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Abstract Demonstrates methods of detecting local dependence in binary data la-

tent class models. Latent class models are applied to five repeated measures of voter

turnout in the Dutch Parliamentary elections of 2006 and 2010 obtained from a

probability sample of 9510 citizens. Modeling substantive local dependence as sepa-

rate discrete latent variables while modeling nuisance dependencies as direct effects

yields an interpretable model, giving insight into the classification errors present

in survey questions about voting. The procedure followed stands in contrast to the

“standard” procedure of increasing the number of latent classes until information

criteria are satisfactory.
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1 Introduction

Latent class models for binary variables are finite mixtures of binomials, and applied

in a broad range of fields including the social sciences (Hagenaars and McCutcheon,

2002; Savage et al., 2013), machine learning (Hastie et al., 2008), psychological

measurement (Heinen, 1996), public health and epidemiology (Collins and Lanza,

2010), and the biomedical sciences (Walter et al., 2013).

The key assumption of latent class models is conditional independence of the

observed variables given the latent class or mixture component. Violations of this

assumption may occur when there are unmodeled latent classes – a common reac-
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tion to detected misfit is therefore to increase the number of classes, based on criteria

such as L2, χ2, (C)AIC, BIC, CVIC or ICL (McLachlan and Peel, 2000). However,

the local dependence and pursuant additional latent classes may not be substan-

tively interesting. For example, Hagenaars and McCutcheon (2002) suggested that

local dependence between items in a questionnaire or psychological test can oc-

cur because respondents attempt to make their responses consistent; and Oberski

and Vermunt (frth) found that ethnicity measurements discussed by Johnson (1990)

were locally dependent due to the fact that some were measured on the same occa-

sion. In these instances, additional classes do not yield substantively useful results.

Local dependence, is however, still of importance in such cases, because unmod-

eled local dependencies may bias model parameters of interest as well as posterior

classifications (Vacek, 1985; Qu et al., 1996; Hadgu et al., 2005).

This paper demonstrates an alternative to increasing the number of classes: mod-

eling additional discrete latent variables when the dependence between items is sub-

stantively interesting, while modeling local dependencies directly when dependence

is considered a nuisance. Such an approach will not be fruitful in all applications of

latent class models, since a strong theory is needed regarding the type of dependen-

cies deemed “substantively interesting”. We discuss an application in which such

judgements can be made, and the approach is therefore useful.

It is not generally desirable (or feasible) to model all possible local dependen-

cies. Which dependencies should be modeled can be monitored with the “bivariate

residual” (BVR). The BVR for a pair of observed variables is the Pearson residual in

their bivariate cross-table (Vermunt and Magidson, 2005, pp. 72-3). It is equivalent

to an uncorrected score test for freeing an additional local dependence parameter

(Oberski et al., frth). When this measure is “large”, it will indicate a potential omit-

ted local dependence. However, Oberski et al. (frth) showed that the raw BVR does

not follow a known distribution, and recommended using either the score test or

parametrically bootstrapped p-values for the BVR, both of which have been imple-

mented in the standard latent class software Latent Gold 5 (Vermunt and Magidson,

2005). Here we demonstrate the use of bootstrapped p-values for the BVR.

Application of the BVR is demonstrated on an analysis of voting in elections.

What drives citizens to turn out in elections is a topic that receives intense interest

in political science (e.g. Campbell, 1960; Verba and Brady, 1995; Franklin, 2004;

Gallego and Oberski, 2012). Even so, citizens’ turnout decisions are often not di-

rectly observed but rather the answer to the survey question “did you vote in the

last election?” is observed. That these two things are not the same is well-known

from validation studies (see Ansolabehere and Hersh, 2012, for a recent overview),

and means that misclassification should be estimated so that parameter estimates

may be corrected (Vermunt, 2010). Obtaining such gold standard validation data,

is, however, sometimes prohibited by law and always costly. As an alternative to

validation data, repeated measurements may be available, which raise the question

“Do repeated measurements without a gold standard allow for the estimation of

misclassification rates in voting?”. This paper analyses such data obtained from a

representative sample of Dutch citizens by applying latent class models with mul-
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tiple discrete latent variables and local dependence parameters, demonstrating the

use of local dependence measures.

2 Data

The LISS panel is a probability sample of 5000 Dutch households whose mem-

bers are interviewed regularly over the web. All individuals aged 16 or more in the

selected household are invited to participate. In this study we only consider respon-

dents who are eligible to vote. These participants were asked whether they had voted

in the Parliamentary elections held in the Netherlands in November 2006 (official

turnout 80.4%) and June 2010 (turnout 75.4%). For more information on the design

of the study, response rates, and recruitment efforts, please see Scherpenzeel (2011).

