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Abstract—This paper proposes a novel high-order local pattern
descriptor, local derivative pattern (LDP), for face recognition.
LDP is a general framework to encode directional pattern fea-
tures based on local derivative variations. The -order LDP is
proposed to encode the � �� -order local derivative direction
variations, which can capture more detailed information than
the first-order local pattern used in local binary pattern (LBP).
Different from LBP encoding the relationship between the central
point and its neighbors, the LDP templates extract high-order
local information by encoding various distinctive spatial relation-
ships contained in a given local region. Both gray-level images
and Gabor feature images are used to evaluate the comparative
performances of LDP and LBP. Extensive experimental results
on FERET, CAS-PEAL, CMU-PIE, Extended Yale B, and FRGC
databases show that the high-order LDP consistently performs
much better than LBP for both face identification and face verifi-
cation under various conditions.

Index Terms—Face recognition, Gabor feature, high-order local
pattern, local binary pattern (LBP), local derivative pattern (LDP).

I. INTRODUCTION

A
good object representation or object descriptor is one of

the key issues for a well-designed face recognition system

[4], [32]. Representation issues include: what representation is

desirable for the recognition of a pattern and how to effectively

extract the representation from the original input image. An

efficient descriptor should be of high ability to discriminate

between classes, has low intraclass variance, and can be easily

computed. Many holistic methods, such as Eigenface [24] and

Fisherface [3] built on principal component analysis (PCA)

and linear discriminant analysis (LDA) respectively, have been

proved successful.
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Recently, local descriptors have gained much attention in the

face recognition community for their robustness to illumination

and pose variations. One of the local descriptors is local feature

analysis (LFA) proposed by Penev et al. [18]. In LFA, a dense

set of local-topological fields are developed to extract local fea-

tures. Through discovering a description of one class objects

with the derived local features, LFA is a purely second-order

statistic method. Gabor wavelet is a sinusoidal plane wave with

particular frequency and orientation, modulated by a Gaussian

envelope [6]. It can characterize the spatial structure of an input

object, and thus is suitable for extracting local features. Elastic

Bunch Graph Matching (EBGM) [27] represents a face by a

topological graph where each node contains a group of Gabor

coefficients, known as a jet. It achieves a noticeable perfor-

mance in the FERET test [20]. The feasibility of the component

or patch based face recognition is also investigated in [12], in

which the component-based face recognition approaches clearly

outperform holistic approaches.

The recently proposed local binary pattern (LBP) features are

originally designed for texture description [16], [17], [21]. The

operator has been successfully applied to facial expression anal-

ysis [31], background modeling [11] and face recognition [1].

In face recognition, it achieves a much better performance than

Eigenface, Bayesian and EBGM methods, providing a new way

of investigating into the face representation. The idea behind

using the LBP features is that a face can be seen as a composi-

tion of micropatterns [1]. LBP in nature represents the first-order

circular derivative pattern of images, a micropattern generated

by the concatenation of the binary gradient directions. However,

the first-order pattern fails to extract more detailed information

contained in the input object. To the best of our knowledge, no

high-order local pattern operator has been investigated for face

representation. In fact, the high-order operator can capture more

detailed discriminative information. Some high-order nonlocal

pattern methods have been successfully used to solve the face

recognition problem. The PCA representation can hardly cap-

ture some variations in the training dataset, such as pose in

face recognition. Independent Component Analysis (ICA) takes

higher-order statistics into account, and is suitable for learning

complex structure in the dataset [2], [13]. In [10], 25 local auto-

correlation coefficients are exploited to calculate the high-order

primitive features, which are further combined with LDA and

appear robust against changes in facial expression. We can also

find other high-order techniques used in face recognition such

as the mutual information for feature selection [22], in which

high-order statistic method is used to select more discriminative
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features. In Tensorface [26], the algebra of higher-order tensors

offers a potent mathematical framework for analyzing ensem-

bles of faces resulting from the interaction of any number of

underlying factors. The feasibility of a high-order neural net-

work is also investigated in [25].

In this paper, we propose a novel object descriptor, the high-

order Local Derivative Pattern (LDP), for robust face recogni-

tion. In our framework, LBP can be conceptually considered

as a nondirectional first-order local pattern, which is the binary

result of the first-order derivative in images. The second-order

LDP can capture the change of derivative directions among local

neighbors, and encode the turning point in a given direction. The

-order LDP is a local pattern presented in a general form

which captures detailed relationship in a local neighborhood.

Compared to LBP, the high-order LDP achieved superior perfor-

mance in our comparative experiments. Moreover, we propose

to extend LDP to feature images, Gabor real and imaginary fea-

tures, for face recognition, which can effectively enhance the

performance of the proposed LDP method, and LBP as well.

