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Abstract

The correlated motion of flocks is an instance of global order emerging from local interactions. An 

essential difference with analogous ferromagnetic systems is that flocks are active: animals move 

relative to each other, dynamically rearranging their interaction network. The effect of this off-

equilibrium element is well studied theoretically, but its impact on actual biological groups 

deserves more experimental attention. Here, we introduce a novel dynamical inference technique, 

based on the principle of maximum entropy, which accodomates network rearrangements and 

overcomes the problem of slow experimental sampling rates. We use this method to infer the 

strength and range of alignment forces from data of starling flocks. We find that local bird 

alignment happens on a much faster timescale than neighbour rearrangement. Accordingly, 

equilibrium inference, which assumes a fixed interaction network, gives results consistent with 

dynamical inference. We conclude that bird orientations are in a state of local quasi-equilibrium 

over the interaction length scale, providing firm ground for the applicability of statistical physics 

in certain active systems.

Animal groups moving in concert such as mammal herds, fish schools, and bird flocks show 

that in biology, just as in physics, local coordination can result in large-scale order [1–3]. 

However flocks differ from classical statistical physics in that their constituents are active: 

they constantly move by self-propulsion, pumping energy into the system and keeping it out 
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of equilibrium [4–7]. The key element is the rearrangement of the interaction network due to 

the active motion of individuals relative to each other, continuously changing their 

neighbours. Theoretical studies show that network rearrangement has major consequences, 

which include enhancing collective order, reducing from 3 to 2 the lower critical dimension, 

and affecting the critical exponents [4, 8].

However, the importance of activity must be assessed with respect to the relevant time scales 

of the system. The impact of network rearrangement depends on the interplay between its 

characteristic time scale, τnetwork, defined as the average time it takes an individual to 

change its interaction neighbours, and the local relaxation time scale, τrelax, defined as the 

time needed to relax locally the order parameter if the interaction network were fixed. If 

τnetwork ≤ τrelax, the interaction network rearranges at least as fast as the order parameter 

relaxes, and the system remains far from equilibrium. If on the other hand τrelax ≪ τnetwork, 

the relaxation of the order parameter is adiabatic, closely following the network as it slowly 

evolves. In this case, even though the system behaves in an out-of-equilibrium manner on the 

longest scales, it locally obeys a condition of equilibrium, and we expect some of the tools 

of equilibrium statistical physics to be applicable.

Here, we explicitly address the impact of network activity by developing a new inference 

method based on the exact integration of maximum-entropy dynamical equations, thus 

accounting for the reshuffling of the network. We apply the method to data of starling flocks 

of up to 600 individuals [9–12] (see Materials and Methods and Table S1 for data summary), 

inferring the relevant parameters of the interactions between individuals. We find that the 

alignment relaxation time, τrelax, is more than one order of magnitude shorter than the 

network rearrangement time, τnetwork. Consistently, we show that the parameters learned 

from the dynamics are consistent with those obtained by an equilibrium-like inference, 

which assumes a fixed network [13]. Our results suggest that natural flocks are in a state of 

local quasi-equilibrium over the interaction length scale, meaning that the relatively slow 

rearrangement of the local interaction network does not affect the ordering dynamics up to 

certain scales.

To compare the relevant time scales of the ordering process in flocks, we first need to learn 

the dynamical rules of their behaviour. Learning these rules usually relies on inferring the 

parameter of a chosen model directly from the data, as has been recently done in surf scoters 

[14] and fish schools [15–19]. Although in these studies the local rules of interaction were 

often learned using small groups, in some cases they could also be used to predict large-

group behavior [17, 19]. Here, instead of assuming a model a priori, we apply the principle 

of maximum entropy to the trajectories of all birds in the group [20]. We look for a 

distribution of the stochastic process that is as random as possible, while agreeing with the 

data on a key set of experimental observables.

