
Local Dampening: Differential Privacy for Non-numericQueries
via Local Sensitivity

Victor A. E. Farias
∗

Computer Science Department

Universidade Federal do Ceará

Fortaleza, Ceará, Brazil

victor.farias@lsbd.ufc.br

Felipe T. Brito
∗

Computer Science Department

Universidade Federal do Ceará

Fortaleza, Ceará, Brazil

felipe.timbo@lsbd.ufc.br

Cheryl Flynn

AT&T Labs Research

Bedminster, NJ, USA

cflynn@research.att.com

Javam C. Machado
∗

Computer Science Department

Universidade Federal do Ceará

Fortaleza, Ceará, Brazil

javam.machado@lsbd.ufc.br

Subhabrata Majumdar

AT&T Labs Research

New York City, NY, USA

subho@research.att.com

Divesh Srivastava

AT&T Labs Research

Bedminster, NJ, USA

divesh@research.att.com

ABSTRACT
Differential privacy is the state-of-the-art formal definition for data

release under strong privacy guarantees. A variety of mechanisms

have been proposed in the literature for releasing the noisy out-

put of numeric queries (e.g., using the Laplace mechanism), based

on the notions of global sensitivity and local sensitivity. However,

although there has been some work on generic mechanisms for

releasing the output of non-numeric queries using global sensitiv-

ity (e.g., the Exponential mechanism), the literature lacks generic

mechanisms for releasing the output of non-numeric queries using

local sensitivity to reduce the noise in the query output.

In this work, we remedy this shortcoming and present the local
dampening mechanism. We adapt the notion of local sensitivity for

the non-numeric setting and leverage it to design a generic non-

numeric mechanism. We illustrate the effectiveness of the local

dampening mechanism by applying it to two diverse problems: (i)

Influential node analysis. Given an influence metric, we release

the top-k most influential nodes while preserving the privacy of

the relationship between nodes in the network; (ii) Decision tree

induction. We provide a private adaptation to the ID3 algorithm

to build decision trees from a given tabular dataset. Experimental

results show that we could reduce the use of privacy budget by 3

to 4 orders of magnitude for Influential node analysis and increase

accuracy up to 12% for Decision tree induction when compared to

global sensitivity based approaches.
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1 INTRODUCTION
Differential privacy [6, 8] is the state-of-the-art formal definition

for data release under strong privacy guarantees. It imposes near-

indistinguishability on the released information whether an indi-

vidual belongs to a sensitive database or not. The key intuition is

that the output distribution of a differentially private query should

not change significantly based on the presence or absence of an

individual. It provides statistical guarantees against the inference

of private information through the use of auxiliary information.

Algorithms can achieve differential privacy by employing output

perturbation, which releases the true output of a given non-private

query 𝑓 with noise added. The magnitude of the noise should be

large enough to cover the identity of the individuals in the input

database 𝑥 .

For a numeric query (i.e., query with numeric output) 𝑓 , the

Laplace mechanism [8] is a well-known output perturbing private

method. It adds numeric noise to the output of 𝑓 and calibrates

the noise based only on 𝑓 and not on 𝑥 . The noise magnitude is

proportional to the global sensitivity, a concept that measures the

worst case impact on 𝑓 ’s output of the addition or removal of an

individual over the set of possible input databases. This may result

in an unreasonably high amount of noise when 𝑥 is far from the

database with the worst case impact, which is the case for many

realistic databases. To remedy this, Nissim et al. [35] proposed

to add instance-based noise calibrated as a function of 𝑥 . They

introduced the notion of local sensitivity. This quantifies the impact

of addition or removal of an individual for the database instance 𝑥 ,

resulting in a lower bound to the global sensitivity. Many works

use this notion to shrink the amount of noise added to release more

useful statistical information [2, 22, 23, 28, 42].

For the class of non-numeric queries 𝑓 , i.e. 𝑓 has a non-numeric

rangeR, the exponential mechanism [33] ensures differential privacy

by sampling elements from R using the exponential distribution.

This requires a utility function𝑢 (𝑥, 𝑟 ) that takes as input a database
𝑥 and an element 𝑟 ∈ R and outputs a numeric score that measures

the utility of 𝑟 . The larger 𝑢 (𝑥, 𝑟 ), the higher the probability of the

exponential mechanism outputting 𝑟 . The exponential mechanism

uses a similar notion of global sensitivity to that found in [8] where
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it measures the worst case impact on the utility 𝑢 (𝑥, 𝑟 ) for all ele-
ments 𝑟 ∈ R by adding or removing an individual from all databases.

However, to the best of our knowledge, the literature lacks generic

mechanisms that apply local sensitivity to the non-numeric setting.

Example 1.1. Consider an application where, given a graph 𝐺 ,

the query should report the node with the largest Egocentric Be-
tweenness Centrality (EBC) [9, 15, 32]. The EBC metric measures

the degree to which nodes stand between each other, defined as

𝐸𝐵𝐶 (𝑐) =
∑︁

𝑢,𝑣∈𝑁𝑐 |𝑢≠𝑣

𝑝𝑢𝑣 (𝑐)
𝑞𝑢𝑣 (𝑐)

,

where 𝑞𝑢𝑣 (𝑐) is the number of geodesic paths connecting 𝑢 ≠ 𝑐

and 𝑣 ≠ 𝑐 on the subgraph composed by 𝑐 and its neighbors 𝑁𝑐 ,

and 𝑝𝑢𝑣 (𝑐) is the number of those paths that include 𝑐 .

For instance, let𝐺 be the graph illustrated in Figure 1a. Node 𝑎

has EBC score equal to 7.5 since there are
(
6

2

)
= 15 pairs of neighbors

of the form {𝑣𝑖 , 𝑣 𝑗 }, for 0 ≤ 𝑖 < 𝑗 ≤ 5, that each contributes with

0.5 as they have two geodesic paths of length 2 from 𝑣𝑖 to 𝑣 𝑗 , where

only one contains 𝑎. Pairs of the form {𝑏, 𝑣𝑖 }, for 0 ≤ 𝑖 ≤ 5 do not

contribute to the score of 𝑎 since there is only one geodesic path

(length 1) from 𝑏 to 𝑣𝑖 and it does not contain 𝑎. Verify that for the

graph illustrated in Figure 1b, node 𝑎 has EBC score equal to 6.5.

𝑎 𝑏

𝑣5𝑣4𝑣3𝑣2𝑣1𝑣0

(a) EBC: Worst Case

𝑎 𝑏

𝑣5𝑣4𝑣3𝑣2𝑣1𝑣0

(b) EBC: Usual case

Figure 1: Sensitivity of EBC

We use edge differential privacy where the sensitivity is mea-

sured by adding or removing one edge from the input graph. The

global sensitivity for EBC is obtained from a graph of the form

displayed in Figure 1a. Removing the edge (𝑎, 𝑏) is the worst case.
The new EBC score of 𝑎 is 15, 1 point for each one of the 15 pairs

{𝑣𝑖 , 𝑣 𝑗 }, 0 ≤ 𝑖 ≤ 5, as now there is only one geodesic path from 𝑣𝑖
to 𝑣 𝑗 which includes 𝑎 (path < 𝑣𝑖 , 𝑎, 𝑣 𝑗 >). The paths of the form

< 𝑣𝑖 , 𝑏, 𝑣 𝑗 > are not counted since 𝑏 no longer belongs to 𝑁𝑎 .

This gadget is formed by two nodes with high degree that share

all neighbors and those neighbors do not have an edge to each other.

This gadget is very unlikely to be found in real graphs. Figure 1b

illustrates a more typical example. In this instance, the worst local

measurement of the sensitivity is given by the removal of the edge

(𝑎, 𝑣0) that shrinks the EBC score of 𝑎 by only 3 (1 for each pair

{𝑣0, 𝑏}, {𝑣0, 𝑣2} and {𝑣0, 𝑣3} since 𝑣0 is no longer a neighbor of 𝑎).

Additionally, the global sensitivity of 𝐸𝐵𝐶 grows quadratically

with respect to the maximum degree as we discuss in Section 5.

Hence, a non-numeric mechanism applying local sensitivity could

add less noise to the output compared to a global sensitivity based

approach like the exponential mechanism.

In this paper, we propose the local dampening mechanism, which

adapts the notion of local sensitivity to the non-numeric setting and

uses it to dampen the utility function𝑢 in order to improve accuracy.

Local dampening also employs the exponential distribution, similar

to the exponential mechanism [33]. Applications in which local

sensitivity is significantly smaller than global sensitivity can benefit

from our approach. For the scenario where local sensitivity is near

the global sensitivity, the local dampening mechanism reverts to

the exponential mechanism, so that the maximum addition of noise

across all values of 𝑟 is bounded by the exponential mechanism.

To this end, we present a new version of the local sensitivity,

called element local sensitivity. Traditional local sensitivitymeasures

the largest impact of the addition or deletion of an individual to

the input database over all outputs 𝑟 ∈ R. Element local sensitivity

computes this impact, but only for some given element 𝑟 ∈ R
(Example 1.2). This allows us to explore local measurements of the

sensitivity of 𝑓 even if traditional local sensitivity is near the global

sensitivity, but, for most elements in R, the element local sensitivity

is low.

Example 1.2. Consider the graph in Figure 1a. The removal of

edge (𝑎, 𝑏) sets the traditional local sensitivity to 7.5 which is also

the case for global sensitivity. But measurements of sensitivity per

node (element) are much smaller. For instance, the sensitivity for a

node 𝑣𝑖 (0 ≤ 𝑖 ≤ 5) is 1 which is set by the removal of edge (𝑎, 𝑏)
where 𝐸𝐵𝐶 (𝑣𝑖 ) increases from 0 to 1 (path < 𝑎, 𝑣𝑖 , 𝑏 >). We explore

this to improve the accuracy further.

We illustrate the effectiveness of the local dampeningmechanism

by applying it to two problems: (i) Influential node analysis which

searches for central/influential nodes in a graph database. Given a

centrality/influence metric, we release the label of the top-k most

central nodes while preserving the privacy of the relationships

between nodes in the graph; (ii) We also provide an application

on tabular data which is a private adaptation of the ID3 algorithm

to build a decision tree from a given tabular dataset based on the

information gain for each attribute.

The contributions of this work are summarized as follows:

• We adapt the local sensitivity definition to the non-numeric

setting and introduce a new definition of local sensitivity

that measures sensitivity per element (Section 3).

• We introduce the local dampening mechanism, a novel differ-

entially private mechanism to answer non-numeric queries,

that applies local sensitivity to attenuate the utility function

to increase the signal-to-sensitivity ratio in order to reduce

noise (Section 3).

