ‘dilatation’ transformation (7-37b) gives

U0 X @) U (0) =X (2,

U@F@UNO) = @), (7-43)
or, infinitesimally, | | |

[iQ., X ()] =dX (), o
[iQ. & ()] = (d+1) & (2). (7-44)

From these, we explicitly see that the two Heisenberg fields X and ¥ form
a ‘BRS-doublet” [by (7-42)] and have FP ghost numbers d and d+1 [by
(7-44)], respectively. Noting this, we can now cast our ordinary fields into
superﬁel\ds; e.g., o v

@ (x,0) = A, (2) +0(—iD,0)* (x), (d=0)

0:(z,0) =¢:(x) +0gc-Typ, (z), (d=0)

¥ (x,0) =7 (2) +0B*(z), (d=—1) |

v (x,0) =c"(2) +0(9/2) (cXe)*(x). (d=+1)  (7-45)

"As is evident from these examples of superﬁelds the present super- conformal-
symmetry (7-37) is realized as a non-linear representation. By this reason,
superfield theoretlcal treatment is not quite useful in practical calculations. A
formal simplicity ‘attained by the introduction of BRS-superfields, however, is
often proved useful™ and brings us such convenience that we can retain mani-
 fest BRS-covariance in all the stages of calculations. So this technique may
~ find its important applications in the future. As an example of such simplicity,
we only note here that the gauge-fixing term _Leap, (2-7b) and the correspond-
ing FP ghost term _Lgp, (2-7c), can be combined and rewrltten by the use
-of superfields (7-45) compactly as follows:

jdx(IGFJr,EFP)—- jd“xd@[ 07 (, 0)- . (z, 0) + Wx 0)-05 (x, 0)]

(7-46)

The gauge-ﬁxz’ng' invariance of physical contents.. It is very importaht '
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and necessary to prove that the physical contents of theory are not altered by
the choices of gauge-fixing conditions at all. ‘In the scattering theoretical as-
pects, ‘it should be proved that the ‘p\hysical S-matrix is independent of gauge-
fixing conditions. We show in the following that the usual prbqf*’ given by
't Hooft and Veltman®™ and Lee' can be easily transcribed into the present
formalism. ‘ o '

Let us consider the response of arbitrary Green’s functions under an in-
finitesimal change of gauge-fixing condition. Take a gauge-fixing with arbi-
trary gauge-fixing function F' (F'=0,A” for our previous gauge—ﬁXin‘g (2-7b) ],

IGFjF,CszB-FqL%B-B%—z’E-'@’F', (7-47)
where ¢’ means the BRS transformation with 4 factored out: ¢'F= [iQs, F1,
and consider its arbitrary infinitesimal change: ; ,

A(Lgp+ Lyp) =B-dF +ic-0' (4F). (7-48)

[Note that the change of gauge parameter «, to.aép‘—l—Aao can be considered

by simply taking 4F=d4da,-B/2] The (arbitrary) Green’s function

<O[T01@2---@nIO>EG containing no FP ghosts receives, under the change

(7-48), the following infinitesimal change: / :
AG=L0|T[B-4F +ic-0’ (AF)]@@Z-»--@%|O>

:<O[T{QB> E'AF}@I@Z'“@nlO>
- Z <OIT<-E' AF} @l”'@i—l (6’@1) $i+1"'@n|0> N (7 . 4:9) ’
. =1
where the integrations over the argument x of B-A4F, etc. are understood, and
use has been made of Qp(0>=0, §'@;=[Qs, @;] and an important equality
B-AF+ic-60' (4F) = {Qp, ¢-4dF}. - (7-50)

In obtaining the on-shell S—métrix, the i-th leg of Green’s function G is
multiplied by the Klein-Gordon operator []+m and by some polgrization
vector, and its momentum p; is set on the mass-shell p2=m,;. Note that
0’0, is a composite operator accompanied by the FP ghost, which does not

have l-particle pole exactly at p*=ms in general. Only in the case @;= A,

the BRS transform 0’A,=D,c contains the l-particle pole term 0,c*, which,
however, does not contribute to the physical S-matrix owing to transversality
of physical polarization vectors. Accordingly, in order that 4G can contribute
to the on-shell S‘matrix, 0’@; in (7-49) must be combined with the term c¢-4F

® Ags will be discussed later, such a type of proof may‘be criticised from the standpoint of -

- the operator formalism.
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of iQ,= —1 and produce the original z-th particle pole;. that.is, the (¢-4F).

(0’®;) operator in (7-49) is effectively replaced by the original one-particle
field 6Z;*@, where : ‘ '

0ZM=0|T (¢- AF) (0'®,) |0 1-particle) (7-51)

which is nothing but a change of wave-function renormalization constant Z;?
under (7-48) as is easily seen.. Thus, we find that all the changes of on-shell
amplitudes are absoi‘Bed into those of wave-function renormalization constants,
and hence that the physical S‘matrix remains unchanged. Here we cite an-
other proof which is much simpler than the above one and interesting [although
the present authors cannot be convinced of its correctness completely]: The
S‘matrix of physical particles is given by the matrix elements :

Sus={@out|Biny, | (7-52)
where |a out) and |fin)> are composed of physical particles alone, and hence,

Qpla out>=0Q5|Bin>=0.

Similarlsr to (7-49), the infinitesimal change of the matrix elements (7-52)
under the gauge-fixing change (7-48) is evaluated as
{aout|B-4F +ic-§’ (4F) |8 in)> =<« out| {Ql?’ c-4F}|Riny>=0. (7-53)

This finishes the proof.
Also for physical quantities other than those in scattering theory, like

the expectation values of observables between two physical states, we can

prove the gauge-fixing independence just similarly to the above. We should
note, however, that such usual proofs as shown here may be incomplete. In
order to explain this, let us reconsider the first one of the above proofs more
~carefully. We have implicitly understood there the following equality:

F+AF<OIT@1F+AF' * 'QnF+AF|O>F+AF = F<OITA (-:CGF + IFP} mlF' ) '@nFlo>F .
(7-54)