In a flock of size N, we call  the three-dimensional flight orientation of bird i at time t. 
The maximum entropy distribution over possible flock trajectories that is consistent with the 

correlation functions , as well as their derivatives , can 
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be exactly mapped, in the limit of strong polarization , onto the 

following stochastic differential equation (see SI and [Ref. 20]):

(1)

where  is a random white noise, and where the projection  onto 

the plane perpendicular to  ensures that  remains of norm 1. Equation (1) can be 

viewed as a generalization of the Vicsek model [21]: each bird modifies its flight direction 

according to a weighted average of the directions of its neighbours. The interaction matrix Jij 

encodes how much bird i is influenced by (i.e. interacts with) bird j. Given the 

experimentally measured correlation functions, entropy maximization yields equations that 

fix the values of the noise amplitude and the interaction matrix Jij. This matrix has too many 

parameters to be reliably determined from the data, but we can reduce its complexity by 

parametrising it. It was shown in [22] that the interaction decays exponentially with the 

topological distance kij between birds,

(2)

where kij denotes the (time-dependent) rank of bird j among the neighbours of bird i ranked 

by distance. This interaction matrix has just two parameters: nc is the topological interaction 

range, while J is the overall strength of the interaction. The noise is uncorrelated among 

birds and of uniform magnitude T, by analogy with physical temperature: 

, where d is the space dimension (d = 3 in the 

following).

In principle, to learn the parameters of Eq. 1 one needs actual continuous-time derivatives. 

In practice, we only have configurations separated by the finite experimental sampling time 

dt. A common solution is to use Euler’s approximation:

(3)

where  is a normally distributed vector of variance 1 in each direction. The conditional 

likelihood of the data given the model, , can be written in 

Gaussian form after expanding Eq. (3) in the spin-wave approximation (see Materials and 

Methods). Maximising this likelihood yields values for the alignment parameters nc, J and T 
(see Ref. [20] and SI).

Euler’s approximation is used by virtually all methods that try to fit a dynamical equation to 

a discrete time series [15–17]. However, it is inappropriate when the experimental sampling 
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time, dt, is larger than the intrinsic relaxation timescale, τrelax. In this case information 

spreads between subsequent frames beyond the directly interacting neighbours and Euler’s 

approximation overestimates the range of the interaction, as we shall see below. To 

overcome this issue, we rewrite Eq. 1 by formally subtracting  from it:

(4)

Bold symbols denote vectors and matrices over bird indices; the matrix 

, where  is the connectivity matrix (2). Λ is analogous to a 

Laplacian defined on a lattice, and obeys the sum rule: . In the spin-wave 

approximation, where all orientations  point in almost the same direction, this relation 

ensures that  has almost no contribution along the common direction of flight, implying 

 (see Materials and Methods and SI). Equation 4 is now linear and it can be 

integrated exactly:

(5)

This result assumes a constant Jij in the interval dt, which is a good approximation if dt ≪ 
τnetwork. Fortunately, this same condition is necessary for the very possibility to collect data: 

tracking requires to follow each individual across time, which is only possible if individuals 

do not significantly change their neighbourhood between consecutive frames. The integrated 

noise in the right-hand side of (5) is Gaussian, of mean zero and covariance 

. Using the exact solution (5) we can write an explicit expression for 

the (Gaussian) conditional likelihood , which can then be 

maximised over the parameters of the model (see Materials and Methods).

We first tested our dynamical inference method on synthetic data simulated using the model 

of Eq. 1, with τrelax ≈ 0.7, for various values of the interaction range nc (see Materials and 

Methods). We infer the parameters of the model using either Euler’s rule or the result of 

exact integration, for different values of the sampling time ranging from dt = 0.2 to dt = 0.8. 

The method based on exact integration predicts the interaction range nc well, regardless of dt 
(Fig. 1A and B), while the method based on Euler’s approximation largely overestimates nc 

at large dt (Fig. 1B). We can now apply our dynamical inference to real flocks and learn the 

model parameters. First, we used data of natural flocks to check the effect of changing the 

sampling time dt, from the real sampling time of our setup, dt = 0.2 s (see Materials and 

Methods), to 0.8 s. Although we cannot compare the inferred value of nc to the ground truth 

as in simulations, we observe a similar trend as a function of dt (Fig. 1C), with the exact 

integration and Euler’s approximation methods agreeing only at small dt. This suggests that 

the sampling time of 0.2 s is of the same order as the orientation relaxation time τrelax, as we 
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will confirm below. It also indicates that the inference method based on exact integration is 

extracting the parameters of alignment reliably.