Participants were asked whether they had voted in these two elections on five

occasions: in 2008, 2009, and 2010 (for the 2006 election), and 2011 and 2012 (for

the 2010 election). The percentages of respondents who claimed to have voted were

87%, 84%, 81%, 87%, and 84% respectively. All of these differences are statistically

significant (p < 0.01)1. Initially reported turnout thus exceeded actual turnout, but,

even though the same respondents were asked whether they had voted in the same

elections, over time the claimed turnout rate declined toward the actual turnout rates.

In total there were 9510 respondents for whom at least one answer was recorded;

if all rows containing at least one missing value were deleted, only 2424 would

remain, however. We therefore estimate our model using full-information maximum

likelihood, which assumes the missing values are MAR given the observed values.

3 Model

3.1 Latent class model with possible local dependencies

Suppose an i.i.d. sample of size N is obtained on J observed binary variables, aggre-

gated by the R response patterns into Y. Let n be the R-vector of observed response

pattern counts. We also postulate K discrete latent variables ξk, collected in a vector

ξ , whose distribution is to be estimated. The K-way cross-table of ξ yields T un-

observed patterns. In the case of latent structure analysis, there is only one discrete

latent variable and T will equal the number of latent classes. The log-likelihood for

the latent class model is then the discrete mixture (e.g. Formann, 1992)

1 The percentages shown here were calculated using pairwise deletion but the pattern and statistical

significance persist when using listwise deletion. The differences are therefore not likely due to

panel attrition (nonresponse).
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ℓ(θ) = n′ logPr(Y) = n′ log

[

∑
T

Pr(Y|ξ )Pr(ξ )

]

, (1)

where log and exp denote elementwise operations,

Pr(Y|ξ ) =
exp(ηY|ξ )

1′R exp(ηY|ξ )
, and Pr(ξ ) =

exp(ηξ )

1′T exp(ηξ )
. (2)

The GLM linear predictors ηY|ξ and ηξ are parameterized using effect-coded de-

sign matrices (Evers and Namboodiri, 1979):

ηY|ξ = X(Y )τ +X(YY )ψ +X(Y ξ )λ , and ηξ = X(ξ )α +X(ξ ξ )β , (3)

where X(Y ), X(YY ) and X(Y ξ ) are design matrices for the observed variables’ main

effects τ , bivariate associations ψ , and associations with the latent discrete vari-

ables λ (“slopes”), respectively. Similarly, X(ξ ) and X(ξ ξ ) are design matrices for

the discrete unobserved variables’ main effects α and associations β . This param-

eterization of the local dependence latent class model is similar to that adopted by

Hagenaars (1988) and Formann (1992, section 4.3), except that we additionally al-

low for explicit modeling of multiple discrete latent variables and their interrelations

(Magidson and Vermunt, 2001; Vermunt and Magidson, 2005).

The q-vector of parameters θ can be defined as θ ′ := (α ′,β ′,τ ′,λ ′,ψ ′). There are

thus q ≤ T (J+1)−1+
(

J
2

)

(possible) parameters. The standard local independence

latent class model, however, has as its key assumption that ψ = 0. In addition, the

slopes λ are typically restricted such that, given exactly one unobserved discrete

variable, each indicator is conditionally independent from all other latent variables.

Maximum likelihood estimates of the parameters of the model are usually ob-

tained as θ̂ = argmaxθ∈Rq ℓ(θ) by expectation-maximization (see Formann, 1992),

quasi-Newton methods, or a combination of both (Vermunt and Magidson, 2005).

Goodman (1974) showed that the parameters of the model are locally identifiable

when the Jacobian S := ∂Pr(Y)/∂θ is of full column rank. A necessary but not suf-

ficient condition for this is that R > q. In practice, local identifiability can be evalu-

ated empirically by examining the rank of the information matrix at the maximum

likelihood solution, or by randomly sampling many parameter values in the param-

eter space and evaluating the information matrix at each point (Forcina, 2008). For

a general discussion of identification in latent class models, we refer to Huang and

Bandeen-Roche (2004); for a discussion of identifiability of the local dependence

parameters, see Oberski and Vermunt (frth, appendix).

