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LOCAL DERIVATIONS ON C∗-ALGEBRAS ARE DERIVATIONS

B. E. JOHNSON

Abstract. Kadison has shown that local derivations from a von Neumann
algebra into any dual bimodule are derivations. In this paper we extend this
result to local derivations from any C∗-algebra A into any Banach A-bimodule
X. Most of the work is involved with establishing this result when A is a
commutative C∗-algebra with one self-adjoint generator. A known result of the
author about Jordan derivations then completes the argument. We show that
these results do not extend to the algebra C1[0, 1] of continuously differentiable
functions on [0, 1]. We also give an automatic continuity result, that is, we
show that local derivations on C∗-algebras are continuous even if not assumed
a priori to be so.

1. Introduction

A continuous operator T from a Banach algebra A into a Banach A-bimodule
X is a local derivation if for each a in A there is a continuous derivation Da from
A into X with Da(a) = T (a). This concept was introduced by Kadison [5] who
showed that if A is a von Neumann algebra and X is a dual bimodule, then all local
derivations are in fact derivations. In this paper we show (Theorem 5.3) that this
result holds for all C∗-algebras A and all Banach A-bimodules X. Using [4, Theorem
6.3], it is enough to show the result when A is a C∗-algebra generated by a single
self-adjoint element. It turns out that the general result follows fairly immediately
once the case X = (A⊗̂A)∗ has been settled. Accordingly, most of the work in
the paper is involved in establishing the case A = C0(R), X = (C0(R)⊗̂C0(R))∗

(Proposition 5.1). To get this result we need to consider “local multipliers” (defined
by replacing “derivation” by “multiplier” in the definition above) and show that
they are all multipliers (Proposition 4.1; see also Corollary 5.4). This result in turn
depends on Proposition 3.1 which says that in certain circumstances every local
operator, defined as an operator T such that the germ of T (a) at each point of the
structure space depends only on the germ of a there, is a multiplier. The main
ingredient in this is Proposition 2.1, showing that the diagonal in R2 is a set of
synthesis for C0(R)⊗̂C0(R).

In Section 6 we consider the regular Banach algebra C1[0, 1] of continuously dif-
ferentiable functions in [0, 1]. This has local derivations which are not derivations,
but if we restrict attention to symmetric modules, all local derivations are deriva-
tions. In Section 7 we consider automatic continuity for local derivations. Our
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314 B. E. JOHNSON

definition of local derivation requires them to be continuous but, for local deriva-
tions on C∗-algebras, this requirement is redundant since the other conditions for
the local derivation are only satisfied by continuous maps.

2. The diagonal as a set of synthesis

Let A be a commutative regular semisimple Banach algebra with maximal ideal
space Φ. Let F be a closed subset of Φ. Then F is a set of synthesis if every
element a of A for which â is zero on F can be approximated in norm by elements b
such that b̂ has compact support disjoint from F . If A has a bounded approximate
identity {eα} where êα has compact support for each α, then the previous sentence
remains true with “compact” omitted.

We will be concerned with algebras A⊗̂A where A is as in the previous paragraph.
It is easy to see that if A is unital, then the maximal ideal space of A⊗̂A is Φ× Φ
and the Gelfand transform is (a⊗ b)∧(ϕ, ψ) = â(ϕ)b̂(ψ). A nonzero multiplicative
linear functional ϕ on an ideal J in an algebra A can be extended to A by defining
ϕ(a) = ϕ(aj)/ϕ(j) (a ∈ A, j ∈ J, ϕ(j) 6= 0) and taking A⊗̂A is an ideal in A1⊗̂A1,
where A1 is the algebra obtained by adjoining an identity to A, the result in the
previous sentence holds for nonunital algebras also.

If, in addition, A satisfies the approximation property so that linear functionals
on A⊗̂A of the form a ⊗ b → f(a)g(b) (a, b ∈ A, f, g ∈ A∗) are total for A⊗̂A

(that is, the intersection of their kernels is {0}), then because Φ is total for A by
semisimplicity, we see that Φ× Φ is total for A⊗̂A so that A⊗̂A is semisimple.

We denote the diagonal of Φ× Φ by ∆(Φ), that is,

∆(Φ) = {(ϕ,ϕ) : ϕ ∈ Φ}
and put

J∆(A) = {t : t ∈ A⊗̂A, t̂ = 0 on ∆(Φ)},

J0
∆(A) = {t : t ∈ A⊗̂A, t̂ has support disjoint from ∆(Φ)}.

The product map on A extends to an operator π of norm 1 from A⊗̂A to A. It
satisfies

π(t)∧(ϕ) = t̂(ϕ,ϕ), (t ∈ A⊗̂A, ϕ ∈ Φ).

Thus J∆(A) = kerπ.
We shall show

Proposition 2.1. The diagonal is a set of synthesis for C0(R)⊗̂C0(R) = V0(R).

To do this we will first show the corresponding result for A(R), the subalgebra
of functions which are Fourier transforms of functions in L1(R). Note that both
A(R) and C0(R) have bounded approximate identities consisting of functions with
compact support.

Curtis and Loy [1, Theorem 3.10] have shown that A is amenable if and only if
kerπ has a bounded approximate identity. It is easy to see that the diagonal is a
set of synthesis, that is, J0

∆(A) is dense in J∆(A), if the approximate identity can
be chosen from J0

∆(A).