• We explore the conditions under which the new notion of

local sensitivity per element is useful and show how to tweak

the local dampening mechanism to improve accuracy further

(Section 4).

• We apply the local dampening mechanism to construct dif-

ferentially private algorithms for a graph problem called

influential node analysis. As the influence metric, we use the

egocentric betweenness centrality and show how to com-

pute local sensitivity for it (Section 5.1). Experimental results

show that our approach could be as accurate as global sensi-

tivity based mechanisms using 3 to 4 orders of magnitude

less privacy budget (Section 6.1).

• As an example of a data-mining problem, we address the

application of building private algorithms for decision tree
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induction. We present a differentially private adaptation of

the entropy based ID3 algorithm using the local dampening

mechanism, and provide a way to compute local sensitivity

efficiently (Section 5.2). We are able to improve accuracy up

to 12% in relation to previous works (Section 6.2).

Section 2 presents the relevant formal definitions for differential

privacy. Section 7 surveys related work, and Section 8 concludes

the paper. We defer the proofs of the lemmas and theorems to our

technical report [10].

2 BACKGROUND
In this section, we describe some background concepts that we

build on in subsequent sections.

2.1 Differential Privacy
Let 𝑥 be a sensitive database and 𝑓 a function to be evaluated on 𝑥 .

The database is represented as a vector 𝑥 ∈ D𝑛
where each entry

represents an individual tuple. The output 𝑓 (𝑥) must be released

without leaking much information about the individuals. For that,

we need to design a randomized algorithm A(𝑥) that adds noise
to 𝑓 (𝑥) such that it satisfies the definition of differential privacy

stated below.

Definition 2.1. (𝜖-Differential Privacy [7, 8]). A randomized al-

gorithm A satisfies 𝜖-differential privacy, if for any two databases

𝑥 and 𝑦 satisfying 𝑑 (𝑥,𝑦) ≤ 1 and for any possible output 𝑂 of A,

we have

𝑃𝑟 [A(𝑥) = 𝑂] ≤ exp(𝜖) 𝑃𝑟 [A(𝑦) = 𝑂] .
where 𝑃𝑟 [·] denotes the probability of an event and 𝑑 denotes the

hamming distance between the two databases, i.e., the number of

tuples of individuals that changed value, 𝑑 (𝑥,𝑦) = |{𝑖 | 𝑥𝑖 ≠ 𝑦𝑖 }|.
In the following, we refer to 𝑑 (𝑥,𝑦) as the distance between two

given databases 𝑥 and 𝑦.

The Laplace mechanism [8] and the exponential mechanism

[33] are the most well-known output perturbation methods that

satisfy the definition of differential privacy. For the case where

𝑓 outputs a vector of numeric values, the Laplace mechanism is

able to transform 𝑓 in a differentially private algorithm by adding

random noise sampled from the laplace distribution to each entry

of 𝑓 (𝑥). When the output of 𝑓 is non-numeric, the exponential

mechanism applies. In the exponential mechanism setting, the data

querier needs to provide a utility function 𝑢 : D𝑛 × R → R that

takes a database 𝑥 and an output 𝑟 ∈ R where R is the set of all

outputs of 𝑓 and produces a score 𝑢 (𝑥, 𝑟 ). A higher score indicates

that an element is more useful to the application. The exponential

mechanism privately answers 𝑓 by sampling an element 𝑟 ∈ R with

probability proportional to its utility score 𝑢 (𝑥, 𝑟 ).
The global sensitivity of 𝑢 is defined as the maximum possible

difference of utility scores at all possible pairs of database entries

𝑥,𝑦 and all possible elements 𝑟 :

Definition 2.2. (Global Sensitivity Δ𝑢 [33]).

Δ𝑢 = max

𝑟 ∈R
max

𝑥,𝑦 |𝑑 (𝑥,𝑦) ≤1
|𝑢 (𝑥, 𝑟 ) − 𝑢 (𝑦, 𝑟 ) |.

Thus, the exponential mechanism is stated as follows:

Definition 2.3. (Exponential Mechanism [33]). The exponential

mechanism E(𝑥, 𝜖,𝑢,R) selects and outputs an element 𝑟 ∈ R with

probability proportional to exp

( 𝜖 𝑢 (𝑥,𝑟 )
2Δ𝑢

)
.

McSherry and Talwar [33] showed that the exponential mecha-

nism satisfies 𝜖-differential privacy.

2.2 Local Sensitivity
For the exponential mechanism, the larger the global sensitivity

Δ𝑢 is, the more it approximates a uniform random sampling. To

remedy the resulting accuracy loss, we seek mechanisms with low

sensitivity. The concept of local sensitivity 𝐿𝑆 (𝑥) [35] captures the
sensitivity locally on the input database 𝑥 instead of searching for

the sensitivity in the universe of databases D𝑛
. Local sensitivity

tends to be smaller than global sensitivity for many problems [2,

22, 23, 28, 35, 42]. We present an adapted version of the definition

of local sensitivity for the non-numeric setting, as given in [35].

Definition 2.4. (Local sensitivity [35]). Given a utility function

𝑢 (𝑥, 𝑟 ) that takes as input a database 𝑥 and an element 𝑟 and outputs

a numeric score for 𝑥 , the local sensitivity of 𝑢 is defined as

𝐿𝑆𝑢 (𝑥) = max

𝑟 ∈R
max

𝑦 |𝑑 (𝑥,𝑦) ≤1
|𝑢 (𝑥, 𝑟 ) − 𝑢 (𝑦, 𝑟 ) |.

Observe that the global sensitivity is the maximum local sensi-

tivity over the set of all databases, Δ𝑢 = max𝑥 𝐿𝑆
𝑢 (𝑥).

Replacing Δ𝑢 for 𝐿𝑆 (𝑥) in the exponential mechanismwould add

less noise resulting in higher accuracy. However, it does not satisfy

𝜖-differential privacy (Definition 2.1). In the differential privacy

setting, the noise needs to be independent of the input database,

but 𝐿𝑆 (𝑥) itself contains information about the database.

To use local sensitivity on a differentially private mechanisms

for queries with numeric output, Nissim et al. [35] proposed smooth

sensitivity framework that injects noise sampled from a Cauchy dis-

tribution. A part of their solution is the local sensitivity at distance

𝑡 , which we adapt to the non-numeric setting.

Definition 2.5. (Local sensitivity at distance 𝑡 [35]). Given a utility
function 𝑢 (𝑥, 𝑟 ) that takes as input a database 𝑥 and an element 𝑟

and outputs a numeric score for 𝑥 . The local sensitivity at distance

𝑡 of 𝑢 is defined as

𝐿𝑆𝑢 (𝑥, 𝑡) = max

𝑦 |𝑑 (𝑥,𝑦) ≤𝑡
𝐿𝑆𝑢 (𝑦) .

Local sensitivity at distance 𝑡 , 𝐿𝑆𝑢 (𝑥, 𝑡), measures the maximum

local sensitivity 𝐿𝑆𝑢 (𝑦) over all databases 𝑦 at maximum distance

𝑡 , i.e., we allow 𝑡 modifications on the database before computing

its local sensitivity.

Example 2.6. Consider the graph 𝐺 of Figure 2a. The local sensi-

tivity at distance 𝑡 allows 𝑡 extra modifications before measuring

local sensitivity. As discussed in Example 1.1, the local sensitivity

of 𝐺 is 3 (at distance 0): 𝐿𝑆𝐸𝐵𝐶 (𝐺, 0) = 3.

Now to compute local sensitivity at distance 1, we need to find

which one edge to add or remove in order to compute the maximum

local sensitivity at distance 1. This case is found by removing edge

(𝑎, 𝑣0) as shown in Figure 2b obtaining𝐺 ′. Then the local sensitivity
of𝐺 ′ is 5where node𝑏 increases by 5 units when adding edge (𝑏, 𝑣0)
(1 for each pair {𝑣0, 𝑣2}, {𝑣0, 𝑣3}, {𝑣0, 𝑣4}, {𝑣0, 𝑣5} and {𝑣0, 𝑎}). This
means that 𝐿𝑆𝐸𝐵𝐶 (𝐺, 1) = 5.
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𝑎 𝑏

𝑣5𝑣4𝑣3𝑣2𝑣1𝑣0

(a) Original Graph𝐺

𝑎 𝑏

𝑣5𝑣4𝑣3𝑣2𝑣1𝑣0

(b)𝐺′ at distance 1 from𝐺

Figure 2: Local sensitivity at distance 𝑡

3 LOCAL DAMPENING MECHANISM
This section presents the local dampening mechanism for answer-

ing queries with non-numeric output under differential privacy. Our

approach uses the same setup of the exponential mechanism: given

a query 𝑄 with range 𝑅 over a database 𝑥 and a utility function

𝑢 : D𝑛 × R → R, we would like to output the element 𝑟 ∈ R with

highest utility score 𝑢 (𝑥, 𝑟 ). The utility function 𝑢 is application-

specific and is built by the querier to give higher score to the ele-

ments in R that are more useful to the application.

Our approach requires the computation of any of the sensitivity

notions described in the Section 2.2. Additionally, we introduce a

new notion of sensitivity called element local sensitivity. It mea-

sures the worst impact on the sensitivity for a given element 𝑟 ∈ R
when adding or removing an individual from the input database 𝑥 ,

i.e., the largest difference |𝑢 (𝑥, 𝑟 ) − 𝑢 (𝑦, 𝑟 ) | for all neighbors 𝑦 of 𝑥 .

The local dampening mechanism uses an admissible function to

dampen the utility function 𝑢 and construct its dampened version,

referred to𝐷𝑢,𝛿𝑢 . Specifically, we attenuate𝑢 such that the signal-to-

sensitivity ratio (i.e. u/sensitivity) is larger which results in higher

accuracy. An admissible function is function that computes an upper

bound on the sensitivity. This concept is specially useful when the

sensitivity is not possible or efficient but computing a upper bound

is simpler.

We lay the groundwork of our analysis with the definition of ele-

ment local sensitivity in Section 3.1.We then define local dampening

in Section 3.2, and provide a privacy guarantee for our mechanism

in Section 3.3.

3.1 Element Local Sensitivity
The local sensitivity 𝐿𝑆𝑢 (𝑥, 𝑡) quantifies the maximum sensitivity

of 𝑢 over all elements 𝑟 ∈ R for an input database 𝑥 with 𝑡 mod-

ifications (Definition 2.5). That gives a high-level description of

the variation of 𝑢 in neighboring databases. However, if just one

element in R has a high value of sensitivity (close to Δ𝑢), 𝐿𝑆𝑢 (𝑥, 𝑡)
will be large too. That is ineffective in a scenario where most of the

elements have low sensitivity and just few have high sensitivity,

which makes 𝐿𝑆𝑢 (𝑥, 𝑡) large and consequently hurts accuracy.