Using the model parameters learned from the data, we evaluate the two time scales of 

interest for activity, namely relaxation of the orientations and network rearrangement. We 

estimated the network rearrangement time τnetwork experimentally for each flocking event as 

the characteristic decay time of its autocorrelation function 

, by fitting Cnetwork(t) ≈ C0 exp(−t/τnetwork) 

(Supplementary Fig. S1).

Working out the time scale of relaxation is more subtle. The relevant quantity is the product 

of the interaction strength J, which has units of inverse time, by the dimensionless 

connectivity matrix, Λ, as can be seen from Eq. (4). Since there are nc neighbours acting on 

each individual, the total alignment force is of order Jnc, suggesting that the characteristic 

time scale of relaxation of the orientations is τrelax ~ (Jnc)−1. This result, however, seems at 

odds with the well-known fact that systems with spontaneously broken continuous 

symmetry - such as flocks - have correlation length and relaxation time that diverge with the 

system size L (Goldstone theorem [23]). On the other hand, we do not expect the large-scale 

modes responsible for this divergence to affect the local relaxation dynamics and its 

interplay with network reshuffling. To clarify this issue we calculate the dynamical 

autocorrelation function of the fluctuations of the order parameter, 

, where . We consider a fixed lattice, 

because we need to gauge relaxation in absence of network rearrangements, resulting in the 

autocorrelation function (see SI):

(6)

where a is the lattice spacing. The infrared divergence at small k, which correspond to large-

scale modes, makes the integral divergent in the L → ∞ limit for d = 2 (Mermin-Wagner 

theorem [24]). In d = 3 the integral is finite, but the correlation function is a power law, so 

that the relaxation time diverges with L (Goldstone theorem). The small k modes in (6) 

correspond to long wavelengths fluctuations spanning the entire flock, causing the local 

order parameter to relax slowly. However, these long wavelength fluctuations do not 

contribute to the disordering of the local interaction network: if the wavelength of a 

fluctuation is much larger than the interaction range, all directions of motion in the 

interaction neighbourhood fluctuate in unison, causing no change in the mutual positions of 

the birds. We conclude that the autocorrelation function that impacts on local network 

rearrangements only includes contributions from wavelengths up to the local interaction 

range (let us call it rc). This amounts to restricting the integral in (6) to the modes 

, thus eliminating the infrared divergent modes k ~ 1/L. The resulting 

correlation function is exponentially decaying (see SI for the calculation of the integral), 

with finite relaxation time equal to τrelax = (Jnc)−1, consistent with our initial guess. We note 

that, by considering wavelengths up to the interaction range, we are still dealing with a 
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coarse-grained field theory, as in most biological systems the scale of interaction extends 

over tens of neighbours.

We can now proceed with the comparison of τnetwork and τrelax. Results are summarised in 

Fig. 2. The two time scales clearly separate, with local relaxation almost two orders of 

magnitude faster than network reshuffling. This separation of time scales suggests that 

flocks are in a state of local equilibrium. The network of interactions changes slowly enough 

for the dynamics of flight orientations to catch up before neighbours reshuffle. In other 

words, the orientation dynamics tracks network changes adiabatically. Note that this 

statement holds only locally, at the scale of the interaction range, as both τnetwork and τrelax 

are defined on that scale.

Since flocks behave as if they were in local equilibrium, an equilibrium inference procedure, 

which takes as input the local spatial correlation computed from a snapshot of the birds’ 

flight orientation [13], should be consistent with the results of the dynamical inference. To 

check this prediction, we recall the equilibrium-like inference method of [13]. For 

symmetric Jij, Eq. 1 is the Langevin equation derived from the Hamiltonian of the 

Heisenberg model

(7)

When Jij varies slowly in time, the fluctuations of  are in quasi-equilibrium and 

distributed according to Boltzmann’s law:

(8)

We recognise the maximum entropy distribution consistent with the local correlation index 

 fitted in Ref. [13]. In practice, the equilibrium inference consists in 

maximising the likelihood of Eq. 8 over its parameters nc and J/T (see Materials and 

Methods and SI). If the variations of nij are slow compared to the dynamics of , τnetwork 

≫ τrelax, this inference procedure should give an accurate estimate of the alignment 

parameters. If however the two time scales are comparable, we expect the equilibrium 

inference to overestimate the true nc, as the frequent exchange of neighbours results in an 

effective number of interaction partners that is larger than the instantaneous one. We verified 

both these expectations on simulated data, by showing that the equilibrium inference is 

accurate for τnetwork ~ 100τrelax, but overestimates nc for τnetwork ~ τrelax (see 

