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LOCAL DYNAMICS OF UNIFORMLY
QUASIREGULAR MAPPINGS

AIMO HINKKANEN, GAVEN J. MARTIN and VOLKER MAYER∗

Abstract

We investigate local dynamics of uniformly quasiregular mappings, give new examples and show
in particular that there is no quasiconformal analogue of the Leau-Fatou linearization of parabolic
dynamics.

1. Introduction

Uniformly quasiregular (uqr) mappings f : R
n → R

n
are quasiregular maps

such that all the iterates f k have a common distortion bound. These are natural
higher (real) dimensional analogues of holomorphic functions and appeared
for the first time in the paper [5] of Iwaniec and Martin.

In this paper we investigate local dynamics of these maps. The first problem
is to give a classification of the different fixed point types. Recall that for
holomorphic maps the multiplier, meaning the derivative of the map at the
fixed point, is used for that. Quasiregular maps need not be differentiable, and
even though they are locally Hölder continuous, they may be so with exponent
less than 1. In the case of uqr maps, however, we are able to establish Lipschitz
estimates near a fixed point x0 which is not a branch point. Such estimates show
that F = {fλ : λ > 1} is a normal family, where fλ(z) = λf (z/λ). A limit of a
convergent subsequence of F is in fact a uniformly quasiconformal map and we
call it a generalized derivative of f at x0. Using the classification of uniformly
quasiconformal maps (they are either loxodromic, elliptic or parabolic) we get
an analytic classification of the different fixed points which generalizes in a
natural way the usual one of holomorphic functions. As an application we get
that uqr maps do have precisely the same type of stable components as rational
functions.

Then we turn to the existence problem. Examples of uqr maps with attract-
ing, repelling or super-attracting fixed points are known [5], [15]. We obtain
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new examples with parabolic dynamics and we also show that such a map can
be constructed in a way that it does not admit a quasiconformal linearization in
its attracting parabolic petal. We then complete the picture by showing that the
natural candidates for a linearization are not affine maps but the generalized
derivatives described above. In fact, we show that a K-uqr map can always be
K-quasiconformally conjugated near an attracting or repelling fixed point to
a generalized derivative.

2. Definitions and general facts

Let D ⊂ R
n = Rn ∪{∞} be a domain and f : D → R

n
a mapping of Sobolev

class W 1,n
loc (D). We consider only orientation preserving mappings, that means

that the Jacobian determinant Jf (x) ≥ 0 for a.e. x ∈ D. Such a mapping is
said to be K-quasiregular, where 1 ≤ K < ∞, if

max|h|=1
|f ′(x)h| ≤ K min|h|=1

|f ′(x)h| for a.e. x ∈ D.

The smallest number K for which the above inequality holds is called the
linear dilatation of f . A non-constant quasiregular mapping can be redefined
on a set of measure zero so as to make it continuous, open and discrete, and
we shall always assume that this has been done. If D is a domain in the
compactification R

n
[equipped with the spherical metric; thus R

n
is isometric

via stereographic projection to then-sphere Sn], then we use the chart at infinity
x �→ x/|x|2 to extend in the obvious manner the notion of quasiregularity to
mappings f : D → R

n
. Such mappings are also said to be quasimeromorphic.

A mapping f of a domain D into itself is called uniformly quasiregular (uqr)
if there is some K with 1 ≤ K < ∞ such that all the iterates f k are K-
quasiregular. We abbreviate this as f ∈ UQR(D).

If f is a quasiregular mapping defined on the domain D with any range in
R

n
then, at a given point x ∈ D, we can only consider the iterates f k(x) as

long as the orbit x �→ f (x) �→ . . . �→ f k(x) stays in D. We will call such an
f a local uqr mapping if, for a fixed 1 ≤ K < ∞, the dilatation of f k does
not exceed K for every k and for a.e. x ∈ D so that f k(x) is defined.

The branch set Bf is the set of points x ∈ D for which f is not locally
homeomorphic at x. In the whole paper we always assume that a uqr map
is non-injective or has a non-empty branch set. Homeomorphic quasiregular
maps are called quasiconformal. For further details on quasiregular maps we
refer to [20].

In the setting of quasiregular mappings we have the following version of
Picard’s and Montel’s Theorem which is due to Rickman [20].

Picard’s Theorem. For every K ≥ 1 there is an integer q = q(n,K)
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so that any K-quasiregular mapping f : Rn → R
n

that omits q values is
constant.

Montel’s Theorem. For any K ≥ 1 and any dimension n ≥ 2 there is a
positive integer q = q(n,K) so that the following holds: If F is a family of
K-quasiregular mappings defined on a domain� ⊂ R

n
such that each element

f ∈ F omits q values af

1 , . . . , a
f
q that have spherical distance σ(a

f

i , a
f

j ) > ε

(i �= j ), where ε > 0 is independent of f ∈ F , then F is a normal family.

Another important normality criterion is the following quasiregular version
of Zalcman’s Lemma. It is due to Miniowitz [7]. We denote the unit ball in Rn

by B and write B(x, r) = {y ∈ Rn : |y−x| < r}. Further, we write Sn−1 = ∂B
and Sn−1(r) = ∂B(0, r).

Zalcman’s Lemma. A family F of K-quasiregular mappings f : B → R
n

is not normal at x0 ∈ B if, and only if, there are positive numbers ρj ↘ 0,
points xj → x0 and mappings fj ∈ F such that

fj (xj + ρjx) → "(x)

spherically uniformly on compact subsets of Rn, where " : Rn → R
n

is a
non-constant quasimeromorphic map.

The condition xj → x0 does not appear in Miniowitz’s paper but it can
easily be achieved with slight modifications.