We introduce a more specialized definition of local sensitivity,

denoted as 𝐿𝑆𝑢 (𝑥, 𝑡, 𝑟 ), whichmeasures the sensitivity of𝑢 for given

𝑟 ∈ R for an input database 𝑥 at distance 𝑡 (definition 3.1). This

allows us to grasp the sensitivity of 𝑢 for a single element.

Definition 3.1. (Element Local Sensitivity at distance 𝑡 ).

𝐿𝑆𝑢 (𝑥, 𝑡, 𝑟 ) = max

𝑦 |𝑑 (𝑥,𝑦) ≤𝑡,𝑧 |𝑑 (𝑦,𝑧) ≤1
|𝑢 (𝑦, 𝑟 ) − 𝑢 (𝑧, 𝑟 ) |.

We can obtain 𝐿𝑆𝑢 (𝑥, 𝑡) from this definition: 𝐿𝑆𝑢 (𝑥, 𝑡) =

max𝑟 ∈R 𝐿𝑆𝑢 (𝑦, 𝑡, 𝑟 ) as 𝐿𝑆𝑢 (𝑥, 𝑡, 𝑟 ) = max𝑦 |𝑑 (𝑥,𝑦) ≤𝑡 𝐿𝑆
𝑢 (𝑦, 0, 𝑟 ). In-

tuitively, to compute element local sensitivity, one needs to identify

which addition or removal of an individual on the input database

𝑥 causes the most impact on the utility score of a given element 𝑟 ,

i.e., the largest difference |𝑢 (𝑥, 𝑟 ) − 𝑢 (𝑦, 𝑟 ) | for all neighbors 𝑦 of 𝑥 .

Example 3.2. We illustrate this definition with the same setup

as example 2. Let 𝐺 be the graph from Figure 2a. Suppose we want

to compute the element local sensitivity for 𝑣4, 𝐿𝑆
𝑢 (𝐺, 0, 𝑣4). We

measure only the worst impact of the addition or removal of an

edge on the value of the EBC score for 𝑣4. This is obtained by adding

the edge (𝑣0, 𝑣4) (Figure 3). The EBC score increases by 2 (1 for each

pair {𝑏, 𝑣0} and {𝑣0, 𝑣5}). Thus 𝐿𝑆𝑢 (𝐺, 0, 𝑣4) = 2.

𝑎 𝑏

𝑣5𝑣4𝑣3𝑣2𝑣1𝑣0

Figure 3: Element Local Sensitivity for 𝑣4

Computing 𝐿𝑆𝑢 (𝑥, 𝑡, 𝑟 ) is not always feasible, as it can be NP-

hard [35, 42]. To navigate this problem, we can relax the need for

the computation of 𝐿𝑆𝑢 (𝑥, 𝑡, 𝑟 ) and build a computationally efficient

function that computes an upper bound for 𝐿𝑆𝑢 (𝑥, 𝑡, 𝑟 ) that is still
smaller than Δ𝑢. This function needs to have some properties to

be admissible in the local dampening mechanism to guarantee

differential privacy:

Definition 3.3. (Admissible function). A function 𝛿𝑢 (𝑥, 𝑡, 𝑟 ) is
admissible if:

(1) 𝛿𝑢 (𝑥, 0, 𝑟 ) ≥ 𝐿𝑆𝑢 (𝑥, 0, 𝑟 ), for all 𝑥 ∈ D𝑛
and all 𝑟 ∈ R.

(2) 𝛿𝑢 (𝑥, 𝑡 + 1, 𝑟 ) ≥ 𝛿𝑢 (𝑦, 𝑡, 𝑟 ), for all 𝑥,𝑦 such that 𝑑 (𝑥,𝑦) ≤ 1

and all 𝑡 ≥ 0.

The global sensitivity Δ𝑢 is admissable since it is a constant value

would trivially satisfy Definition 3.3. We also show that the function

𝐿𝑆𝑢 (𝑥, 𝑡, 𝑟 ) itself is admissible (Lemma 3.4) and, in addition, it is

the minimum function in the set of all admissible functions.

Lemma 3.4. 𝐿𝑆𝑢 (𝑥, 𝑡, 𝑟 ) is minimum admissible, i.e. 𝐿𝑆𝑢 (𝑥, 𝑡, 𝑟 ) ≤
𝛿𝑢 (𝑥, 𝑡, 𝑟 ) for all admissible functions 𝛿𝑢 .

The accuracy of the local dampening mechanism depends on

the true element local sensitivity, with a lower value translating to

higher accuracy. If the element local sensitivity is bounded above

by an admissible function instead, the accuracy is also proportional

to how closely the admissible function approximates element lo-

cal sensitivity. In Section 4.2, we discuss that Δ𝑢, 𝐿𝑆𝑢 (𝑥, 𝑡) and
𝐿𝑆𝑢 (𝑥, 𝑡, 𝑟 ) are also all admissible functions.

Some admissible functions, such as 𝐿𝑆𝑢 (𝑥, 𝑡) and 𝐿𝑆𝑢 (𝑥, 𝑡, 𝑟 ),
converge toΔ𝑢 by design as 𝑡 grows. This is desirable since it bounds

the worst-case of local dampening by the exponential mechanism

in terms of accuracy. One can force this by replacing 𝛿𝑢 (𝑥, 𝑡, 𝑟 )
by its bounded version min(𝛿𝑢 (𝑥, 𝑡, 𝑟 ),Δ𝑢). We now show that
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Figure 4: Dampening function 𝐷𝑢,𝛿𝑢

min(𝛿𝑢 (𝑥, 𝑡, 𝑟 ),Δ𝑢) is admissible, and converges to Δ𝑢 within 𝑛

steps.

Lemma 3.5. If 𝛿𝑢 (𝑥, 𝑡, 𝑟 ) is admissable, then𝑚𝑖𝑛(𝛿𝑢 (𝑥, 𝑡, 𝑟 ),Δ𝑢)
is admissible and is equal to Δ𝑢 for 𝑡 > 𝑛.

For the rest of this paper, we shall assume that 𝛿𝑢 (𝑥, 𝑡, 𝑟 ) con-
verges to Δ𝑢 or that we replace it by its bounded version.

3.2 Dampening Function
We now define the dampening function 𝐷𝑢,𝛿𝑢 (𝑥, 𝑟 ), which uses

an admissible function 𝛿𝑢 (𝑥, 𝑡, 𝑟 ) to return a dampened and scaled

version of the original utility function.

Definition 3.6. (Dampening function). Given a utility function

𝑢 (𝑥, 𝑟 ) and an admissible function 𝛿𝑢 (𝑥, 𝑡, 𝑟 ), the dampening func-

tion 𝐷𝑢,𝛿𝑢 (𝑥, 𝑟 ) is defined as a piecewise linear interpolation over

the points:

< . . . , (𝑏 (𝑥,−1, 𝑟 ),−1), (𝑏 (𝑥, 0, 𝑟 ), 0), (𝑏 (𝑥, 1, 𝑟 ), 1), . . . >
where 𝑏 (𝑥, 𝑖, 𝑟 ) is given by:

𝑏 (𝑥, 𝑖, 𝑟 ) B


∑𝑖−1

𝑗=0 𝛿 (𝑥, 𝑗, 𝑟 ) if 𝑖 > 0,

0 if 𝑖 = 0,

−𝑏 (𝑥,−𝑖, 𝑟 ) otherwise.

Therefore,

𝐷𝑢,𝛿𝑢 (𝑥, 𝑟 ) =
𝑢 (𝑥, 𝑟 ) − 𝑏 (𝑥, 𝑖, 𝑟 )

𝑏 (𝑥, 𝑖 + 1, 𝑟 ) − 𝑏 (𝑥, 𝑖, 𝑟 ) + 𝑖 .

where 𝑖 is defined as the smallest integer such that 𝑢 (𝑥, 𝑟 ) ∈
[𝑏 (𝑥, 𝑖, 𝑟 ), 𝑏 (𝑥, 𝑖 + 1, 𝑟 )).

Figure 4 visualizes the general scheme of 𝐷𝑢,𝛿𝑢 . A crucial prop-

erty of 𝐷𝑢,𝛿𝑢 is that it scales 𝑢 so that the sensitivity of 𝐷𝑢,𝛿𝑢 is

bounded to 1 .

Lemma 3.7. |𝐷𝑢,𝛿𝑢 (𝑥, 𝑟 ) − 𝐷𝑢,𝛿𝑢 (𝑦, 𝑟 ) | ≤ 1 for all 𝑥,𝑦 such that
𝑑 (𝑥,𝑦) ≤ 1 and all 𝑟 ∈ 𝑅 if 𝛿𝑢 is admissible.

Thus, we state the local dampening mechanism as follows:

Definition 3.8. (Local dampening mechanism). The local damp-

ening mechanismM(𝑥, 𝜖,𝑢, 𝛿𝑢 ,R) selects and outputs an element

𝑟 ∈ R with probability proportional to exp

( 𝜖 𝐷𝑢,𝛿𝑢 (𝑥,𝑟 )
2

)
.

The accuracy ofM depends on how well 𝛿𝑢 (𝑥, 𝑡, 𝑟 ) is able to
approximate 𝐿𝑆𝑢 (𝑥, 𝑡, 𝑟 ). A special case of local dampening is when

𝛿𝑢 (𝑥, 𝑡, 𝑟 ) = Δ𝑢. This is the worst-case scenario, where 𝐷𝑢,𝛿𝑢 loses

its attenuation power and reduces to a linear function with inter-

cept 0 and slope 1/Δ𝑢, i.e. 𝐷𝑢,𝛿𝑢 (𝑥, 𝑟 ) = 𝑢 (𝑥, 𝑟 )/Δ𝑢. Consequently,
the local dampening mechanism selects and outputs an element

𝑟 ∈ R with probability ∝ exp((𝜖𝑢 (𝑥, 𝑟 ))/Δ𝑢), matching the defini-

tion of exponential mechanism. Thus, in the worst-case scenario

local dampening reduces to the exponential mechanism. Example

3.9 illustrates a comparison of the local dampening against the

exponential mechanism.