We are not quite sure of its validity. The reason why we have written the
indices F' and F+ AF carefully is that we should distinguish the fields and
" the vacuum in one gauge-fixing from those in another. Namely, to each gauge-
fixing, there corresponds a set of field operators and state vector space quite
~different from one another. Thus the field operators in one gauge-fixing can-
not be expressed by those in another gauge-fixing. Hence, in order to prove
the gauge-fixing invariance in more satisfactory manner, it is necessary to
enlarge the state vector space C/ so that we can consider the transformation
of the gauge-fixing within a given C/." Such an enlargement is supposed to
be accomplished by the introduction of many auxiliary fields. In fact, Yoko-
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yama®” has succeeded in doing this in the case of Abelian gauge theory. By
introducing two auxiliary ﬁelds (other than the multiplier B) called gaugeons,
" he constructed a state vector space 1n ‘which the change of the parameter «
of covariant gauge-fixings in (2-7b) can be realized as a - transformation of
field operators. He extended his gaugeon formahsm to the non-Abehan case
also.?
family of gauge-fixings with a gauge parameter & as a group wvector [in con-
trast to the scalar parameter , in our gauge-fixing (2-7b)]. The introduction
of such a group vector pafameter has a serious disadvantage in violating the
manifest group symmetry. . ‘
Applications of the present formalism to other gauge theorzes The
‘present formalism has been applied successfully not only to YM theorles based
on internal symmetries' (hence, of compact groups) but also to gravity based
on a nom-compact group, as has been seen in Chap. VI. We expect that it is

always applicable to any meaningful gauge-theory. Recently, it was applied

in an elegant form by Nakanishi®® to gravity based on vierbein formalism
which, therefore, includes spinor matter fields. Later, the supergravity®® was
also formulated within the framework of our formalism 1n Ref. 24) and the
physical Smatrlx unitarity was established in any covarlant gauges '

In this case, however, it is successful at present only in a  special
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Chapter VIII
Discussion

We have presented the manifestly covariant and local canonical operator
formalism in full detail. In many examples we have seen that the present
formalism reafly provides us poWerful tools with which we can reveal . the
possible structures of dynamics in arbitrary gauge theories. Among others, we
should note -the folloWing two basic. ingredients or “tool's’: \

(i) the subsidiary condition Qp|phys>=0; ~ . (8-1a)‘
(i) the “Maxwell” equation: PFu=9J,~{Qs D,c}, - (8:1b)

both of which appear quite elementary Nevertheless, the former (1) ‘together
with the nilpotency QB =0 led to finding of

(iii) quartet mechanism, / ' _ (8-2)

and the latter (ii) combined with the former (i), with the help of consequences
in general theory of local covar1ant quantum fields, made it possible to derive
both of an interesting result statmg

(iv) any local observables are color-singlets (group invariants),
and the following remarkable criterion of color (1e quark and gluon) - con-
ﬁnement - ' Co ‘

(V) #= —1 with unbroken global color symmetry. " (8:3)

These (iii), (iv) and (v) are quite non-trivial and important results which -

could not be obtained so easily in such other formalism as the path-integral
formulation. We emphasize again here the generality of the quartet mecha-
nism to confine any type of ‘unphysical’ par\ticle’s for example, apart from
such trivial ones as the longitudinal and scalar components of gauge bosons,

the Goldstone bosons in the presence of gauge bosons (Higgs phenomena), e\

UuQ) Goldstone boson in the U@) problem (irrelevant to Higgs phenomenon)
“and even the very quarks and gluons (if their asymptotic fields exist and the
confinement is realized by (v)). Recall also that the peculiar form of our
“Maxwell” equation was useful in the proof of electr1c charge unlversahty in
the W.S. model. ~

Smce the log1ca1 structure of non-Abelian gauge theories has been clarified
in the present formalism to a large extent, we should examine whether or not’
the ‘possibilities” proposed in this paper are realized in QCD. . For exampl\e
the presence of massless pseudoscalar bound-state in the channel €™ 0,c-0,A,,

which is a necessary and sufﬁc1ent _condition for the U(l) problem to be ‘
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solved, must be assured directly. ‘As for the long outstanding problem of
quark confinement, we want to prove that the criterion (8-3) is realiy satis-
fied. Of course, it will require a more detailed information of dynamics. As
was explained in Chap. VI, the criterion u= —1 is closely related to the in-
finite effective coupling constant at the infrared limit. In this connection, it
will be interesting to clarify the loglcal relationship between our criterion
(8-3) and the others based on more intuitive pictures of confinement (e.g.,
the Wilson criterion” based on the string picture”). To ﬁnd out such rela-
tionship might help us. also ‘to prove our cr1ter1on directly. Further, if con-
finement is ‘proved’, for instance, by the Wilson cr1ter10n in the future, then,
such relationship will be very helpful for us to convince ourselves of the logi-
cal consistency of the confinement theory, because such consistency, especially
the physical S-matrix unitarity, is already assured in our present formalism.

The instanton physics,” which has been much developed recently, is not
touched upon in this .report. Although we are not sure that the quark con-
finement problem can be solved by the instanton technique alone, one should
notice that the semi-classical approximation using instanton solutions is useful
as a new computational method.” In order to solve various dynamical prob-
lems, such non-perturbative methods are absolutely necessary to be developed.

Another important problem which has not been discussed at all is the
“flavor dynamics”; namely, how many quarks (and leptons) there are, how
the structure of their interactions is and why they exist as they are in the
nature.® We have no clear ideas at present. We, however, expect that all
‘the interactions cani be described by simple gauge theories, and our present
formalism is applicable to any: type of gauge theories. So, as is seen in the
CVC (conserved vector current) -hypothesis which has been successfully
proposed on the basis of the knowledge of renormalization theory, the insight
into the gauge theories attained by the present formalism may some day lead
to a br1111ant idea to determme the structure of flavor dynamics.
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Appendix

General ‘Aspects of Indeﬁnité-Metric
Quantum Field Theory

\ In this appendix, we collect some useful consequences of the general
theory of relativistic quantum fields”'® extended to the cases with an in-

definite metric. -

A. General Postulates of the Relativistic Quantum Field Theory with an
Indefinite Metric and Their Consequences :

The state vector space C/ of our indefinite-metric quantum field theory
is required to satisfy the usual postulates” of quantum field theory apart
from the positivity assumption of the metric, namely,