3. Basic dynamical properties

The dynamical behavior of a uqr mapping of R
n

splits the sphere into two
parts: the Fatou set Ff , which is the set of points x for which {f k} is a normal
family in a neighborhood of x, and the Julia set Jf = R

n \ Ff . A connected
component � of the Fatou set Ff is called Fatou component and it is called
a stable component or a stable domain if it is forward invariant: f (�) ⊂ �.
In that case, in fact, f (�) = �. The Fatou set is open, the Julia set is closed,
and they are both completely invariant under f . Recall that a set E is said to
be completely invariant under f if f (E) ⊂ E and f −1(E) ⊂ E. Moreover,
the Julia set of any non-injective uqr map cannot be empty. See [5] for this and
for a more detailed presentation.

An immediate consequence of Montel’s Theorem is that we can define the
exceptional set Ef to be the largest discrete completely invariant set such that
Ef has the following properties: for any open set U with U ∩ Jf �= ∅ we have

(1)
⋃
k≥0

f k(U) ⊃ R
n \ Ef
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and for every point x that is not an exceptional point, x �∈ Ef , we have

(2) Jf ⊂
⋃
k≥0

f −k(x) .

Furthermore, Ef cannot contain more than q = q(n,K) points. There are uqr
mappings with zero, one or two exceptional points. It remains an exciting open
question whether or not a uqr map may have more than two exceptional points.

We remark that an analysis similar to that for rational functions ([1], pp.
65–66) shows that there exists n ≥ 1 such that each x ∈ Ef is a fixed point
of f n with f −n(x) = {x}. Hence the local index of f n at x is ≥ 2 (and is, in
fact, equal to (deg f )n). It now easily follows from standard estimates ([20],
Theorem III.4.7, p. 72) and the fact that the forward orbit of x under f lies in
the finite set Ef , first that x is a super-attracting fixed point of f nk when k is
large enough, and then that x ∈ Ff . Hence Ef ⊂ Ff .

An example of the utility of the exceptional set is that we can describe the
image of the limit functions of Zalcman’s Lemma applied to the family {f k}.
Let x0 ∈ Jf . Then, by Zalcman’s Lemma, there are xj → x0 and ρj ↘ 0 such
that

(3) "j (x) = f kj ◦ αj (x) ≡ f kj (xj + ρjx) → "(x), x ∈ Rn,

with uniform convergence on compact sets and such that the limit " is a
non-constant mapping.

Lemma 3.1. The image of such a limit function " is "(Rn) = R
n \ Ef .

Proof. Let y ∈ R
n \ Ef be any non-exceptional point. Then there is k ∈ N

so that f −k(y) contains more than q points, with q = q(n,K) the constant of
Picard’s Theorem. Now, since " = limj→∞ f nj ◦ αj we also have

f nj−k ◦ αj → & : Rn → R
n

where the non-constant quasimeromorphic map " satisfies f k ◦ & = ".
Because of Picard’s Theorem, &(Rn)∩f −k(y) �= ∅. Therefore, there is z ∈ Rn

with "(z) = f k ◦ &(z) = y.
On the other hand, "(Rn) cannot contain any exceptional point. Namely,

since x0 ∈ Jf and Ef is a finite set with Jf ∩ Ef = ∅, it follows that for any
compact set E ⊂ Rn, we have αj (E) ∩ Ef = ∅ for all large j . Hence with
"j = f nj ◦ αj , we have "j(E) ∩ Ef = ∅ by the complete invariance of Ef
under f . By the counterpart of Hurwitz’s theorem for quasiregular maps, we
have "(E) ∩ Ef = ∅. Since this holds for every compact E ⊂ Rn, we have
"(Rn) ∩ Ef = ∅. This proves Lemma 3.1.
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The counterpart of Hurwitz’s theorem for quasiregular maps states that if
fn is a sequence of K-quasiregular maps in a domain D converging to a limit
function f locally uniformly in D (so that then f is K-quasiregular by [20,
Theorem VI.8.6, p. 159]) and if all fn omit the value b in D then f omits b

in D unless f ≡ b in D. In the proof of Lemma 3.1 above we take D to be
a relatively compact subdomain of Rn containing E. It follows, for example,
from the counterpart of the argument principle for quasiregular maps proved
by Rickman [19] in University of Helsinki lecture notes in 1973; these notes
seem to have remained unpublished.

We can now give a precise version of the expanding property (1):

Proposition 3.2. Let f ∈ UQR(R
n
) and x0 ∈ Jf . Then there are arbit-

rarily small neighborhoods � ⊂ R
n \Ef of x0 such that � ⊂ f N(�), for some

integer N , and such that �k = f kN(�) is an increasing sequence exhausting
R

n \ Ef .

Proof. Let " = limj→∞ f kj ◦αj be a limit of a Zalcman sequence defined
as in (3). Since "(Rn) = R

n \ Ef there is a0 ∈ Rn such that "(a0) = x0.
Consider � = B(x0, ε) ⊂ R

n \ Ef and let Uj be the component of (f kj ◦
αj )

−1(�) that contains a0. Then it is clear that

f kj : Dj = αj (Uj ) → �

is a proper map and that Dj ⊂ � provided j is big enough. From this one
easily deduces the Proposition using Montel’s Theorem.

Corollary 3.3. Let f ∈ UQR(R
n
) and x0 ∈ Jf . Then no subsequence

of (f k) is normal in a neighborhood of x0. In particular, we have Ff n = Ff

and Jf n = Jf for all n ≥ 1.

Proof. Suppose (f kj ) is normal on � where � is a neighborhood of x0.
Proposition 3.2 shows that we can choose� arbitrarily small and such that� ⊂
f N(�) for some N . If we write f kj = f rj ◦ f ljN with rj ∈ {0, 1, . . . , N − 1},
then it follows from Proposition 3.2 that (f ljN )j is not normal on �, contra-
dicting the normality of the sequence (f kj ).

Fix n ≥ 1. Clearly by definition, Ff ⊂ Ff n and so Jf n ⊂ Jf . If there
exists x0 ∈ Jf \ Jf n , then x0 ∈ Ff n so that the sequence {f mn}∞m=1 is normal
in a neighborhood of x0. Since x0 ∈ Jf , this contradicts what we have proved
above already. It follows that Ff n = Ff and hence Jf n = Jf .

