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Abstract—Triggered by the increased fluctuations of renewable
energy sources, the European Commission stated the need
for integrated short-term energy markets (e.g., intraday), and
recognized the facilitating role that local energy communities
could play. In particular, microgrids and energy communities
are expected to play a crucial part in guaranteeing the balance
between generation and consumption on a local level. Local
energy markets empower small players and provide a stepping
stone towards fully transactive energy systems. In this paper
we evaluate such a fully integrated transactive system by (1)
modelling the energy resource management problem of a mi-
crogrid under uncertainty considering flexible loads and market
participation (solved via two-stage stochastic programming), (2)
modelling a wholesale market and a local market, and (3)
coupling these elements into an integrated transactive energy
simulation. Results under a realistic case study (varying prices
and competitiveness of local markets) show the effectiveness of
the transactive system resulting in a reduction of up to 75% of the
expected costs when local markets and flexibility are considered.
This illustrates how local markets can facilitate the trade of
energy, thereby increasing the tolerable penetration of renewable
resources and facilitating the energy transition.

Index Terms—Demand response, local electricity markets, mi-
crogrids, transactive energy, smart grids, stochastic optimization.

NOTATION

Indices:

e energy storage systems (ESSs)
i distributed generation (DG) units
l,m, s, t, v loads, markets, scenarios, periods, electric vehicles (EVs)
Sets and subsets:

ΩDG, Ωload set of DG units/loads

Ωd
DG,Ωnd

DG subset of dispatchable/non-dispatchable DG units
Ωcurt

load
,Ωinte

load
subset of curtailable/interruptible loads

Ωshift

load
subset of shiftable loads

Parameters:

CDG generation cost of DG unit (m.u./kWh)
CESS− ,CEV − discharging cost of ESS/EV (m.u./kWh)
Ccurt,Cinte,Cshift load curtailment/interruption/shift cost (m.u./kWh)
Cimb grid imbalance cost (m.u./kWh)
MP electricity market price (m.u./kWh)
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Ne, Ni, Nl number of ESS/DG/loads
Nm, Ns, Nv number of markets/scenarios/EVs
Pcurtmax maximum load reduction of Ωcurt

load
(kW)

PDGmax/min
maximum/minimum power of dispatchable DGs (kW)

PDGnd
forecast power of non-dispatchable DGs (kW)

P
ESS/EV +

max
maximum charge rate of ESSs/EV (kW)

P
ESS/EV −

max
maximum discharge rate of ESSs/EV (kW)

PESSmax/min
maximum/minimum energy capacity of ESSs (kWh)

PEVmax/min
maximum/minimum energy capacity of EVs (kWh)

PEVtrip
forecasted energy demand for EVs’ trip (kWh)

Pload forecasted active power of loads (kW)
Poffermax/min

maximum/minimum energy offer in markets (kW)

Pshift forecasted power of Ωshift

load
in Tshift (kW)

Pshiftmax
maximum load shifted of Ωshift

load
in Tshift (kW)

T number of periods

Tshift shift interval of Ωshift

load

T start
shift

/T end
shift

earliest/latest possible period for load shift of Ωshift

load

ηEV +/EV − charging/discharging efficiency of EVs

π(s) probability of scenario s
Variables:

Etotal total day-ahead solution cost (m.u.)
MT total day-ahead market transactions (m.u.)
OC total day-ahead operation cost (m.u.)
pDG active power generation of DGs (kW)
pESS+ /pESS− active power charge/discharge of ESSs(kW)
pESS energy stored in ESSs (kWh)
pEV + /pEV − active power charge/discharge of EVs (kW)
pEV energy stored in EVs (kWh)
pinte active power interruption of Ωinte

load
(kW)

pcurt active power reduction of Ωcurt
load

(kW)

pshift shift active power of Ωshift

load
in Tshift (kW)

pshift− /pshift+ reduced/increased power of Ωshift

load
in Tshift (kW)

psell / pbuy power sell/buy offer (bid) to the market (kW)
pimb+/pimb− exceeded/non-supplied power of DGs units (kW)
Binaries:

xDG state of DG units
xESS−/EV − discharging state of ESSs/EVs

xESS+/EV + charging state of ESSs/EVs

xinte state of interruptible load
xsell/xbuy sell/buy offer to a market

I. INTRODUCTION

THE energy transition foresees an increased adoption

of fluctuating renewable generation, which needs to be

matched by increased demand-side flexibility and storage.

