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Abstract
The three-dimensional molecular structure of DNA, specifically the shape of the backbone and
grooves of genomic DNA, can be dramatically affected by nucleotide changes, which can cause
differences in protein binding affinity and phenotype. We developed an algorithm to measure
constraint on the basis of similarity of DNA topography among multiple species using hydroxyl
radical cleavage patterns to interrogate the solvent accessible surface area of DNA. This algorithm
found that 12% of bases in the human genome are evolutionarily constrained—double the number
detected by nucleotide sequence-based algorithms. Topography-informed constrained regions
correlated with functional non-coding elements, including enhancers, better than regions identified
solely on the basis of nucleotide sequence. These results support the idea that the molecular shape
of DNA is under selection and can identify evolutionary history.

Genomic sequences that code for proteins are relatively well understood, but comprise only
~2% of the human genome (1). Many functions are encoded in the remaining ~98% non-coding
portion of the genome, but little is known about how functional non-coding information is
specified (2). It has been hypothesized that functional regions are likely to be evolutionarily
constrained because of their importance to the organism (3–11). Nonetheless, evolutionary
sequence-constraint algorithms fail to identify many non-coding functional elements (12–15).
This may be because these methods only analyze the primary nucleotide sequence of a genome
(i.e., the order of A’s, C’s, G’s, and T’s). However, DNA is a molecule with a three-dimensional
structure that varies according to the nucleotide sequence (16–18).

We used a previously developed method based on the hydroxyl radical cleavage pattern of
DNA (19) to quantitatively evaluate how the structure of DNA varies throughout a genome.
This approach can be used to predict the shape of the DNA backbone and grooves of genomic
DNA at single-nucleotide resolution (20). We call this pattern the structural profile of a DNA
region. Structural profiles reveal that the relationship of DNA structure to the corresponding
DNA sequence is not always simple. While similar sequences often adopt similar structures
(Fig. 1A) divergent nucleotide sequences can have similar local structures (Fig. 1B) (20).
Conversely (albeit less frequently), similar sequences can adopt very different structures (Fig.
1C). These observations indicate that DNA regions that differ on the basis of the order of
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nucleotides may be similar in structure, which suggests they may perform similar biological
functions.

We quantified the effect of single-base substitutions on DNA structure by computing the
structural profiles of all possible 11-base pair (bp) sequences (4,194,304 in total), measuring
the similarity between profiles for all pairs of 11-bp sequences that differ only by a single
substitution at the central nucleotide (21). A histogram of structural differences for all 11-bp
sequences reveals a range of effects from minor to drastic (Fig. 1D–G). In some cases, the one-
base change in an 11-bp sequence has a minor effect, but the sequence may have a dramatically
different structure if another base is substituted.

Because current sequence-constraint algorithms do not compute the effect of a base change on
DNA structure, we developed a computer program, Chai, that incorporates structural
information. This method works in a manner analogous to the DNA sequence-based binomial
conservation (binCons) algorithm (8) but instead of computing the binomial probability of
observed base substitutions between species, Chai calculates the difference between DNA
structural profiles as a measure of similarity (21). We used the binCons and Chai algorithms
to analyze 30 Mb of high-quality, comparative sequence data for 36 different species [the
ENCODE pilot project regions (15,22)]. We defined a false discovery rate (FDR) on the basis
of a neutral (or null) alignment (10,22) in an identical manner for assessing both sequence- and
structure-informed conservation, so that each type of conserved region was identified with
equal statistical confidence. We found that at any given FDR, the structure-informed Chai
algorithm identified more evolutionarily constrained bases compared to binCons (Fig.
2A,Table S1). For example, at a 5% FDR, binCons identified 6.7% of bases as constrained,
corresponding with previous findings of sequence-based mammalian constraint (8–11,15,22,
23). Chai identified nearly twice as many bases as constrained (12%) (Fig. 2B) while
identifying 89% of the regions identified with the binCons method.