Here is another fact which shows that uqr mappings do behave in many
respects like holomorphic functions.
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Lemma 3.4. Suppose f ∈ UQR(R
n
) and let � be a domain of R

n
. If

(f kj ) is a subsequence of the iterates of f such that for every j we can define
Fj : � → R

n
a branch of the inverse of f kj , then

1) {Fj } is a normal family and,

2) if �∩ Jf �= ∅, then any convergent subsequence of {Fj } has a constant
limit function.

Proof. We know that Bf �= ∅. It follows then from [13] that Bf contains at
least 2 points. Note that each Fj is one-to-one in �. The normality criterion for
quasiconformal mappings ([28], pp. 69, 66) applies now sinceBf ⊂ R

n\Fj (�)

and it gives the normality of the family {Fj }.
Suppose now that � ∩ Jf �= ∅ and that Fjl converges on � to a non-

constant map, which is therefore a quasiconformal map ϕ : � → �′. Choose
D = B(y0, ε) relatively compact in � with y0 ∈ Jf . Let D′ = ϕ(D) and
x0 = ϕ(y0) ∈ Jf . Thus there is a neighborhood D′′ ⊂ D′ of x0 such that for
all large l, we have f kjl (D′′) ⊂ D. Then it follows from Montel’s Theorem
that (f kjl )l is normal near x0 ∈ Jf and this contradicts Corollary 3.3.

4. Fixpoint classification

We propose here a classification of the fixed points and therefore also of the
cycles, i.e., the sets {x1, . . . , xp} with f (xi) = xi+1 for i = 1, . . . , p − 1 and
f (xp) = x1. In what follows we will consider a local uqr mapping f of a
domain U of R

n
, that fixes some point x0 = f (x0) ∈ U .

The different fixed point types in the case of holomorphic mappings are
determinated by the derivative of the function at the fixed point. For uqr map-
pings such a derivative need not exist. But we will see that instead there is
a family of uniformly quasiconformal mappings, which reduces to the linear
mapping Df (x0) when this derivative exists, and we show that these maps,
which we call generalized derivatives, do determine the different fixed point
types.

4.1. Lipschitz estimates near fixed points

The study of the distortion behavior that will follow is essential for the intro-
duction of the generalized derivatives. A priori, a quasiregular mapping has a
Hölder behavior near any point. Here we verify that in the case of uqr map-
pings we have in fact Lipschitz behavior. We write B(r) = B(0, r). We further
write rE = {rz : z ∈ E} whenever r > 0 and E ⊂ Rn.

Lemma 4.1. Suppose that f is a K-uqr map, that f (0) = 0, and that f is
locally injective near the origin, i.e., 0 �∈ Bf . Then there exist L ≥ 1 and a
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neighborhood V of the origin such that

(4)
1

L
|x| ≤ |f (x)| ≤ L|x| for every x ∈ V.

Proof. Suppose that f is injective on the unit ball B and that there exists
a sequence xk ∈ B with

(5) lim
k→∞

|f (xk)|
|xk| = 0.

Necessarily xk → 0. This together with the usual distortion estimates ([29,
Corollary 11.31, p. 147], whose proof can be adapted to cover the present situ-
ation also) implies that there is 2r0 ∈]0, 1[ such that f (B(2r0)) ⊂ B(r0). Con-
sequently f k(B(2r0)) ⊂ B(r0) and hence f k|B(2r0) is K-quasiconformal for
every k. This leads to uniform distortion estimates: there is K∗ = K∗(n,K) ≥
1 such that

(6) f k(rSn−1) ⊂ A
( ρ

K∗ ,K
∗ρ

)
= B(K∗ρ) \ B

( ρ

K∗
)

for every k ∈ N and r ∈ ]0, r0], where we may take ρ = |f k(y)| for any y

with |y| = r .
Denote rk = |xk| and εk = |f (xk)|/|xk|. We may assume that rk ≤ r0 and

εk < 1/K∗ for every k ∈ N. It then follows from (6) with y = xk and hence
ρ = εkrk that

Ak = B(rk) \ f (B(rk)) ⊃ B(rk) \ B(K∗εkrk) = A(K∗εkrk, rk)

and this shows that

mod Ak ≤ mod A(K∗εkrk, rk) = ωn−1

(
log

1

K∗εk

)1−n

.

Here ωn−1 is the measure of the unit sphere Sn−1 of Rn and in [20], [28] one
can find all the details needed concerning the modulus.

Consider � = B(r0) \ f 2(B(r0)) which is, so to say, a “double funda-
mental domain” of the action of f . Then there is an annulus Ak ⊂ � such that
f ν(Ak) = Ak for some ν. The quasi-invariance of the modulus for quasicon-
formal mappings implies

0 < mod � ≤ mod Ak ≤ K mod(f ν(Ak)) ≤ Kωn−1

(
log

1

K∗εk

)1−n

which is impossible for k sufficiently large.
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We showed that the left hand side of the inequality (4) is true. The other
part follows in the same way, one just has to consider (f |B)−1 instead of f .

In the case when the fixed point x0 = 0 is also a branch point x0 ∈ Bf

with local index i = i(0, f ) > 1 the local distortion estimates of quasiregular
mappings show that for every k ∈ N there are a neighborhood V of the origin
and a constant C > 0 so that

(7) |f k(x)| ≤ C|x|µ for every x ∈ V with µ =
(
ik

K

) 1
n−1

(cf. [20, Theorem III.4.7, p. 72]).

4.2. Generalized derivatives

Let again the origin x0 = 0 be a fixed point of a uqr map f at which f is
locally injective, and let B0 be a neighborhood of 0 in which f is injective so
that the results of the previous subsection 4.1 are valid. So in particular we
have f (B0) ⊂ LB0, where L is the Lipschitz constant from (4).

We consider now fλ defined by fλ(z) = λf (z/λ), where λ ≥ 1, as a
mapping defined on λB0. Then, for a sequence of λ tending to infinity the
associated sequence of mappings fλ is normal on every ball of fixed radius
centered at the origin. A limit function ϕ = limj→∞ fλj can be considered as
a generalized derivative of f at x0 and one knows that it is a constant or a
quasiregular mapping of Rn.