Proof of Proposition 2.1. Put M = {a : a ∈ A(R), a(0) = 0}.
Then M has a bounded approximate identity and, either by direct calculation

or by using the fact that one-point sets in locally compact abelian groups are sets
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of synthesis, we see that it has a bounded approximate identity {eα} consisting of
elements which are zero in a neighbourhood of 0. If t =

∑
ai ⊗ bi ∈ A(R)⊗̂A(R)

has t(0, ψ) = 0 for all ψ in R, then taking a bounded approximate identity {fβ} in
A(R), we have

t =
∑

(ai − ai(0)fβ)⊗ bi + fβ ⊗
∑

ai(0)bi ∈M⊗̂A(R)

because (fβ ⊗
∑
ai(0)bi)(φ, ψ) = fβ(ϕ)t(0, ψ) = 0. Thus {eα ⊗ fβ} is a bounded

approximate identity for the set of such elements t and each eα ⊗ fβ is zero in a
neighbourhood of {0} × R. The algebra A(R)⊗̂A(R) is, via the Fourier transform,
isomorphic with L1(R)⊗̂L1(R) = L1(R × R). The map (x, y) 7→ (x, x + y) is an
isomorphism of the group R× R and induces an automorphism ω of L1(R× R) '
A(R)⊗̂A(R) which, in terms of this latter space, is given by

(ωt)(ϕ, ψ) = t(ϕ+ ψ, ψ).

Since this maps {0} × R to the diagonal, {ω(eα ⊗ fβ)} is a bounded approximate
identity for J∆(A(R)) with ω(eα ⊗ fβ) ∈ J0

∆(A(R)).
As A(R) is norm dense in C0(R), {ω(eα⊗fβ)} is a bounded approximate identity

for J∆(C0(R)) from J0
∆(C(R)) if J∆(A(R)) is dense in J∆(C(R)). If ε > 0 and

v ∈ J∆(C(R)), then there is t ∈ A(R)⊗̂A(R) with ‖t− v‖V < ε. Then π(t) ∈ A(R)
and ‖π(t)‖∞ = ‖π(t) − π(v)‖∞ < ε. Define sn and en in A(R) by induction
satisfying

s0 = π(t), ‖en‖ ≤ 1,

‖sn − snen‖A < 2−nε,

sn+1 = sn − snen (so ‖sn‖A < 2−nε, n > 0).

This is possible because A(R) has a bounded approximate identity of norm 1. Then
t′ =

∑
sn ⊗ en ∈ A(R)⊗̂A(R) and π(t′) =

∑
snen =

∑
sn − sn+1 = s0 = π(t).

Thus t− t′ ∈ J∆(A(R)) and ‖t− t′ − v‖V < 3ε because ‖t′‖V < 2ε.

3. Multipliers and local operators

Let A be a commutative regular semisimple Banach algebra and let X be a left
Banach A-module. For x ∈ X, the annihilator A(x) of x is

A(x) = {a : a ∈ A, ax = 0}.
It is clearly a closed ideal in A and its hull is called the support of x, denoted by
suppx. A continuous operator T from A to X is called a local operator if

suppTa ⊆ supp a

for all a in A. In this we are treating A as a left module over itself and the support
of an element a is just the closure of the set of points at which â is nonzero.

A (right) multiplier from A to X is bounded operator T from A to X with T (ab) =
aT (b) (a, b ∈ X). Of course, if A is unital with unit e, then T (a) = aT (e) (a ∈ A)
so multipliers are given by multiplication by a fixed element of X. We could define
local operators and multipliers from one A module to another but we will not need
to use these. It must be admitted that our use of “local” above conflicts with its use
in “local multiplier” and “local derivation” below, however, to remove this conflict
we would need to replace well established terminology by unfamiliar terminology
and we have decided to accept the conflict rather than do this.
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It is easy to see that if T is a multiplier and ab = 0, then aT (b) = T (ab) = 0 so
that A(a) ⊆ A(Ta) giving suppTa ⊆ supp a; that is T is a local operator. We shall
show that the converse holds for some algebras.

Proposition 3.1. Let X be an essential left Banach C0(R)-module and let T be a
continuous local operator from C0(R) to X. Then T is a multiplier.

Proof. Consider first the case X = M(R) where the action of C0(R) is the usual
product of a function and a measure. Then τ(a ⊗ b) = (T (a), b) (a, b ∈ C0(R))
defines a linear functional τ on V0(R). Note that the support of a measure µ
in M(R) defined above is the same as its support as usually defined. The local
property shows that if a and b have disjoint supports, then so do T (a) and b and
hence τ(a ⊗ b) = 0. Let J be the closed linear span in V0(R) of

{a⊗ b : a, b ∈ C0(R), supp a ∩ supp b = ∅}.
Then J is a closed ideal and it is easy to see its hull is the diagonal. Thus J =
J∆(C0(R)) and τ is zero on J∆(C0(R)) = kerπ. As π is surjective, there is µ ∈
M(R) with π∗µ = τ and so

(T (a), b) =
∫
a(t)b(t)dµ(t) (a, b ∈ C0(R)).

It follows immediately that (T (ac), b) = (T (a), cb) = (cT (a), b) so T is a multiplier.
We now consider the general case. Let F ∈ X∗ and consider the map KF of X

into M(R) given by

((KFx), a) = F (ax), a ∈ C0(R), x ∈ X.

It is easy to check that this is a C0(R) module map and so suppKFx ⊆ suppx for
all x in X. Thus KFT is a local operator with range in M(R) and so is a multiplier.
Hence for all a, b in C0(R),KF (aT (b)−T (ab)) = aKFT (b)−KFT (ab) = 0. However,
if x ∈ X with KFx = 0 for all F ∈ X∗, then

F (ax) = 0 (a ∈ C0(R), F ∈ X
∗)

so that ax = 0 and hence x = 0 because X is essential. Thus aT (b) = T (ab) for all
a, b in C0(R) and T is a multiplier.

