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ABSTRACT

We propose a fast, local denoising method where the Euclidean

curvature of the noisy image is approximated in a regularizing

manner and a clean image is reconstructed from this smoothed

curvature. User preference tests show that when denoising real

photographs with actual noise our method produces results

with the same visual quality as the more sophisticated, non-

local algorithms Non-local Means and BM3D, but at a fraction

of their computational cost. These tests also highlight the

limitations of objective image quality metrics like PSNR and

SSIM, which correlate poorly with user preference.

Index Terms— Image denoising, camera pipeline, image

quality metrics, perceptual metrics, psychophysical experi-

ments.

1. INTRODUCTION

Noise in photographs is unavoidable and causes a loss of visual

quality and dynamic range. All cameras perform some form

of denoising, but this is limited by the computational power of

the camera. Techniques such as spectral analysis, variational

methods and PDEs have all been successfully used for denois-

ing [1] and while some are fast to compute, they typically do

not perform as well as newer, non-local, but computationally

intensive, patch based methods [2–6]. These latter algorithms

can produce high quality results, but their computational com-

plexity makes in-camera implementation impractical.

Another line of denoising algorithms have suggested de-

noising some geometric feature of an image, instead of denois-

ing the image directly [7–10]. The authors in [7] proposed

the following approach for removing noise from (grayscale)

image I0 = a+ n, where a is a ’clean’ image and n is Gaus-

sian noise of mean zero: given a denoising method F , instead

of applying it directly on I0 it’s better to use it to denoise the

curvature of level lines of I0, κ(I0) = div(∇I0/|∇I0|), re-

sulting in κd(I0), and then reconstruct a ’clean’ image whose

curvature matches κd(I0). In [7] it is shown that this frame-

work improves on a variety of denoising methods F including
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local and patch-based techniques (e.g. [3,4,11]), but the evalu-

ation is only performed in terms of objective measures such

as PSNR. Several works have demonstrated that while state

of the art patch-based methods are nearing optimality with

respect to mean squared error, and thus PSNR, there is some

room for improvement [12–14]. Still, while PSNR accounts

for the total pixel error across the image, it is widely accepted

that it is not a good indicator of perceived image quality. And

while SSIM [15] aims to estimate perceived errors, it still does

not consistently match human preference [16]. Thus the study

of image quality metrics is an active research area, with the

main challenge being the lack of accurate models of visual

perception and subjective quality.

In this work we propose a local, low complexity denoising

method. From [7] we take the notion of reconstructing the

denoised image from the denoised curvature, but instead of

applying a denoising method F to the original (noisy) cur-

vature we directly compute a smooth approximation to the

curvature for each color channel. A subjective evaluation was

performed by asking subjects to choose their preferred image

from three on real photographs with visible noise. We find that

our method yields solutions that visually match (on average)

or surpass (for some images) results from two more sophisti-

cated algorithms (Non-local Means [3] and BM3D [4]), but at

a fraction of their computational cost. This suggests the possi-

bility of incorporating the proposed method into the camera

processing pipeline. We also conduct a subjective evaluation

using clean images with three levels of added synthetic (Gaus-

sian) noise. We test whether the metrics PSNR and SSIM can

predict the subjective data. We find that SSIM can reasonably

approximate the averaged preference of subjects as a function

of the noise level, but that neither metric can reliably predict

the preferred denoising algorithm on an image-by-image basis.

This observation highlights the limitations of the quantitative

metrics PSNR and SSIM when evaluating denoising results.

2. A NEW LOCAL DENOISING METHOD

2.1. Foundations of the model

The origin of the denoising method that we propose in this

work is related to the following energy model, introduced



in [17]:

E(I) : =

∫

Ω

‖∇I‖ − ∇I · θ(I0) dΩ (1)

where θ(I0) is a unit vector field indicating the normals to

the level lines of a grey-level image I0 : Ω ⊂ R
2 −→ R.

In [18] the authors propose a variational method to fuse a

short-exposure image, dark and noisy but sharp, with a long-

exposure image, bright and clean but blurry. Their technique

involves minimizing an energy functional with two terms,

where one term locally matches the color histogram of the re-

sult to that of the long-exposure image; the other term is in fact

the energy (1), with the purpose of matching the level-lines of

the solution with the level lines of the short-exposure image I0.