(0) Principles of the quantum theory (apart from the positivity),
(1) Poincaré covariance, \

(ii) Spectrum condition,

(iii) Local (anti-) commutativity. ,

In connection with the postulate (0), the space CI/ is required to be a
topological vector space with an * (indefinite) inner product <|> separately
continuous with respect to its topology r. If this inner product {|) is degen-
erate, namely, if there exists some non-zero vector |w>e €Y/ orthogonal to CY/,

WIFS=0  for VTS, (A-1)

such a vector |»)> as the above has no physical effect and is an irrelevant
object according to the principles of the quantum theory. So, we can assume,
- without loss of generality, the inner produc"c > is non-degeﬁerate, namely,
a vector |y> satisfying the condition (A-1) is nothing but the null vector:

oTS=0  for V]T}eCV = |a>>:o‘ (A-2)

By the assumption (A- 2) for any zero-norm vector . (neutral vector’ in the
mathematical termmology”) lx> orthogonal to. 1tse1f

G =0, (A-3)
there should exist some vector [¥>& ) not orthogonal to it:
x>0 (A-4)

It may be instructive to note that the coexistence of the above two conditions
(A-3) and (A-4) implies® the indefiniteness of the inner product {[>:
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OI0>=0 in V.

~ While the inner product <|> is non- degenerate in the whole CV, it may be
degenerate in the subspace of €1/, for example,

Lemma Al Let 9f) be a positive (semi-definite) subspace of Ci/.

Then, every neutral vector in J is orthogonal to GJ:
We={lpeW; Glo=0 L. (A-5)

The same conclusion as (A-5) holds for the case with a negative (seml-
deﬁmte) subspace . ’

Proof) By the semi-definiteness of the inner product in CW, the Cauchy—
Schwarz inequality holds in ap:

I<¢7l§’f>l<I<£l7ldf>l“’l<§!’l¥’>l1’2 - (A

from ‘which (A- 5) follovvs . ‘ e ‘

s

Thus the zero-norm subspace C{/o of the physical subspace D onys (2:29) is

orthogonal to C¥pnys:

CVO;L Cvphys ’ ) (A - 7)

because CI/pys is positive semi-definite as is proved in Chap. ITI. The above"

(A-3) and (A-4) tell us that for any zero-norm physical state lx>= Y, there
is some unphysical state l§{7>6§ Clpnys not orthogonal to it:

GIT>F0  for [y>ECY, and alw>xezq/p,,y; o (A-8), |

By (A-8) we know that the subspace CVO, and hence CVphys, have no orthoga-
nal projection to themselves.

The next problem is the topology of CJ/, which has been assumed to make

the inner product {|> separately continuous. Such a‘top’ology is called a
. partial majorant’ From various points of view, it seems natural and con-
venient to impose the additional requirement on the topology ¢ that it should
be an adniissible topology,” the weakest one of Whlch is the weak topology
(w).® Namely, the linear functional ¢ on CJ/ is continuous with respect to

¢ if and only if ¢ is written in the form:

¢7(l§l‘>) =<017>

by some vector 0> ). The followmg lemma, thlch is familiar ‘in the
cases of the Hilbert space, holds: '

ity -
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T

* =gy (A9)
holds for any admlss1b1e topology © of CV/, where G+ is deﬁned by
Gr={I0>EV; OFy=0 for VIT>ETY) | (A-10)
and ng is the closure of G/ W1th respect to the topology z‘.’ |
Proof) See, Ref. 2). ', | | 0

Corollary A.3 Let CW be any dense subspace of CV with respect to an
admissible topology T:

F-v. @
Then, any vector orthogonal to G is 0:
Gt = (PHt=V+=0. | (A-12)
Proof) The first equality is due to the equality o
| | g s
and (A-9). The third one follows from the assumptlon A-2. O

As for the postulate (i) of the Poincaré covariance, we asstume such
‘ordinary ingredients” as the unitary representatlon U(a, A). of the Poincaré
‘group and as the fields ¢;(x) covariant under the Poincaré transformations,
and so on. In some respects, however, we can do so, for the time being, only
in a formal sense, owing to lack of the positivity. For example, the unitarity
of U(a, A) means the unitarity with respect to the indefinite inner product
{|>, which, contrary to the unitarity with respect to the positive definite inner
product, neither necessarily 1mp11es that the operator U(a, A) is a bounded one
nor that Uf(a, 1) can be written in the form

e, D=U —e‘P”“”—j PGB () (A-14)

Since no correspondent of the spectral resolution theorem‘,*)’valid in the Hil-
bert space, has been proved yet in the indefinite metric cases, the precise
meaning of such an expression as e'Pu® is not so clear, Thus, the relation
between the energy-momentum operator P, and the translation operator U (a)
is a symbohc one. These situations may seem to endanger the postulate (ii)
of the spectrum condition, which can, however, be formulated in the following
formi’ without any difficulties. '

First, let us recall that the fields @; (x) are not operators by themselves

but operator-valued (tempered) distributions which become operators by smear-

# See, SNAG theorem in Ref. 1).
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ing with test functions:

= j 2z, (z) £ (). | (A-15)

Prec1se1y speaking, we should have a common dense domain £ in C) of any
operator of the form (A-15) with f& % (RY)* and of any U(a A), stable
under these operators ¢;(f) and U(a, A4), where the term ‘“dense” means
“dense in any admissible topology © of C17”, namely,

P =pri=cy. (A1)
Further, the linear functional ‘ |
S L0l (A 1F) - (A-17)

should be continuous for any [0, |¥>=2 with respect to the topology of

S (RY. We denote, as F and F(®), the polynomial algebras generated by

the operators of the form

[t dtap, @) 0, (@) £ 1, ooy 22 (A-18)

r

. ’ ' ’ ’ ! r——e,
with f€ Z(R") and with f&€ D (O X -+ XOD),* respectively. In the case that
OCR* is a finite space-time region, we call an element of < (®) an local
operator taking account of the local (anti-)commutativity postulate (iii).
Here we add a further postulate (iv):

(iv) Existence of the cyclic vacuum: There exists a vector ]O>E.Q
(vacuum) invariant under any translations,