Note that the hypothesis that X is essential is needed because any map from
C0(R) into {x : ax = 0, a ∈ A} is a local operator which is a multiplier if and only
if it is zero. Note also that for A = C1[0, 1], X = C[0, 1], differentiation is a local
operator which is not a multiplier.

4. Local multipliers

Let A be a commutative semisimple regular Banach algebra and let X be a left
Banach A-module. A local multiplier from A to X is a continuous operator T such
that for each a ∈ A there is a (right) multiplier Ta from A to X with T (a) = Ta(a).
We have bT (a) = bTa(a) = Ta(ba) = 0 if ba = 0 so suppT (a) ⊆ supp a. Thus a
local multiplier is a local operator.

Proposition 4.1. Let I be an interval (open or closed) in R and let X be a left
Banach C0(I)-module. If T is a local multiplier from C0(I) to X, then T is a
multiplier.
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Proof. Note that if I is compact, then C0(I) is just C(I). Consider first the case
I = R. If b, c ∈ C0(R), a = bc and Ta is a multiplier with Ta(a) = T (a), then
T (a) = Ta(bc) = bTa(c) so T (a) lies in the essential submodule of X whenever a is
a product and hence for all a in C0(R). Thus by Proposition 3.1, T is a multiplier.
The general result follows because C0(I) is a quotient of C0(R) so we can lift local
multipliers on C0(I) to local multipliers on C0(R).

5. Local derivations

“Local derivations” is defined in Section 1. If A is an amenable Banach algebra
and X is a dual A module, then there is xa ∈ X with Da(b) = bxa − xab for all b
in A. Thus in this situation a continuous linear operator T is a local derivation if
and only if for each element a of A there is xa in X with T (a) = axa − xaa. This
section is mainly devoted to proving

Proposition 5.1. If T is a local derivation from C0(R) to V0(R)∗, then it is a
derivation.

The module structure on V0(R)∗ is the dual of the action of C0(R) on C0(R)⊗̂
C0(R) given by a(b⊗ c) = ab⊗ c, (b⊗ c)a = b⊗ ca (a, b, c ∈ C0(R)). For any subset
E of R we put, as usual

k(E) = {a : a ∈ C0(R), a = 0 on E}
and for two subintervals I1 and I2 we put V0(I1, I2) for the closed linear span in
V0(R) of elements a1 ⊗ a2 where ai ∈ k(R\Ii).
Lemma 5.2. Let I1 and I2 be compact intervals in R and let θ ∈ V0(R)∗.

(i) If a ∈ k(I1), then θa ∈ V0(I1, I2)⊥.
(ii) If a ∈ k(I2), then aθ ∈ V0(I1, I2)⊥.
(iii) If a ∈ C0(R) and a = 1 on I1, then θ − θa ∈ V0(I1, I2)⊥.
(iv) If a ∈ C0(R) and a = 1 on I2, then θ − aθ ∈ V0(I1, I2)⊥.

Proof. Let ci ∈ k(R\Ii). For (i) we have (θa, c1 ⊗ c2) = (θ, ac1 ⊗ c2) = 0. For (iii)
we have (θ − θa, c1 ⊗ c2) = (θ, (c1 − ac1) ⊗ c2) = 0. The other two statements are
proved similarly.

Proof of Proposition 5.1. Let I1 and I2 be disjoint compact intervals. We need
to extend Proposition 4.1 to the algebras k(I1) and k(I2). If the intervals are
nonempty the algebras are isomorphic with C0(R) ⊕ C0(R). Any local multiplier
T on the direct sum restricts to a local multiplier on each summand and so is a
multiplier there by Proposition 4.1. If a = a1 ⊕ a2 and b = b1 ⊕ b2 are elements of
C0(R)⊕ C0(R), then

T (ab) = T (a1b1 ⊕ a2b2) = T (a1b1) + T (a2b2)

= a1T (b1) + a2T (b2) = (a1 ⊕ a2)T (b1 ⊕ b2) = aT (b)

because by writing b2 = b′2b
′′
2 we have a1T (b2) = a1T (b′2b

′′
2) = a1b

′
2T (b′′2) = 0 and

similarly b2T (a1) = 0. The quotient map q : V0(R)∗ → V0(R)∗/V0(I1, I2)⊥ is a
module map. It follows that qT is a local derivation. Denote the restriction of qT
to k(I1) by S For a ∈ k(I1) there is ψa ∈ V0(R)∗ with T (a) = aψa − ψaa so that
S(a) = aqψa because q(ψaa) = 0 by Lemma 5.2. Thus S is a local left multiplier
and hence a left multiplier so that there is ϕ(I1, I2) in V0(I1, I2)∗ with

qT (a) = aϕ(I1, I2) (a ∈ k(I1)).(1)
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A similar calculation shows that there is ψ(I1, I2) in V0(I1, I2)∗ with

qT (b) = ψ(I1, I2)b (b ∈ k(I2)).(2)

We will now prove that as I1 and I2 are disjoint, then

ϕ(I1, I2) = −ψ(I1, I2).