Different from the learning-based approaches, LDP features

are directly extracted from gray-level images or feature images

without any training procedure. Like LBP, LDP is a micropat-

tern representation which can also be modeled by histogram to

preserve the information about the distribution of the LDP mi-

cropatterns.

The remaining part of this paper is organized as follows. Sec-

tion II introduces and discusses the high-order LDP in detail.

Section III extends LDP to the feature domain. In Section IV, ex-

tensive experiments on FERET [20], CAS-PEAL [7], CMU-PIE

[23], Extended Yale B [9], [14], and FRGC [19] databases are

conducted to evaluate the performance of the proposed method

on face recognition. Finally, conclusions are drawn in Section V

with some discussions.

II. HIGH-ORDER LOCAL PATTERN

In this section, we provide a brief review of local binary pat-

tern (LBP), and then introduce the second-order local deriva-

tive pattern (LDP) to calculate the first-order derivative direction

variation. After that, the definition and feasibility of the general

-order LDP are presented and discussed. Finally, the spatial

histogram is described for modeling the distribution of LDP of

a face.

A. Local Binary Pattern

Derived from a general definition of texture in a local neigh-

borhood, LBP is defined as a grayscale invariant texture mea-

sure and is a useful tool to model texture images. LBP later has

shown excellent performance in many comparative studies, in

terms of both speed and discrimination performance [1], [11],

[17], [31]. The original LBP operator labels the pixels of an

image by thresholding the 3 3 neighborhood of each pixel

with the value of the central pixel and concatenating the results

binomially to form a number. The thresholding function

for the basic LBP can be formally represented as

(1)

Fig. 1. Example of 8-neighborhood around � .

Fig. 2. Example of obtaining the LBP micropattern for the region in the black
square.

where , is an 8-neighborhood point around as

shown in Fig. 1. An LBP can also be considered as the concate-

nation of the binary gradient directions, and is called a micropat-

tern. Fig. 2 shows an example of obtaining an LBP micropattern

when the threshold is set to zero. The histograms of these mi-

cropatterns contain information of the distribution of the edges,

spots, and other local features in an image. LBP has been suc-

cessfully used for face recognition [1]. Different from statistic

learning methods tuning a large number of parameters, the LBP

method is very efficient due to its easy-to-compute feature ex-

traction operation and simple matching strategy.

B. Local Derivative Pattern

LBP actually encodes the binary result of the first-order

derivative among local neighbors by using a simple threshold

function as shown in (1), which is incapable of describing more

detailed information. In this paper, we investigate the feasi-

bility and effectiveness of using high-order local patterns for

face representation. An LDP operator is proposed, in which the

-order derivative direction variations based on a binary

coding function. In this scheme, LBP is conceptually regarded

as the nondirectional first-order local pattern operator, because

LBP encodes all-direction first-order derivative binary result

while LDP encodes the higher-order derivative information

which contains more detailed discriminative features that the

first-order local pattern (LBP) can not obtain from an image.

Given an image , the first-order derivatives along 0 ,

45 , 90 and 135 directions are denoted as where

, 45 , 90 and 135 . Let be a point in , and ,

be the neighboring point around (see Fig. 1). The

four first-order derivatives at can be written as

(2)

(3)

(4)

(5)
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Fig. 3. Illustration of LDP templates. (a-1) The template for calculating ��� �� �� � �� �� and ��� �� �� � �� ��. (a-2) The template for
calculating ��� �� �� � �� �� and ��� �� �� � �� ��. (a-3) The template for calculating ��� �� �� � �� �� and ��� �� �� � �� ��.
(a-4) The template for calculating ��� �� �� � �� �� and ��� �� �� � �� ��. (b-1) The template for calculating ��� �� �� � �� �� and
��� �� �� � �� ��. (b-2) The template for calculating ��� �� �� � �� �� and ��� �� �� � �� ��. (b-3) The template for calculating
��� �� �� � �� �� and ��� �� �� � �� ��. (b-4) The template for calculating ��� �� �� � �� �� and ��� �� �� � �� ��. (c-1)
The template for calculating ��� �� �� � �� �� and ��� �� �� � �� ��. (c-2) The template for calculating ��� �� �� � �� �� and
��� �� �� � �� ��. (c-3) The template for calculating ��� �� �� � �� �� and ��� �� �� � �� ��. (c-4) The template for calculating
��� �� �� � �� �� and ��� �� �� � �� ��. (d-1) The template for calculating ��� �� �� � �� �� and ��� �� �� � �� ��. (d-2)
The template for calculating ��� �� �� � �� �� and ��� �� �� � �� ��. (d-3) The template for calculating ��� �� �� � �� �� and
��� �� �� � �� ��. (d-4) The template for calculating ��� �� �� � �� �� and ��� �� �� � �� ��. ��� � and ��� � are the reference
points to be aligned to the point of � . (a) � � � , ��� � � �, ��� � � �; (b) � � �	 , ��� � � �, ��� � � �; (c) � � 
� , ��� � � �, ��� � � �;
(d) � � ��	 , ��� � � �, ��� � � �.