U(a)|0>=10> . (A-19a)

or
P,[0>=0, ' (A-19b)
which is\cyclz’ckWith respect to F: | ‘ |
Y =F05". | o @20
Novv,‘ the spectrum cohdition (i) is "postulatéd in the form® as

fd4ae—fpa“"<mU<a)|w>=o, if p&V,={geR"; =>0,7>0} (A-21)

for any |0, |¥>=SF|0>, or equivalently as

¥ Fand 9D here represent the spaces of test functions decreasing rapidly and having compact
supports, respectlvely See the textbooks of the theory of dlstnbutlons or Ref. 1).
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jd4él_ . 'd4§r_1ei(q1§1+m+qr-1§r_1)Wi1---ir_1 (51, . .‘., 57'—1) |
=W iyt (g1, -+, ¢-0) =0 if 3¢, & Vi, « - (A-22)
where Wi,..., (&, --&,_1) is defined by
<0 | @, (xy) *-+ @i, (xr) |0>E Wil---i,- (1 — g,y Zp1— x,) (A-23)

upon the basis of the translational invariance of the vacuum (A-19a). Ac-
cording to the well-known techniques,” (A-22) combined with the post_ulatés
() and (i) allows us to continue Wj.. (&, -, §,—1) analytically to the com-
plex analytic function W; .. (&, =+, {—y) in the permuted extended tube, in
much the same way a§ the positive metric cases. This analyticity property
furnishes us with powerful techniques, the well-known one of which is the
Reeh-Schlieder theorem::"

Theorem A.4 (Reeh-Schlieder theorem) . For any open set O of space-
time, the equality - o

FO 05 =F105° | (A-24)

holds for any admissible topology t. On the assumption (iv) of the
~ cyclicity of the vacuum (A-20), we obtain ' '

FO) [0y =y B 20
or h
| F @) )= (Eloy)+=0. (A-24")
Proof) By the “Edge-of-the-Wedge” theorem, We obtain
e, () =0, (@) 0>=0,  (A-25)
from the equality 7 | ’ ’
@| [dedanf @, oy 2) o0 (@) 002D 100=0  (A:26)
| o | |
for fe DO X ---xXO), namely,
(F (O) [0>) += (F|0) *. | (A-27)
By virtue of Lemma A.2, Eq. (A-27) tells us -
F(O) 105" = (F (©) |05 += (F]03) ++=FI05". O

Combining the above theorem with the postulate (iii)) of local (anti-)com-
mutativity, we obtain the following corollary. S -
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Corollary A.5 If O is an open set of spac‘e-time‘ whose causal comple-
ment (O defined by ‘

O’=the interior of the set {xER“ (x y) <O for Vye@} (A 28)
is not empty, and =5 (0), then
@l0>=0 o (A-29)

implies =0 on the assumption of (iv). In particular, since O’ for' a
bounded open set O is not empty, any local operator @EEE(@) ann1h11at-
ing the vacuum is vanishing in 1tse1f

Proof) It is sufficient to con31der the case with fields satisfying the local
commutativity, since the cases containing both local commutative\a‘nd anti-
comrr_mfative fields can be treated in a similar manner with slight modifica-
tions. From (A-29) and the local ‘commutativity, we obtain

0=<T|4p]0> =<P 9|0} o <A-3o>

for any lT}E,Q and any ¢eF (). Thus gﬂ*]"’F) belongs to Ef(@)lO)*‘

" which is nothmg but 0: ’
| P> (©) ot—0, e
by virtue of Theorem A.4: | o
L FOYy =, @A)

and of Corollary A.3. Then, we obtain, from (A-31),

g|0>=LGT0>=0  for v|o>eQ, (A-33)
which says o
ploy=0 for vioyeo (A-39)
or‘ | v ‘ | ‘ ;
| =0, Ay
by virtue of the denseness of @ (A-16) and of Corollary A. 3, 0O

 Next, we comment on the postulate (iv) of the cyclicity of the vacuum,
which is nothing but a natural requifeme‘nt that every state in a field theory
should ‘be described in terms of fields. In the positive metric cases, it is well
known®®~? that, on the assumptions (i)~ (iii), this condition (iv) :
(iv) cyclicity of the vacuum '

is equivalent to the following three conditions equivalent to one another:

2202 1snBny 1.z U0 159n6 AQ 0E1G1L61/1°99'SdLd/EY | L0 L/10p/aIoIe/sdid/woo-dno-oluspesey/:sdny wouy papecjumoq



General Aspects of Indefinite-Metric Quantilm Field Theory 113

(iva) irreducibility® of the field algebra <,

(ivb) uniqueness of fc}'le vacuum,

(ive) cluster property.
The implication (iv) = (iva),”** which is a :consequence of the spectrum con-
dition, has not proved yet in the general cases with indefinite metrics. But
this holds also in these cases on the assumption of asymptotic completeness,
- because one can prove (iv)=>(iva) in a Fock space, as will: be seen in Ap-
pendix C. The cluster pi’oper‘ty in the indefinite metric thédry has already
been discussed in § 5.4 from the viewpoint of the quark confinement.
' The problem that we want to discuss is the implication (iva)=> (ivb) in

the indefinite metric cases. The proof given by Borchers” in the positive

metric cases is based upon the consequence of a profound theéorem—the PCT
theorem.™® This theorem, obtained from the analyticity combined with the
Lorentz invariance (ii), clarifies the relation between the locality (iii) and the

PCT symmetry, the important discrete symmetry of the theory: The PCT-

invariance of the theory is equivalent to the weak local commutativity Whlch
is a weaker condition than the local commutat1v1ty - Since this theorem pre-
supposes the validity of the spin-statistics theorem,” however, it does not hold
generally in the theory with an indefinite metric which invalidates the spin-
statistics theorem allowing the existence of such scalar fermions as the Fad-
deev-Popov ghosts, for example. In the case in question of our Yang-Mills
theory, the PCT symmetry does hold with a slight modification as has been
shown in § 2. 4. Namely, the invalidity of the spin-statistics theorem due to
‘the Faddeev-Popov ghosts is harmless except the minor change of their PCT
transformation law (2-38). From this fact and the reconstruction theorem® ™
valid also in cases with indefinite metric, we can safely assert the existence
- of the antiunitary PCT operator ® defined (at least in £) by

oloy=0, © (A-36a)
00, (z) -0, () [0y =OFF () - OET () [0y, (A-36b)
and satisfying o |
e*=1 (n 9, | |  (A-360)
00, (x) 0= a)PCT<x) f (a6

Using this fact, we can now conclude, from the irreducibility (iva), the wunique-

# In the case with indefinite metric, the concept of irreducibility -splits into the two concepts
.of “subspace irreducibility” and “operator irreducibility” [see I. M. ‘Gelfand, et al,
‘Generalized Functions (Academic Press, New York-London, 1966) Vol 5, pp. 148~
1501, which are equivalent to each other in the Hilbert space. Here we understand the
term “irreducibility” to mean that both of the above two 1rreduc1b111tles hold.