Let a ∈ C0(R) with a = 0 on I1 and a = 1 on I2. Then qT (a) = aϕ(I1, I2) =
ϕ(I1, I2) by Lemma 5.2. Similarly, arguing with b−a in place of a where b ∈ C0(R)
has b = 1 on I = I1 ∪ I2 we get qT (b − a) = ψ(I1, I2). However, as T is a local
derivation, there is θ ∈ V (I)∗ with T (b) = bθ−θb where bθ−θb = (bθ−θ)−(θb−θ) ∈
V0(I1, I2)⊥ by Lemma 5.2. Thus qT b = 0 and so qT (a) = −ψ(I1, I2) = ϕ(I1, I2) as
required.

It follows that

qT (a) = aϕ(I1, I2)− ϕ(I1, I2)a

for all a in A because by (1) and the lemma this holds for a ∈ k(I1); by (2), the
lemma, and ϕ = −ψ it holds for a ∈ k(I2) and C0(R) = k(I1) + k(I2). Thus qT is
a derivation into V0(I1, I2)∗.

Consider δT given by δT (a, b) = aT (b) − T (ab) + T (a)b. It is of course a 2
cocycle from C0(R) with values in V0(R)∗. However, because qT is a derivation δT
maps into V0(I1, I2)⊥ and since this holds for all choices of I1 and I2, δT maps into
(Span{V0(I1, I2) : I1 ∩ I2 = ∅})⊥. In the proof of Proposition 3.1 we showed that
this span is dense in J∆(C0(R)) so that δT maps into (J∆C0(R))⊥ which we have
seen is isomorphic as a C0(R) bimodule with M(R). By [2, Proposition 8.2] every
2 cocycle from C0(R) to M(R) is a coboundary so there is a map S from C0(R)
to M(R) with δS = δT . We have S = T + S − T where T is a local derivation,
S − T is a derivation and hence a local derivation so S is a local derivation into
V0(R)∗ with values in Imπ∗. (It is not immediately obvious that this is the same
as saying that S is a local derivation into Imπ∗.) Because C0(R) is amenable, all
derivations from C0(R) into V0(R)∗ are inner so if a ∈ C0(R), there is Fa ∈ V0(R)∗

with S(a) = aFa − Faa. But S(a) = π∗µ for some µ ∈M(R) so for all v ∈ V0(R)∫
π(v) dµ = −(Fa, av − va).

If v ∈ Kerπ, this gives (Fa, av − va) = 0. However, Kerπ has a bounded approxi-
mate identity {en}, so if v ∈ V0(R), then ven ∈ kerπ so (Fa, aven− vena) = 0. But
aven− vena = (av− va)en → av− va because av− va ∈ kerπ, so (Fa, av− va) = 0.
Thus Sa = 0 so S = 0 and T = −(S − T ) is a derivation.

Theorem 5.3. Let A be a C∗-algebra and X a Banach A bimodule. Then every
local derivation from A to X is a derivation.

Proof. The result is proved by extending Proposition 5.1 in a number of steps. First
we show it holds with V0(R)∗ replaced by any C0(R) bimodule X which is essential
on both left and right. Let F ∈ X∗ and define LF : X→ V0(R)∗ by

LF (x)(a ⊗ b) = F (bxa) (a, b ∈ C0(R), x ∈ X).

It is straightforward to check that LF is a bimodule map and hence if T is a
local derivation into X, then LFT is a local derivation into V0(R)∗. Thus

LF (aT (b)− T (ab) + T (a)b) = 0 (a, b ∈ C0(R), F ∈ X
∗).(3)
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However, if LF (x) = 0 for all F in X∗, then F (axb) = 0 (F ∈ X∗, a, b ∈ C0(R))
so that axb = 0 (a, b ∈ C0(R)); hence taking a and b as elements of a bounded
approximate identity we get x = 0. Thus (3) implies that T is a derivation.

Next we extend the result by replacing C0(R) by C(K) where K is any compact
subset of R. The restriction map R maps C0(R) onto C(K). If X is an essential
C(K) module, then defining ax = (Ra)x, xa = x(Ra), X becomes an essential
C0(R) module. If T is a local derivation on C(K), then TR is a local derivation on
C0(R). Thus by what we have proved, TR is a derivation so T (RaRb) = TR(ab) =
aTR(b) + TR(a)b = RaT (Rb) + T (Ra)Rb for all a, b in C0(R) so T is a derivation
on C(K).

Now suppose that M is a maximal ideal in C(K) and X is an M bimodule
(not assumed to be essential). Then C(K) is the algebra obtained by adjoining an
identity to M and X becomes a unital C(K) module if we put 1x = x = x1 for all
x ∈ X. If T is a local derivation from M into X, then defining T (1) = 0 extends
T to a local derivation from C(K) to X. As T thus extended is a derivation, the
original T was a derivation.

If T is a local derivation from C(K) into a C(K) bimodule X (not assumed to
be essential), then we can take λ ∈ R\K and consider C(K) as a maximal ideal in
C(K ∪ {λ}). Thus by what we have already proved, T is a derivation.

We now take the case of a general C∗-algebra A and let T be a local derivation
A → X and a ∈ A with a = a∗. The closed subalgebra A(a) of A generated by
a is isomorphic either to an algebra C(K) (if it is unital) or to a maximal ideal
in such an algebra. The restriction of T to A(a) is a local derivation and hence a
derivation. We thus have T (a2) = aT (a) + T (a)a for all self-adjoint elements a of
A. If a and b are two self-adjoint elements, then applying this to the polarisation
identity (a+ b)2 − a2 − b2 = ab+ ba yields

T (ab+ ba) = aT (b) + T (b)a+ T (a)b+ bT (a).