Definition 4.2. The set of limit mappings

Df (x0) = {
ϕ = lim

j→∞ fλj where λj → ∞}

is called the infinitesimal space of the uqr map f at the fixed point x0.

Remark 4.3. In case that f has a derivative at x0, then Df (x0) contains
only the linear mapping x �→ Df (x0)x.

Since f is locally injective near x0, the Lipschitz estimates (4) imply
that a limit function ϕ ∈ Df (x0) is a quasiconformal homeomorphism of
Rn. Moreover, ϕ is a uniformly quasiconformal mapping since f k

λj
(z) =

λjf
k(z/λj ).

For uniformly quasiconformal mappings other than the identity map, we use
the classification, as for Möbius transformations, of such maps into parabolic,
loxodromic and elliptic mappings (see [3], [24]). In our case ϕ cannot be
parabolic since it fixes 0 (and ∞). So either ϕ is loxodromic which means that
ϕk or ϕ−k converges uniformly on compact sets of Rn to the origin, or ϕ is
elliptic and in this case the group < ϕ > generated by ϕ is precompact.
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Lemma 4.4. If one elementϕ ∈ Df (x0) is loxodromic, then all the elements
of the generalized derivative are loxodromic. Consequently, the same is true
in the elliptic case.

Proof. Suppose that Df (x0) contains a loxodromic element ϕ. We may
assume that 0 is an attracting fixed point of ϕ. Then there is k with

ϕk(4K2B) ⊂ 1

4K2
B.

This means that the action ofϕk has a fundamental domain, which is the topolo-
gical annulus A with boundary components ∂B(0, 4K2) and ϕk(∂B(0, 4K2)),
and that this domain contains the annulus A

(
1

4K2 , 4K2
) ⊂ A.

Since fλj (z) = λjf (z/λj ) → ϕ(z) uniformly on compact sets, we see
that f k has, in any neighborhood V of the origin, a fundamental domain A0

that contains some annulus A
(

1
3K2 r, 3K2r

)
. Since ϕ is loxodromic, and so in

particular not constant, the fixed point x0 is not a branch point of f . If V has
been chosen small enough so that the distortion estimate analogous to (6) is
valid in V for f k , then all the Aν = f νk(A0) contain an annulus of the form
A

(
1
K∗ rν,K

∗rν
)

for a suitable number K∗ independent of ν. Here we may take,
for example, rν = |f νk(x1)| for any preassigned x1 ∈ A0, say with |x1| = r .

This uniform control of all the fundamental domains implies that every
limit mapping ψ = lim fµi

∈ Df (x0) is loxodromic: use again uniform
convergence to see that ψk has a fundamental domain containing an annulus
of the form A

(
1
K∗ ρ,K

∗ρ
)
.

4.3. Classification of the fixed points and Fatou components

We showed that the elements of the infinitesimal space Df (x0) share the
common property of being either constant, elliptic or loxodromic. This allows
us to give the following fixed point classification.

Definition 4.5. Let x0 be a fixed point of the uqr map f at which f is
locally injective, and let Df (x0) be the infinitesimal space of f at this point.
Then we call x0

1) attracting or repelling if one, and therefore every, element ϕ ∈ Df (x0)

is loxodromic and if the origin is a attracting or repelling fixed point of
ϕ respectively (i.e., (ϕk) converges uniformly on compact subsets of Rn

to the origin in the attracting case and to infinity on compact subsets of
Rn \ {0} in the repelling case);

2) neutral if the elements of Df (x0) are elliptic.

If x0 is a fixed point of the uqr map f at which f is not locally injective, we
call x0 a super-attracting fixed point of f .
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Note that in the attracting and super-attracting case the iterates off converge
uniformly to x0 near this point. In the super-attracting case, choose k so large

that
(
ik

K

) 1
n−1 > 1 in the terminology of (7), and then use (7) to conclude that

the iterates of f k tend to x0 uniformly in a sufficiently small neighborhood of
x0. This then implies that the whole sequence f m → x0 uniformly on some
such neighborhood as m → ∞.

In particular, (super-)attracting fixed points are in the Fatou set. Similarly,
when x0 is repelling then the iterates of f are not equicontinuous near x0 and
x0 ∈ Jf .

Attracting and super-attracting fixed points can be characterized as follows
(the first two assertions of this Proposition are also equivalent in the case of
repelling fixed points):

Proposition 4.6. For a map f ∈ UQR(R
n
) and a fixed point x0 of f , the

following assertions are equivalent:

1) x0 is an attracting or super-attracting fixed point of f .

2) x0 is an attracting or super-attracting fixed point of some iterate f k .

3) There is a stable component � ⊂ Ff and a subsequence f kj converging
locally uniformly to a point x0 ∈ �.

Note that in 1) and 2), it is clear that x0 is a fixed point of f and of any f k .
It is the type of the fixed point that is important.

Proof. The equivalence between 1) and 2) follows directly from the defin-
ition since a uniformly quasiconformal map is loxodromic when some iterate
of it is loxodromic. It is also clear that 1) implies 3).

Suppose then that 3) is true, so that there exists a constant limit function
x0 = lim f kj such that x0 ∈ �. The convergence is locally uniform in �. Thus
there is a ball B centered at x0 whose closure is contained in � such that for
a certain integer p, which is among the kj , we have f p(B) ⊂ B. Now the
Brouwer fixed point theorem shows that f p has a fixed point c in B, and, as
m → ∞, we have f mp → c, locally uniformly in B, but then also locally
uniformly in �, in view of the definition of � as a component of the Fatou set
of f . Each of the points ci = f i(c) ∈ � for 0 ≤ i < p is a fixed point of f p.
Since ci = f mp(ci) → c, we have (taking i = 1) f (c) = c. Since f mp → c,
we have f i+mp → f i(c) = c as m → ∞, locally uniformly in �, for each
fixed i with 0 ≤ i < p. Putting together the finitely many sequences f i+mp

for 0 ≤ i < p, we find that the full sequence f m → c as m → ∞, locally
uniformly in �. Hence it must be the case that x0 = c, and 1) holds.