Example 3.9. This example explores the local dampening mech-

anism using the local sensitivity definition while the element lo-

cal sensitivity is addressed in Section 4. Let 𝐺 be the graph of

Figure 2a. As we have discussed in Example 2.6, we have that

𝐿𝑆𝐸𝐵𝐶 (𝐺, 0) = 3 and 𝐿𝑆𝐸𝐵𝐶 (𝐺, 1) = 5. The EBC scores for the ver-

tices are 𝐸𝐵𝐶 (𝑎) = 𝐸𝐵𝐶 (𝑏) = 6.5 and 𝐸𝐵𝐶 (𝑣𝑖 ) = 0, for 0 ≤ 𝑖 ≤ 5.

Their dampened EBC scores are:

𝐷𝐸𝐵𝐶,𝐿𝑆𝐸𝐵𝐶 (𝐺, 𝑎) = 𝐷𝐸𝐵𝐶,𝐿𝑆𝐸𝐵𝐶 (𝐺,𝑏) = 1.7,

𝐷𝐸𝐵𝐶,𝐿𝑆𝐸𝐵𝐶 (𝐺, 𝑣𝑖 ) = 0, for 0 ≤ 𝑖 ≤ 5.

For instance, assuming 𝜖 = 2.0, the probability for each node to be

selected is:

𝑃𝑟 [a is selected] = 𝑃𝑟 [b is selected] ∝ exp(1.7) = 5.47,

𝑃𝑟 [𝑣𝑖 is selected] ∝ exp(0) = 1.0, for 0 ≤ 𝑖 ≤ 5.

Normalizing, we have that 𝑃𝑟 [a is selected] = 𝑃𝑟 [b is selected] =
0.32 and 𝑃𝑟 [𝑣𝑖 is selected] = 0.06. The exponential mechanism

obtained that 𝑃𝑟 [a is selected] = 𝑃𝑟 [b is selected] = 0.22 and

𝑃𝑟 [𝑣𝑖 is selected] = 0.09. Thus local dampening yields a higher

probability of choosing the node with highest score.

3.3 Privacy Guarantee
We now prove that the local dampening mechanismM ensures

𝜖-differential privacy (Theorem 3.10). The privacy correctness proof

follows from the exponential mechanism correctness [33] and

Lemma 3.7.

Theorem 3.10. M satisfies 𝜖-Differential Privacy if 𝛿 is admissible.

4 TWEAKING DAMPENING MECHANISM
We dampen the utility scores of elements in R with different scales,

i.e. 𝛿𝑢 (𝑥, 𝑡, 𝑟 ) can be different to 𝛿𝑢 (𝑥, 𝑡, 𝑟 ′) for some 𝑟, 𝑟 ′ ∈ R. This
implies that the relative order of the dampened utilities may differ

from the original utility score. We call this the inversion problem
(see Example 4.1).

Example 4.1. Consider the following setup: R = {𝑟1, 𝑟2},
𝛿𝑢 (𝑥, 0, 𝑟1) = 1, 𝛿𝑢 (𝑥, 1, 𝑟1) = 2, 𝛿𝑢 (𝑥, 0, 𝑟2) = 4, 𝑢 (𝑥, 𝑟1) = 3

and 𝑢 (𝑥, 𝑟2) = 4. When applying 𝐷𝑢,𝛿𝑢 to 𝑟1 and 𝑟2, we obtain

𝐷𝑢,𝛿𝑢 (𝑥, 𝑟1) = 2 and 𝐷𝑢,𝛿𝑢 (𝑥, 𝑟2) = 1. Originally, 𝑟2 is more useful

than 𝑟1 but after dampening it inverts. This hurts accuracy since the

local dampening mechanism will choose 𝑟1 with higher probability.

This situation does not occur when 𝛿𝑢 (𝑥, 𝑡, 𝑟 ) is independent of
𝑟 , e.g., 𝛿𝑢 (𝑥, 𝑡, 𝑟 ) = 𝐿𝑆𝑢 (𝑥, 𝑡), where the utilities of all 𝑟 ∈ R are
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dampened with the same scale. We propose two ways to address

this problem. The first one, named shifting tweak, tackles it for

the class of queries where 𝑢 (𝑥, 𝑟 ) is correlated with 𝛿𝑢 (𝑥, 𝑡, 𝑟 ) over
𝑟 . Moreover, this tweak also takes advantage of the correlation

to increase the range of the dampened utility scores to improve

accuracy. The second idea is suitable for any query. It replaces

𝛿𝑢 (𝑥, 𝑡, 𝑟 ) for ˆ𝛿𝑢 (𝑥, 𝑡, 𝑟 ) where ˆ𝛿𝑢
max

is not dependent on 𝑟 .

4.1 Shifting tweak
We can improve accuracy further when the utility function𝑢 (𝑥, 𝑟 ) is
correlated with element local sensitivity 𝐿𝑆𝑢 (𝑥, 𝑡, 𝑟 ) (or 𝛿𝑢 (𝑥, 𝑡, 𝑟 ))
over 𝑟 . Here, shifting the utility function helps. Example 4.2 shows

how shifting can increase the probability of high utility elements to

be chosen (i.e. improves accuracy). We address the case of positive

correlation below. The negative case can be tackled similarly.

Example 4.2. Consider the graph 𝐺 from figure 2a. For

nodes 𝑎 and 𝑏, their measured element local sensitivities are:

𝐿𝑆𝐸𝐵𝐶 (𝐺, 0, 𝑎) = 𝐿𝑆𝐸𝐵𝐶 (𝐺, 0, 𝑏) = 3 and 𝐿𝑆𝐸𝐵𝐶 (𝐺, 1, 𝑎) =

𝐿𝑆𝐸𝐵𝐶 (𝐺, 1, 𝑏) = 5. For a node 𝑣𝑖 , for 0 ≤ 𝑖 ≤ 5, its measured

sensitivity is 𝐿𝑆𝐸𝐵𝐶 (𝐺, 0, 𝑣𝑖 ) = 2. We observe a positive correlation

𝐸𝐵𝐶 and 𝐿𝑆𝐸𝐵𝐶 , since the EBC scores are 𝐸𝐵𝐶 (𝑎) = 𝐸𝐵𝐶 (𝑏) = 6.5

and 𝐸𝐵𝐶 (𝑣𝑖 ) = 0, for 0 ≤ 𝑖 ≤ 5.

Shifting the 𝐸𝐵𝐶 scores by −7, we get that 𝐸𝐵𝐶 ′(𝑎) = 𝐸𝐵𝐶 ′(𝑏) =
−0.5 and 𝐸𝐵𝐶 ′(𝑣𝑖 ) = −7, for 0 ≤ 𝑖 ≤ 5. Then we compute their

dampened 𝐸𝐵𝐶 ′ scores:

𝐷𝐸𝐵𝐶′,𝐿𝑆𝐸𝐵𝐶 (𝐺, 𝑎) = 𝐷𝐸𝐵𝐶′,𝐿𝑆𝐸𝐵𝐶 (𝐺,𝑏) = 0.1,

𝐷𝐸𝐵𝐶′,𝐿𝑆𝐸𝐵𝐶 (𝐺, 𝑣𝑖 ) = −2, for 0 ≤ 𝑖 ≤ 5.

Let 𝜖 = 2.0. The probability for each node to be selected is:

𝑃𝑟 [a is selected] = 𝑃𝑟 [b is selected] ∝ exp(0.1) = 0.44,

𝑃𝑟 [𝑣𝑖 is selected] ∝ exp(−2) = 0.13, for 0 ≤ 𝑖 ≤ 5.

Normalizing, we have that 𝑃𝑟 [a is selected] = 𝑃𝑟 [b is selected] =
0.472 and 𝑃𝑟 [𝑣𝑖 is selected] = 0.0046. Comparing to Example 3.9

the nodes with highest score increase probability compared to the

unshifted local dampening and the exponential mechanism.

We design the shifting in a way that it rearranges the utility

scores in a way that the distribution of the utility scores is more

spread. The idea is the following: we shift left enough so that all

utility scores are negative. Thus, elements with larger utility score

are the elements with smallest absolute value after shifting. So

these shifted score are dampened with large 𝛿𝑢 (𝑥, 𝑡, 𝑟 ) (assuming

positive correlation). This entails in more accentuate shrinkage of

the dampened score compared to scores of elements with low origi-

nal score, high absolute shifted score and low 𝛿𝑢 (𝑥, 𝑡, 𝑟 ) (assuming

positive correlation). This implies that large scores are dampened

closer to 0 and small scores are dampened to large negative values.

Hereby we propose to replace the original utility function 𝑢 with

its shifted version 𝑢𝑠 where 𝑠 is the utility score shift and

𝑢𝑠 (𝑥, 𝑟 ) = 𝑢 (𝑥, 𝑟 ) − 𝑠 .
One could design a private query, consuming part of the privacy

budget, to choose 𝑠 such that it minimizes some loss function to

optimize accuracy. In this work, we set 𝑠 to a value that does not

depend on private data, 𝑠 →∞. In what follows, the shifted local

dampening mechanism is stated as follows:

Definition 4.3. (Shifted Local Dampening Mechanism). The

shifted local dampening mechanismM∗ (𝑥, 𝜖,𝑢, 𝛿𝑢 ,R) outputs an
element 𝑟 ∈ R with probability equals to

lim

𝑠→∞

©­­«
exp

(
𝜖 𝐷𝑢𝑠 ,𝛿 (𝑥,𝑟 )

2

)
∑
𝑟 ′∈R exp

(
𝜖 𝐷𝑢𝑠 ,𝛿 (𝑥,𝑟 ′)

2

) ª®®¬ .
We next show thatM∗ satisfies 𝜖-differential privacy.

Theorem 4.4. The shifted local dampening mechanismM∗
𝛿
pre-

serves 𝜖-Differential Privacy if 𝛿 is admissible.

4.2 Function 𝛿 replacement
For any given non-numeric query with utility function 𝑢, one can

construct a function
ˆ𝛿𝑢 (𝑥, 𝑡, 𝑟 ) from an admissible 𝛿𝑢 (𝑥, 𝑡, 𝑟 ) that

does not depend on 𝑟 . Hence, replacing 𝛿𝑢 (𝑥, 𝑡, 𝑟 ) with ˆ𝛿𝑢 (𝑥, 𝑡, 𝑟 )
on the local dampening mechanism solves the aforementioned

inversion problem (Example 4.1).

ˆ𝛿𝑢 (𝑥, 𝑡, 𝑟 ) = max

𝑟 ′∈R
𝛿𝑢 (𝑥, 𝑡, 𝑟 ′).

Basically,
ˆ𝛿𝑢 (𝑥, 𝑡, 𝑟 ) increases the value for a given 𝑟 ∈ R and

𝑡 ≥ 0 to the maximum value for 𝛿 (𝑥, 𝑡, 𝑟 ′) among all 𝑟 ′ ∈ R. This
results in the same value

ˆ𝛿𝑢 (𝑥, 𝑡, 𝑟 ) for any given 𝑟 , causing 𝑟 to

be dampened with same scale of any other element for a fixed 𝑡 .