Since this is linear in a and b, it extends to linear combinations of self-adjoint
elements, that is to all a, b in A. Thus T is a Jordan derivation and hence a
derivation [3, Theorem 6.3].

Corollary 5.4. Let A be a C∗-algebra and X a Banach right A module. Let T be
a local left multiplier from A to X. Then T is a multiplier from A to X.

Proof. By saying that T is a local left multiplier we mean that for each a in A there
is Ta : A→ X with Ta(a) = T (a) and Ta(bc) = Ta(b)c. We make X an A bimodule
by putting ax = 0 (a ∈ A, x ∈ X). Then a map from A to X is a left multiplier if
and only if it is a derivation and consequently the same holds for local multipliers
and derivations. Thus T is a local derivation, hence a derivation and hence a left
multiplier.

6. The algebra C1[0, 1]

As usual, C1[0, 1] is the algebra of complex valued functions on [0, 1] with
continuous first derivative. Multiplication is pointwise and the norm is ‖a‖ =
‖a‖∞ + ‖a′‖∞ where ‖a‖∞ is the sup-norm.

Example. There are local multipliers from C1[0, 1] into C1[0, 1]∗ which are not
multipliers. There are local derivations from C1[0, 1] into an essential C1[0, 1] bi-
module which are not derivations.
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Denote the functional b 7→ b(0) in C1[0, 1] by δ0. Consider the map T (a) =
a′(0)δ0 (a ∈ C1[0, 1]). To show that T is a local multiplier it is enough to show
that for each a ∈ C1[0, 1] there is an element Fa of C1[0, 1]∗ with

(Ta)(b) = a′(0)b(0) = Fa(ba) (b ∈ C1[0, 1]),

If a(0) 6= 0, then we can take Fa = (a′(0)/a(0))δ0. If a(0) = 0, then we can take
Fa as the functional c 7→ c′(0) so that Fa(ba) = (ab)′(0) = a′(0)b(0). Obviously T
is not a multiplier because T (ba) = (ab)′(0)δ0 and bT (a) = a′(0)b(0)δ0.

Let M be the ideal in C1[0, 1] of functions which are zero at 1. Then T0 = T/M
is a local multiplier from M to C1[0, 1]∗. If we consider C1[0, 1]∗ as an M bimodule
X with trivial action on the right and the usual multiplication on the left, then
T0 is a local derivation from M to C1[0, 1]∗ which is not a derivation. Adjoining a
unit to M in the usual way given an algebra M1 isomorphic with C1[0, 1] and X
is a unital M1 module if we put 1x = x = x1 (x ∈ X). The local derivation T0

extends to a local derivation D from M1 to X by defining D(1) = 0 and D is not
a derivation because T0 is not.

Theorem 6.1. Let X be a symmetric C1[0, 1] module and let T be a local derivation
from C1[0, 1] into X. Then T is a derivation.

Proof. Consider first the case X = C1[0, 1]∗. If D is a derivation from C1[0, 1] into
X and j ∈ C1[0, 1] is the function x 7→ x, then for any polynomial P , D(P ) =
P ′D(j). For a ∈ C[0, 1] let (T a)(t) =

∫ t
0 a(s)ds. Then T a ∈ C1[0, 1] and a 7→

D(T a)(1) is a continuous linear functional on C[0, 1]. Thus there is µ ∈ M [0, 1]
with D(T a)(1) =

∫
adµ for all a in C1[0, 1]. Thus if P and Q are polynomials, then

D(P )(Q) = (QD(P ))(1) = (P ′QD(j))(1)

= D(T P ′Q)(1) =
∫
P ′Qdµ.

Since the polynomials are dense in C1[0, 1], this shows that

D(a)(b) =
∫
a′b dµ (a, b ∈ C1[0, 1]).

The inclusion ι : C1[0, 1] → C[0, 1] has adjoint ι∗ which is an injection of M [0, 1]
into a subspace M of C1[0, 1]∗ which is in fact a submodule, though it is not closed.
We have seen that D(a) = ι(a′µ) so D maps into M . Thus if T is a local derivation
from C1[0, 1] into C1[0, 1]∗, then T maps into M . Under the norm ‖ ‖0 for which ι∗

is an isometry from M [0, 1] to M,M is a Banach space so the closed graph theorem
shows that T is a continuous map from C[0, 1] into (M, ‖ ‖0). Moreover, because T
is a local derivation, we have seen that for each a in C[0, 1] there is a measure µa in
M [0, 1] with T (a) = ι∗(a′µa). If we denote the map from M to M [0, 1] inverse to
ι∗ by k and define S(c) = kT (T c)(c ∈ C[0, 1]), then S(c) = kι∗(cµSc) = cµT c so S
is a local multiplier. By the remarks at the beginning of Section 4, S is a multiplier
so there is µ ∈M [0, 1] with S(c) = cµ for all c in C[0, 1]. Taking a = Sc this gives
T (a) = ι∗S(a′) = a′ι∗µ for all a ∈ C1[0, 1] with a(0) = 0. As T is a local derivation
so T (1) = 0, the equation T (a) = a′ι∗µ holds for all a in C1[0, 1] showing that T is
a derivation.

The argument in Proposition 3.1 using KF now shows that if X is a unital
symmetric C1[0, 1] module, then every local derivation from C1[0, 1] into X is a
derivation. If X is not unital and D is a derivation from C1[0, 1] into X, then
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D(1) = 0 so D(a) = D(1a) = 1D(a) so D maps into the essential part, X1 =
{x : 1x = x} of X. Thus any local derivation also maps into X1 and so we can use
the result for the essential case.