*% The implication (va)= (iv) is trivial.
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114 - ‘ T. Kugo and 1. Ojima

ness of the vacuum (ivb) (in a rather restricted sense), which plays an
important role in the discussions ngmde in ‘Appendix B about the Well deﬁned-
ness condition for charge operators

Proposztzon A. 6" If the field algebra & is irreducible, there exists no
such other vacuum® [0’> (in £) linearly independent of |0> that

U)|0°5=10">  for vaeR* (A3
010>=*[0'>. (WER) | (A-38)®

Proof) Let there exist such a vacuum as |0"), then we can obtam one
more vacuum |0,

l0>a,§Eal0>+BIO’>; | o (A-39>.

which is normalized by a suitable choice of complex numbers «, [ and is

cyclic because of the assumption of the irreducibility. Then, according to the -
(modified) ' PCT theorem in the Yang-Mills theory, the locality and the spec

trum. condition of theory with the vacuum [0>,, allow us to construct the PCT
operator @, réferring to this vacuum [0D.:

Ousl 055 = 10>0s , A © (A-40a)

Ousls, (1) -y, () 10505 = DET () -+ OFT () 0505, (A-40b)
Ous QUT> + £|03) = 150> + 170,510, (A-400)
@=1 Gn 2 | | (A-40d)
Ousls () B = OFT (). . |  (A-40¢)

By (A-36d) and (A-40e), one can easily check the commutativity of @@a‘ﬂ
with every @;(x). On the other hand, ®®,,|0>,; can be made not proportional
tO IlO‘>aﬁa ‘

00510505 = 010 = ¥ 03 + §%¢[0"
a0y +B105 =100,  (A-4D)
by choosing @ and 8 such that | |
a*/apre /8. N (A-42)

Then, @@,; is not a c-number operator, whereas it commutes with every @;(x).

This contradicts the assumption of the irreducibility, so the Vacuum IO'> satis-

(13

* In this context, “vacuum” means merely a translationally invariant (normahzable) state.

- In the cases with positive metric, we need not require (A-38), while, in our case, it is
satisfied by the states. |0/>=Q|0> with Q=9Q* G* N? etc., dlscussed in Chap VI, because
of (2-40). )
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fying (A-37) and (A-38) ‘should be proportional to the original vacuum 10>.
. . } ) D

B. Symmetries, Currents and Charges

——Well-definedness condition for charge operators and Goldstone
theorem : ;

According to Proposition A. 6, the vacuum |0) is assumed, in this section
B, to be unique as the translationally invariant state [satisfying the condition
of the form (A-38)]. As an immediate consequence of this assumption, we
obtain:

Proposition B.1 ~ Let Q be a well-defined® conserved charge associated
with an internal symmetry. Then, Q annihilates the vacuum:

Ql0>=0. T (B-1)

 Proof) First, note that Q is invariant under the translation, and hence
'Q|0> is a translationally invariant state:

U(z) Ql0>=QU(2) [05=0[0>  for vxeRé. B2

Then the uniqueness**

[0>: .

of the vacuum implies that Q|0> is proportional to

Ql0>=q|0>, q=<0lQld>- ‘ (B-3)
Since ‘Q is obtained (formally}"**’) ‘as the volume integral of thek current j,
0= jd{t o, | | | (B-6) %%
and j, satisfies
Oloy=0 o B-7)

/

owing to the Loi'entz covariance, the coefﬁcient ¢=<0|Q[0> in (B\- 3)' should

vanish

- <0]Ql0>=0,

® ‘Well-defined” means being defined in a dense subspace of <V containing the vacuum.
* Owing to the PCT invariance of the YM theory, the Noether current j, of the symmetry
generated by Q" satisfies

@jﬂ (.:t:) 6= :Fja(_x) ’ ) } ‘ (B4)
and hence, |0/)=Q|0> satisfies (A-38) with e“=F1:

, 0Ql0>=FQl0y. | . , (B-5)
Thus,k (B-3) follows from (B-2) and (B-5), accordihg to Proposition A. 6. o
*#%) The precise meaning of the formal expression (B-6) will become clear in the following.
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and We obtein" 1 ;
Q[0>=0. e O

On the contrary, a spontaneously broken symmetry signalled by the formal

<0I[Q, () 110570 B
brirlgs us a charge Q not satisfying the condition (B-1): |
Ql0>=40.

By the above Proposition B.1, therefore, the global charge Q as the -total
volume integral of the current (B-6) cannot be well-defined in this case,
Whereas a ‘local charge’ Qg exists and generates the transformatlon locally’ 12

jdmuxo,xm(xo)fg(x) S @9
L 5 1= OI[iQe, (11T fox pF (). (B-10)

In the above, 7, is a (1-.pararrieter subgroup of the) symmetry\transforrrlation
‘of field operators and ar=9D (R), freD (R’ are such test functions that

jdxoar(xo)ﬂ,' - : (B-11a)
1 (e=R, L
fR/(x)-{O (| |>2R) (B-llb)v

Equation . (B-10) holds for any sufficiently large R>O and mdependently of
the choice of arn™ ' as a consequence of the locality and of the conservation
law: 9%,=0. Now, the intuitive expression (B-8) of the spontaneous break-
~ dovvn of the symmetry T, should properly replaced by the condition:® ™~

1;m<01[zoﬂ,¢]lo>#o 0eF(©O). (B 12)

The implication of (B-12) is well known as the Goldstone‘theoremm’“)”"”

which asserts the existence of a massless Goldstone boson.. In the neatest
; form this theorem can be stated as a corollary of the following equation:""™@

lim <0 [QR: ¢]10)=1im (<0|QRE1¢10> OleE, QRI0>) 4

=2lim <01QRE1§010> 211m <0|QR§010> (B-13)

R—ooo

where E, is the projection of the states of mass zero. Equation (B-13) is
proved on the assumption of the positive metric and the authors do not know
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- whether. it can be extended to the cases with indefinite metrics. To authors’
knowledge, there exists the following statement for these cases made by
Strocchi » '

Theorem B.2 “(Goldstone theorem)  Spontaneous breakdown of the
symmetry, (B-12), occurs, if and only if the Fourier transform of
{O0[[j (=), ¢]10> contains a 0 (p?) singularity.