3.2 Model misfit and local dependence

After estimation, for each response pattern expected frequencies µ̂r :=N ·Pr(Yr|θ =
θ̂) are obtained, which can be compared with the observed frequencies nr. Overall

goodness of fit measures based on this comparison such as the chi-square and likeli-
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hood ratio (L2), as well as information criteria such as BIC, AIC, CAIC, CVIC, and

ICL are often used to evaluate whether the latent class model adequately describes

the observed data (see McLachlan and Peel, 2000, chapter 6).

Since the key assumption is that of local independence (ψ = 0), a major source of

misfit will be locally dependent item pairs. In our example, local dependence may,

for instance, arise because respondents remember their answer on the first mea-

surement occasion and try to remain consistent on later occasions (Hagenaars and

McCutcheon, 2002). Assuming the model is overidentified, such local dependence

will be picked up by the overall fit statistics and information criteria. When these

indicate a problem, additional latent classes are then included in the model to ac-

count for the dependence. This will lead to a latent class model in which some of

the classes represent, for instance, “consistent answering”.

However, local dependencies and the pursuant additional classes are not neces-

sarily of scientific interest. For theoretical reasons, one may prefer a model with

fewer classes in the voting data application: we know that respondents have ei-

ther voted or not and that the measurements pertain to two separate elections. Two

classes are also preferred when evaluating diagnostic tests for disease/non-diseased

status (Qu et al., 1996).

When a specific number of classes is desired or local dependence is not sub-

stantively meaningful, it may be preferable to model local dependencies by freeing

elements of ψ . Freeing all local dependencies is, however, usually not desirable for

reasons of model stability and (sometimes) identifiability (Oberski and Vermunt,

frth). We therefore use the “bivariate residual” (BVR) between item pairs to monitor

whether it might be necessary to free local dependencies (Vermunt and Magidson,

2005). The bivariate residual is an intuitively attractive fit index measuring the de-

gree to which the bivariate cross-table between a pair of observed variables fits the

model:

BVR j j′ := ∑
k∈{0,1}

∑
l∈{0,1}

(nkl − µ̂kl)
2

µ̂kl

= r2
11 ∑

k∈{0,1}
∑

l∈{0,1}

1

µ̂kl

, (4)

where the raw residuals rkl := nkl − µ̂kl , and nkl and µ̂kl now indicate observed

and expected frequencies in the bivariate 2×2 cross-table of the observed variables

y j and y j′ ( j 6= j′). The last step follows because the marginals are perfectly re-

produced (Oberski et al., frth). A BVR can be obtained for each of the
(

J
2

)

pairs

of observed variables; in this way, for each pair it can be investigated whether the

cross-table between this pair appears to fit the hypothesis of local independence.

The BVR has the same form as a Pearson residual and is often treated in applied

research as though its asymptotic distribution converged to a chi-square distribution.

Oberski et al. (frth) showed that this is not a good practice; the BVR is a score test

uncorrected for cell interdependencies and far from chi-square distributed. Instead,

p-values for the BVR very close to Rao (1948)’s classic efficient score test can be

obtained by a parametric bootstrap (Efron, 1982; Langeheine et al., 1996). The soft-

ware Latent Gold 5.0 (Vermunt and Magidson, 2005) implements this procedure.
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Fig. 1 Model selection in-
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Fig. 2 Left: probability profile plot for the four-class solution. Right: legend with estimated class

sizes and 2 s.e. error bars.

4 Results

We now follow two procedures for data analysis of the Dutch voting example. The

first procedure is a standard single nominal latent class model, which is fitted to

the data with an increasing number of classes. BIC and CAIC are used to select

the number of classes, after which these are interpreted. We compare this standard

procedure with one in which two discrete latent variables are modeled jointly, one

for voting in each of the 2006 and 2010 elections, and the bivariate residuals are

inspected to decide which local dependencies should be freed.

Figure 1 shows criteria used to select the number of classes. Both BIC and CAIC

select the four-class model. When this model is fit to the five claims of having voted,

the conditional probabilities shown in Figure 2 result. The left-hand side of Figure

2 shows the probability of claiming to have voted on each of the five measurement

occasions given the four latent classes, indicated by the different lines (colors, point

shapes). The right-hand side of Figure 2 provides a legend and shows class size

estimates with 2 s.e. error bars. Figure 2 shows that class 1 is the class of people who

voted in both elections, while class 3 is voting in neither election. Class 4 appears

to represent voting in 2010 but not in 2006, although the probability of claiming

to have voted in 2006 in this class is still around 0.25. Class 2, containing 10% of

observations, is the most difficult to explain; it contains people who initially claim

to have voted, but, as time goes by, become more likely to admit that they did not.
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2008 2009 2010 2011 2008 2009 2010 2011 2008 2009 2010 2011

2009 0.000 0.736 0.622

2010 0.586 0.116 0.138 0.038 0.120 0.272

2011 0.000 0.808 0.004 0.000 0.060 0.358 0.554 0.130 0.222

2012 0.460 0.148 0.000 0.688 0.022 0.004 0.036 0.714 0.296 0.030 0.234 0.824

L2 p-value: 0.000. L2 p-value: 0.000. L2 p-value: 0.052.