7. Automatic continuity

There are a number of situations in which all multipliers or derivations are con-
tinuous; see [6]. In this section we consider the same question for local derivations
from C∗-algebras, that is, we show that the hypothesis that T be continuous in the
definition of local derivation is redundant (the condition that Da is continuous is
redundant by the result quoted above). Our approach parallels that of Sections 3,
4 and 5; that is, we consider local operators then local multipliers and finally lo-
cal derivations. The results for general modules follow from the case of A∗ and
(A⊗̂A)∗ as in the earlier sections and the result for general C∗-algebras follows
from the commutative case by [1].

Proposition 7.1. Let Ω be a locally compact topological space and let A = C0(Ω)
be a commutative C∗-algebra. Let X be a left Banach A module and let T be a local
operator from A to X. Then T has a finite number of discontinuity values.

Proof. Our notation follows that of [7, Theorem 2.3]. For any open set G in Ω
put X(G) = k(G), Y (G) = {x : x ∈ X, suppx ⊆ Ω\G}. The present result follows
directly from the result referred to.

It is easy to find discontinuous local operators. For example if X = M(Ω) and ω
is a nonisolated point of Ω, then the map T (a) = F (a)δω is a discontinuous local
operator where δω is unit mass at ω and F is a discontinuous linear functional with
F (a) = 0 for all a which are zero in a neighbourhood of ω.

Proposition 7.2. Let Ω be a locally compact topological space, let A = C0(Ω) and
let T be a local multiplier, not assumed a priori to be continuous, from A into a left
Banach A-module X. Then T is continuous.

Proof. We consider the case X = A∗ = M(Ω) first. The proof (at the beginning
of Section 4) that a local multiplier is a local operator applies even if T is not
assumed to be continuous. Thus, by Proposition 7.1, T has only a finite number of
discontinuity points; call them ω1, . . . , ωn. Let µ ∈ S, the separating space of T [7,
p. 7]. If ω ∈ Ω is not a discontinuity value, then there is an open neighbourhood N
of ω for which Q(N)T is continuous. Thus if an → 0 in A and T (an)→ µ in X, then
Q(N)µ = 0 and |µ|(N) = 0. Hence µ is supported on the discontinuity values. Let
χj be the characteristic function of the one-point set {ωj} and put χ = 1−

∑
χj .

Then χµ = 0 for all µ ∈ S so χT is continuous. For each j, Tj = χjT is a
local multiplier with values in Cδj where δj is unit mass at ωj . If a ∈ A, there is
µa ∈ M(Ω) with T (a) = aµa. Thus Tj(a) = χjaµa ∈ Cδj so Tj(a) = fj(a)δj for
some linear functional fj. However, χja = a(ωj)χj so fj = 0 if a(ωj) = 0. Thus fj
and hence Tj is continuous. It follows that T = χT +

∑
Tj is continuous.

Using the maps KF from Proposition 3.1 and the closed graph theorem we can
extend what we have proved to any essential left Banach A module X. It applies
to nonessential modules too because the comments at the beginning of Section 4
show that T maps into the essential submodule of X.
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Proposition 7.3. Let Ω be a locally compact space, let A = C0(Ω) and let T be a
local derivation, not assumed a priori to be continuous, from A into a Banach A

bimodule X. Then T is continuous.

First we need a lemma.

Lemma 7.4. Let F be a finite set in Ω×Ω. The F is a set of synthesis for A⊗̂A.

Proof. Let ω, ω′ ∈ Ω. There is a bounded net {uα} in A with uα = 1 in a neighbour-
hood of ω and ‖uαa‖ → 0 for all a in A with a(ω) = 0. There is a similar net {vβ}
corresponding to ω′. Then {uα⊗ vβ} is a bounded net with uα⊗ vβ = 1 in a neigh-
bourhood of (ω, ω′) and (uα⊗vβ)t→ 0 if t = a⊗b with either a(0) = 0 or b(ω′) = 0
and hence, if t is in the closed linear span of such tensors. If t =

∑
aj ⊗ bj with∑

‖aj‖ ‖bj‖ <∞ and
∑
aj(ω)bj(ω′) = 0, then choosing e0 ∈ A with e0(ω′) = 1 we

have

t =
∑

aj ⊗ (bj − bj(ω′)e0) +
∑

bj(ω′)aj ⊗ e0

where (bj − bj(ω′)e0)(ω′) = 0 and (
∑
bj(ω′)aj)(ω) =

∑
aj(ω)bj(ω′) = 0 so

‖(uα ⊗ vβ)t‖ → 0. Choosing a net {uα ⊗ uβ} for each point p1, . . . , pn in F , call it
{ujα ⊗ v

j
β}, we have

t = lim
α,β

t−
∑

t(ujα ⊗ v
j
β)

which expresses t as a limit of functions zero in the neighbourhood of each point of
E.

Proof of Proposition 7.3. As in the proof of Theorem 5.3, we can adjoin a unit to A

and extend T by defining T1 = 0. Thus we need consider only the case of compact
spaces Ω and essential A modules X. Consider first the case X = (A⊗̂A)∗. For any
set S we denote S × S by S2. For any subset E of Ω or Ω2, k(E) is the kernel
of E in A or A⊗̂A and E′ is the complement of E in Ω or Ω × Ω as appropriate.
If E ⊆ Ω2, then q(E) is the quotient map X → X/k(E)⊥ = k(E)∗, that is, the
operation of restricting elements of X to k(E). For an open set G in Ω let TG be
the restriction of q(G×Ω)T to k(Ω\G). For a ∈ k(Ω\G) and v ∈ k(G×Ω) we have
av = 0 so if F ∈ X, then Fa ∈ k(G × Ω)⊥ and q(G × Ω)(Fa) = 0. Thus k(Ω\G)
acts trivially on the right of X/k(G×Ω)⊥ and TG is a local multiplier from k(Ω\G)
to X/k(G× Ω)⊥. Hence TG is continuous by Proposition 7.2.