Current European electricity systems employ exchanges for

large-scale ancillary service providers and the participation in

wholesale (WS) markets is only possible for small generators

when associated to energy aggregators or brokers [1].
One solution for the high penetration of distributed gen-

eration (DG) is to expand the distribution grid, however,

the costs could be prohibitive [2]. Another solution is to

handle technical constraints with active control to manage

local resources, storage systems and demand response (DR)

programs [3], however, this may raise privacy concerns [4].
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In this context, moving towards a transactive energy (TE)

system, defined by the GridWise Architecture Council as

“a set of economic and control mechanisms that allow the

dynamic balance of supply and demand across the entire

electrical infrastructure using value as a key operational

parameter” [5], seems to be a promising step to fulfil the

needs of the current situation. A TE framework envisages

that mid- to small-sized generation and consumption can

automatically negotiate their actions with each other using

effective energy resource management (ERM) systems and

electronic market algorithms allowing a dynamic balance of

supply and demand. Despite the efforts made so far, fully TE

systems at the distribution and retail market level are largely

missing mainly due to the complex scenario that such systems

pose [6], [7]. In such conditions, local energy communities

have been recognized by the European Commission (EC) as

a potential way to perform energy management. Local en-

ergy communities have been successfully deployed in several

countries [8], [9] with diverse characteristics (e.g., population

size, location, type of renewable used). This variability gives

raise to different needs and therefore an opportunity to trade

and energy surplus. Moreover, the EC has stated the need

for an adaptation of market and grid operation rules to the

more flexible nature of the market [8]. In fact, this leads to

the ultimate need for a more dynamic marketplace that goes

from the intraday timescale towards the intrahourly scale. This

flexibilization is necessary in order to cope with the large

variation of renewable generation at near real-time, while still

allowing the involved players to establish some commitments

in advance (e.g., day-ahead or some hours-ahead in a smart

grid perspective).

Therefore, the European Commission has declared that

integrated short-term local markets (LMs), as we discuss in

this paper, are still missing [8]. A LM is a platform on which

individual consumers and prosumers trade energy supporting

regional scopes such as a neighbourhood environment [10].

Advantages of LMs include that (1) more self-generated

electricity can be consumed locally, which alleviates transport

losses [11] and reduces the risk of backfeeding at MV/LV

transformers; (2) the local economy is strengthened, which

provides new opportunities for local industry and regional

business, and (3) they support the development of the smart

grid [12]. While system components have been addressed in

related work (Sect. II), our work integrates local optimization

with both local and global exchange.

This paper presents an integrated simulation environment

of energy communities including the market clearing process

for WS and LMs with traditional energy resource optimization

approaches, in order to analyse the impact of TE management

and LMs in power systems. We contribute to the state of the

art in the following ways:

• Adopting an integrated model for simulation which enables

assessing the impact of LMs in a TE environment. The

proposed framework, besides providing a new model for

LMs, allows evaluating the effects of a large number of

participants (MGs1) in the electricity market as well as to

refine business models on a system and small player level.

• To achieve this objective, a two-stage stochastic program-

ming model is implemented to solve the day-ahead energy

resource management (ERM) problem under uncertainty

taking into account MG context, flexibility and market

transaction either to buy or sell energy.

• Considering the expected needs, the WS and LMs are

executed, bringing together different aggregators as well as

small players that desire to participate in market negotiations

directly.

• Finally, we contribute with an evaluation of this paradigm

through simulation, with comparison to baseline DR allo-

cations inspired by current markets.

In this paper, we hypothesize that players receive a competi-

tive advantage when being able to exchange energy with their

peers (i.e., LMs), outperforming two alternative scenarios:

without market access (current situation in many countries),

and when it is possible to only trade in the WS market directly

or through a market broker.

II. RELATED WORK

Electricity markets are undergoing changes to adapt to the

high penetration of renewable resources; since consumers are

becoming prosumers, traditional passive and static supply con-

tracts become insufficient, as they cannot adequately capture

the fluctuating value of energy and flexibility. Two-sided mar-

kets have been adopted in electric power systems to provide

more dynamic and efficient allocations, e.g., local energy

markets were introduced as a way to cope with fluctuating

renewable energy sources [13]. Recently, LMs were identified

as promising to reduce costs, effectively managing DR and

supporting the development of the smart grid [12], yet lacking

quantitative support. Our work complements this line of work

by providing a numerical comparison of how LMs can reduce

costs under different scenarios.