The second-order directional LDP, , in direction

at is defined as

(6)

where is a binary coding function determining the types

of local pattern transitions. It encodes the co-occurrence of two

derivative directions at different neighboring pixels as

(7)

Finally, the second-order Local Derivative Pattern, ,

is defined as the concatenation of the four 8-bit directional LDPs

(8)

It can be seen from the above equations that the proposed LDP

operator labels the pixels of an image by comparing two deriva-

tive directions at two neighboring pixels and concatenating the

results as a 32-bit binary sequence. The derivative direction

comparisons defined in (7) are performed on 16 templates

(Fig. 3) reflecting various distinctive spatial relationships in a

local region. Different from LBP encoding the binary derivative

gradient directions, the second-order LDP encodes the change

of the neighborhood derivative directions, which represents the

second-order pattern information in the local region.

Fig. 4 illustrates the types of local pattern transitions in an

LDP template that are encoded into “1” and “0”, respectively.

Each of the 16 LDP templates in Fig. 3 can be classified as either

a 3-point template or a 4-point template. For a 3-point template,

(7) assigns a “0” to a monotonically increasing or decreasing

pattern [see Fig. 4(a-2)], while a “turning point” pattern is la-

beled as a “1” [see Fig. 4(a-1)]. Similarly, for a 4-point template,

a “gradient turning” pattern [see Fig. 4(b-1)] is labeled as a “1”

and monotonically increasing or decreasing pattern is labeled as

a “0” [see Fig. 4(b-2)]. This operator extracts higher-order local

pattern information, i.e., the changes of first-order derivative di-

rection information, into a binary string.

An example of the second-order LDP computation is illus-

trated in Fig. 5. To calculate the second-order directional Local

Derivative Pattern, , in direction at ,

the four templates in Fig. 3(a) are applied on the image by

aligning and to , respectively. When applying

Template (a-1) by aligning to , the two derivative di-

rections defined by the two arrows in the template are monoton-

ically increasing as shown by the left case in Fig. 4(b-2). Thus,

“0” is assigned to this bit. Similarly, applying Templates (a-2),

(a-3), and (a-4) with aligned to , the two derivative

directions defined by the two arrows in the templates are indi-

cated by the left case in Fig. 4(b-1), the left case in Fig. 4(b-2),

and the right case in Fig. 4(a-1), creating “101” for the next

three bits. Repeat the above procedure with the same four tem-

plates by aligning to , we can get “0100” for the last

4 bits of the 8-bit . Now, we have “01010100” for

the 0 direction. In the same way, templates in Fig. 3(b)–(d) are

applied on the image in Fig. 5 to obtain in

, 90 and 135 directions, respectively (see ,

and in Fig. 5). Finally, a 32-bit

is gen-

erated by concatenating the four 8-bit directional LDPs as de-

fined in (8).
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Fig. 4. Meanings of “0” and “1” for the second-order LDP. (a) The three points
LDP template: both cases in (a-1) result in a “1”; both cases in (a-2) result in a
“0”. (b) The four points LDP template: both cases in (b-1) result in a “1”; both
cases in (b-2) result in a “0”.

C. -Order Local Derivative Pattern

To calculate the third-order Local Derivative Pattern, we first

compute the second-order derivatives along 0 , 45 , 90 and

135 directions, denoted as where , 45 , 90 ,

135 . The third-order Local Derivative Pattern, , in

direction at is defined as

(9)

In a general formulation, the -order LDP is a binary string

describing gradient trend changes in a local region of directional

-order derivative images as

(10)

where is the -order derivative in direction

at . is defined in (11), which

encodes the -order gradient transitions into binary pat-

terns, providing an extra order pattern information on the local

region

(11)

The high-order local patterns provide a stronger discrimina-

tive capability in describing detailed texture information than

the first-order local pattern as used in LBP. However, they tend

to be sensitive to noise when the order becomes high. In the

design of the proposed approach, the last-order operation (11)

only preserves the coarse gradient direction transition informa-

tion instead of conventional difference information. This can

alleviate the noise sensitivity problem in the high-order LDP

representation, making it more robust and stable in binary en-

coding identity patterns in human faces. In representing and rec-

ognizing many objects, such as human faces, the relative orien-

tation information of each local region with respect to the object

as a whole is part of the object identity patterns. This is partic-

ularly important in designing a highly discriminative object de-

scriptor for distinguishing similar objects. In face recognition,

for example, it has been demonstrated in [8] that edge orienta-

tions provide strong identity descriptive capability for classifica-

tion. Even the average orientation value of a face Line Edge Map

(LEM) [8] contains identity information, which can be used for

face prefiltering. Therefore, the proposed LDP builds upon di-

rectional derivatives, without losing generality of the method, in

four directions with a 45 representation resolution. Other num-

bers of directions can also be used. The -order LDP is a local

pattern string defined as

(12)

It labels each pixel of the image with a 32-bit binary string en-

coding local texture pattern around the pixel in 16 measuring

templates as illustrated in Fig. 3.