Attractors and repellors already have been studied by Hinkkanen and Martin
in [4]. They used there the following
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Topological Definition. A fixed point x0 is attracting (repelling, re-
spectively) if there is a neighborhood U of x0 such that f is injective on U and
such that f (U) ⊂ U (f (U) ⊃ U , respectively).

This condition is equivalent to the present definition based on the general-
ized derivatives (which easily follows from [8, p. 420]). Let us mention, as an
example of the utility of our new definition, that the implication “2) implies
1)” in the proof of Proposition 4.6 is a rather non-trivial fact if one uses only
the topological definition.

In the same way, a fixed point is super-attracting if, and only if, it is a branch
point, i.e., the definition used in [15]. Concerning the neutral fixed points, they
can be classified into three different types:

Definition 4.7. A neutral fixed point x0 of a uqr mapping f is

1) a Siegel point if it is in the Fatou set Ff ,

2) a parabolic fixed point provided that there is a stable component� ⊂ Ff

with x0 ∈ ∂� and a sequence {f nj } such thatf nj → x0 locally uniformly
on �, and

3) a Cremer point if x0 is in the Julia set and is not parabolic.

By Definition 4.7, a parabolic point and a Siegel point generates a stable
component as do (super-)attracting fixed points. Recall that a component � of
Ff is said to be stable if f (�) ⊂ � (and, in fact, f (�) = �, as one can see
in the same way as for rational functions).

Definition 4.8. A stable component � of Ff is called an (immediate)

1) (super-)attracting basin if it contains a (super-)attracting fixed point,

2) parabolic basin if there is a fixed point x0 ∈ ∂� and a sequence {f kj }
that converges locally uniformly on � to x0, and

3) rotation domain provided 〈f |�〉 is a compact group. If such a domain
contains a fixed point then it is also called a Siegel domain.

Note that in case 3), the definition makes sense only if f |� is a homeo-
morphism of � onto itself. Also, we have not proved that a given � could be
a parabolic basin on account of at most one x0 ∈ ∂�.

As for rational functions, these are the only possible stable components:

Proposition 4.9. A stable component � of Ff is a (super-)attracting or
parabolic basin or it is a rotation domain.

Proof. Let � be a stable component of Ff . Suppose first that there are
x0 ∈ � and a sequence of iterates f kj such that

f kj → x0 ∈ �
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locally uniformly in �. Again, since f kj ◦ f = f ◦ f kj converges to x0

and to f (x0), the limit point x0 is a fixed point. If x0 ∈ � then x0 must be an
attracting or super-attracting fixed point and � an attracting or super-attracting
basin (Proposition 4.6). Otherwise x0 is parabolic and � a parabolic basin. So
from now on we may assume that the limit of every convergent sequence f kj

is non-constant.
Suppose then that there exists a non-constant limit functionφ = lim f kj , for

some sequence of integers kj → ∞ as j → ∞, the convergence being locally
uniform on �. Clearly φ(�) ⊂ �, and since φ is a non-constant quasiregular
map and hence an open map, it is easily seen that φ(�) ⊂ �. Hence for any
compact subset E of �, the set φ(E) must be a compact subset of �.

Write mj = kj+1 − kj ≥ 1. By replacing kj by a subsequence, without
changing notation, we may assume that mj → ∞ as j → ∞. After that,
we find a subsequence mjp such that f mjp → ψ locally uniformly on � as
p → ∞. Since for any compact subset E of �, the set φ(E) is a compact
subset of �, and since f njp+1 = f mjp ◦ f njp , we find on the basis of locally
uniform convergence that φ = ψ ◦ φ, first on each compact subset of �, and
hence on all of �. Therefore ψ is non-constant, so that both φ and ψ are
non-constant K-quasiregular maps of � into itself.

Let Bφ denote the branch set of φ. Suppose that x0 ∈ � \Bφ . Then there is
a branch h of φ−1 defined in a neighborhood of φ(x0) taking the point φ(x0)

onto the point x0. We have φ ◦ h = ψ ◦ φ ◦ h in a neighborhood of φ(x0),
which gives ψ(z) = z for all z in in a neighborhood of φ(x0). It follows
that ψ = Id, the identity map, in φ(� \ Bφ). Since (� \ Bφ is dense in �

and) φ(� \ Bφ) is dense in φ(�) (if dim refers to topological dimension,
then dim Bφ = dim φ(Bφ) = dim φ−1(φ(Bφ)) ≤ n − 2 by [27]), it follows
by continuity that ψ = Id in the subdomain φ(�) of � and hence also in
�∩φ(�). (For a rational function f in dimension 2, it now follows by analytic
continuation that ψ = Id in all of � since ψ is analytic in �, but this argument
is not available in the general quasiregular case.)

Next, it is seen that f is one-to-one in � ∩ φ(�). For if x, y ∈ φ(�)

and x �= y while f (x) = f (y), then f mjp (x) = f mjp (y) for all p, so that
ψ(x) = ψ(y), which is a contradiction since ψ(x) = x and ψ(y) = y. Thus
indeed f is one-to-one in � ∩ φ(�) and in particular in φ(�).

We wish to prove next that ψ = Id in all of �. For this purpose, choose
a subsequence of mjp , denoted briefly just by κp, and a subsequence of kj ,
denoted by λp, such that κp −λp → ∞ as p → ∞, and such that f κp−λp → χ

as p → ∞, locally uniformly on �. Since f κp = f κp−λp ◦ f λp , and since
f λp → φ, so that for any compact subset E of �, the sets f λp (E) remain
in a compact subset of � (this is why we have to consider first f κp−λp ◦ f λp

rather than f λp ◦f κp−λp ), we deduce that ψ = χ ◦φ. Thus χ is a non-constant
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quasiregular map (if χ were constant then this would force ψ to be constant,
which is not the case) with χ(�) ⊂ �. Next, from f κp = f λp ◦ f κp−λp we
now get, in the same way, ψ = φ ◦ χ . Hence

� ∩ φ(�) = ψ(� ∩ φ(�)) ⊂ ψ(�) = φ(χ(�)) ⊂ φ(�).