Recent works have proposed new market solutions to cope

with DR, for example, by proposing an extension of the WS

market with a real-time market that will offer transmission

system operators additional balancing resources [14]. In con-

trast, our work integrates local optimization with bidding op-

tions in both local and WS markets. Another related proposal

are day-ahead micro-markets, whose objective is to organize

local resources using market-based rules to participate in

aggregated form in the day-ahead WS market [15]. They

assume a micro-market operator whose aim is to maximize

the profits of the MG, similar to the ERM in our WS market

model. However, in contrast we add a new LM as a subsequent

phase that happens after the WS market is cleared.

Few works have tackled the problem of modelling the

bidding process for small participants. For example, Odegaard

et al. [16] proposed a model for an aggregator that can sell

and buy electricity on behalf of a group of prosumers in a

1In this paper, a microgrid (MG) refers to a distribution system with loads
and DG, that can be operated in a controlled and coordinated way. The MG
considered in our case study represents an energy community connected to
the rest of the grid and controlled by an aggregator [8], [9].
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Fig. 1. The proposed methodology starts with an initialisation step (0) that generates the scenario, followed by six steps where the MG solves the ERM
scheduling and can trade in two different markets, first a WS market after which there is an updated forecast, a new scheduling is performed and now the
MG can trade in a LM. At the end of the simulation, we assume that there is an imbalance market that accounts for any deviation.

WS market. In contrast, we present an integrated modelling

of the bidding process and market modelling for both local

and WS markets.
Simulation environments for power systems and energy

markets [1] have provided valuable insights without the bur-

den of risking existing infrastructure, however, current tools

lack the capacity to accurately model both the ERM problem

and the market simulation. Here, we show numerical results of

a simulation that integrates the ERM considering market bids

(in local and WS markets) and comparing different scenarios

highlighting the benefits (i.e., reducing costs) of LMs. Next,

we describe the integrated framework that considers LM.

III. INTEGRATED TRANSACTIVE ENERGY SYSTEM

This section presents the main contribution of this work

and is divided into three main subsections introducing the

methodology, mathematical model and markets.

A. Methodology

The proposed framework comprises the following sequence

of steps, as depicted in Fig. 1. Our experiments will compare

three different cases: no market access (step 1), only WS

market access (steps 1-3), and WS and LMs (steps 1-6).

0) Each scenario has uncertainty from three main sources:

generators, loads and markets (see Section III-B1).

1) The first step is to solve the ERM day-ahead scheduling by

using two-stage stochastic programming including bidding

options for a WS market, if available.

2) The day-ahead WS market takes place and provides a

response to every participant (i.e., if the bids/asks were

accepted or not). Since this is a WS market, we assume

the trading volume to be greater than in the LM.

3) Based on the market clearing, a re-scheduling is computed.

WS market forecasts are updated to reflect information

arriving as time moves closer to the delivery interval.

If the LM is not available, the simulation terminates by

computing the residual imbalance costs.

4) If the LM is available, the next step computes a second

ERM including bidding options in the LM, exploiting the

updated forecast and thus aiding short-term balancing.

5) The LM is cleared assuming that only local MGs can trade.

6) A final re-scheduling is performed having as a result the

expected costs considering imbalance penalties.

B. Scheduling and Bidding Optimization under Uncertainty

The uncertainty modelling and the mathematical formula-

tion of ERM problem are described below.
1) Uncertainty representation: In this paper, to overcome

the lack of historical data to build accurate case-studies, we

assume that a correct set of scenarios that simulate real-world

behaviour can be generated considering forecast and associ-

ated errors based on previous experiences. The uncertainty

comes from different sources such as: i) renewable generators,

ii) load profiles, and iii) market prices.

We apply the technique for scenario generation (and sce-

nario reduction) used in [17]. In a first step, a large number

of scenarios is generated by Monte Carlo Simulation (MCS).

The MCS uses the probability distribution function of the

forecasted errors (which can be obtained from historical

data) to create a number of scenarios according to Xs(t) =
xforecast(t) + xerror,s(t), where xerror,s is a zero-mean noise

with standard deviation σ. To simplify, all forecast errors for

the uncertain inputs are represented by a normal distribution

function. A high accuracy is obtained by using a large set

of scenarios. However, this increase in accuracy comes with

a computational cost associated with the increase in the

number of variables considered, and therefore, including all

scenarios may turn the model into a large-scale optimization

problem [17].

To handle the computational burden and still obtain accurate

results, a standard scenario reduction technique that excludes

scenarios with low probabilities and combines those that are

close to each other in terms of statistical metrics is applied

(for a complete description see [17]). In this way, the size
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of the problem is reduced without losing the main statistical

characteristics of the initial dataset.