The numerical solution is achieved through a gradient descent

algorithm associated to a differentiable approximation of the

whole energy. In particular, the gradient descent corresponding

to the term (1) is

It = κǫ1
(I)− κǫ2

(I0) (2)

= ∇·

(

∇I
√

‖∇I‖2 + ǫ1

)

−∇·

(

∇I0
√

‖∇I0‖2 + ǫ2

)

(3)

where κǫ1
(I) is the Euclidean curvature of the level lines of

I , κǫ2
(I0) is the Euclidean curvature of the level lines of I0,

and ǫ1, ǫ2 > 0 are introduced to avoid division by zero, a

common practice in this sort of scheme [11]. The authors

in [18] observed that the term κǫ1
(I) − κǫ2

(I0) may have a

noticeable and good-quality denoising effect if ǫ1 is kept very

small but ǫ2 is large: the final fusion result has substantially

less noise than the short-exposure image, and the edges are

still kept sharp. As the value of ǫ2 increases, the denoising is

more pronounced.

In [7] it is shown that, given any denoising method F ,

rather than applying F directly to a noisy image I0 it’s better

(in terms of objective metrics PSNR and SSIM [15]) to ap-

ply F to denoise the curvature κ(I0), and then reconstruct a

clean image by running to steady state the following evolution

equation

It = κǫ(I)−F(κ(I0)) + λ(I − I0), (4)

where 0 < ǫ << 1 such that κǫ approximates κ(I), and λ > 0
is a Lagrange multiplier, based on the noise variance in a

Gaussian noise scenario, that automatically stops the evolution.

2.2. The proposed approach

Our aim is to design a computationally fast denoising method

that produces good visual quality results on photos with real

noise that is generated during the acquisition process of the

camera. From [18] we take the idea of using a large value ǫ2
to compute the curvature of the noisy data I0, and use κǫ2

(I0)
as a quick and easy way to obtain a regularized version of

the curvature. We follow [7] in reconstructing a denoised

image from its denoised curvature, but we replace F(κ(I0))
with κǫ2

(I0) and remove from Eq. (4) the term λ(I − I0)
since it privileges noise with a Gaussian distribution, whereas

actual noise in photographs isn’t well described by an additive

Gaussian model. Our proposed method is then the following.

For each color channel (R,G,B) we take the original noisy

data I0, compute its regularized curvature κǫ2
(I0), and starting

from I0 = I0 iterate for some number N steps of this equation:

In+1 = In +∆t

[

∇− ·

(

∇+In
√

‖∇+In‖2 + ǫ1

)

− κǫ2
(I0)

]

,

(5)

where ∇+ (resp. ∇−) denotes the forward (resp. backward)

spatial difference operator. This is clearly a local method since

the curvature at each pixel location is estimated using just

a 3 × 3 stencil around it. The parameter ǫ1 is fixed and is

chosen very small in order to approximate κ(I), and the time

step ∆t and the number of iterations N are also fixed. The

values we used are: ǫ1 = 10−6, ∆t = 0.002 and N = 30.

Therefore, our denoising approach has only one parameter: the

regularizing value ǫ2. We will specify the way it is determined

in the next Section.

3. EXPERIMENTS

We compare the proposed curvature smoothing (CS) algorithm

against two established, non-local, patch based algorithms:

NLM [3] and BM3D [4]. The comparison is performed on two

image databases: images from the Kodak database [19] with

added Gaussian noise and photographs taken by us with real

noise (see Fig.1). We evaluate the three denoising methods

using subjective testing, and in the case of the Kodak images

where we have an established ground truth we also perform an

evaluation using the metrics PSNR and SSIM.

The subjective evaluation involved 17 participants (all with

normal or corrected to normal vision). Subjects sat in a well-lit

office environment at approximately 64 cm from the display

and were presented with four versions of an image: the original

at the top, and the three denoising results (CS, NLM and

BM3D) in some random order at the bottom. The observer

was asked to look at the original image and then indicate which

of the three denoised images provided they preferred.

In terms of computational cost, our method, being local,

has linear complexity (as we mentioned, curvature is computed

on 3×3 stencils) whereas NLM and BM3D involve comparing

patches over an area so their complexity is quite higher; in

practice, NLM takes 7 times longer and BM3D 10 times longer

than CS, even though our implementation is not optimized

while for NLM and BM3D we use the optimized code from

[20] and [21], respectively.



Table 1: Optimized parameter value ǫ2 as a function of σ.