Supplementary Fig. S2). When applied to empirical data, the dynamical and equilibrium 

inferences give consistent results, and predict the same interaction range, nc, and coupling-

to-noise ratio, J/T (Fig. 3) Note that, while the dynamical inference provides the strength of 

the interaction, J, and the strength of the noise, T, separately, the equilibrium inference only 

gives the ratio J/T, which is the quantity to compare. To better appreciate this result, recall 

that the two inference procedures are based on independent pieces of information: the 
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equilibrium inference uses instantaneous orientations, while the dynamical inference 

exploits how these orientations change in time. Their agreement confirms that the alignment 

dynamics of flocks are in an effective state of equilibrium over the range nc.

Theoretical studies of active matter indicate that out-of-equilibrium effects induced by the 

rearrangement of the interaction network play a major role in the ordering of the system [4, 

5]. In this light, any attempt to understand the properties of active biological systems based 

on equilibrium approaches may seem inappropriate. Does it mean that we should we always 

relinquish the methods of equilibrium statistical mechanics when dealing with active 

systems? Our results address this question by showing that bird flocks are in a state of local 

equilibrium, due to the rapid relaxation of orientations compared to the slow rearrangement 

of the network, over the local scale of interaction. As a consequence, an equilibrium 

inference method, which assumes a fixed interaction network, gives equivalent results to a 

full dynamical treatment.

Equilibrium inference seems to be justified in this system, not only as a formal mathematical 

equivalence allowing for useful insights and predictions, but as a tool to extract bona fide 
biological parameters. The equilibrium approach is mathematically simpler and 

computationally less expensive than the dynamical one in the limit of strong polarisation, 

making it easier to analyse larger groups. Although a dynamical approach such as the one 

presented here is still necessary for extracting the precise relaxation timescale of the 

ordering mechanism, there may be more straightforward ways to evaluate its order of 

magnitude and get a quick assessment of the local equilibrium hypothesis.

Our results do not mean that natural flocks are in global equilibrium and that network 

rearrangements play no role. The interaction network, far from being fixed as if individuals 

were linked by springs [25], completely reshuffles on long time scales [26]. The directions 

of motion relax on a faster time scale than the network over the local scale of interaction, but 

the network does move on longer time scales, and over larger length scales, with important 

consequences. To appreciate this point we must stress again the difference between local, 

short-wavelength modes, which set the balance between relaxation and network 

rearrangement, and long-wavelength modes, which govern the long time and long distance 

correlations. Capturing these large-scale properties requires to describe the active fluid using 

a hydrodynamic approach [4]. Equilibrium inference works despite the existence of these 

large-scale modes because it only uses information at the local scale of interaction, where 

relaxation is fast.

The local equilibrium we have uncovered in natural flocks is not merely the consequence of 

the high degree of polarisation of this system. A high polarisation certainly implies slow 

network rearrangements, but it does not constrain the relaxation time, which could be even 

slower, as illustrated in our simulations (Supplementary Fig. S2). Conversely, there may be 

unpolarised systems where local relaxation is faster than network rearrangement – a limit 

easily obtained theoretically by considering weakly interacting, slowly moving individuals. 

Midge swarms may be such an example: they are not polarized, poised below the ordering 

transition [27], yet have been successfully analysed using standard equilibrium tools of 

critical phenomena [28]. In general, one must carefully quantify these two time scales to 
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determine to what degree the tools of equilibrium statistical mechanics may be applied to a 

given active system.

Materials and Methods

Flocking data

The three-dimensional trajectories of all birds were reconstructed using imaging techniques. 

Stereoscopic experiments on natural flocks of European starlings were performed in the field 

in Rome using three high speed machine vision cameras shooting at 170 fps. The 

stereoscopic video acquisitions were then processed using a novel purpose-built three-

dimensional tracking algorithm based on a recursive global optimization method [12]. This 

algorithm is extremely powerful, allowing for the reconstruction of full 3D trajectories of all 

individuals in groups of several hundreds individuals. We collected 3D data from 12 

flocking events with sizes ranging from 50 to 600 individuals, and lasting from 2s to 6s (for 

details on the experiments and the dataset see Table S1 and [10, 29]). To avoid interference 

from birds flapping, which occurs at frequency ≈ 10 Hz, we subsampled all the 3D 

sequences so that two snapshots are separated by dt′ = 0.1 s. The instantaneous flight 

orientations were estimated by . To 

avoid overlap between two subsequent evaluations of , we used dt = 2dt′ = 0.2 s. The 

lower sampling rates of Fig. 1C, were obtained by taking dt′ = 0.2, 0.3, and 0.4 s.