2) Two-stage stochastic model: The first-stage decisions

are the WS and LM offers as well as the dispatchable gener-

ation schedules. The second-stage decisions are the ESS/EV

charging and discharging decisions and DR requests. The later

decisions can be done close to real-time in next day but first-

stage decisions need to be addressed day-ahead due to market

closing times. The objective function minimizes the expected

day-ahead operation costs over a scheduling horizon T (i.e.,

the next 24 hrs) [17]:

Minimize Etotal = OC +MT (1)

where OC represents the costs associated with the manage-

ment of the resources:

OC =
T
∑

t=1

∑

i∈Ωd
DG

pDG(i,t) · CDG(i,t)+

Ns
∑

s=1

T
∑

t=1























































∑

i∈Ωnd
DG

pDG(i,t,s) · CDG(i,t)+

Ne
∑

e=1

pESS− (e,t,s) · CESS− (e,t)+

Nv
∑

v=1

pEV − (v,t,s) · CEV − (v,t)+
∑

l∈Ωcurt
load

pcurt(l,t,s) · Ccurt(l,t)+

∑

l∈Ωinte
load

pinte(l,t,s) · Cinte(l,t)+

∑

l∈Ω
shift

load

pshift−(l,t,s) · Cshift(l,t)+

Nl
∑

l=1

pimb−(l,t,s) · Cimb−(l,t)+

Ni
∑

i=1

pimb+(i,t,s) · Cimb+(i,t)























































· π(s)

(2)

while MT is the term that describes the expected market

transactions in any given number of markets:

MT =
Ns
∑

s=1

T
∑

t=1

(

Nm
∑

m=1

(

pbuy(m,t) − psell(m,t)

)

·MP(m,t,s)

)

· π(s).

(3)

The objective function is subject to the following con-

straints:

a) Energy balance constraint: states that the amount of

generated energy should be equal to the amount of consumed

energy at every instant t. This constraint also includes the

expected energy that may be bought/sold in the markets:

∑

i∈Ωd
DG

pDG(i,t) +
∑

i∈Ωnd
DG

pDG(i,t,s)+

Nv
∑

v=1

(pEV −(v,t,s) − pEV +(v,t,s))+

Ne
∑

e=1

(pESS−(e,t,s) − pESS+(e,t,s))+

Nl
∑

l=1

(pcurt(l,t,s) + pinte(l,t,s) + pshift−(l,t,s))−

Nl
∑

l=1

(pload(l,t,s) + pshift+(l,t,s)) +
Nm
∑

m=1

(pbuy(m,t) − psell(m,t))+

∑

i∈Ωnd
DG

pimb+(i,t,s) −
Nl
∑

l=1

pimb−(l,t,s) = 0 ∀t, ∀s.

(4)

Notice that pimb+/pimb− represent the imbalance energy that

occurs when generation is higher than demand or vice versa.

By putting a high cost to this imbalance energy, we force the

model to avoid this condition as much as possible.

b) DG units constraints: Maximum and minimum power

limits can be formulated as:

pDG(i,t) ≤ xDG(i,t) · PDGmax(i,t),

pDG(i,t) ≥ xDG(i,t) · PDGmin(i,t) ∀t, ∀i ∈ Ωd
DG

(5)

where xDG are binary variables representing the status of dis-

patchable DG units (i.e., connected/disconnected status). On

the other hand, non-dispatchable DGs are modelled according

to the generated scenarios:

pDG(i,t,s) = PDGnd(i,t,s) ∀t, ∀i ∈ Ωnd
DG, ∀s. (6)

c) Energy storage systems constraints: Constraints on

two binary variables per ESS ensure that charging and dis-

charging do not occur simultaneously:

xESS+(e,t,s) + xESS−(e,t,s) ≤ 1 ∀t, ∀e, ∀s. (7)

The maximum discharge limit for each ESS is given by:

pESS−(e,t,s) ≤ P
ESS−

max(e,t)
· xESS−(e,t,s) ∀t, ∀e, ∀s. (8)

The maximum charge limit for each ESS is given by:

pESS+(e,t,s) ≤ P
ESS+

max(e,t)
· xESS+(e,t,s) ∀t, ∀e, ∀s. (9)

The maximum ESS capacity limit is given by:

pESS(e,t,s) ≤ PESSmax(e,t) ∀t, ∀e, ∀s. (10)

The minimum ESS stored energy to be guaranteed at the end

of each period can be represented such as:

pESS(e,t,s) ≥ PESSmin(e,t) ∀t, ∀e, ∀s. (11)