Proof) [See, Ref. 3).] | T O

- We believe, from this theorem, that if the projection E; of the states of -

mass zero can be defined also in these cases in such a form as
E=xalloyOle, o (B14)

Eq. (B-13) might be verified in the 1ndeﬁn1te metric cases. Here, ;' and

a; are the creation and annihilation operators of massless asymptotic fields and

7i; is the inverse of the’ ‘metric matrix 7= las, a;']+. In any case,

Corollary B.3 The criterion for the spontaneous breakdown of. the
symmetry is given by

017 [#>=0  for 2|¥): massless l-particle state. ~ (B-15)

Taking account of the fact that the Weak‘topolegy is the (weakest) admis-
sible topology,z) we can verify the following: '

Corollary B.4 The necessary and sufﬁ01ent condition for the global
charge Q given by :

<¢IQI?F>—hm {D|QR|T> : (B-16)

to be a well-defined charge with the dense dornam F(O) lO> is that one
of the following condmons is valid: ‘

@ 1im (Ol[Qn g][0y=0  for VpeT(©), B
&) 1i;°<‘0|¢QR\o>=o for Yo F(O), | (B-19)
(i) <OLLIT (6 =0) > = QUsFE=0=0, (®19
G Qloy=o0, |  ®20)

) Qpl0>=[Qz, ¢110> for YoeF(©O), IR>0, YR>R,. (B-21)

In (B-19) where the Yang- Feldman equation. [ (C-2) belovv] is used,
7.2 is the asymptotlc form of Ju \

4

Proof)  (Omitted.) ' ’ . D

These results show that every well-defined charge does not suffer from
spontaneous symmetry breaking and contains no discrete massless spectrum
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and, conversely, that every charge suffering from spontaneous breakdown can-
not be well defined owing to the discrete massless spectrum—Goldstone boson.

C. Asymptotic Fields, Asymptotlc States and Their Behavior under the
Symmetry Transformation : : : ‘

Greenberg-Robinson theorem and GLZ fOrmula———

In the theory with a positive definite metric and with mass gap, the
notions of asymptotic states and asymptotic fields have their sound basis in the

918 Gince the existence of a massless field®

Haag-Ruelle scattering theory.
and of an indefinite metric obstructs the extension of this theory to our pres-
ent case, we cannot but take a naive attitude to interpret the asymptotic
fields and states as the representatlves of the discrete polesin Green’s func-

tions. Namely,

| (i) Characterzzatzon of asymptotic, fields and spectrum condztzon
for them: ' _
Corresponding to each discrete spectrum of P,P* appearing as a discrete
pole at p*=m (=0) of time-ordered Green’s functions in momentum
space, an asymptotic field ¢;* (‘as’=in or out) satisfying

(O+m?) "¢ (x) =0 - (C-D
with a positive integer 7; is assumed to exist.

As for the relation between the asymptotic fields and the original Heisen-
berg fields, we assume the validity of the Yang-Feldman equation, which
gives an expression for the asymptotic fields in terms of Heisenberg fields:
For example, in the case with r;=1, it is written as

in . \

, 65 (2) =0u(2) — [dviy @=9;mPDi(y)  (C-2)
W1th a Helsenberg field @ () and with its source j;(x) = ([:] +m;?) 0;(x) con-
talfing no d1screte spectrum at p*=m;®. From this, we obtain a convenient

equatlon_ ‘
010; () ¥ @ =m) >=<0l$ () IF @*=mD . (C-3)

In the cases with bound states and with multipole-ghosts (7=>2), due
modifications to (C-2) are necessary.””*’

The Haag-Ruelle scattering theory”)‘valid in the cases with positive def-
inite metric and with mass gap tells us that all asymptotic fields are mutually

(anti-) local. In the present case with indefinite metric and without mass gap,

® Ag for an extension of the Haag-Ruelle theory to a certain type of massless theory with
positive metric, see Ref. 19).
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there has been no such proof.* So, we simply assume

(iii”) Locality‘ of asympiotic fields:
All asymptotic fields are mutually (anti-)local.

The correspondent of the postulate (iv) of the cyclicity of the vacuum in
this case means nothing but the assumption of asymptotic completeness.

(1V') Asymptotic com;bleténess‘ The vacuum |0) is cycllc Wlth respect
to the totality of asymptotic fields: C/=Cp"= CV"“t ‘

On the assumption of (i), (iii") tégether with theb Lorentz covariance
of the asymptotic fields which follows from (C-2), we obtain the following
theorem, from the Greenberg- Robmson theorem, =

‘which can be extended?®® to
the cases with indefinite metric. '

Theorem C.1 The (anti-)commutator [¢;*(x), #*(y)]x is a c-number.