If φ(�) �= �, this gives a contradiction, as there would then exist a point
in � ∩ ∂φ(�). Such a point is in � ∩ φ(�) but not in φ(�), which is the
contradiction.

We deduce that φ(�) = �, and it follows that ψ = Id on �. Since now
φ ◦ χ = χ ◦ φ = Id, it follows that φ is a homeomorphism of � onto itself.
Also f is one-to-one in �, so that f is also a homeomorphism of � onto itself.

Since φ was an arbitrary limit function (all of them assumed to be non-
constant), it follows that all limit functions are homeomorphisms of � onto
itself. All of them are also K-quasiregular maps on �. Above, we also saw
that φ−1 is such a limit function. Further, if φ1 and φ2 are such limit functions,
with, say f kj → φ1 and f lj → φ2, then

φ1 ◦ φ2 = lim
j→∞ f kj ◦ f lj = lim

j→∞ f lj ◦ f kj = φ2 ◦ φ1,

so that the limit functions form a group, which further is an abelian group. If
φm is a sequence of such limit functions tending to a non-constant function φ,
then there is clearly a sequence of iterates of f tending to φ, so that φ is also
a homeomorphism in this abelian group. Thus the group of limit functions is
closed, in this sense. This shows that � is a rotation domain.

We end this section by discussing the case when the derivative of f exists
at a fixed point x0. In this case it is easy to check what kind of a fixed point we
have. It suffices to consider the matrix A = Df (x0). If we set

‖A‖ = max{|Ah| : |h| = 1}
then the fact that f is uniformly quasiregular implies that

‖Ak‖n ≤ K det Ak for every k ∈ N.

Such a matrix is known to be an affine conjugate of an element of the similarity
group RO(n) (see [9] for this and more details). Therefore, x0 is an attracting,
neutral or repelling fixed point if, and only if, all the eigenvalues of Df (x0)

(note that they all coincide with each other) are strictly less than, equal to, or
strictly greater than 1, respectively.

However, it is not clear whether the different types of neutral fixed points
can be distinguished if one only looks at the derivative. One might hope that
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the fixed point is parabolic if some power of Df (x0) is the identity (and in
general, when the generalized derivative Df (x0) contains an element of finite
order). But conversely there are parabolic fixed points for which Df (x0) gen-
erates a non-discrete subgroup of the group of orthogonal matrices. In fact,
a parabolic Möbius transformation which has a non-periodic rotation part is
such an example.

5. Examples of uniformly quasiregular mappings

Finding explicit examples of uqr maps is a particularly difficult thing. Also,
as we showed in [12], there is a rigidity phenomenon which says that, on
the Julia set, uqr maps are always of a very special kind (i.e., of Lattès-type)
provided that the Julia set is large enough and that the maps have some kind
of expansive property on the Julia set. So, there are not too many such maps.
On the other hand, there is some freedom to modify uqr maps on their Fatou
set. We illustrate this in Proposition 5.1.

Our main motivation here is to analyse whether or not there are uqr map-
pings that have fixed points of the different types we defined. Examples with
super-attracting, attracting and repelling fixed points are known. We give new
examples having parabolic fixed points and they will be used later to construct
quasiconformally wild parabolic examples, meaning that the quasiconformal
analogue of Leau and Fatou’s petal linearization theorem is not true. We do
not know of any (higher-dimensional) uqr mapping with a Cremer or Siegel
point.

The first family of examples has been found by Iwaniec-Martin:

Theorem ([5]). There are uqr maps of R
n

with non-empty branch set, with
attracting and repelling fixed points and with Julia set a Cantor set (on which
the map does act like a Schottky group).

5.1. Lattès-type and related examples

The Lattès-type mappings introduced in [15], [16] are uqr analogues of the
rational functions that are called critically finite with parabolic orbifold. They
are obtained by semi-conjugating an expanding similarity by an automorphic
map. We call a quasimeromorphic map h : Rn → R

n
automorphic, or more

precisely automorphic with respect to a group9 of isometries of Rn, ifh◦γ = h

for all γ ∈ 9 and if in addition 9 acts transitively on fibers of h: for every
x1, x2 ∈ Rn with h(x1) = h(x2) there is γ ∈ 9 such that γ (x1) = x2. Now, a
uqr map f is of Lattès-type if

(8) f ◦ h(x) = h ◦ A(x) for every x ∈ Rn
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where h : Rn → R
n \Ef is a automorphic map and A(x) = λU(x) with λ > 1

and U ∈ O(n) an orthogonal matrix.
For example, when h is automorphic with respect to a cocompact group 9

and f a corresponding solution of (8), then Jf = R
n

and the repelling cycles
of f are dense in R

n
. We call such a map chaotic Lattès-type map. Other

Lattès-type mappings are power mappings, i.e., uqr analogues of z �→ zd .
They are obtained by taking h to be an analogue of the exponential function
and 9 to be a group so that Rn/9 is a cylinder (see [15]). These are examples of
uqr mappings with a super-attracting fixed point. Starting from such a power
mapping we obtain new examples of a different nature.

Proposition 5.1. There is a uqr map f of R
n

with a super-attracting
and an attracting fixed point, such that the union of the associated immediate
basins is equal to the Fatou set Ff .