The ESS balance can be formulated as:

pESS(e,t,s) = pESS(e,t−1,s) + ηESS+(e) · pESS+(e,t,s)

− 1
η
ESS−(e)

· pESS−(e,t,s) ∀t, ∀e, ∀s. (12)

d) EVs constraints: Two binary variables are used to

guarantee that EVs do not charge and discharge simultane-

ously:

xEV +(v,t,s) + xEV −(v,t,s) ≤ 1 ∀t, ∀v, ∀s. (13)

The maximum discharge limit for each EV is given by:

pEV −(v,t,s) ≤ P
EV −

max(v,t)
· xEV −(v,t,s) ∀t, ∀v, ∀s. (14)

The maximum charge limit for each EV is given by:

pEV +(v,t,s) ≤ P
EV +

max(v,t)
· xEV +(v,t,s) ∀t, ∀v, ∀s. (15)

The maximum EV capacity limit is given by:

pEV (v,t,s) ≤ PEVmax(v,t) ∀t, ∀v, ∀s. (16)

The minimum EV stored energy to be guaranteed at the end

of each period can be represented such as:

pEV (v,t,s) ≥ PEVmin(v,t) ∀t, ∀v, ∀s. (17)

The EV balance can be formulated as:

pEV (v,t,s) = pEV (v,t−1,s) − PEVtrip(v,t)+
ηEV +(v) · pEV +(v,t,s) −

1
η
EV −(v)

· pEV −(v,t,s)

∀t, ∀v, ∀s.

(18)
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e) Demand response: Flexibility in the loads is modelled

by direct load control programs in which consumers voluntar-

ily participate and receive a monetary compensation if their

loads are reduced, disconnected or shifted [18]. The types of

flexible loads used in this model are described below:

• Curtailable loads.

The maximum active power that each load can be reduced

is formulated as:

0 ≤ pcurt(l,t,s) ≤ Pcurtmax(l,t,s) ∀t, ∀l ∈ Ωcurt
load, ∀s. (19)

• Interruptible loads.

Interruptible loads can be disconnected at any given time for

a compensation cost. A binary variable is used to control

the on/off status of the considered loads:

pinte(l,t,s) = Pload(l,t,s) · xinte(l,t,s) ∀t, ∀l ∈ Ωinte
load, ∀s. (20)

• Shiftable volume loads.
Shiftable loads allow a shift or modification in their profiles
as long as the total volume over such shift period is
respected. Eq. (21) is used to accomplish that condition:

T
start
shift ;T

end
shift ∈ Tshift(l) ∀l ∈ Ωshift

load

T end
shift
∑

T start
shift

pshift(l,t,s) =
T end

shift
∑

T start
shift

Pshift(l,t,s)

∀t ∈ Tshift, ∀l ∈ Ωshift

load, ∀s.

(21)

Moreover, the maximum quantity of shiftable load is giving

by the follow set of equations:

pshift(l,t,s) ≤ Pshift(l,t,s) + Pshiftmax(l,t,s),
pshift(l,t,s) ≥ Pshift(l,t,s) − Pshiftmax(l,t,s),

∀t, ∀l ∈ Ωshift

load.

(22)

The negative (i.e., the reduction of load) or positive shift
(i.e., the increase in load) for each period is captured using
the next set of equations:

pshift+(l,t,s) ≥ 0 ∀t, ∀l ∈ Ωshift

load, ∀s, (23)

pshift−(l,t,s) ≥ 0 ∀t, ∀l ∈ Ωshift

load, ∀s, (24)

Pshift(l,t,s) + pshift+(l,t,s) = pshift(l,t,s) + pshift−(l,t,s)

∀t, ∀l ∈ Ωshift

load, ∀s.
(25)

f) Market/bidding constraints: Market rules due to min-

imum required amount to access or strategical planning.

pbuy(m, t) ≤ P offermax
(m, t) · xbuy(m,t) ∀t, ∀m,

pbuy(m, t) ≥ P offermin
(m, t) · xbuy(m,t) ∀t, ∀m,

psell(m, t) ≤ P offermax
(m, t) · xsell(m,t) ∀t, ∀m,

psell(m, t) ≥ P offermin
(m, t) · xsell(m,t) ∀t, ∀m.

(26)

where xsell(m,t) +xbuy(m,t) ≤ 1 ∀t are binary variables used

to guarantee that the market transactions in each period are

unique. Each MG optimizes its resources and if necessary

makes bids in the WS and LMs which we described in the

next section.