In calculating the of a given image , the

above binary pattern encoding process can be illustrated using

the LDP template in Fig. 3, and the binary coding depicted in

Fig. 4. Applying the template in Fig. 3(a-1) on by

aligning the reference point to the point to be

computed, the first encoded bit of is assigned “0” if

the changes of enclosed in the template of Fig. 3(a-1)

along the two arrows are as Fig. 4(b-2), and “1” otherwise.

Similarly, the second, third and fourth bits of

are labeled using the LDP templates (a-2) to (a-4) in Fig. 3,

respectively, by aligning the reference point to in

. The bits 5 to 8 of are determined using

the LDP templates (a-1) to (a-4) in Fig. 3, respectively, one

more time by aligning the reference point to to .

This first 8 bits of is from the n -order LDP

in 0 direction, . The rest of the 3 8 bits of

can be determined in the same way by applying

the LDP templates (b-1)–(b-4), (c-1)–(c-4), and (d-1)–(d-4)

to , and , respectively. Fig. 6

provides visualized examples of LBP and LDP representations
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Fig. 5. Example to obtain the second-order LDP micropatterns.

for a face image, showing that the high-order LDP can capture

more detailed information.

As we have demonstrated in Fig. 6, the LDP operator ex-

tracts detailed high-order information. The higher the order is,

the more details the local pattern operator can extract from the

image. This can be visually observed from Fig. 6 that as the op-

erator order increases from the first-order [see Fig. 6(b)] to the

second order [see Fig. 6(c)], the third order [see Fig. 6(d)], and

up to the fourth order [see Fig. 6(e)], more and more details are

extracted from the image. However, over-detailed patterns tend

to be noise instead of identity information. When LDP reaches

to the fourth order, more noise is extracted while identity facial

features become indiscernible as can be seen in Fig. 6(e). This

explains why the performance of LDP drops when it reaches

to the fourth order. It should be noted that the experimental re-

sults demonstrated that both the second and third-order LDPs

perform consistently superior to the first-order LBP, indicating

that the second and third-order LDPs can better capture more

detailed discriminative information than LBP for face recogni-

tion.

The advantages of the high-order LDP over LBP can be

briefly summarized in the following aspects.

1) LBP cannot provide a detailed description for faces by

encoding the binary gradient directions. However, the

-order LDP can provide more detailed description by

coding the -order derivative direction variations.
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Fig. 6. Visualization of LBP and LDP (in 0 direction) representations.
(a) Original face image. (b) LBP. (c) The second-order LDP. (d) The
third-order LDP. (e) The fourth-order LDP.

2) LBP encodes the relationship between the central point and

its neighbors, but LDP encodes the various distinctive spa-

tial relationships in a local region and, therefore, contains

more spatial information.

D. Histogram of Local Derivative Pattern

In this paper, the LDP method presented in the above sub-

section is used for face representation. The procedure applies

a high-order local feature operator on each pixel to extract dis-

criminative features from its neighborhood. We model the distri-

bution of high-order local derivative pattern by spatial histogram

[1], [30], because it is more robust against variations in pose

or illumination than holistic methods [1]. Given a direction ,

are spatially divided into rectangular regions represented

by , from which spatial histograms

are extracted as

(13)

where is the LDP histogram feature extracted from

the local region . Note that the regions do not have to be

rectangular or of the same size. For example, spatial histograms

can be extracted from circular regions with different radiuses.

Many similarity measures for histogram matching have been

proposed. In this paper, histogram intersection is used to mea-

sure the similarity between two histograms

(14)

where is the histogram intersection statistic with

and . Equa-

tion (14) is used to calculate the similarity for the nearest

neighbor classifier. This measure has an intuitive motivation

in that it calculates the common parts of two histograms. Its

computational complexity is very low as it requires only simple

operations. It should be noted that it is also possible to use other

measures such as the chi-square distance [17].