Proof. Start with g ∈ UQR(R
n
) a power map. So in particular 0 and ∞ are

super-attracting fixed points and the Julia set is the sphere Sn−1. We modify g in
the attracting basin B of 0. In order to do this, take a ballB = B(0, r) ⊂ B that is
moved inside itself. We may even choose this ball so thatB ′ = g(B) ⊂ B(0, r

2 ).
Take a ∈ B ′ such that g is locally injective at a and denote b = g(a). Modify
then, using Sullivan’s quasiconformal version of the Annulus Theorem [25],
g near a such that g : B(a, 2ε) → B(b, ε) is conformal and maps a onto b.
Here ε > 0 is at least so small such that B(a, 4ε) ⊂ B ′. Clearly, this new map,
which we still denote by g, is quasiregular but not necessarily uqr. The map f

we look for is f = ϕ ◦g where ϕ is a quasiconformal map which is the identity
outside of B(0, r

2 ), such that ϕ(B ′) ⊂ B(a, ε) and whose restriction to B(b, ε)
is a translation that maps B(b, ε) onto B(a, ε). It is now easy to check that f
has all the properties we looked for.

5.2. Construction of parabolic uqr-maps

Here we give an example of a global non-injective uqr map that has a parabolic
fixed point.

Theorem 5.2. There exists a uqr-map f : R
n → R

n
having a parabolic

fixed point, such that the Fatou set of f consists of one completely invariant
parabolic basin of attraction and the Julia set of f is a Cantor set.

To be more precise, in what follows we will construct a uqr map that behaves
around one of its fixed points like the translation x �→ x + 1 near infinity. Our
construction is based on the conformal trap technique introduced by Iwaniec
and Martin in [5] and developed further in [10], [11].
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We start the construction with an arbitrary non-injective quasiregular map
f : R

n → R
n
. Let x0 ∈ R

n
be a point such that the following two properties

hold:

(1) The preimages {x1, . . . , xd} = f −1(x0) are all disjoint and are not branch
points.

(2) There is a small ball U0 = B(x0, r) such that f −1(U0) has pairwise
disjoint components U1, . . . , Ud and such that f : Uj → U0 is injective
for 1 ≤ j ≤ d.

We may suppose that x1 = x0, that is, f fixes this point x1. Otherwise,
when x0 is not one of its preimages, then it suffices to consider the map x �→
f (x)+ (x1 − x0) instead of f . In the first step we modify our map in order to
make f behave like the rotation

R(y) = R(y1, y2, . . . , yn) = (−y1,−y2, y3, . . . , yn)

near x1. For convenience, we assume that x1 = 0, to avoid the use of a further
translation when applying R. Choose a ball B(x1, τ ) ⊂ U1 and a second one
B(x1, ε) ⊂ B(x1, τ ) ∩ f (B(x1, τ )). Then, using Sullivan’s quasiconformal
version of the Annulus Theorem [25], we can modify f so that f = Id in
B(x1, ε) and so that f remains unchanged outside B(x1, τ ). In what follows
we will work with the quasiregular mapping f1 = R ◦f . It has the properties:

(1) f1 is the rotation R in the ball V1 = B(x1, ε), and

(2) f −1
1 (V1) consists of pairwise disjoint components V1, V2, . . . , Vd such

that f1 : Vj → V1 is injective for 1 ≤ j ≤ d. Note that Vj ⊂ Uj for all
j with 1 ≤ j ≤ d.

Take now a ball B such that x1 ∈ ∂B and 2B ⊂ V1, such that y1 > 0
throughout B. Here, if B = B(ζ, ρ), we write 2B = B(ζ, 2ρ). Denote by �j

the preimage of 2B in Vj (j = 2, . . . , d) and choose further balls Bj ⊂ �j

with xj ∈ ∂Bj . Appealing a second time to Sullivan’s quasiconformal version
of the Annulus Theorem [25], we modify f1 to a new map g1 so that

(1) g1 = f1 in the complement of �2 ∪ . . . ∪ �d and

(2) g1 : Bj → B conformal with g1(xj ) = x1 for j = 2, . . . , d.

In the final step we create the conformal trap: Let& be a conformal mapping
which exchanges the ball B with its complement. Then the mapping we looked
for is g = & ◦ g1. The dynamical properties of this mapping are those of the
mapping of [5] except that the basin of attraction is parabolic. We only verify
the properties of g important for our purposes, namely:
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Proposition 5.3. The mapping g : R
n → R

n
is uqr and, if we conjugate

g by a Möbius transformation sending the fixed point x1 to infinity, then g

becomes a translation near infinity.

Proof. The uniform control of the dilatation is a consequence of the con-
formal trap. In fact, it suffices to follow the orbit of an arbitrary given point
x ∈ R

n
. Observe first that g(B) ⊂ B and that g restricted to this ball B is the

composition of the rotation R with the conformal inversion &. So, the map
x �→ gn(x) is conformal in B for every n ∈ N.

Let B1 = R(B) and suppose that x is in the complement of B1 ∪· · ·∪Bd =
g−1

1 (B). Then g1(x) �∈ B and therefore g(x) ∈ B. This means that for those
points x, the first step x �→ g(x) is not conformal, but it ends in the ball B and
this yields that all the following applications of g are conformal.

Consider finally a point x ∈ B1∪· · ·∪Bd . Then x �→ g(x) is also conformal.
Now two cases may occur: either the image g(x) ∈ B1 ∪ · · · ∪Bd and then the
next application of g will also be conformal. The other possibility is g(x) �∈
B1 ∪· · ·∪Bd . Then we are in the above situation and we see that after (at most)
one more application of g, where the orbit gains some dilatation, we land in B

and then we never leave this ball and have a conformal orbit. This shows that
g and all its iterates gn have the same dilatation.

The verification that x1 is parabolic can be done in the following way: The
mapping g is conformal around x1 and so, by Liouville’s Theorem, is the
restriction of a Möbius transformation. Since B is an attracting petal and B1

is a repelling one, this Möbius transformation must be parabolic.

6. Linearizations and dynamics of the branch points

6.1. Non-linearizable parabolic dynamics

Recall that Leau and Fatou showed that a holomorphic mapping f can be
conformally linearized in each parabolic petal U , meaning that there is ϕ

defined and univalent on U ∩ f −1(U) with

(ϕ ◦ f )(z) = ϕ(z) + 1 for all z ∈ U ∩ f −1(U)

(see, e.g., [18]). Our aim here is to establish that the quasiregular analogue is
false in dimension n = 3.