A drawback of this is that
ˆ𝛿𝑢 (𝑥, 𝑡, 𝑟 ) ≥ 𝛿𝑢 (𝑥, 𝑡, 𝑟 ) meaning thatM

looses accuracy.

An intermediate result shows that
ˆ𝛿𝑢 (𝑥, 𝑡, 𝑟 ) is admissible.

Lemma 4.5. Let 𝛿1 (𝑥, 𝑡, 𝑟 ), . . . , 𝛿𝑝 (𝑥, 𝑡, 𝑟 ) be admissible functions.
Then 𝛿 (𝑥, 𝑡, 𝑟 ) defined as 𝛿 (𝑥, 𝑡, 𝑟 ) = max(𝛿1 (𝑥, 𝑡, 𝑟 ), . . . , 𝛿𝑝 (𝑥, 𝑡, 𝑟 ))
is an admissible function.

The proof of Lemma 4.5 is immediately given by the admissibility

of 𝛿1 (𝑥, 𝑡, 𝑟 ), . . . , 𝛿𝑝 (𝑥, 𝑡, 𝑟 ). Lemma 4.5 entails in some important re-

sults: (i)
ˆ𝛿𝑢 (𝑥, 𝑡, 𝑟 ) is admissible if 𝛿𝑢 is admissible and (ii) 𝐿𝑆𝑢 (𝑥, 𝑡)

is an admissible function once 𝐿𝑆𝑢 (𝑥, 𝑡) =𝑚𝑎𝑥𝑟 ∈R𝐿𝑆𝑢 (𝑥, 𝑡, 𝑟 ) and
𝐿𝑆𝑢 (𝑥, 𝑡, 𝑟 ) is an admissible function (Theorem 3.4).

5 APPLICATIONS
We present two applications to demonstrate the effectiveness of

local dampening: 1) Influential node analysis, where given a graph

database, retrieve the label of the top-k most influential nodes based

on Egocentric Betweenness Centrality (EBC); and 2) Decision tree

induction where we build decision trees based on the ID3 algorithm

from tabular data.

5.1 Influential Node Analysis
Identifying influential nodes in a network is an important task for

social network analysis for marketing purposes [29]. This analysis

has great value for making a more effective marketing campaign

since influential nodes have great capacity to diffuse a message

through the network. Using EBC (Definition 5.1) as an influence

measure allows to identify influential nodes that are important in

different loosely connected parties.
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Definition 5.1. (Egocentric Betweenness Centrality (EBC) [9, 15])

𝐸𝐵𝐶 (𝑐) =
∑︁

𝑢,𝑣∈𝑁𝑐 |𝑢≠𝑣

𝑝𝑢𝑣 (𝑐)
𝑞𝑢𝑣 (𝑐)

,

where 𝑁𝑐 = {𝑣 ∈ 𝑉 |{𝑐, 𝑣} ∈ 𝐸} is the set of neighbors of the
central node 𝑐 , 𝑞𝑢𝑣 (𝑐) is the number of geodesic paths connecting

𝑢 and 𝑣 on the induced subgraph 𝐺 [𝑁𝑐 ∪ {𝑐}] and 𝑝𝑢𝑣 (𝑐) is the
number of those paths that include 𝑐 .

Formally, influential node analysis is a query over an input graph

database 𝐺 = (𝑉 , 𝐸) that releases the labels of 𝑘 nodes that maxi-

mize a given influence metric, e.g., EBC.

PrivateMechanism. We use edge differential privacy for graph

databases where the goal is to protect sensitive information about

the edges in 𝐺 . The graph 𝐺 is denoted as a vector belonging to

{0, 1}(
𝑛
2
)
where 𝑛 is the number of nodes in the input graph and

each entry on this vector represents an edge in 𝐺 (1 is exists, 0

otherwise). By Definition 2.1 neighboring graphs differ in exactly

one edge.

Algorithm 1: PrivTopk

1 Procedure PrivTopk(Graph 𝐺 = (𝑉 , 𝐸), Privacy

Budget 𝐵, Integer 𝑘)
2 𝜖 = 𝐵/𝑘
3 Ω = ∅
4 for 𝑗 ← 1 to 𝑘 do
5 𝑣 = 𝑀𝐸𝐶 (𝐺, 𝜖, 𝐸𝐵𝐶,𝑉 ) // Non-numeric

mechanism call

6 Ω = Ω ∪ {𝑣}
7 end
8 return Ω

We propose PrivTopk, a top-k algorithm template which chooses

iteratively 𝑘 nodes that maximizes EBC (Algorithm 1). In each

iteration, the algorithm makes a call to a non-numeric mechanism

(line 5) that returns a node which maximizes EBC that was not

previously chosen. We experiment with three instances of this

algorithm template: 1) GlobalPrivTopk, where we replace line 5with
an exponential mechanism call, 2) LocalPrivTopk where we replace
line 5with a local dampening call and 3) ShiftedLocalPrivTopkwhere
we replace line 5 by a shifted local dampening mechanism. We use

EBC as the utility function.

The privacy correctness of the algorithm follows from the se-

quential composition property of differential privacy [33]. Our algo-

rithm issues 𝑘 calls to a private mechanism with privacy budget 𝜖/𝑘
which means that the total privacy budget consumed in the entire

algorithm is 𝑘 × 𝜖/𝑘 = 𝜖 . Thus Algorithm 1 satisfies 𝐵-differential

privacy.

Global Sensitivity. We need to provide the global sensitivity

for EBC to the Exponential Mechanism:

Lemma 5.2. (EBC global sensitivity)

Δ𝐸𝐵𝐶 = max

(
Δ(𝐺) (Δ(𝐺) − 1)

4

,Δ(𝐺)
)
,

where Δ(𝐺) is the maximum degree of the input graph 𝐺 . In

this work, we assume the maximum degree is public information

or that we have an upper bound for it.

Element local sensitivity. For the local dampening call, we

provide an upper bound to the element local sensitivity using the

admissible function 𝛿𝐸𝐵𝐶 :

Definition 5.3. (Admissible function 𝛿𝐸𝐵𝐶 (𝐺, 𝑡, 𝑣)).

𝛿𝐸𝐵𝐶 (𝐺, 𝑡, 𝑣) = max

(
(𝑑𝐺 (𝑣) + 𝑡) (𝑑𝐺 (𝑣) + 𝑡 − 1)

4

, 𝑑𝐺 (𝑣) + 𝑡
)
,

where 𝑑𝐺 (𝑣) denotes the degree of 𝑣 in 𝐺 , i.e., 𝑑𝐺 (𝑣) = |𝑁𝐺
𝑣 |.

We also show that 𝛿𝐸𝐵𝐶 (𝐺, 𝑡, 𝑣) is admissible (Lemma 5.4).

Lemma 5.4. 𝛿𝐸𝐵𝐶 (𝐺, 𝑡, 𝑣) is an admissible function.

For a node 𝑣 with degree 𝑑𝑒𝑔𝐺 (𝑣), there are

(𝑑𝑒𝑔𝐺 (𝑣)
2

)
=

(𝑑𝑒𝑔𝐺 (𝑣) · (𝑑𝑒𝑔𝐺 (𝑣) − 1))/2 terms in the 𝐸𝐵𝐶 equation for 𝑣 (Defi-

nition 5.1), i.e., pairs (𝑢, 𝑧) ∈ 𝑁𝐺
𝑣 . As each term contributes at most

1 to 𝐸𝐵𝐶 , it suggests that there is a correlation between 𝐸𝐵𝐶 (𝑣) and
𝑑𝑒𝑔𝐺 (𝑣) + 𝑡 and consequently, between 𝐸𝐵𝐶 (𝑣) and 𝛿𝐸𝐵𝐶 (𝐺, 𝑡, 𝑣).
Empirical observation of the datasets confirmed that correlation.

For this reason, the shifted local dampening mechanism call in

ShiftedLocalPrivTopk is suitable.

5.2 Decision tree induction
Classification based on decision tree is an important tool for data

mining [24]. Specifically, decision trees are a set of rules that are

applied to the input variables to decide to which class a given

instance belongs. A decision tree induction algorithm takes as input

a dataset T with attributes A = {𝐴1, . . . , 𝐴𝑑 } and a class attribute

𝐶 and produces a decision tree. The notation for this section is

summarized in Table 1. All logarithms are in base 2. When it is clear

from the context, we drop the superscript T from the notations.

The ID3 algorithm [37] starts with the root node containing

the original set. Then the algorithm greedly chooses an unused

attribute to split the set and generate child nodes. The selection

criterion is Information Gain (IG), given by the entropy before

splitting minus the entropy after splitting. This process continues

recursively for the child node until splitting does not reduce entropy

or the maximum depth is reached.

PrivateMechanism. We use the algorithm GlobalDiffPID3 [16]

(Algorithm 2) as a template. This algorithm is the evolution of the

method presented with SuLQ framework [3]. Algorithm 2 makes

calls to SuLQ [3] primitives: 1) NoisyCount that uses Laplace

mechanism to return private estimate of count queries, and 2) Par-
tition that splits the dataset into disjoint subsets so that the privacy

budgets for the queries over each subset do not sum up (parallel

composition [34]) meaning that the privacy budget can be used

more efficiently. Thus, we aim to apply the local dampening mech-

anism and the shifted local dampening to the Algorithm 2.