C. Markets

In our experiments, simultaneous auctions are held for each

power delivery interval corresponding to hours of the day.

Each bid/ask is a tuple < t, q, p > where a participant (i.e.,

MG) bids for q energy units at a maximum price p for timeslot

t. We model markets as a clearing house [19], i.e., clearing

happen at a fixed time once at the end of the trading period.

Traders submit bids and asks until the end of the trading period

and these are used to determine the supply and demand curves

for energy. The price at which supply equals demand is known

as the equilibrium price. Models on how traders decide on

what offers to make are known as price formation models [19].

Zero intelligence (ZI) agents [20] are a well-known trading

approach, in particular ZI-U (unconstrained) agents pick a bid

or ask from anywhere within a given price range and ZI-C

(constrained) agents2 pick offers constrained to be profitable

if accepted; they are not allowed trade with directly negative

results, that is, to sell below cost or buy above value.

In our experiments, we simulate ZI-C agents that make

bids and asks, this is, their offers are constrained in a range

(pmin, pmax). There are two main differences between the

considered markets: 1) the information available before the

market clearing, i.e., the LM always happens after the WS

market was cleared; 2) the volume and liquidity of energy

traded in each market, i.e., LMs presents smaller amounts of

energy traded, as well as liquidity than the WS market.

LMs are inherently diverse, and the smaller scale gives

rise to large diversity in the possible composition of the

participants, which contrasts national markets in which local

fluctuations average out. In order to capture the LM charac-

teristics that are most relevant for the local optimisation, we

evaluate different success rates while controlling for expected

market price. The success rate represents the probability of

the market to accept the bid, as a fundamental and abstract

model subsuming market liquidity and price competition. By

varying success rate, we get insights under different situational

competitiveness, independent of whether it is caused by a

lack of competition, an abundance of complementary market

participants, or other factors. We induce the desired success

rate in experiments by varying the competing offer distribution

in the market.

IV. CASE STUDY

Our proposed methodology is tested using a case

study3 based on a 25-bus MG that represents a residential

energy community with 22 DGs (5 dispatchable units and 17

PV generators), 2 ESSs, 34 EVs, and 90 households with loads

of different classes including inflexible, curtailable, shiftable

and interruptible loads. Table I outlines the resources available

in the MG.

With these available devices, we generate the required data

for one week of simulation based on a real forecast of energy

generation and load consumption. To summarize, prices of

2Gode and Sunder [20] showed that a market consisting of ZI-C agents
produced results similar to the allocative efficiency of a market with human
traders.

3Published in: http://www.gecad.isep.ipp.pt/ies/public-data/ites
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DG/loads and household consumption patterns used in the

paper are available online3. The solar radiation forecast was

based on the profiles from a regular week.4 The selected

week includes four regular days (i.e., following a typical solar

radiation pattern), and three atypical profiles (corresponding

to cloudy days). Regarding the load, one typical pattern was

used to generate the forecast of consumption of week days,

while a different pattern was used for weekend days. EV

schedules were created using the tool presented in [21]. WS

market prices correspond to real data taken from the EPEX

Spot market in the week of August 7-13, 2017.5 LMs were

simulated assuming 99 other MGs with similar characteristics

(capacity, forecasts) to the one described above, this is, a

LM is composed of 100 participants (MGs) and each MG

is composed of different loads, generators and ESS.

The uncertainty was incorporated in a first step by creating

5000 scenarios for PV generation, load consumption and

market price variations. For the PV uncertainty generation, an

error of 15% was used for regular days, while an error of 20-

25% was used for the cloudy days (to add more uncertainty).

For the load and market prices, errors of 10% and 20% were

used respectively. The errors follow a normal distribution

according to Sect. III-B1. In a second step, the number of

scenarios was reduced to 100 scenarios with the method from

[17].

The research work was developed using a computer with

an Intel Xeon W3565 processor and 6 GB of RAM running

Windows 10. MATLAB 2014b and TOMLAB 8.1 64 bits with

CPLEX solver (version 12.5) were used to solve the two-stage

stochastic model, whereas JAVA JDK1.7 was used to simulate

market clearing algorithms.

