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ABSTRACT

For the purposes of estimating local changes in surface climate at selected stations in the central Argentina region,
induced by an enhanced CO2 concentration, projected by general circulation models (GCM), a statistical method to
derive local scale monthly mean minimum, maximum and mean temperatures from large-scale atmospheric predictors
is presented. Empirical relationships are derived among selected variables from the NCEP re-analyses and local data
for summer and winter months, tested against an independent set of observed data and subsequently applied to the
HADAM and MPI GCM control runs. Finally, the statistical approach is applied to a climate change experiment
performed with the MPI model to construct a local climate change scenario.

The comparison between the estimated versus the observed mean temperature fields shows good agreement and the
temporal evolution of the estimated variables is well-captured, though, the estimated temperatures contain less
interannual variability than the observations.

For the present day climate simulation, the results from the HADAM and MPI GCMs are used. It is shown that
the pattern of estimated temperatures obtained using the MPI large-scale predictors matches the observations for
summer months, though minimum and mean temperatures are slightly underestimated in the southeast part of the
domain. However, the differences are well within the range of the observed variability.

The possible anthropogenic climate change at the local scale is assessed by applying the statistical method to the
results of the perturbed run conducted with the MPI model. For summer and winter months, the local temperature
increase is smaller for minimum temperature than for maximum temperature for almost all the stations, yielding an
enhanced temperature amplitude in both seasons. The temperature amplitude (difference between maximum and
minimum) for summer months was larger than for winter months. The estimated maximum temperature increase is
found to be larger for summer months than for winter months for all the stations, while for the minimum,
temperature increases for summer and winter months are similar. Copyright © 1999 Royal Meteorological Society.
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1. INTRODUCTION

The most promising method for predicting the future behaviour of the global climate system is the use of

general circulation models (GCMs). These models have demonstrated their ability to simulate realistically

the large-scale features of the observed climate (e.g. for the South American region, we can cite the more

recent articles by Carril et al., 1997 and Labraga, 1997), and hence, they are widely used to assess the

impact that an increased loading of the atmosphere with greenhouse gases might have on the climate

system. While there exists differences in modelling schemes, most models project comparable results on a

global basis. However, they have difficulty in reproducing regional climate patterns, and large discrepan-
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cies are found among models. In many regions of the world, the distributions of significant surface

variables, such as temperature and rainfall, are often influenced by the local effects of topography and

other thermal contrasts, and the coarse spatial resolution of the GCMs can not resolve these effects.

In recent years there has been increasing concern regarding the consequences of global climate change

on natural and socio-economic systems due to enhanced greenhouse gases, especially CO2. The assessment

of climate change impacts on agriculture, hydrological and water resource systems often requires detailed

and reliable climate change scenarios at regional and local scales, that cannot be resolved by current

GCMs (Grotch and MacCracken, 1991). It has been recognized that the response of regional climate to

global climate change is spatially heterogeneous due to local effects that cannot be taken into account

with current GCMs and, consequently, large-scale GCM scenarios should not be used directly for impact

studies (von Storch, 1994). Thus, in order to estimate the impact of climatic change on the local scale, an

adequate means of relating GCM output to the local climate is required.

Different strategies have been developed to deduce local climatic estimates from global scale simula-

tions; mainly the dynamical approach and statistical methods. All these strategies implicitly assume that

the GCMs yield a reliable estimate on the large-scale. The dynamical approach involves the use of a

nested limited area model (LAM) in a GCM over a considered region (Giorgi, 1990). The major

advantage of this approach is that the regional simulations are dynamically consistent with the GCM

large-scale results. However, this approach is computationally costly and feedbacks from the regional

model into the GCM are not usually incorporated. Only very recently has the coupling of GCMs and

LAMs begun to include two-way interaction (Déqué and Piedelievre, 1995; Leslie, 1995).