We next determined the extent to which evolutionarily constrained regions identified by Chai
and binCons harbor functional elements. We examined deoxyribonuclease I (DNase I)-
hypersensitive sites (15) and predicted transcriptional enhancers identified using chromatin
modification patterns (24) from published studies (21) as examples of non-coding functional
elements that frequently exhibit little sequence similarity. Compared to binCons regions, we
found that Chai-detected regions overlap a higher proportion of DNase I-hypersensitive sites
(78% for Chai versus 50% for binCons) and predicted enhancers (84% for Chai versus 59%
for binCons) (Fig. 2C). To test whether the increased correlation with functional sequences
was due to the additional territory identified by Chai relative to binCons, we tuned each
algorithm for equal base coverage as opposed to equal statistical confidence and found that
Chai-detected regions still overlap a significantly greater number of functional non-coding
elements compared to binCons-detected regions (p < 10−12; Fisher’s exact test) (Fig. S1, Fig.
2A, Table S1).

Focusing our analysis on regions identified only by Chai and not by binCons (Chai-only
regions) resulted in a statistically significant overrepresentation of noncoding functional
sequences [p < 0.01, genome structure correction (GSC) statistic] [see (21) for a description
of the GSC statistic] in the Chai-only regions and a statistically significant underrepresentation
(p < 10−9; GSC statistic) of coding regions (Fig. 2C). This suggests that some of the functional
information in the non-coding portion of the genome is conferred by DNA structure as well as
by the nucleotide sequence.

We thus examined if non-coding nucleotide substitutions inducing changes in DNA structure
impact the biological function of a sequence. We focused on the DNA-binding properties of
the Zif268 protein, a mammalian transcription factor that consists of three zinc fingers that
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wrap around DNA in the major groove (25). Binding affinity data (26) were compared with
structural profiles for the 15 sites identified to bind wild type Zif268 and the Zif268 REDV
mutant (21). For both proteins the structural profiles of the high-affinity sequence motifs were
similar, while low-affinity motifs had a different structural profile (Fig. S2A, Fig. S3A).

We ranked each Zif268 REDV motif by the extent of DNA structural difference relative to the
best binding site, and found that binding affinity correlated with this ranking (r=0.75; p = 6.9
× 10−4; t-test; Fig. S2B). In other words, low-affinity binding sites differed dramatically in
structure from high-affinity sites, while sites with intermediate affinity showed less structural
difference. We observed a similarly high correlation for the wild type protein, which has
different binding preferences (r = 0.74; p = 7.5 × 10−4; t-test; Fig. S3B). Analysis of DNA-
binding site structural profiles and binding affinity for the archaeal transcriptional regulator
Ss-LrpB revealed similar trends to those found for Zif268 (Fig. S4).

We next tested whether mutations that change the molecular topography of non-coding
genomic regions have phenotypic consequences, using data from the PhenCode Project (27),
which organizes information from several locus-specific mutation databases. We gathered 734
non-coding single-nucleotide variants in the human genome associated with a phenotype. For
each variant, we calculated the difference in the structural profile between the mutant and non-
mutant sequence over an 11-bp window centered on the variant nucleotide (similar to the
analysis above). For comparison, a distribution of baseline variation in DNA topography was
computed for 16,832 neutrally-evolving single-nucleotide polymorphisms (SNPs) (21). The
phenotype-associated distribution was significantly correlated with larger changes in structure
(p<3 × 10−4; Wilcoxon rank sum test) relative to the baseline distribution, and contained an
additional high structure-change peak (Fig. 3). These results indicate that phenotype-associated
mutations tend to induce larger changes in the structural profile of non-coding DNA than does
baseline neutral variation.

We also identified phenotype-associated SNPs causing the top 10% structural changes and the
lowest 10%. The phenotype-associated mutations with the highest changes in DNA structure
occurred significantly more often (p<10−2, Fisher’s exact test) in evolutionarily constrained
regions of the genome (56% for high structure-change regions versus 29% for low structure-
change regions) (21). This suggests that non-coding DNA may be under selective constraint,
which may prevent changes in DNA structure. Because the severity of structural change might
help identify functional SNPs, we constructed a database of changes in the structural profile
for all known SNPs in the human genome (21).