TABLE I
AVAILABLE ENERGY RESOURCES: CAPACITY OF THE ENERGY

RESOURCES, FORECAST RANGE OF VARIABLE INPUTS AND LIMITS

CONSIDERED IN THE WS AND LM

Energy Resources Prices (m.u./kWh) Capacity (kW) Units

DGs 0.07-0.11 10-100 5

External Supplier 0.074-0.16 0-150 1

ESS
Charge - 0-16.6

2
Discharge 0.03 0-16.6

EV
Charge - 0-111

34
Discharge 0.06 0-111

Loads Inflex - 6.47-21.9 15

DR

Curtailable 0.0375 4.06-8.95 30
Interruptible 0.085 6.26-14.03 20
Shiftable 0.01 3.51-8.80 25

Forecast (kW)

Photovoltaic - 0-106.81 1 (17agg.)
Load - 35.82-83.39 90

Limits (kW)

WS Market 0.021-0.039 10-85 1
Local Market - 2-40 1

4Taken from http://meteo.isep.ipp.pt
5Available online in https://www.epexspot.com/

V. EXPERIMENTS AND RESULTS

We applied our methodology to the case study presented in

Section IV. First, we present results on a base case without

market access and later we evaluate the impact of adding WS

and LMs. In each case we consider two distinct flexibility

cases, without flexibility (i.e., all the loads are inflexible) and

with flexibility (as described in Table I). Our experimental

design is intended to show that improvements persist under

different conditions (e.g., variations in prices due to market

arbitrage, lower liquidity and shorter time to delivery), and

that they are not simply due to, e.g. prices being equal.

A. Scenario: base case (no market access)

The base case assumes that the MG has no access to any

market, rather relies on an external supplier.6 The stochastic

scheduling model is applied to optimize the resources and

minimize the costs over the 7 days of simulation. Table II

presents the total cost by using only WS market, and both

WS and LM (WS+LM with 75% success rate and equal

prices for both markets) while contrasting availability and

unavailability of flexible loads. Improvements are calculated

w.r.t. no-flexibility and no-market-access (leftmost column).

It can be seen an improvement in all cases when the MG

has access to the LMs, i.e., highlighting the advantages

provided by local transactions. Also, it is worth noting that

the incremental improvement considering WS+LM is smaller

when flexibility loads are available. This can be explained by

the fact that flexible loads significantly contribute to decrease

operational costs, thus mitigating the improvements provided

by the LMs. On the other hand, when flexible loads are

not available, LMs are fully exploited intensifying the gains

provided by the access to them.

B. Scenario: access to WS and LM

To evaluate the impact of both markets on a MG, we analyse

different cases varying (1) the success rate, with values of

{25%, 50%, 75%, 95%}, for bids/asks to be accepted in

the LM, (2) a price difference between the WS and the

LM with values {±75%,±50%,±25%, equal}, for example,

+75% means that the LM is 75% more expensive than the

WS, and (3) the two distinct flexibility cases.

Fig. 2(a) clearly shows that the percentage of improvement

with LMs is tightly related with the success of an offer to be

accepted in the LM. The success rate can be learned by the

trader, which future work may take into consideration in the

optimisation. Regarding the price variation between WS and

LM, Fig. 2(b) shows that the MG can take advantage of this

situation achieving a higher profit when the price difference is

large. This behaviour is explained by the optimization model

which foresees whether the price is better for a sell offer (i.e.,

when the price is higher) or a buy offer (i.e., when the price

is lower).

6We established a variable tariff for the external supplier based on real
tariffs for the year 2016 provided by the Energy Services Regulatory
Authority (ERSE) in Portugal: http://www.erse.pt→electricity→tariff and
prices→Tarifas de anos anteriores→Tarifas Reguladas em 2016.
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TABLE II
COSTS USING ONLY WS MARKET, OR BOTH WS AND LM (WS+LM) WITH 75% SUCCESS RATE AND EQUAL PRICES FOR BOTH MARKETS.

IMPROVEMENTS ARE CALCULATED W.R.T. NO-FLEXIBILITY NO-MARKET-ACCESS (NO MA) REFERENCE.

No Flexibility Using flexibility
No MA WS Imp (%) WS+LM Imp (%) No MA Imp (%) WS Imp (%) WS+LM Imp (%)

day 1 72.68 41.84 42.43 31.37 56.83 60.41 16.87 32.90 54.73 27.19 62.58
day 2 48.28 34.06 29.46 26.08 45.99 42.35 12.28 24.11 50.07 23.85 50.59
day 3 47.88 25.48 46.79 19.49 59.28 41.46 13.41 24.19 49.47 24.15 49.56
day 4 87.05 57.48 33.96 44.31 49.09 79.69 8.44 45.31 47.95 42.93 50.67
day 5 61.43 30.15 50.91 28.33 53.88 54.45 11.34 28.24 54.02 27.27 55.61
day 6 56.64 25.15 55.59 23.17 59.09 49.81 12.07 29.38 48.13 22.67 59.98
day 7 44.49 21.12 52.53 16.38 63.18 38.37 13.74 15.63 64.86 17.08 61.61

418.45 235.28 43.77 189.13 54.80 366.55 12.43 199.76 52.26 185.14 55.75

Fig. 2(c) shows the total energy traded after the seven days

of simulation in the WS and LM considering price variations

in the LM. The results show that the MG mainly uses the WS

market to buy energy needed to supply its demand. On the

contrary, the MG uses the LM to buy or sell, depending on

the price. This also confirms the behaviour show in Fig. 2(b).