In the same way the restriction of q(G×Ω)T to k(Ω\G) is continuous. We want
to show that the restriction of q(G2)T to k(Ω\G) is continuous. By the closed graph
theorem this follows from what we have proved if we can show that k(G × Ω)⊥ ∩
k(Ω × G)⊥ = k(G2)⊥ and this is equivalent to k(G2) = [k(G × Ω) + k(Ω × G)]−.
Since each side of this equation is a closed ideal in A⊗̂A with hull G

2
, this follows

if G
2

is a set of synthesis.
For any finite open cover C = {C1, . . . , Cn} of Ω, take a partition {ρj : j =

1, . . . , n} of the identity subordinate to C, choose xj ∈ Cj and for a ∈ A put
UCa =

∑
j a(xj)ρj (where we take the undefined term a(xj)ρj to be zero if Cj = ∅.

If ε > 0 and C has the property that |a(x)−a(x′)| < ε if x, x′ ∈ Ci for some i, then
(UCa)(x) is a convex combination of a(xj) with |a(xj)−a(x)| < ε so ‖a−UCa‖ < ε.
Thus directing the C by refinement we have ‖UC‖ ≤ 1 and UCa→ a. Every cover
C has a refinement such that if Ci ∩ G = ∅, then Ci ∩ G = ∅ and we restrict
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attention to such covers. Moreover, for Ci with G ∩ Ci 6= ∅ we select xi ∈ G ∩ Ci.
Put G′ =

⋃
{Ci : Ci ∈ C,Ci ∩G 6= ∅}, G′′ =

⋃
{Ci : Ci ∈ C,Ci ∩G = ∅}.

If t =
∑
ai ⊗ bi ∈ k(G×G), then

∑
i

(UCai)(x)(UCbi)(y) =
∑
jk

(∑
i

ai(xj)bi(yk)

)
ρj(x)ρk(y).

Thus if x, y ∈ Ω\G′′, so that the xj and yk appearing with nonzero values of
ρj(x)ρk(y) are in G, the right side of the equation is zero. As Ω\G′′ is a neighbour-
hood of G and (UC ⊗ UC)t→ t, the result follows.

We define a point ω of Ω to be a discontinuity value if the restriction of T to
k(Ω\N) is discontinuous for all open neighbourhoods N of ω (note that this is
not the same definition as on p. 15 of [7]). We will show that T has only finitely
many discontinuity values. If not, we can choose {Un} and {Vn} as in [7, Theorem
2.3]. Moreover, replacing Un by a subset we can assume that Un ∩ V n = ∅.
Put Wn =

⋃
j 6=n Uj. We have Un ∩ Wn = ∅. On k(Ω\Un), T is discontinuous

and q(Un × Un)T is continuous so Tn = q(Ω2\(Ω\Wn)2)T is discontinuous by
the closed graph theorem because k(U2

n) + k(Ω2\(Ω\Wn)2) = A⊗̂A, so k(U2
n)⊥ ∩

k(Ω2\(Ω\Wn)2)⊥ = {0}. Let Sn denote the restriction of q(W 2
n)T to k(Ω\Wn).

We have seen that Sn is continuous. Choose ai ∈ k(Ω\Ui) with ‖ai‖ ≤ 2−i and
‖Tiai‖ ≥ 2i + ‖Si‖ (i = 1, 2, . . . ) and put a =

∑
ai, bi = a − ai. Then ‖a‖ ≤ 1

and ‖bi‖ ≤ 1. Also bi ∈ k(Ω\Wi) so ‖Si‖ ≥ ‖q(W 2
i )Tbi‖ ≥ ‖q(Ω2\(Ω\W i)2)Tbi‖

because k(W 2
i )⊥ ⊆ k(Ω2\(Ω\W i)2)⊥. Thus

‖Ta‖ ≥ ‖q(Ω2\(Ω\W i)2)Ta‖
≥ ‖Tiai‖ − ‖q(Ω2\(Ω\W i)2)Tbi‖
≥ 2i + ‖Si‖ − ‖Si‖ = 2i.

As ‖Ta‖ is finite, this cannot hold for all i, so the set of discontinuity values is
finite.

Let x1, x2 ∈ Ω with x1 6= x2. Choose open neighbourhoods N1, N2 of x1, x2 with
N1 ∩N2 = ∅. Consider q((N1 ×N2)′)T . We have

(N1 ×N2)′ = (N ′1 × Ω) ∪ (Ω×N ′2) ⊇ N ′1 ×N ′2
so k(N ′1 ×N ′2)⊥ ⊆ (k(N1 ×N2)′)⊥ and q((N1 ×N2)′)T is continuous on k(N1)
because q((N ′1×N ′2))T is. Similarly, q((N1×N2)′)T is continuous on k(N2). Thus
q((N1 ×N2)′)T is continuous on A because k(N1) + k(N2) = A.