Finally, we demonstrated that structural changes affect biological function in non-coding
evolutionarily constrained regions identified by the Chai algorithm. We chose 12 predicted
enhancer-containing regions (24): 5 regions overlap elements only detected by the Chai
algorithm; 7 regions overlap a combination of Chai- and binCons-detected elements (Table
S2). We cloned the 300 bp surrounding each of these genomic regions in a luciferase reporter
construct and transfected them into 293T cells. Eight of the twelve constructs displayed
luciferase activity that was significantly greater (p ≤ 0.05; Wilcoxon rank sum test) than that
of random control sequences (Fig. 4). Three of the 5 constructs only overlapping Chai-detected
elements were positive (Table S2).

Given the plethora of regulatory functions that a genome encodes and the three-dimensional
genomic architecture required to orchestrate these events (28), it may not be surprising that
there is widespread conservation of local DNA topography. Perhaps only a subset of local
structural configurations can accommodate the functional requirements of a genomic locus [for
example see (29)]. Once the molecular topography of a locus is permissive to a regulatory
function, this structure may be maintained within the genome. Our high-resolution topography-
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based constraint-detection method reveals that structure-informed constraint is widespread in
the human genome and that these regions overlap known non-coding functional sites. Because
different DNA sequences can have similar local structures (20), these regions might escape
detection with sequence-based conservation–identification methods.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
DNA topography vs. nucleotide sequence. (A–C) Hydroxyl radical cleavage patterns (referred
to here as the structural profile) and corresponding color-matched sequence alignments (below
each panel). Asterisks indicate identical columns in the sequence alignment. (D–G) Single-
base substitutions have a range of effects on local DNA structure. For all possible 11-bp
nucleotide sequences, we computationally changed the middle position to each possible base
and measured its effect on the structural profile. These changes were quantitatively measured
by calculating the mean Euclidean distance (referred to here as the average structural change)
(21), where low values indicate similar structure profiles and large values indicate different
structure profiles. (G) The distribution of average structure changes observed for all 11-bp
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sequences. Arrows indicate what we classify as low, moderate, or high average structure
changes, with representative 11-bp sequences for each shown in (D), (E), and (F), respectively.
For (D–F), the y-axis indicates the structural profile at each nucleotide position in the 11-bp
sequence (x-axis). The structural profile for each sequence containing a different base in the
middle position (noted by an ‘N’) is plotted in a different color. The structural profile patterns
are increasingly different in changing from low to high structural change [(E–G)].
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Fig. 2.
Structure-informed evolutionarily constrained regions. (A) Plot showing the fraction of bases
identified as evolutionarily constrained at various FDRs (21) by the DNA sequence-based
algorithm binCons (blue line) and the structure-informed algorithm Chai (red line). (B) Venn
diagram showing nucleotides identified by each algorithm [Chai (red) and binCons (blue)] at
5% FDR (gray vertical line in A). Chai detects nearly the same set of bases as binCons identifies
(intersection), plus a nearly equal number of additional bases (Chai-only). (C) Bar graph
showing the fraction of different types of genomic regions that overlap binCons- (blue), Chai-
(red), and Chai-only-detected (white) constrained elements. Black points are the mean of a null
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distribution constructed with the GSC method (21); error bars represent 95% confidence
intervals.
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Fig. 3.
The distribution of DNA structural changes for phenotype-associated variants (red line) and
neutral variants (black line) (21) with the real structure prediction algorithm (A) and a
randomized version (B). (A) The phenotype-associated distribution was shifted significantly
to the right (p < 3 × 10−4; Wilcoxon rank sum test) and contains an additional high structure
change peak relative to the neutral distribution. (B) No significant shift (p > 0.05; Wilcoxon
rank sum test) was observed with a randomized version of the structure prediction algorithm.
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Fig. 4.
Luciferase-based reporter activity of 12 regions containing Chai-detected elements (21). These
regions overlapped predicted enhancer regions. Plotted for each element is the luciferase
activity relative to the median activity from 100 random control constructs (y-axis; see Fig.
S5). Error bars represent one standard deviation from the mean of four experimental replicates,
and asterisks denote p ≤ 0.05 (Wilcoxon rank sum test).
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