III. EXTENDING HIGH-ORDER LOCAL PATTERN TO

FEATURE IMAGES

Similar to LBP, the LDP presented in Section II encodes

spatially varying patterns in local regions of an image. Concep-

tually, it is anticipated that extending the proposed high-order

local pattern description to feature images containing wider

range of appropriate discriminative features could achieve a

higher level of system performance. In this section, we investi-

gate the feasibility and effectiveness of extending LDP beyond

spatial domain to feature domain. In image processing and

object recognition, Gabor features are widely used image fea-

ture descriptors extracted by a set of Gabor wavelets (kernels)

which model the receptive field profiles of cortical simple cells

[5], [6], [15], [28], [29]. They can capture the salient visual

properties in an image, such as spatial characteristics, because

the kernels can selectively enhance features in certain scales

and orientations. Here, we extend LDP to Gabor feature images

to enhance the object representation capability. The Gabor

wavelets (kernels, filters) can be defined as follows [15]:

(15)

where , , ,

, , ,

is the frequency, is the orientation, , and

.

Let denote the Gabor features of an image, where

and are the orientation and scale of the kernel, respectively. Its

-order derivatives along 0 , 45 , 90 , and 135 directions at

can be written as

(16)

(17)

(18)

(19)

When , , , 45 , 90 , 135 is the same as

the original Gabor complex feature . The real and imag-

inary parts of the -order derivatives are denoted

as and , respectively. The -order

Gabor LDP, , in directions at is de-

fined as

(20)
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where is the same binary coding function as defined in

Section II. Note that the alternating use of real and imaginary

parts from each of the four derivative directions in de-

fined in the above equation is for reducing the size of the pattern.

Similar to modeling the gray-level image based ,

the Histogram of Gabor LDP (HGLDP) represented by

, at a local region , is defined as

(21)

where is the histogram of LDP extracted

from .

IV. EXPERIMENTS

A thorough system performance investigation, which covers

various conditions of face recognition including lighting, ac-

cessory, pose, expression and aging variations, has been con-

ducted. An extensive set of publicly available face databases,

FERET [20], CAS-PEAL [7], CMU-PIE [23], Extended Yale

B [9], [14], and FRGC [19] databases, were used to evaluate

the proposed approach. In the experiments, the facial portion

of each original image was normalized and cropped based on

the locations of the two eyes. In the following, Experiment A

conducts comparative performance evaluations on all the four

subsets of the FERET database (all 1,196 people) with expres-

sion, lighting and aging variations. Experiment B reports the

experimental results on a subset (the first 300 people) of the

CAS-PEAL database with varying accessory, expression and

lighting conditions. Experiment C reports the experimental re-

sults on the CMU-PIE database (all 68 people) with pose and

illumination variations. Experiment D reports the experimental

results on the Extended Yale B database (all 38 people) with

severe illumination variations. Experiment E reports the exper-

imental results on the FRGC database. In all these experiments,

we compared the proposed high-order local pattern operator

(LDP) with the first-order local pattern operator (LBP) on both

gray-level images and Gabor feature images with different pa-

rameter settings.

A. Experimental Comparisons on the FERET Database

The comparative experiments between LDP and LBP were

first conducted on the FERET face database, which is widely

used to evaluate face recognition algorithms [20]. All the im-

ages were normalized and cropped to 88 88 pixels. We used

the same gallery and probe sets as specified in the FERET evalu-

ation protocol. Fa containing 1,196 frontal images of 1,196 sub-

jects was used as the gallery set, while Fb (1,195 images with

expression variations), Fc (194 images taken under different il-

lumination conditions), Dup I (722 images taken later in time

between one minute to 1,031 days), and Dup II (234 images, a

subset of Dup I taken at least after 18 months) were used as the

probe sets. To balance the identification accuracy and feature

length, we selected the parameters of 4 4 sized subregions

with 8 histogram bins for the gray-level images and 11 11

sized subregions with 64 histogram bins for the Gabor feature

images.

Fig. 7. Comparative rank-one identification accuracies of LDP and LBP on the
FERET database. (a) Results on the gray-level images. (b) Results on the Gabor
feature images.

To observe how well LDP performs under different con-

ditions, the experiments were conducted on the individual

probe sets. Experimental results in Fig. 7(a) demonstrate that

the recognition accuracy in average is significantly improved

when the order of local pattern is increased from the first-order

local pattern (LBP) to the second-order and the third-order

LDPs. Then the performance drops when it reaches to the

fourth-order LDP. These results reveal that the high-order local

patterns can extract more detailed information than the LBP.

The coding function in LDP can alleviate the noise sensitivity

problem in the high order derivative images, making LDP more

robust and stable in binary encoding identity patterns in human

faces. However, it is incapable of dealing with further detailed

information contained in the higher-order LDP such as the

fourth-order LDP. The results on the large-scale database also

show that the detailed information contained in the high-order

local patterns can significantly improve the performance of

local pattern representation in face recognition.