Fig. 3 Top: three sequential models, starting from the conditional independence model (Model 1).

Bottom: bootstrapped p-values for the bivariate residuals and L2 under each model.

The standard latent class model procedure applied to these data is somewhat un-

satisfactory. Considering that there are only two actual elections, one would expect

the four classes to represent the 2× 2 = 4 cells in the cross-table of voting or not

in 2006 and 2010. Four classes are indeed selected, but instead of a class “voting in

2006 and not in 2010”, the difficult-to-interpret class 2 results, which partially also

represents artefacts that are not of interest to political scientists.

An alternative procedure is to fit a model with two discrete latent variables, one

for each election, each with two classes (voted/did not vote). The first three answers,

being about the 2006 elections, are related to the first latent variable and the last

two answers, about the 2010 elections, to the second latent variable. Conditional

probabilities then represent misclassification rates with respect to true turnout in the

2006 and 2010 elections, which is the question of scientific interest.

Initially a model is fit in which all
(

5
2

)

= 10 possible local dependencies are set

to zero. This “Model 1” is shown as a graph in Figure 3. The table under “Model

1” in Figure 3 provides p-values for the 10 bivariate residuals obtained by para-

metric bootstrapping. The BVR’s of the dependence between answers in 2008 and

in other years correspond to Hagenaars and McCutcheon (2002)’s suggestion that

respondents sometimes attempt to make their answers consistent with the first oc-

casion. Based on these and the values of the BVR’s (not shown for conciseness),

we free the local dependence between the answer in 2008 and in 2009 and re-fit the

model to obtain the model and BVR p-values shown under “Model 2”. One p-value

is then still < 0.01 and in line with the memory effect theory: the corresponding

dependence is therefore freed. The final model (“Model 3”) does not have any BVR

with a bootstrapped p-value < 0.01. The overall bootstrapped likelihood ratio test

L2 indicates a good fit as well.

This final model has several advantages over the four-class model. First, it ex-

plicitly models true turnout in the two elections so that the conditional probabilities
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Fig. 4 Left: probability profile (i.e. sensitivity and specificity) plot for the two-class, two-variable

solution. Right: turnover table of “true vote” classes.

may be interpreted as misclassification rates (“specificity” and “sensitivity”). These

misclassification rates are of interest to political scientists. Second, the two-variable

classification allows researchers to relate voting in these two elections to external

variables (Vermunt, 2010). Third, nuisance local dependencies such as memory ef-

fects are not part of the classification but are accounted for by local dependence

parameters.

Sensitivity and specificity (misclassification rates) are shown on the left-hand

side of Figure 4. The Figure shows that the probability of a respondent claiming

to have voted when they have not decreases as the election period becomes more

distant. This finding corresponds to the idea that false positives are due to social

desirability, since the “norm” of voting will be less salient three years after the

election than during election season2. This pattern explains the overall pattern that

claimed turnout rates approached the actual turnout rates as time goes by.

The right-hand side of Figure 4 shows the estimated turnover table of true turnout

from 2006 to 2010 with class sizes in the margins. The class prevalences of 81 and

82 percent are higher than the actual turnout rates 80.4 and 75.4 percent, although

they are much closer to true turnout than the raw reported rates (around 87%). The

turnover table suggests that voters mostly remained voters whereas non-voters in

2006 had a chance of 0.287 of voting in the 2010 election. If such a pattern were to

be predicted for future elections, it would suggest that efforts to encourage citizens

to vote would be best focused on non-voters in previous elections.

5 Summary

This paper applied latent class modeling with multiple latent variables and local de-

pendencies to voter turnout data. It illustrated the use of such models, particularly

the role that bivariate residuals and other measures of residual local dependence such

2 Note that 2010 was not known in advance to be an election season by respondents since elections

were called due to the sudden collapse of the government.
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as the score test may play in practical data analysis. The approach of modeling sub-

stantive dependencies as discrete latent variables while modeling non-substantive

dependencies as local dependence parameters yielded a useful model that gave in-

sight into questions of interest to political scientists. In our opinion this approach

was more fruitful than the four-class nominal latent class solution.
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