Simulated data

Data were simulated in three dimensions with the continuous Vicsek model of Eq. 1 with the 

interaction matrix of Eq. 2. The positions  of individuals are updated according to 

, with υ0 = 1. The simulations were set in a 8 × 8 × 8 box with periodic 

boundary conditions, and N = 512 birds, so that density is exactly 1. We set  to 

obtain a polarization P ≈ 0.99 similar to natural flocks. Eq. 1 was integrated using Euler’s 

method with a simulation step dtsim = 0.01 that is much smaller than any other time scale in 

the system. The interaction range nc varied from 7 to 25, and the interaction strength was 

picked so that Jnc = 1.5, hence τrelax = (Jnc)−1 ~ 0.7. The flocks were first brought to a 

steady state before taking snapshots for analysis.

Spin-wave approximation

The polarization P quantifies the level of order in the system. When P ≈ 1, we can expand 

each  around the common direction of flight . This expansion gives 

, with . At leading order in 

, Eq. 4 becomes

(9)
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with . Similarly, the equilibrium distribution (Eq. 8) 

can be expanded into

(10)

Since this distribution is Gaussian, Z can be calculated analytically and reads: 

, where λk are the eigenvalues of the matrix Λij.

Maximum likelihood Inference

The equilibrium inference is performed by maximising the likelihood of the data given by 

Eq. 10 over the parameters nc and (J/T) (see SI for detailed formulas).

The dynamical inference based on Euler’s rule is implemented by maximising the likelihood 

 calculated from Euler’s formula (Eq. 3). This likelihood reads

(11)

The dynamical inference based on exact integration uses Eq. 5, rewritten as 

, where  is a zero-mean Gaussian vector of covariance 

. The conditional likelihood 

 now reads

(12)

Depending on whether one uses Euler’s or exact integration rules, Eq. 11 or 12 is maximised 

over J, T and nc (see SI for detailed formulas).

In all three inference procedures, the parameters are learned for each time t. Then the 

median and the associated standard error are calculated for each flocking event.

Data Availability

The data that support the plots within this paper and other findings of this study are available 

from the corresponding author upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Performance of the inference methods on the predicted interaction range nc. A. Inferred 

versus real nc obtained by applying our new inference method to simulated data generated 

with Eq. 1 at various interaction ranges. The method performs well for different values of 

the sampling rate dt. B. Dependence of the inferred nc on the sampling time dt. On simulated 

data with nc = 10 (dashed line), the inference method based on exact integration (red points) 

performs well regardless of the sampling time dt. By contrast, the inference method based on 

Euler’s integration method (green points) overestimates the true interaction range at large dt. 
C. A similar trend is observed when we apply the two inference procedures to real flocking 

data, as illustrated here on one flocking event. Note that in this case the true value is not 

known. Error bars represent standard errors over time frames.
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Fig. 2. 
Comparison between the two relevant time scales of active matter, as inferred in 14 natural 

flocks using our inference method based on exact integration. Histograms of the neighbour 

exchange time τnetwork versus the local alignment time τrelax = 1/Jnc, show that the 

relaxation of orientations is much faster than the turnover of neighbours. Note that the 

experimental sampling time dt = 0.2 s (dashed line) is of the same order as the alignment 

time, justifying the use of exact integration. Inset: the scatter plot of τrelax versus τnetwork 

shows no correlation between the two quantities.
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Fig. 3. 
Inference on natural flocks. For each of the 14 flocking events, the parameters of the model 

were inferred using either the dynamical inference method presented here, with dt = 0.2 s, or 

an equilibrium inference method as in [13]. A. Both methods agree well on the predicted 

value of the alignment range nc. B. While the dynamical method infers the alignment 

strength J and the noise amplitude T separately, the equilibrium method only infers their 

ratio J/T, the value of which is consistent between the two methods. Error bars represent 

standard errors over time frames.
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