The experiments were also designed to evaluate the effec-

tiveness of high-order LDP on Gabor feature images. For a fair

comparison, LBP was also combined with Gabor real and imag-

inary parts, named . Experimental results in Fig. 7(b) il-

lustrate that the third-order performs much better than

. Especially on the Dup subsets, when gallery and probe

images are taken at different time with large time intervals of

more than one year. It is worth mentioning that the third-order

method achieves 10.8% and 21.6% performance im-

provements over on Dup I and II databases, respec-

tively, showing that the high-order LDP significantly improves
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Fig. 8. Comparative rank-one identification accuracies of LDP and LBP on
the FERET gray-level images with different subregion sizes (a) and different
histogram bins (b).

the performance of the face recognition system. Fig. 7 reveals

that Gabor feature based LDP and LBP have achieved much

better performances than the image based LDP and LBP respec-

tively, which confirms that LDP and LBP are both effective on

Gabor feature images. Compared to the method of Gabor-Fisher

Classifier (GFC) [15] that directly uses Gabor features,

and significantly improve the recognition accuracy.

It is possible that the parameters used in the previous exper-

iments were not finely tuned in favor of LBP. To rule out this

possibility, we varied the subregion size and the number of his-

togram bins and performed the experiments on the gray-level

images again. Four different subregion sizes, 4 4, 4 8, 8 8,

and 11 11 were tested with the same 8 histogram bins in each

subregion. The recognition rates are summarized in Fig. 8(a),

showing that an increasing subregion size degrades the system

performance due to the loss of spatial information. Still, LDP

performs much better than LBP for all these subregion sizes.

Then we fixed the subregion size to 4 4 pixels, and changed

the number of histogram bins in each subregion from 128 to

8 using the uniform quantization method that partitions the his-

togram with equal interval. This reduces the length of the feature

vector by 16 times. However, the recognition accuracy curves

remain relatively flat for both LBP and LDP in Fig. 8(b), and

LDP performs consistently better than LBP for all the testing

parameters.

We also evaluated the effect of face misalignment on different

subregion sizes of LBP and LDP, respectively. In this experi-

ment, the two eye locations of the FERET probe images were

shifted by four independent random values, i.e., displacements

of left and right eyes in and directions, which were gener-

Fig. 9. Comparative rank-one identification accuracies of LDP and LBP on the
FERET gray-level images with Gaussian noise of different � added to the probe
images.

ated using random Gaussian distribution with ranging from 1

to 3 by rounding them off to the nearest integers. The eye loca-

tions of the face in the FERET gallery set remained unchanged.

Fig. 8(a) displays the rank-one identification rates of LBP and

LDP with 4 4, 4 8, 8 8, 11 11 sized subregions and 8

histogram bins. The results demonstrate that the performances

of LDP and LBP remain stable to small misalignments

both for small and large-sized subregions. When increases fur-

ther, the identification accuracy curves of both LBP and LDP

become flatter, showing that the large subregions are more ro-

bust to large misalignments than smaller ones. Note that LDP

consistently performs better than LBP in this experiment.

To investigate the sensitivity of LBP and LDP to noise, an

experiment was conducted on the same FERET datasets. All

the images in the probe sets were added with different levels of

Gaussian white noise ( , ), while the images

in the gallery set remained unchanged. The average recognition

rates on the four probe sets against different of Gaussian noise

are illustrated in Fig. 9, showing that LDP maintains a 13.7%

to 15.0% higher accuracy over LBP when increases up to 3,

and then its accuracy drops greater than that of LBP with larger

amount of noise. This is believed due to the coding function in

LDP that can alleviate, to certain extent, the noise sensitivity

problem in the high-order derivative images.

The computational time for one-to-one image matching (in-

cluding feature extraction and feature matching) of LBP and the

third-order LDP were 0.054 and 0.180 s, respectively. All ex-

periments were conducted on a PC with 3-GHz CPU and 2-GB

RAM.

B. Experimental Comparisons on the CAS-PEAL Database

The CAS-PEAL face database [7] has been publicly released

for the purpose of research, which contains 9,060 images of

1,040 subjects. We used the first 300 subjects (indexes from

000001 to 000300) in CAS-PEAL-R1 as the test database. Our

gallery set contained 300 faces of the first 300 subjects (one

image per person) from the gallery set of CAS-PEAL-R1. The

probe set contained 3,109 images of the same 300 subjects from

accessory (1,064 pictures), lighting (1,167 pictures) and expres-

sion (878 pictures) of CAS-PEAL-R1. All the images were nor-

malized and cropped to 88 88 pixels.
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Fig. 10. Comparative rank-one identification accuracies of LDP and LBP on
the CAS-PEAL database.