Proof) [See, Ref. 21).] | , O

Thus, the space of asymptotic states is a Fock space of a_sympto’tic fields, and
hence, for the asymptotic fields, the cyclicity (iv’) of the vacuum implies the
irreducibility of the asymptotic fields. This is an immediate consequence of
the following (generalized) Haag-GLZ expansion formula®* which gives,
on the assumption of (iv’), any linear operator L an expression in terms of
the asymptotic fields: o |

L= 5 | (I dw) QL [L, 62 @], -+, 6t (110>

Jivin ’
X5, Uiz 06"+ 1 6% (@) -+ 452 () - C-9
In (C-4), :---: means the Wick normal product. For simplicity, we have writ-

ten the formula for the case of scalar fields satisfying the commutatlon rela-
tion -

[62° (), &% (D] = llyBnn,d (2 =5 ). €5

From (C-4),\it follows trivially that any operator L commuting with all the

asymptotic fields ¢;** is nothing but a c-number: L=<{0|L|0>1, namely, the

totality of asymptotic' fields is irreducible. This fact implies further the fol-
lowing consequence: o

Proposition C.2 The assumption (iv’) of asymptotic completeness im-
plies the irreducibility of the (Heisenberg) field algebra . ‘

* In the proof of the locality of asymptotic fields made in Ref. 21), there is a mistake in
the use of the Jost- Lehmann-Dyson representation, as a ‘consequence of which the proof
" is invalidated.
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\ Proof) l.et L be any operator commuting with all the Heisenberg fields,

then the Yang-Feldman equation (C-2) tells us that L commutes with all the
asymptotic fields. . Since the totality of asymptotic ﬁélds is irreducible on the
assumption (iv’) of asymptotic completeness, L is nothing but a c-number. -
If we take L as a Heisenberg field @;(x), the Haag-GLZ formula (C-4)
jgive’s us an expression for the Heisenberg fields in terms of the asymptotic
ﬁelds Taking account of the LSZ reduction fdrmulae *® which can be derived
from the LSZ weak asymptotlc conditions as a consequence of the Yang- Feld-
" man equation (C-2), we can rewrite the above Haag-GLZ formula in the fol-
lowing way': ' '

AL [ 11w () ot (2)

Oﬂ' yeeeip Jrdn
X H [%m(D"‘Jr m5,) 101 T [¢B,, () - 0;,(x2) 110>

1 exp(¢777'K0/0J) : 0| T (¢ exp iJ"0) |05 7m0 ,
=1 K:40|T¢expiJ*0|0>, | | (C-6)

I

" where K is the matrix of Klein-Gordon koperators: K= (K;;) = 0y (O +md)). |

~We call this formula (C-6) the (generalized) GLZ formula, which holds for
any polynomial ¢(E%) of local (Heisenberg) operators. The operator S in

(C-6) is the S-matrix operator, which is written as o~
S=1exp (¢T77_1K§/‘(‘)‘J) :<0|T (exp iJT@) 10> ]7=0 o
=: K:<0|T exp iJ"0|0> , 7‘ ( (C-7)

/

by setting ¢=1 in (C:6). These GLZ formulae are useful in the discussion
about the behavior of the asymptotic fields under the symmetry transforma-

© tion.
any unbroken (nonhnear) transformation of an internal symmetry.

Theorem C.3 Let 0¢* be the infinitesimal transform of the asymptot-
ic field ¢;* by the symmetry transformation generated by a well-defined

chargg Q: v _ »
[iQ, b (2) 1= =06 (). | - ©®
Then a¢:s (x) depends linearly upon the asymptotic fields ¢, (x) |
bp* () =ayd(2). . ©9

The coefficients a;; may contain finite-order differential operators in 0.

Proof). We first note that the W.T. identity

First, we note that every asymptotic field is transformed linearly under .
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0| T T 0000 exp zJT@[O> <0|[Z00Q, T exp zJTQ] [0>=0, (C-10)
follows from the unbroken symmetry generated by Q:
[i00Q. 0.] =30[iQ, 0.] . = 0000, . o (C1

Here we have inserted an “infinitesimal-transformation parameter” ¢f in order
to treat the ordinary and “super-type” charges on the same footing. Differen-
tiating (C-10) with respect to Ji(x), we obtain

L0|T (0D, (x) +i0; («x)’JT&?&Q)) expzJ'@[0>=0. (C-12)

‘Next, these W.T. identities (C-10) and (C-12) with the operation : X: defined
in (C-6) can be simplified as follows. When the operator 1™y “IKo/0J: is
applied to (C-10) and (C-12), the external sources J; are replaced by the
Klein-Gordon operator K with coefficient of on-shell quantity ¢: J;— (6777 'K) .

Because of the presence of the operator (¢"77'K); instead of J; (x), the fields

0®;(x), which generally contain non-linear terms of fields also, can be re-.

placed by the linear combinations of fields with the same mass m;:

80,(x) = §0a,,0, (=), |  (C-13)

on-sh

@iy =25 jd"Z@IT [00:(x) 0, (2)110<0| T (B4 (2) @5 (3)) |0 [onsnen
(__ RN
= Z<O I T [6@1 (.2?) @k (y)] |0>Km, (y) 775;! on-shell - (C . 13b)
By this replacement, (C-10) and (C-12) lead to the “on-shell W.T. iden-

tities”:

1 K2 <O\ TT*00ad exp iJ7G|0>=0, (C-14)

0 01T (004 () +iJ"00a00, (2)) exp iJ°0]05 =0, | (C-15)
where a denotes the matrix (a;) commuting with K= (K): |
Ka=aK. | | (C-16)
(C- 14) and (C-15) are further rewritten as ‘
HC- 72 77 KD0a<0| T exp iJ°0|0 =0, (C-17)
L J: 0| T6000, (x) exp iJ'B|0>
= —i K- §7: 7 K00a(0| TO0, () exp iT'00y . (C-18)

Now, we can determine the form of 8¢, (x). Since Q is the unbroken con-
served charge, we should have ‘ |

0=[i00Q, S] = :[i660, ¢P]77'1K6/6JJC 0|T exp zJT@]0> ’
=:K-000¢": ”K(O[Tz@ exp iJ0[0>, (C-19)
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‘using (C-7). Ta view of (C-16) and of the on-shell W.T. identity (C-17),
“we find it sufficient for the valldlty of (C 19) to take 00 (09) "= QST '1a7760

ie.,

000 (@) = — T (00 (c 20>

Using (C-16) and the second on-shell W.T. identity (C 18), we can further |

verify that (C-20) really reproduces the original transformation law (C-11)
of the Heisenberg fields: .