Theorem 6.1. In dimension n = 3, there are uqr maps with parabolic fixed
point that cannot be quasiconformally linearized in their attracting parabolic
petal U , i.e., there is no quasiconformal mapping ϕ so that (ϕ ◦ f )(x) =
ϕ(x) + 1 holds in U ∩ f −1(U).
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We prove this result by modifying the examples obtained in the previous
section so that they will behave like the quasiconformally wild parabolic map-
pings of [14]. We use the following properties of these latter mappings.

Proposition 6.2. There is a uniformly quasiconformal map h of H3 =
{x3 > 0} onto itself, extending to a self-homeomorphism of the closure of H3,
whose restriction to {x3 = 0} is the translation x = (x1, x2, x3) �→ T (x) =
(x1 + 1, x2, x3), which is topologically conjugate to this translation but which
does not admit a quasiconformal linearization in V = {x1 > 0} ∩ H3.

Proof. The maps of [14] are uniformly quasiconformal mappings h of
R3 that are obtained by homeomorphic conjugation of the translation T . It is
shown in [14] that these maps do not admit a quasiconformal conjugation to
this translation and an inspection of the proof given there shows that this result
is local: h does not admit a quasiconformal linearization in V .

The explicit construction of these maps (which goes back to Tukia) shows
that h preserves the half-space H3. The uniformly quasiconformal map of
the plane h|∂H3 admits a quasiconformal conjugation to a translation [21],
[22]. Since moreover every plane quasiconformal map can be extended to a
quasiconformal map of H3 (see for example [26]) we can conjugate the whole
map h|H3 to a new map that has all the properties mentioned in Proposition
6.2.

Proof of Theorem 6.1. Let f be a uqr mapping of R
3

with parabolic fixed
point ∞ such that f is the translation T outside some ball B (cf. Proposition
5.3). Since f is a translation near ∞ it preserves a half-space H ⊂ R3 \ B

and is the translation T there. We may suppose that H = H3. This allows to
consider a new map:

g(x) :=
{
h(x) for x ∈ H3,

f (x) elsewhere,

where h is the map of Proposition 6.2. It is clear now that g is uqr, that
∞ is a parabolic fixed point of this mapping and that it does not admit a
quasiconformal linearization in the attracting petal.

6.2. Linearization at attractors and repellors

In contrast to the parabolic case, a uqr map can be quasiconformally linearized
near attractors and repellors. More precisely, Hinkkanen and Martin [4] showed
that if x0 is say a repelling fixed point of f ∈ UQR(R

n
), then there is a global

quasiconformal map " such that "(0) = x0 and

(9) f ◦ "(y) = "(2y) for y close to 0.
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Their proof involves topological methods which do not allow one to get a
quantitative result. In fact, it turns out that the dilatation of " does depend on
the map f and not only on its dilatation [17]. We show now that the natural
candidates of the linear model are the elements of the infinitesimal space since
we get a conjugacy between the map and its generalized derivative that has at
most the dilatation of the map f . If f is holomorphic, then the next result is
precisely the Koenigs Theorem.

Theorem 6.3. Let f be a K-uqr map and let x0 = 0 be an attracting or
repelling fixed point of f .

(i) If x0 is an attracting fixed point of f , let � be the component of Ff con-
taining x0. Then there is aK-quasiregular map" of� and a generalized
derivative ϕ ∈ Df (x0) such that

" ◦ f = ϕ ◦ "

holds in �.

(ii) If x0 is a repelling fixed point of f , there is a K-quasiregular map " of
Rn and a generalized derivative ϕ ∈ Df (x0) such that

f ◦ " = " ◦ ϕ

holds in a neighborhood of the origin.

Proof. Suppose that x0 = 0 is an attracting fixed point of f , and let � be
the component of Ff containing x0. Then we may suppose that f is injective
on B ⊂ � and furthermore that the uniform distortion control (6) is valid for
every r ∈]0, 1[. It follows that for every k ≥ 1 there is ρk > 0, with ρk → 0
as k → ∞, such that

"k(Sn−1) = 1

ρk

f k(Sn−1) ⊂ A

(
1

K∗ ,K
∗
)
.

Therefore, the sequence ("k)k is normal in B and the limit " : B → � of a
convergent subsequence "kj is a quasiconformal map in B. Observe that

1

ρkj

f kj+1(z) = 1

ρkj

f (ρkj"j (z)).

Extracting a subsequence if necessary, we find a generalized derivative ϕ ∈
Df (x0) such that limj→∞ 1

ρkj

f (ρkj z) = ϕ(z) uniformly for z in a neighbor-

hood of the origin. Now, passing to the limit in the above identity, one obtains
" ◦ f = ϕ ◦ ". Hence " ◦ f n = ϕn ◦ ". Using this identity the map " can
be extended in the usual way to a quasiregular map in �.
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Suppose then that x0 = 0 is a repelling fixed point of f . Again we may
assume that f is injective on B and furthermore that the uniform distortion
control (6) is valid for every r ∈]0, 1[. It follows that for every k ≥ 1 there is
ρk > 0, with ρk → ∞ as k → ∞, such that

"k(Sn−1) = f k

(
1

ρk

Sn−1

)
⊂ A

(
1

K∗ ,K
∗
)
.

Therefore, the sequence ("k)k is normal in B and the limit " : B → � of a
convergent subsequence "kj is a quasiconformal map in B. Observe that

f kj+1(z/ρkj ) = f kj

(
1

ρkj

(
ρkj f (z/ρkj )

))
.

Extracting a subsequence if necessary, we find a generalized derivative ϕ ∈
Df (x0) such that limj→∞ ρkj f (z/ρkj ) = ϕ. Now, passing to the limit in the
above identity, one obtains f ◦" = " ◦ ϕ. Hence f n ◦" = " ◦ ϕn, where ϕ

is loxodromic, fixing 0 and ∞, and having 0 as its repelling fixed point. Using
this identity the map " can be extended to a global quasiregular map in Rn.
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