The experiments were first performed to evaluate LDP on the

gray-level images using faces with different lighting conditions,

expressions, and accessories. Experimental results in Fig. 10

demonstrate that the recognition accuracy is considerably im-

proved when the order of local pattern is increased from the

first-order LBP to the second-order and the third-order LDPs.

The performance drops back to the level of LBP when it reaches

to the fourth-order LDP. These results further confirm that the

high-order local patterns can extract more discriminative infor-

mation than LBP. Note that all the experimental results were

obtained with the same parameters of 4 4 sized subregions

and 8 histogram bins for both LDP and LBP.

Fig. 10 also shows the effectiveness of on face

recognition. Experimental results show that the proposed

third-order achieves a much better performance than

. Different from the results on the gray-level images,

the performance of the fourth-order degrades grace-

fully, probably because Gabor features contain high-order

discriminative information and less sensitive to noise due to

kernel convolving operation [6], [15]. Compared to the results

on gray-level images, the experiment results illustrate that

applying local pattern descriptors (LBP and LDP) on Gabor

features consistently achieves better performance than directly

applying them on the gray-level images, demonstrating that

Gabor real and imaginary parts can provide more discriminative

information than images. For and in this

experiment, 11 11 sized subregions with 64 histogram bins

were used.

C. Experimental Comparisons on the CMU-PIE Database

We further compared the performances between the proposed

LDP and LBP under extensive variations in pose and illumina-

tion using the CMU-PIE face database [23]. The database con-

tains face images in varying pose, illumination and expression

from a total of 68 subjects. In this experiment, the rotated face

images in the database that both eyes can be reliably identified

for normalization were used as the testing dataset. These im-

ages include seven different poses, whose labels are Poses 05,

07, 09, 11, 27, 29, and 37. Each pose has 21 different lighting

conditions, labeled as Flashes 2 to 22. All the images were nor-

malized by aligning the locations of two eyes and cropped to 88

Fig. 11. Samples of the normalized images of one subject from the CMU-PIE
database.

88 pixels. Fig. 11 shows examples of the normalized images

of one subject. The frontal images (Pose 27) with the frontal

flash (Flash 08) of each person were used to build the gallery set

(one image per person). The remaining images

were used to create two probe sets for

evaluating the proposed method under different range of pose

variations. The first probe set contains images of Poses 05, 07,

09, 27, and 29, while the second probe set contains images of

Poses 05, 07, 09, 11, 27, 29, and 37. The same parameters as in

the previous experiments were used for both LDP and LBP, i.e.,

4 4 sized subregions with 8 histogram bins for gray-level im-

ages and 11 11 sized subregions with 64 histogram bins for

Gabor feature images.

Fig. 12 plots the recognition rates of both LDP and LBP

on gray-level images and Gabor feature images using the first

and second probe sets, respectively. It can be observed from

the figure that the second-order and the third-order LDPs ob-

tained higher accuracies than LBP, and the second-order, the

third-order and the fourth-order s achieved better per-

formances than on both two probe sets. On the first

probe set [see Fig. 12(a)], the third-order LDP (61.0%) and

the third-order (78.9%) achieved much higher iden-

tification accuracies than LBP (57.7%) and (71.0%)

on gray-level images and Gabor feature images, respectively.

The same trend can be observed on the second probe set [see

Fig. 12(b)]. Compared with LBP (41.0%) and (53.

5%), the third-order LDP (43.5%) and the third-order

(62.2%) obtained the highest rates on gray-level images and

Gabor feature images, respectively. Although the performances

of both LDP and LBP become worse as the range of pose vari-

ation increases from the first probe set to the second probe set,

LDP maintains its superiority in recognition accuracy over LBP.

These experimental results indicate that the proposed high-order

local pattern operator can also effectively extract more discrim-

inative information from face images than LBP under extensive

pose and illumination variations. The results also confirm that

both LDP and LBP operators can be successfully applied to the

Gabor feature images. The performances of local pattern oper-

ators on the feature domain are much better than those on the

spatial domain.

D. Experimental Comparisons on the Extended Yale B

Database Under Severe Illumination Variations

The Extended Yale B face database [14] was used to con-

duct the comparative experiments between the proposed LDP

and LBP under severe illumination variations. It contains a total

of 38 subjects (including ten subjects from the original Yale B
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Fig. 12. Comparative rank-one identification accuracies of LDP and LBP on
the CMU-PIE database. (a) Results on the first probe set (images of Poses 05,
07, 09, 27 and 29). (b) Results on the second probe set (images of Poses 05, 07,
09, 11, 27, 29 and 37).

database [9]) with severe illumination variations. Each subject

was imaged under nine poses and 64 different illumination con-

ditions. All the frontal face images with different illuminations

have already been manually aligned and cropped to 168 192

pixels for public downloading from the database website. These

aligned frontal face images were used (normalized to 84 96

pixels) in this experiment. Fig. 13 displays samples of these

frontal images of one subject in the database. The frontal face

images with lighting direction of 0 azimuth (“ ”) and 0

elevation (“ ”) were used to construct the gallery set (one

images per person). All the remaining frontal images were used

as the probe set (63 images per person). The parameters of LDP

and LBP remained the same as in the previous experiments.