18600, SO, (2) ] = K- 005" ‘1K<0]T1(Mk (@) exp ZJT@|0>

= : K : (0| T9050; (x) exp sz@|0> ' o

— 80000, (). o S (c-21)

In the above, | we have used the GLZ formula (C- ‘6) for gﬂ 0, (x) .and %

=0000, (). The commutativity (C-19) of Q and S ensures the equ1va1ence
of (C- 21) to (C- 11) Flnally, by v1rtue of the Jacobi identity

[T @) 4 0) ], 000] o ,
— [4e(@), [00Q, ¢, ) 11+ + [[i80Q Q4@ 1=. (C-22)

we can check the equahty o
606¢z&s_‘ "'Y]Jzakj”?lk ¢Las60 604w¢y&s s ’ (C 23)

’ .Whlch proves (C-9) with the coefficients a;; explicitly given by (c- 13b)

At the end of this section, we note that, if the ‘infinitesimal’ transform
00; () = [iQ, 0;(x) ]+ with a hermitian charge Q is shown to have a discrete
pole at p*=m’ represented by an asymptotic field (00,)*, then the original
Heisenberg field @;(x) should necessarily have a discrete pole of the same
mass and spin as 00; (x) Namely, the existence of the discrete spectrum of
00; (x) means the followmg

0= <016d) (x)l?F(P m2)> 0l[Q, @(ﬂc)] 7 @*= M)>

,=¥z<01@(x) QT @*=mH2), | (C-24)
which asserts the existence of the asymptotic ﬁeid ¢ (x) of @@(x) satisfying
| [0, g (@)1= 00 @. (C-25)

Since Q is a scalar quantlty, we know from (C-15) that the mass and spm
. of ¢ 001n01de with- those of (5@)“

D Propertles of Dlpole Functions and Wave Packet SYstems

Here some 1nvar1ant delta-functlons and wave packets related ‘with the
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massless dipole ghost are collected. .
We begin with the definitions of E-functions:

(D-1)
=107 @d—D Do (), ©2

where E, denotes E, E, E, and EF’ corresponding to D, =D, D, D; and

" Dy, respectlvely These E-functions, in fact, suffer from infrared divergenoes ,

except for E (), and hence one should adopt a suitable infrared cutoff pro-
cedure to define them properly. Since such a procedure is fully described by
Nakanishi in Ref. 28) we neglect this point here for simplicity.

- First note that the integro—differential, operator 9D defined by

9= (1/2) ) " @) (-3

for arbitrary constant o works as an “inverse” of d’Alembertian [] in front
of any simple pole functions f(x): '

D9“f(@ =f(» i Of@=0. | (D-4)
Hence, from (D-2), the equations | |
(B, (2) =09D Do, (x) = Dos (2) | (D-5)

hold (except for Feynman’s propagation functions E.,=Eg and D= Dy not
satisfying []Dp=0). It is an easy task to prove the following useful formulae
also from (D-2): B

Eo(z—3) =D, D, (x—9) = (D, + D, Dy (z—3),  (D-6)
07E (x—3) = 07D, — D, Dy (@—3), (DD
0,0, "Ee (x—y) = 0,9D."0,"+0,/D, 0. ) Doy (x—y). (D8

Next, we introduce wave packet systems for massless scalar and vector
fields. Let {9} be a complete set of positive frequency solutions of the
d’Alembert equation: : ‘

e

- - ’ dsp ' v \"_ \ 4 '
0. = [ 2™, pi=lpl, (D-9)

where the follovving conditions should be ‘sa;cisﬁ‘ed,

Semet@=00-0, o

jdsp¢k*(p>coz(p)=6k;., . -~ (D-10b)

220z 1snBny g uo1sanb Aq'0EL51L61/L'99'SdLd/EY L L 0L/iop/aloie/sd)d/woo dno-ojwapeoey/:sdny woly pepéojumoq



124 o T. Kugo and I Ojima

Then the gr's satisfy

Zkgk(x)gk*(y) =D, (x—y), | ; (‘D'lia)y
z jdsxgk* () 5ugz ()= (gk, g) =04, (D-11b)

where ™ | .
FBg=F @) — 0:f)g - (D12)

 By.the use of the same {yx (p)}, we define wave packet system {f ,*} for
the massless vector fields:

& , . SN
L o.(p)es(p)e v, (D-13)

/fk,g”b(x) = \/4*“—(271_) 2py

where the polarization vectors &*(p) (6=1 2, L, S) are déﬁned as

‘Co :O"eo‘ﬂ =0 . .
p-&:(p) (p) } for 0,7=1,2, (D-14a)
&(p)-&(p) =0sc
et (p) = —ip"=—i(plp), (D-14b)
e (p) = —ip*/2lplP=—i(pl, —p) /2Ip/. (D-14c)

Defihing a ‘metric’ % by k '
1.2 L S
1(-1 0] |
7= 0 ‘ (D-15)
2] 0 —1! /
L 0 1
o
S 10

we 'introduce ‘contravariant’ polarization vectors e (p): |
erp) =3 A, (D-16)
Then one can easily check the reiations as
| ; & (p)e”” (p)*=g", o (D-17a)

& (P) e (P)* =T . . (D-17b)
Then {fr "} satisfy
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3 fed @ L7 3) F=g"Ds (x—y), (D-18a)
(s J1'w) =050 - ~ (D-18b)

By virtue of the common use of {g(p)} bothin {g,(x)} and {fi.* (@)}, we
have the following useful relations:

S (x) =0"gy (x), » o (D 19a)

aﬂflc,sﬂ (x) = —‘g.k (x), ‘ . (D-19b)
0,fns(x) =0 for 6=1,2, and L. (D-19c¢)

Now the dipole wave packet system ,{hk (x)} is introduced by the defini-

tion as

e (2) = D0, (@) = (1/2) 7)) @d—=1/D (@), (D-20)

This {hk (x)} satisfies
33 (i (@) 9% ) + 02 (2) he* () = B+ (=), - (@21
(G ) + (Ber 1) =0.. o | (D-22)

Here (D-Zi) follows at once from (D-6) with (D-11a). Equation (D-22)
can be proved directly by using the definition (D-20), but it would be easier
to utilize the identity c

Eo(e—y) =i [d2[D1(@~2)00E, (=) + By (2—9)37Dy (=)

and the completeness relations (D-11a) and (D-21).
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