Information Gain. In line 12, Algorithm 2 we need to provide

an utility function that describes the quality of the split of an at-

tribute. In this paper, we address one of the most traditional split

criterion, information gain (IG). It is given by the entropy of the

class attribute 𝐶 in T and the obtained entropy of 𝐶 splitting the

tuples according to an attribute 𝐴 ∈ A.
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Table 1: Notation table for private decision tree induction

Variable Definition
𝐼𝐺 Information Gain

𝐺𝑖𝑛𝑖 Gini Coefficient

T Dataset

A Attribute set

𝐴𝑖 i-th attribute

𝐶 Class attribute

𝜏T Cardinality of a dataset T : 𝜏T = |T |
𝑟𝐴 Values of an attribute 𝐴 in a record 𝑟

𝑟𝐶 Values of the class attribute 𝐶 in a record 𝑟

T𝐴
𝑗

Set of records 𝑟 ∈ T where attribute 𝐴

takes value 𝑗 : T𝐴
𝑗

= {𝑟 ∈ T : 𝑟𝐴 = 𝑗}
𝜏
𝐴,T
𝑗

Cardinality of T𝐴
𝑗
: 𝜏

𝐴,T
𝑗

= |T𝐴
𝑗
|

𝜏T𝑐

Number of records 𝑟 ∈ T where class

attribute 𝐶 takes value 𝑐:

𝜏T𝑐 = |𝑟 ∈ T : 𝑟𝐶 = 𝑐 |

𝜏
𝐴,T
𝑗,𝑐

Number of records 𝑟 ∈ T where attribute 𝐴

takes value 𝑗 and class attribute 𝐶 takes

value 𝑐: 𝜏
𝐴,T
𝑗,𝑐

= |𝑟 ∈ T : 𝑟𝐴 = 𝑗 ∧ 𝑟𝑐 = 𝑐 |

Algorithm 2: GlobalDiffPID3

1 Procedure GlobalDiffPID3(Dataset T, Attribute
Set A, Class attribute 𝐶, Depth 𝑑, Privacy
Budget 𝐵)

2 𝜖 = 𝐵/(2(𝑑 + 1))
3 return Build_DiffPID3(T , A, 𝐶 , 𝑑 , 𝜖)

4 Procedure Build_DiffPID3(T, A, 𝐶, 𝑑, 𝜖)
5 𝑡 = max𝐴∈A |𝐴|
6 𝑁T = NoisyCount𝜖 (T )
7 if A = ∅ or 𝑑 = 0 or 𝑁T

𝑡 |𝐶 | <
√
2

2
then

8 T𝑐 = Partition(T𝑗 ,∀𝑐 ∈ 𝐶 : 𝑟𝑐 = 𝑐)
9 ∀𝑐 ∈ 𝐶 : 𝑁𝑐 = NoisyCount𝜖 (T𝑐 )

10 return a leaf labeled with argmax𝑐 (𝑁𝑐 )
11 end
12 𝐴 = E(T , 𝜖,𝑢,A) // Exp. mechanism call

13 T𝑖 = Partition(T ,∀𝑖 ∈ 𝐴 : 𝑟𝐴 = 𝑖)
14 ∀𝑖 ∈ 𝐴 : Subtree𝑖 = Build_DiffPID3(T𝑖 ,A \𝐴,𝐶,𝑑 − 1, 𝜖)

15 return a tree with a root node labeled 𝐴 and edges

labeled 1 to 𝐴 each going to Subtree𝑖

𝐼𝐺 (T , 𝐴) = 𝐻𝐶 (T ) − 𝐻𝐶 |𝐴 (T ) .
Since 𝐻𝐶 (T ) does not depend on 𝐴, we can further simplify the

utility function 𝐼𝐺 :

𝐼𝐺 (T , 𝐴) = −𝜏 .𝐻𝐶 |𝐴 (T ) (1)

= −
∑︁
𝑗 ∈𝐴

∑︁
𝑐∈𝐶

𝜏𝐴𝑗,𝑐 . log(
𝜏𝐴
𝑗,𝑐

𝜏𝐴
𝑗

) . (2)

Global sensitivity. The exponential mechanism requires the com-

putation of the global sensitivity for 𝐼𝐺 . It is given by Δ𝐼𝐺 =

log(𝑁 + 1) + 1/ln 2 [16] where 𝑁 is the size of the dataset T . The
global sensitivity case can be achieved by T and T ′ where 1) T
has all tuples with values for 𝐴 equal to a single value 𝑗 ∈ 𝐴 and

all tuples class attribute 𝐶 are set to a value different from a given

value 𝑐 ∈ 𝐶 (i.e. 𝜏𝐴
𝑗
= 𝜏 and 𝜏𝐴

𝑗,𝑐
= 0); and 2) T ′ is obtained from T

by adding a tuple 𝑟 where 𝑟𝐴 = 𝑗 and 𝑟𝐶 = 𝑐 .

Element local sensitivity. In our experiments, we observed

that this mentioned case for the global sensitivity is unusual for

real datasets. For those datasets, a local measurement of the sensi-

tivity can be about one order of magnitude lower than the global

sensitivity. To this matter, we replace line 12 for a local dampening

mechanism call producing the algorithm LocalDiffPID3.
Element Local Sensitivity at distance 0. To use local damp-

ening mechanism, we provide means to efficiently compute the

element local sensitivity for 𝐼𝐺 (Lemma 5.6). The element local

sensitivity at distance 𝑡 measures 𝐿𝑆𝐼𝐺 (T ′, 0, 𝐴) for all datasets T ′
such that𝑑 (T ,T ′) ≤ 𝑡 . We first show how to obtain 𝐿𝑆𝐼𝐺 (T ′, 0, 𝐴):

Lemma 5.5. (Element local sensitivity at distance 0 for IG). Given a
dataset T and the attribute set𝐴, 𝐿𝑆𝐼𝐺 (T , 0, 𝐴) produces the element
local sensitivity for IG at distance 0:

𝐿𝑆𝐼𝐺 (T , 0, 𝐴) = max

𝑗 ∈𝐴,𝑐∈𝐶
ℎ(𝜏𝐴,T

𝑗
, 𝜏𝐴𝑗,𝑐T),

where

ℎ(𝑎, 𝑏) = max(𝑓 (𝑎) − 𝑓 (𝑏), 𝑔(𝑏) − 𝑔(𝑎)),
𝑔(𝑥) = 𝑥 .𝑙𝑜𝑔((𝑥 − 1)/𝑥) − 𝑙𝑜𝑔(𝑥 − 1),
𝑓 (𝑥) = 𝑥 .𝑙𝑜𝑔((𝑥 + 1)/𝑥) + 𝑙𝑜𝑔(𝑥 + 1) .

Assume that 𝑔(𝑥) = 0 for 𝑥 ≤ 1 and 𝑓 (𝑥) = 0 for 𝑥 ≤ 0. Note

that, the expression 𝑔(𝜏𝐴,T
𝑗,𝑐
) − 𝑔(𝜏𝐴,T

𝑗
) measures the impact of the

removal of a tuple 𝑟 such that 𝑟𝐴 = 𝑗 and 𝑟𝐶 = 𝑐 and the expression

𝑓 (𝜏𝐴,T
𝑗
) − 𝑓 (𝜏𝐴,T

𝑗,𝑐
) measures the addition of tuple 𝑟 . Thus to obtain

𝐿𝑆𝐼𝐺 (T , 0, 𝐴), we need to measure, for all 𝑗 ∈ 𝐴 and 𝑐 ∈ 𝐶 , the

addition or removal of the tuple 𝑟 where 𝑟𝐴 = 𝑗 and 𝑟𝐶 = 𝑐 , i.e.

ℎ(𝜏𝐴,T
𝑗

, 𝜏
𝐴,T
𝑗,𝑐
) = max(𝑓 (𝜏𝐴,T

𝑗
) − 𝑓 (𝜏𝐴,T

𝑗,𝑐
), 𝑔(𝜏𝐴,T

𝑗,𝑐
) − 𝑔(𝜏𝐴,T

𝑗
)).

Element local sensitivity at distance t. We use a similar idea

to compute 𝐿𝑆𝐼𝐺 (T , 𝑡, 𝐴). 𝐿𝑆𝐼𝐺 (T , 𝑡, 𝐴) searches for the largest

𝐿𝑆𝑢 (T ′, 0, 𝐴) over all datasets T ′ where 𝑑 (T ,T ′) ≤ 𝑡 :

𝐿𝑆𝐼𝐺 (T , 𝑡, 𝐴) = max

T′ |𝑑 (T,T′) ≤𝑡
𝐿𝑆𝑢 (T ′, 0, 𝐴)

= max

𝑐∈𝐶,𝑗 ∈𝐴
max

T′ |𝑑 (T,T′) ≤𝑡
ℎ(𝜏𝐴,T

′

𝑗
, 𝜏

𝐴,T′
𝑗,𝑐
).

Exhaustively iterating over all T ′ to compute ℎ(𝜏𝐴,T
′

𝑗
, 𝜏

𝐴,T′
𝑗,𝑐
)

is not feasible since the number of datasets T ′ grows exponen-
tially with respect to 𝑡 . However, we can restrict the number of

evaluations of ℎ by discarding some of the datasets T ′.
To this end, we introduce the algorithm Candidates(T , 𝑡, 𝑗, 𝑐)

(Algorithm 3) that produces a subset of the set of the pairs (𝜏
𝐴,T′
𝑗

,
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𝜏
𝐴,T′
𝑗,𝑐

) of all datasets T ′ such that 𝑑 (T ,T ′) = 𝑡 , i.e., Candi-

dates(T , 𝑡, 𝑗, 𝑐) ⊆ {(𝜏𝐴,T
′

𝑗
, 𝜏

𝐴,T′
𝑗,𝑐
) | 𝑑 (T ,T ′) = 𝑡}.

Algorithm 3: Candidates Algorithm

1 Procedure Candidates(Dataset T, distance 𝑡,

attribute value 𝑗, class attribute value 𝑐)
2 if 𝑡 = 0 then
3 return {(𝜏𝐴

𝑗
, 𝜏𝐴

𝑗,𝑐
)}

4 end
5 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = ∅
6 for each pair (𝑎, 𝑏) ∈Candidates(T , 𝑡 − 1, 𝑗, 𝑐) do
7 if 𝑎 > 0 and 𝑏 > 0 then
8 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ∪ {(𝑎 − 1, 𝑏 − 1)}
9 end

10 if 𝑎 < 𝜏 then
11 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ∪ {(𝑎 + 1, 𝑏)}
12 end
13 end
14 return 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠

The Candidates algorithm has two important properties:

(1) Candidates(T , 𝑡, 𝑗, 𝑐) contains the pair (𝜏𝐴,T
′

𝑗
, 𝜏

𝐴,T′
𝑗,𝑐
) such

that ℎ(𝜏𝐴,T
′

𝑗
, 𝜏

𝐴,T′
𝑗,𝑐
) is maximum, i.e., ℎ(𝜏𝐴,T

′

𝑗
, 𝜏

𝐴,T′
𝑗,𝑐
) =

maxT′ |𝑑 (T,T′)=𝑡 ℎ(𝜏𝐴,T
′

𝑗
, 𝜏

𝐴,T′
𝑗,𝑐
) (Lemma 5.6);

(2) It is cacheable, when computing 𝐷𝐼𝐺,𝛿𝐼𝐺 , we evaluate

𝐿𝑆𝐼𝐺 (T ′, 𝑡, 𝐴) several times in increasing order of 𝑡 then

one can cache calls to 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 (T , 𝑡 − 1, 𝑗, 𝑐) to execute

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 (T , 𝑡, 𝑗, 𝑐) (line 6) efficiently.