The experimental results of both LDP and LBP on the

gray-level images and Gabor feature images are displayed in

Fig. 14. Consistent with the results in the previous experi-

ments, the second-order and third-order LDPs and s

achieved better performances than LBP and , respec-

tively. Compared with LBP (75.9%) and (86.7%), the

third-order LDP (92.9%) and the third-order (97.9%)

achieved the best performances on gray-level images and

Gabor feature images, respectively. These experimental results

further demonstrate that the proposed high-order local pattern

operator still outperform LBP even with severe illumination

Fig. 13. Samples of the frontal images of one subject from the Extended Yale
B database.

Fig. 14. Comparative rank-one identification accuracies of LDP and LBP on
the Extended Yale B database.

variations, demonstrating its effectiveness in extracting more

discriminative information from face images.

E. Experimental Comparisons on the FRGC Database

In order to further evaluate the proposed approach, we also

performed experiments on the FRGC version 2.0 database [19].

The FRGC database provides six experimental protocols with

the training set. As one of the most challenging protocols, FRGC

Experiment 4 involves images with more complex variations

such as serious illumination changes, blurring and some occlu-

sions. We selected this protocol in our experiments. The pro-

tocol is designed to measure verification performance for 8,014

uncontrolled frontal still images versus 16,028 controlled im-

ages. Considering that images in FRGC are of higher resolution,

we normalized and cropped them to 128 168 pixels to eval-

uate the performances in a higher resolution than in previous

experiments. To reduce the feature length, we used 8 8 sized

subregions with 8 histogram bins for both LDP and LBP. Exper-

imental results in Fig. 15 demonstrate that the verification accu-

racy is improved when the order of local pattern is increased

from the first-order local pattern (LBP) to the third-order LDP

on both gray-level images and Gabor feature images. These re-

sults further indicate that the high-order local pattern can extract

more discriminative information than the first-order local pat-

tern.

From above extensive experiments on face recognition, it is

noticed that: 1) LDP performs better than LBP on both gray-
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Fig. 15. Comparative verification accuracies of LDP and LBP on the FRGC
Experiment 4 database.

level images and Gabor feature images, and for both face identi-

fication and face verification. 2) LDP performs superior to LBP

and performs superior to when the order is

less than four. 3) The third-order LDP performs the best over

all the other order LDPs and LBP on both gray-level images and

Gabor feature images. 4) The performance of LDP is largely in-

sensitive to the histogram sampling change. 5) The performance

of LDP degrades with noise more strongly than that of LBP but

not to a point that can reverse our earlier conclusions.

V. CONCLUSION AND FUTURE WORK

This paper investigates the feasibility and effectiveness of

using high-order local pattern for face description and recog-

nition. A Local Derivative Pattern (LDP) is proposed to capture

the high-order local derivative variations. To model the distri-

bution of LDP micropatterns, an ensemble of spatial histograms

is extracted as the representation of the input face image. Face

recognition based on LDP can be performed by using histogram

intersection as the similarity measurement. Experimental re-

sults on an extensive set of face databases, FERET, CAS-PEAL,

CMU-PIE, Extended Yale B, and FRGC databases, demonstrate

that the proposed high-order local pattern representation outper-

forms LBP representation in both identification and verification.

The main contributions of this paper include: 1) A novel local

descriptor, high-order Local Derivative Pattern, is proposed as

an object descriptor. Experiments conducted on various face

conditions, including different lightings, expressions, agings,

accessories and poses, show that high-order local patterns

(LDPs) achieve better performances than the first-order local

pattern (LBP). 2) Gabor real and imaginary parts are success-

fully combined with LDP and LBP. Experimental results show

that both LDP and LBP on Gabor feature images achieve much

better performance than LDP and LBP on gray-level images.

3) Extensive experiments conducted on various face databases

show that the third-order LDP achieves the best performance

on both gray-level images and Gabor feature images.

It should be noticed that the high dimensionality of

is mainly due to the dimensionality of Gabor features, not LDP

itself. There are many solutions for dimension reduction, such

as linear discriminant analysis (LDA). Investigation and com-

parison on mutliscale versions of LDP and LBP are interesting

future work to fine tune the proposed approach. Due to its excel-

lent performance, we expect that the proposed high-order local

pattern descriptor is applicable to other object recognition tasks

as well.
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