Let x be an element of Ω which is not a discontinuity value and let U, V be
open neighbourhoods of x with T continuous on k(U ′) and V ⊆ U . Consider
q((V ×V )′)T . It is continuous on k(U ′) because T is. We have V

′×V ′ ⊆ (V ×V )′

so k(V
′ × V ′)⊥ ⊆ k((V × V )′)⊥ and q((V × V )′)T is continuous on k(V ) because

q((V
′ × V ′))T is. Because k(U ′) + k(V ) = A, q((V × V )′)T is continuous. Let S

be the separating set for T . The continuity of q((N1 × N2)′)T above shows that
S ⊆ k((N1×N2)′)⊥ and the continuity of q(V ′×V ′)T shows that S ⊆ k(V ′×V ′)⊥
so S ⊆ J⊥ where J is the closed linear span of the k((N1 × N2)′) and k(V × V ′)
over all possible choices of N1, N2 and V . Clearly J is a closed ideal and its hull
does not contain any points (x, x′) with x 6= x′ or with x = x′ where x is not a
discontinuity value. As finite sets are sets of synthesis, this shows that J = kh(J)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



324 B. E. JOHNSON

where

h(J) ⊆ {(x, x) : x is a discontinuity value}.

In the proof of Lemma 7.4 we showed that 1⊗1−
∑

j u
j
α⊗v

j
β = eαβ is a bounded

approximate identity for J . Let X0 denote the essential submodule of X considered
as a J module. If D is a derivation from A into X, then there is F ∈ X with D(a) =
aF −Fa (a ∈ A) so D(a) = (a⊗ 1− 1⊗ a)F ∈ X0 because a⊗ 1− 1⊗ a ∈ J . Thus
the range of T lies in X0 and hence S ⊆ X0. If s ∈ X0 ∩ J⊥, then s = limαβ eαβs
so s(a) = limαβ s(eαβa) = 0 because eαβa ∈ J . Thus X0 ∩ J⊥ = 0 so S = {0} and
T is continuous.

The result is extended to general essential A modules by using the maps LF . If
S is the separating space for T , then LFT is continuous by what we have shown
so LFS = {0}. Since this holds for all F in X∗ we see S = {0} and so T is
continuous.

Theorem 7.5. Let A be a C∗-algebra and X a Banach A-bimodule. If T is a
local derivation, not assumed a priori to be continuous, from A into X, then T is
continuous.

Proof. By Proposition 7.4, the restriction of T to any closed commutative self-
adjoint subalgebra is continuous so the result follows from [1].

It is reasonable to ask how far these results apply to other Banach algebras. We
give two answers to this question. One is to show that they do not extend to C1[0, 1]
and the other is to state conditions on A under which the proof of Proposition 7.3
applies.

Let A = C1[0, 1] and let X be the two-dimensional submodule of A∗ generated by
the functionals δ and δ′ where δa = a(0), δ′a = a′(0) (a ∈ A). If ξ = λδ+µδ′, then
aξ = (λa(0) + µa′(0))δ + a(0)µδ′. Since A is unital, all multipliers are continuous.
The only condition imposed on T by saying that it is a local multiplier is that if
a(0) = 0, then T (a) ∈ Cδ. Thus any linear map from A to Cδ which satisfies this
is a local multiplier and so there are discontinuous local multipliers.

In this situation there are discontinuous derivations and hence discontinuous local
derivations. It is enough to show this with A replaced by M , the ideal of functions
which are 0 at 0. Let σ be a linear functional on M and put Ta = σ(a)δ (a ∈M).
Then T is a derivation if σ(ab) = 0 (a, b ∈M). The ideal in M of functions a with
a(t) = O(t2) as t→ 0 has infinite codimension and contains all products ab. Thus
these are discontinuous functionals σ which are zero on this ideal.

Proposition 7.3 can be generalised to

Theorem 7.6. Let A be a commutative regular Banach algebra which satisfies the
approximation property. Suppose further that every maximal ideal M in A1 has a
bounded approximate identity whose elements have Gelfand transforms which are
0 in the neighbourhood of M . Then every local derivation from A to any Banach
A-bimodule is continuous.

Here A1 denotes the algebra obtained by adjoining an identity to A. We will give
only a brief indication of how the proof of Proposition 7.3 can be adapted. The proof
of Proposition 7.1 applies in any regular commutative Banach algebra. To extend
Proposition 7.2 we use Proposition 7.1 to show that the set E of discontinuity values
is finite. Thus E is a set of synthesis and k(E) has a bounded approximate identity.
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If s ∈ S, then supp s ⊆ E so if j ∈ k(E), then js = 0. Denote the restriction of T to
k(E) by T0 and its separating space by S0. If j ∈ k(E), then there are j1 and j2 in
k(E) with j1j2 = j and a multiplier S with T0(j) = S(j) = S(j1j2) = j1S(j2) so the
range of T0 lies in the k(E) essential submodule of A∗. Thus S0 ⊆ S∩k(E)A∗ = {0}
and T0 is continuous. As k(E) is of finite codimension in A this shows that T is
continuous.

The proof of Lemma 7.4 requires no essential changes. In the proof of Proposi-
tion 7.3 the main difficulty is that we have no reason to expect that G is a set of
synthesis so G

2
may not be. However, if G′ is an open set with G′ ⊇ G, then by reg-

ularity k(G′×G′) ⊆ k(G×Ω) +k(Ω×G) so the restriction of q((G′)2)T to k(Ω\F )
is continuous by the same argument as before. Then we change the definition of
Sn by replacing q(W 2

n)T by q((W ∗n )2)T where W ∗n ⊇Wn and (W ∗n )− ∩ U−n = ∅.
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