Thus 𝐿𝑆𝐼𝐺 (T , 𝑡, 𝐴) is given by:

Lemma 5.6. (Element local sensitivity at distance t for IG) Given
an input table T , a distance 𝑡 and an attribute set 𝐴, 𝐿𝑆𝐼𝐺 (T , 𝑡, 𝐴)
produces the element local sensitivity at distance 𝑡 for 𝐼𝐺 .

𝐿𝑆𝐼𝐺 (T , 𝑡, 𝐴) = max

𝑗 ∈𝐴,𝑐∈𝐶,
0≤𝑡 ′≤𝑡

max

(𝑎,𝑏) ∈𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 (T,𝑡 ′, 𝑗,𝑐)
ℎ(𝑎, 𝑏) .

In turn, the computation of 𝐿𝑆𝐼𝐺 (T , 𝑡, 𝐴) is also cacheable.

One can store a previous call to 𝐿𝑆𝐼𝐺 (T , 𝑡 − 1, 𝐴) to compute

𝐿𝑆𝐼𝐺 (T , 𝑡, 𝐴) as:

𝐿𝑆𝐼𝐺 (T , 𝑡, 𝐴) =max

(
max

𝑗 ∈𝐴,𝑐∈𝐶,
(𝑎,𝑏) ∈𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 (T,𝑡, 𝑗,𝑐)

ℎ(𝑎, 𝑏),

𝐿𝑆𝐼𝐺 (T , 𝑡 − 1, 𝐴)
)
.

In the datasets used in our experiments, 𝐿𝑆𝐼𝐺 and 𝐼𝐺 exhibit cor-

relation. Consequently, we also replace the exponential mechanism

call on line 12 in algorithm 2 by a call to the Shifted local dampening

with 𝐿𝑆𝐼𝐺 , this new algorithm is called ShiftedLocalDiffPID3.
Gini Index. Another well-known splitting criterion is Gini In-

dex [4]. The global sensitivity for Gini Index is 2 [16] which is a

relatively low sensitivity. We also calculated the local sensitivity

for Gini index but its local sensitivity is not significantly lower

than its global sensitivity to improve accuracy. Hence, we omit the

definitions and proofs for Gini index but we report the results in

the section 6.

Continuous Attributes. An important feature introduced in

C4.5 algorithm [39] is the support for continuous attributes. To

support continuous attributes, we use a simpler approach that per-

formed well in our experiments. We discretize the continuous at-

tributes on the dataset and use them as discrete attributes.

6 EXPERIMENTAL EVALUATION
We carry out experiments to compare the accuracy of local damp-

ening on the applications outlined in Section 5.

6.1 Influential Node Analysis
Datasets. We use three real-world graph datasets: 1) Enron is a

network of email communication obtained from around half million

emails. Each node is an email address and an edge connects a pair of

email addresses that exchanges emails (|𝑉 | = 36, 692 , |𝐸 | = 183, 831

and Δ𝐺 = 1, 383); 2) DBLP is a co-authorship network where two

authors (nodes) are connected if they published at least one paper

together (|𝑉 | = 317, 080, |𝐸 | = 1, 049, 866 and Δ𝐺 = 343); 3) Github
is a network of developers with at least 10 stars on the platform.

Developers are represented as nodes and an edge indicates that

two developers follow each other (|𝑉 | = 37, 700, |𝐸 | = 289, 003

and Δ𝐺 = 9, 458). All datasets can be found on Stanford Network

Dataset Collection [26].

Methods. We compare the three versions of PrivTopk (algorithm
1): 1)GlobalPrivTopk using exponential mechanism, 2) LocalPrivTopk
using local dampening and 3) ShiftedLocalPrivTopk using shifted

local dampening.

Evaluation. We evaluate the accuracy by the percentage of

common nodes to the retrieved top-k set and the true top-k set,

i.e., ( |retrieved_topk∩ true_topk|)/𝑘 . We report the mean accuracy

in 100 simulations. We set 𝑘 ∈ {5, 10, 20} and a range for privacy

budget 𝐵 for each dataset: 1) Enron: 𝐵 ∈ [0.01, 0.75], 2) DBLP:
𝐵 ∈ [0.1, 2.0] and 3) Github: 𝐵 ∈ [001, 0.3]. Also, we test higher
values of the privacy budget for all datasets, 𝐵 ∈ [10−3, 104].

Figure 5 displays the results. Note that all lines for GlobalPriv-

Topk and LocalPrivTopk overlap in Figures 5a, 5c and 5e. For smaller

values of privacy budget (Figures 5a, 5c and 5e), we observe that

ShiftedLocalPrivTopk outperforms GlobalPrivTopk and LocalPriv-

Topk. GlobalPrivTopk accuracy is near zero for all the tested val-

ues due to the high global sensitivity, e.g., Δ𝐸𝐵𝐶 = 22, 361, 076.5

for github dataset, Δ𝐸𝐵𝐶 = 477, 826.5 for DBLP dataset and

Δ𝐸𝐵𝐶 = 29, 326.5 for Enron dataset. The LocalPrivTopk algorithm

suffers from the inversion problem (Section 4) while ShiftedLocal-

PrivTopk could exploit the correlation between 𝐸𝐵𝐶 and 𝛿𝐸𝐵𝐶 to

fix this problem.

In Figures 5a, 5c and 5e, we observe a clear pattern where the

methods performworse as𝑘 grows. This is explained by the fact that

each call to the local dampening or exponential mechanism uses𝐵/𝑘
of the total privacy budget 𝐵 (Algorithm 1). Thus, larger 𝑘 implies

that less of the privacy budget is used in each local dampening call

which hurts accuracy.
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(c) DBLP - 𝐵 ∈ [0.01, 0.75]
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(d) DBLP - 𝐵 ∈ [10−3, 104 ]
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(e) Github - 𝐵 ∈ [0.01, 0.75]
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(f) Github 𝐵 ∈ [10−3, 104 ]

Figure 5: Accuracy for PrivTopk algorithm - ShiftedLocal-
PrivTopk outperforms LocalPrivTopk and GlobalPrivTopk
by reducing the privacy budget consumption by 3 to 4 orders
of magnitude.

Because of space constraints we do not present experienments

for smaller values of 𝑘 . However, local dampening mechanism is

specially prone to suffer from the inversion problem for a small 𝑘

value. Consider the case where 𝑘 = 1 and the node in the top-1 is

dampened to a lower score then the local dampening mechanism

selects a non top-1 node with high probability which hurts accuracy.

For ShiftedLocalPrivTopk, we note that the datasets require dif-

ferent values for privacy budget to get reasonable accuracy. This is

explained by a number of factors. For Github dataset, the distribu-

tion of EBC is heavy tailed thus the nodes with high EBC have a

higher probability to be correctly picked with low privacy budget.

On the other hand, the DBLP dataset requires more privacy budget

as it has roughly 10 times more nodes than the other datasets, which

dilute the probability of the nodes with higher EBC.

For larger values of privacy budget where GlobalPrivTopk

achieves a higher accuracy (Figures 5b, 5d and 5f). Our approach

ShiftedLocalPrivTopk achieves the same level of accuracy with

privacy values 3 to 4 orders of magnitude less than GlobalPrivTopk.

6.1.1 Comparison to related work. PrivateSQL [25] is an approach

that can answer linear queries with cyclic joins and correlated

subqueries with GROUPBY clauses. This approach identifies a set

of views over the base relations that support the analyst queries and

then generates private synopsis for each view. The analyst’s queries

are rewritten as linear queries over the private views’ synopsis.

The sensitivity computation for each view is based on Flex [21]

augmented with truncation operators. The synopsis generation is

based on non-negative least squares inference [27]. Graph databases

can be modeled as a table Node(id) and a table Edge(source, target).

We carry out an experimental comparison to our Influential

Node Analysis approach. For this application, PrivateSQL is not

particularly scalable (as discussed further) so we performed the

experiments with smaller datasets and test with fewer values for

the privacy budgets.

PrivateSQL addresses the Influential Node Analysis problem by

computing the counts 𝑞𝑢𝑣 (𝑐) and 𝑝𝑢𝑣 (𝑐) for all 𝑢, 𝑣 ∈ 𝑁𝑐 (Defi-

nition 11) to compute EBC and take the top-k nodes with high-

est EBC score. Note that we need to account only for the terms

𝑝𝑢𝑣 (𝑐)/𝑞𝑢𝑣 (𝑐) where the distance from 𝑢 to 𝑣 in 𝐺 [𝑁𝑐 ∪ {𝑐}] is
2 which is the maximum possible distance as 𝑢, 𝑣 ∈ 𝑁𝑐 . If their

distance is 1 (i.e. 𝑢 and 𝑣 are neighbors), the term 𝑝𝑢𝑣 (𝑐) is 0 since
the geodesic path of length 1 from 𝑢 to 𝑣 (𝑢, 𝑣 ≠ 𝑐) cannot contain 𝑐 .

Thus, for PrivateSQL, we pose private queries Q(𝑢, 𝑣, 𝑐) (SQL query

available in [10]) that returns 1) 0 if 𝑢 and 𝑣 are neighbors, 2) 0 if

the distance from 𝑢 to 𝑣 is larger than 2 and 3) 𝑞𝑢𝑣 (𝑐), otherwise.
Therefore, whenQ(𝑢, 𝑣, 𝑐) is not equal to 0, it means that the term

𝑝𝑢𝑣 (𝑐)/𝑞𝑢𝑣 (𝑐) should be accounted. In that case, we obtain a noisy

estimate for 𝑞𝑢𝑣 (𝑐) from Q(𝑢, 𝑣, 𝑐). A noisy estimate for 𝑝𝑢𝑣 (𝑐) can
be derived from noisy 𝑞𝑢𝑣 (𝑐) by setting 𝑝𝑢𝑣 to 0 if 𝑞𝑢𝑣 (𝑐) = 0 or

to 1 if 𝑞𝑢𝑣 (𝑐) > 0. The rationale is that exactly one of the paths of

length 2 from 𝑢 to 𝑣 contains 𝑐 as 𝑢, 𝑣 ∈ 𝑁𝑐 .