For instance, the MG mainly uses the LM to sell energy when

the price is high (increasing incomes) and to buy energy when

the price is low (reducing operational cost).
Regarding the behavior of LMs, Figs. 3(a) and 3(b) de-

pict the equilibria distribution of weekdays (black dots) and

weekend (grey dots) using (a) equal forecast price for both

markets and (b) +75% LM forecast price. As expected, it can

be seen that LM clearing prices were higher when the forecast

price was +75% higher than WS market. From the figures we

observe that weekend prices are in average lower than those

of weekdays. Looking at specific hours, as example we see

higher prices in h = 4 than those in h = 12 or h = 18
(weekend and weekdays). This is due to the fact that most

MGs have no PV generation at h = 4 and that EVs require

demand during the night, thus, trades in the LM are needed.

Fig. 3(c) depicts supply/demand curves of hours 1 and 23 on

two distinct days, i.e. Friday (day 5) and Sunday (day 7) where

we can observe variation on the same hour for the selected

days. These results show the high diversity of behaviours that

could be found in LM. The contributing factor is that players

bids and asks have a higher variation compared to WS market.
To summarize, our experimental results highlight that LMs

provide an efficient mechanism to reduce costs with the

following conclusions.

• If information is received after the WS market cleared

a rescheduling needs to be performed which gives an

opportunity to trade in LM.

• Accurate clearing price forecasts are needed in order to

ensure the ERM models bids accordingly.

• The added value of markets is proportional to cost differ-

ences between traders or markets.

VI. CONCLUSIONS AND FUTURE WORK

Current electricity markets lack an integrative approach

that efficiently allocates resources between stakeholders of

multiple scales (e.g., microgrids, aggregators, large-scale gen-

erators). Inspired by diverse projects working on local en-

ergy communities, we present an integrated framework that

models the problem of ERM, scheduling and bidding in

WS and LMs. This provides a short-term balancing market

in line with the ambitions of the European Commission.

Our case study analyses and highlights the potential benefits

of LMs showing improvement with accurate forecasts and

when there is a high diversity of traders in the market. The

implementation of LM in Europe is still in an embryonic

stage, which makes the study of viable alternative models

crucial to increase the active participation of consumers. This

work explores possible models for LM negotiation considering

active consumer participation, in line with the EU guidelines

and towards a more flexible power system [8]. Due to the

complexity of the matter, several assumptions have been made

that may be relaxed in future work. One key limitation of

this work is the assumption of consumers being price takers,
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Fig. 2. (a) Impact of the success rate for an offer to be accepted in the LM. A clear trend of improvement is observed when the success rate increases. (b)
Effect of LM price deviation regarding WS market price. (c) Energy traded in the markets.
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Fig. 3. Equilibria distribution in LMs for 24 hours on weekdays (black dots) and weekends (grey dots) using (a) equal forecast price for both markets and
(b) +75% LM forecast price; prices on weekdays are higher than on weekends. (c) Supply and demand curves in the LM; comparison of hour 1 on day 5
(grey) and day 7 (blue), and hour 23 on day 5 (green) and day 7 (black); curves show different behaviour for same hours on two different days.

i.e., neglecting the influence of the traded quantity on the

price. This assumption is tenable in WS markets but becomes

a coarser (albeit common) approximation in LMs. Modelling

the price elasticity (effect of price on quantity) of the market

may provide a competitive advantage to a MG in LMs [22].

In addition, our method may be taken further by learning

market and opponent parameters from experience [23], thus

reducing the need for prior knowledge and broadening the

scope of applicability into more realistic scenarios where

agents might change behaviours [24]. The modelling of tech-

nical constraints, including power flow validation and network

costs in the negotiated prices, is another research avenue.

Some works have suggested that when a considerable number

of price-sensitive loads is present, maximizing surplus is a

preferred objective over minimizing operational costs [25].

Therefore, contrasting our model with such approach will

represent another step to achieve practical implementations

of LMs.
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