σ 3 6 9

ǫ2 0.00032 0.003 0.00608

Fig. 1: Test images. Top two rows: crops from Kodak images.

Rows 3 to 7: crops from photographs with real noise.

3.1. Kodak database images

We randomly picked three images from the Kodak database

(“kodim1”, “kodim3” and “kodim13”) and added three levels

of Gaussian noise σ = 3, 6, 9; these values may seem low, but

they correspond to normal noise present in properly exposed

pictures, as the real examples in the next subsection will attest.

The implementations of denoising algorithms NLM [20] and

BM3D [21] take the value of σ as input and require no further

configuration. For our method we find the value of ǫ2 via a

subjective methodology; subjects are asked to adjust ǫ2 via

key presses until they find the most pleasing result. For each

noise level, we average across subjects and images to obtain a

single value of ǫ2 as shown in Table 1.

Having the ground truth we can compare the values of

PSNR and SSIM for each denoising method. We also perform

a user preference test (with the procedure described above).

We take crops from the full size images to allow the simulta-

neous presentation of the 4 images at their native resolution

(thus avoiding resizing). The results are summarised in Fig.2.

We add 95% error bars (estimated via bootstrapping), thus

significance can be inferred from visual inspection. We find

that the SSIM metric provides a reasonable approximation of

the subjective results, correctly predicting that the differences

between the algorithms should be small at low noise levels and

that the proposed CS method performs poorly at high noise lev-

els. Despite this, both the PSNR and SSIM metrics are poor at

predicting which algorithm is preferred on an image-by-image

basis. To assess the metric performance we first compute an

upper bound by randomly splitting the subjective data into two

subject groups (A and B). For each image we then compute

a percentage correct score, the score is 100% if the order is

entirely correct, 33% for only getting the order of one correct

or 0% for a complete failure. We find that on average group A

predicts the data from group B 64% of the time. In contrast,

both the SSIM and PSNR achieve a score of less than 46%.

Note the baseline score is 33%.

3.2. Real noise images

Now we compare user preference on the results from CS,

NLM and BM3D over 30 images cropped from 5 real noise

photos. Since the noise standard deviation is not known, we

find the values for σ (the parameter for NLM and BM3D) and

ǫ2 (parameter for CS) through user tests in the same manner as

above. The results of the psychophysical experiment are shown

in Fig.4. On the left hand side of the figure we plot the user

preference average across all thirty images. The results show

that the performance of the model is statistically identical for

the three algorithms. The remaining graphs show the results

for five individual images as denoted above each graph. Notice

how some of these images are quite noisy. For the same image,

the optimal value σ chosen by user tests differs for NLM

(values up to 5.10) and BM3D (values up to 8.49). If the noise

were Gaussian, according to PSNR and SSIM there should be

a clear difference in performance of algorithms. Despite the

image-dependent variability in the preferred algorithms, the

overall results show no one algorithm wins overall. Again, this

contradicts the result that for additive Gaussian noise, PSNR

and SSIM predict that the visual quality of BM3D is always

clearly superior to that of NLM, which is always supposed to

outperform CS. Fig.5 shows individual examples where CS

does well in terms of visual quality.

4. CONCLUSION

We have introduced a local denoising method based on re-

constructing a clean image from a smoothed version of the

Euclidean curvature of the original noisy input. The method

was compared with the non-local, computationally much more

intensive algorithms of NLM and BM3D. Our results indi-

cate that in terms of user preference, our proposed method,

NLM and BM3D all have the same average performance on

real-noise images, that PSNR and SSIM do not correlate with

user preference at low, but still quite noticeable, noise levels

common in many properly-exposed photographs, and finally,

that the outcomes of user preference tests on the results of

denoising algorithms applied to images with added Gaussian

noise can not be extrapolated to the real case of noisy images

where the noise is due to the acquisition process. We are cur-

rently building a larger image database on which to perform

tests, considering also images coming from digital cinema

cameras where the bit depth is higher and gamma correction

is replaced with logarithmic encoding, factors which may af-

fect the performance of our method in comparison with the

non-local approaches.
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Fig. 2: From left to right: Average PSNR and SSIM computed for 3 images from the Kodak data base, and results of

psychophysical experiment for comparing our proposed local denoising method to BM3D and NLM.
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Fig. 3: Visual comparison for one test crop from image “kodim3” and user preferences.
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