The set 𝑁𝑐 is itself private information. Hence, to compute

𝐸𝐵𝐶 (𝑐) for every 𝑐 ∈ 𝑉 (𝐺) we need to compute Q(𝑢, 𝑣, 𝑐) for ev-
ery 𝑢, 𝑣 ∈ 𝑉 (𝐺). This results in a total number of 𝑂 (𝑛3) queries
which poses a scalability problem. For this reason, we perform

experiments with samples 𝑆 of the graphs which are obtained by

choosing a node sample 𝑆𝑛 in breadth-first search fashion with a

random seed node and then we set 𝑆 = 𝐺 [𝑆𝑛].
Table 2 displays the mean accuracy for 10 runs on 10 sam-

ple graphs with |𝑆𝑛 | = 50 nodes with 𝑘 ∈ {1, 2, 3} for each

𝐵 ∈ {0.1, 0.5, 1.0, 5.0, 10.0}. We compare the best local dampening

based algorithm ShiftedLocalPrivTopk (PTK) with the PrivateSQL

based approach (PSQL).

PrivateSQL approach generated one private view for each node

in the graph. Thus, the privacy budget needs to be divided by the

number of nodes 𝑛 which implies that accuracy is hurt as 𝑛 grows.

Moreover, the sensitivity for each view is high, e.g, sensitivity is
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1448 when Δ(𝐺) = 10. This entails in a poor performance for the

PrivateSQL based approach.

Table 2: Mean accuracy for ShiftedLocalPrivTopk (PTK) and
PrivateSQL (PSQL) over 10 runs on 10 sample graphs with 50

nodes with 𝑘 ∈ {1, 2, 3} for each 𝐵 ∈ {0.1, 0.5, 1.0, 5.0, 10.0}.

Enron DBLP Github

𝐵 PTK PSQL PTK PSQL PTK PSQL

0.1 0.06 0.01 0.05 0.02 0.07 0.02

0.5 0.45 0.01 0.27 0.02 0.49 0.02

1.0 0.60 0.16 0.44 0.05 0.69 0.02

5.0 0.84 0.20 0.87 0.11 0.86 0.03

10.0 0.88 0.21 0.92 0.21 0.91 0.07

The accuracy per 𝑘 is not provided in Table 2 because of space

constraints. However, as 𝑘 grows, the probability of coincidence

of retrieving a true top-k node increases which means accuracy

increases with 𝑘 .

6.2 Decision Tree Induction
Datasets. For this application, we make use of three tabular

datasets: 1) National Long Term Care Survey (NLTCS) [31] is a

dataset that contains 16 binary attributes of 21, 574 individuals

that participated in the survey, 2) American Community Surveys
(ACS) dataset [40] includes the information of 47, 461 rows with

23 binary attributes obtained from 2013 and 2014 ACS sample sets

in IPUMS-USA and 3) Adult dataset [1] contains 45, 222 records

(excluding records with missing values) with 12 attributes where 8

are discrete and 4 are continuous.

Methods. We compare the three versions of the DiffPID3 (al-

gorithm 2): 1) GlobalDiffPID3 using exponential mechanism, 2)

LocalDiffPID3 using local dampening mechanism and 3) ShiftedLo-
calDiffPID3 using local dampening mechanism with shifting. We

test Gini index (Gini) and Information Gain (IG) as utility function.

Evaluation. We evaluate the accuracy of the approach by re-

porting the mean accuracy across the 10 runs of a 10-fold cross val-

idation. We set 𝑑𝑒𝑝𝑡ℎ ∈ {2, 5} and 𝜖 ∈ {0.01, 0.05, 0.1, 0.5, 1.0, 2.0}.
Figure 6 presents the results. For most privacy budgets, we ob-

serve LocalDiffPID3 improves the accuracy using IG as the utility

function except for the Adult Dataset, up to 11%. Moreover, Shift-

edLocalDiffPID3 improves on LocalDiffPID3 for every instance

(further 3.5% at most), especially for the Adult Dataset where it

overperforms all mechanisms using Gini for depth = 5. Also Shift-

edLocalDiffPID3 has a maximum increase of 12% in accuracy com-

pared to to GlobalPrivTopk.

The local dampeningmechanism could approximate the accuracy

of an IG-based algorithm to the accuracy of a low sensitivity Gini-

based algorithm. An exception is for the trees built on the ACS

dataset with IG in Figure 6e where the inversion problem (Section 4)

appears. Specifically, the second and the third attributes with largest

IG become the third and second attributes, respectively, with larger

Dampened IG. As a consequence, as 𝐵 grows, LocalDiffPID3 tends

to pick the first and the third attributes with largest Information

which is sub-optimal. This problem is mitigated for trees with larger

ShiftedLocalDiffPID3 (𝑢=IG)

LocalDiffPID3 (𝑢=IG)

GlobalDiffPID3 (𝑢=IG)

ShiftedLocalDiffPID3 (𝑢=Gini)

LocalDiffPID3 (𝑢=Gini)

GlobalDiffPID3 (𝑢=Gini)
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(f) ACS dataset - Depth=5

Figure 6: Accuracy for DiffID3 algorithm - The results shows
that, for IG, LocalDiffPID3 is more accurate in general than
GlobalDiffPID3 (up to 11% improvement) and ShiftedLocalD-
iffPID3 improves on LocalDiffPID3 by up to 3.5%. For Gini
index, local dampening mechanism shows no clear benefit.

depth since it can pick, in deeper levels, those attributes that loose

rank (see Figure 6f).

For Gini, the local sensitivity is near the global sensitivity: the

sensitivity for Gini is constant in 2 while it is 13 to 17 for IG in our

datasets. Consequently local dampening does not improve much

on the exponential mechanism.

7 RELATEDWORK
There is a vast literature on Differential Privacy (DP) for numeric

queries, andwe refer the interested reader to [30] for a recent survey.
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In this section, we discuss how our work fills a gap in the current

literature about Differential Privacy for non-numeric queries.

Exponential mechanism: The first proposed approach for pro-

viding Differential Privacy to non-numeric queries is the Exponen-

tial Mechanism [33]. It uses a notion of global sensitivity, first

proposed in [8], to sample an element from the set of possible

outputs of a given query. Subsequently, the staircase mechanism

[17, 18] adopts the same setting: utilization of global sensitivity for

non-numeric queries. However, our early experimental evaluation

with this mechanism showed that it had lower accuracy than the

Exponential Mechanism for our applications.

Many DP works have tackled non-numeric problems using the

exponential mechanism as part of their approaches. These works

include: 1) PrivBayes, which privately releases synthetic tabular

data while maintaining the correlation among its attributes by cre-

ating a k-degree Bayesian Network from the original data [43] and

2) Releasing range queries, contingency tables and data cubes [19].

Since all these problems have been addressed using the Exponential

mechanism and global sensitivity of their utility function to guar-

antee DP, they are all candidate problems that could potentially

benefit from using the local dampening mechanism instead. Doing

so effectively is an interesting direction of future research.

Local sensitivity: The concept of local sensitivity was intro-

duced in [35] for numeric queries. The authors proposed the Smooth

Sensitivity framework, which is a generic approach for numeric

queries. They applied it to compute the median, the cost of a mini-

mum spanning tree, the count of triangles in a graph and k-means.

Ladder functions, proposed by Zhang et al. [42], leveraged local

sensitivity with the exponential mechanism to compute the counts

of subgraphs as k-triangles, k-stars and k-cliques. It groups the

outputs by range, where the ranges are constructed as a function

of local sensitivity. Earlier work by Karwa et al. [22] addressed the

same problem by using the smooth sensitivity framework [35].

Linear queries over relational databases. Kasiviswanathan
et al. [23] observed that the sensitivity of many graph problems is

a function of the maximum degree of the input graph 𝐺 , so they

proposed a generic projection that truncates the maximum degree

of 𝐺 . This projection is built upon local sensitivity but the target

query is answered using the global sensitivity on the truncated

graphs which may still be high. Moreover, it satisfies a weaker

definition of privacy: (𝜖, 𝛿)-differential privacy.
A new notion of sensitivity called restricted sensitivity was in-

troduced by Blocki et al. [2] to answer local profile queries and

subgraph counts. In this setting, the querier may have some belief

about the structure of the input graph, so the restricted sensitivity

measures sensitivity only on the subset of graphs which are be-

lieved to be inputs to the algorithm. However, this work satisfies

only (𝜖, 𝛿)-differential privacy.
For releasing linear statistics over relational databases using

SQL, local sensitivity has been used for answering full acyclic join

queries [41]. This approach lacks generality since we cannot com-

pute some functions as EBC without cyclic joins and GROUPBY

clauses. The recursive mechanism [5] can answer linear queries

with unrestricted joins with GROUPBY clauses, however it requires

the target function 𝑓 to be monotonic, i.e., inserting a new individ-

ual in the database always causes 𝑓 to increase (or always decrease).

This condition is not satified in the computation of Information

Gain, Gini Index and EBC.

Private decision tree induction. A first ID3 based private al-

gorithm is proposed by Blum et al. [3] based on Laplace mechanism.

Our approach is based on Friedman and Schuster [16] which pro-

posed an improvement on the Blum et al. [3] algorithm. It replaces

a Laplace mechanism call by an exponential mechanism call. This

change corresponds to line 12 in Algorithm 1. The authors also

added support for continuous attributes and pruning. Our work

is the first to apply local sensitivity to greedy trees which was an

open question pointed out in a recent survey on private decision

trees [14].

Many other works address the private construction of random

forests [11–13, 20, 36, 38]. Interestingly, local sensitivity was used

for building random forests [12, 13] using smooth sensitivity. This

shows a promising future direction of our work which is applying

local dampening to construct random forests.

To the best of our knowledge, the literature lacks a generic frame-

work for providing Differential Privacy for non-numeric queries

using local sensitivity. Our work in this paper fills this gap.

8 CONCLUSION
In this paper, we introduced the Local Dampening mechanism, a

novel framework to provide Differential Privacy for non-numeric

queries using local sensitivity. We have shown that using local

sensitivity on non-numeric queries reduces the magnitude of the

noise added to achieve Differential Privacy which makes the answer

of those queries more useful. We evaluated our approach on two

applications: 1) Influential node analysis which benefited greatly

from the use of local sensitivity and 2) Decision Tree induction

which improves on approaches that use the exponential mechanism

for this task based on Information Gain.

Our paper has laid the foundations for providing DP for non-

numeric queries using local sensitivity. There are many interesting

directions of future work. First, as discussed in Section 7, any prob-

lem in the literature that has used the Exponential mechanism for

non-numeric queries to guarantee DP is a candidate problem that

could potentially benefit from using our local dampening mech-

anism instead, and worthy of future work. Second, it would be

interesting to tackle other graph influence/centrality metrics for

Influential Node analysis, such as PageRank. Third, applying the

local dampening mechanism to private random forest algorithms is

a promising future direction. Finally, achieving a deeper theoretical

understanding of the local dampening mechanism to understand

the class of problems for which it can provide significant gains

over the Exponential mechanism is an important and challenging

direction of future work.
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