Another approach is to derive statistical relationships between observed local climatic variables and

large-scale variables. Downscaling by statistical means has been increasingly developed over the last few

years. All methods translate the large-scale GCM information into a high resolution distribution based on

empirically derived relationships. A multiple regression technique was used by Wigley et al. (1990) to

derive regression equations linking large-scale spatial averages of precipitation and surface temperature

and other large-scale variables to local precipitation and temperature–time series on the west coast of the

US. Many authors have demonstrated that air flow indices are useful predictors for regression-based

downscaling to simulate local rainfall (Conway et al., 1996; Kilsby et al., 1998; Wilby et al., 1998) and

surface temperatures (Karl et al., 1990; Winkler et al., 1997). Hewitson (1994) constructed regression

equations between the atmospheric circulation and local surface temperature, allowing a non-linear

interaction among different atmospheric regimes. These methodologies make use of the GCM minimum

scale (grid point) information to derive the statistical relationships. Other authors propose a mixed

empirical–dynamic approach to translate the large-scale GCM information into a high resolution

distribution, such as von Storch et al. (1993) who used canonical correlation analysis to develop

relationships between large-scale monthly sea level pressure (SLP) fields and local monthly Iberian winter

rainfall. They found that the method was skilful in reproducing the observed Iberian Peninsula

precipitation anomalies from SLP fields. Schubert and Henderson-Sellers (1997) described a statistical

method to derive information about local daily temperature extremes from larger atmospheric flow

patterns in the Australian region. This methodology has also been used by other authors for model

validation (e.g. Noguer, 1994; Burkhardt, 1995). All of these statistical methods make use of correlations

between the time series of large-scale and local variables, though statistical techniques based on regression

methods are suitable only for variables that are continuous in time and space, such as temperature. Other

statistical approaches have been developed by many authors, such as non-parametric models (Corte-Real

et al., 1993), neural networks (McGinnins, 1994), WGEN methods (Katz and Parlange, 1996), stochastic

weather generation algorithms (Wilks, 1992) and techniques based on weather classification schemes

(Bardossy and Plate, 1992; Hughes et al., 1993; Zorita et al., 1995; Enke and Spekat, 1997) suitable for

discontinuous variables, such as daily precipitation.

The advantages of the statistical approaches are that they are easy to implement, not computationally

costly and calibration to the local level is an integral part of the procedure. It is also important to note

that the results obtained using these methods have comparable accuracy with those obtained with

dynamical downscaling techniques (see Jones et al., 1997).

Copyright © 1999 Royal Meteorological Society Int. J. Climatol. 19: 835–861 (1999)
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The reliability of the projected local changes will depend firstly, on the capability of the GCM in

reproducing the large-scale variables that will be used to deduce the local climate. However, the results of

any statistical method are conditioned by the implicit assumption that the relationship derived using

historical records should explain a great part of the observed variability of the local variable, and will

remain valid under changing conditions (von Storch et al., 1993).

The purpose of this work is to estimate local changes of monthly mean surface air temperature extremes

for summer and winter months caused by CO2 doubling, at selected stations lying in central Argentina,

following the strategy first developed by Wigley et al. (1990). Despite the simplicity of the regression

technique employed, the ability in determining local estimations from the large-scale variables selected is

explored, by checking the assumptions cited above, in order to give some degree of confidence to the

projected local temperature changes inferred from GCM outputs. Making use of the interannual

variability of climate, empirical relationships are derived between selected variables from the National

Center for Environmental Prediction (NCEP) re-analyses (Kalnay et al., 1996) and local minimum,

maximum and mean air temperature at a monthly mean frame. These results are then tested against an

independent set of observed data and subsequently applied to present day climate simulations conducted

with GCMs. Finally, the statistical approach is applied to a climate change experiment performed with a

GCM to construct a local climate change scenario.

The paper is structured in the following way. The data set used to derive the statistical relationships and

the description of the method are presented in Section 2. The evaluation of the method and the results are

described in Section 3. In Section 4 we first analyse the reliability of the Hadley Centre for Climate

Prediction and Research GCM (HADAM) and the Max Plank Institut für Meteorologie Coupled GCM

(MPI) in simulating the present day circulation. A complete description of the GCMs can be found in

Cullen (1993) and Cubasch et al. (1992), respectively. Then the statistical scheme is applied to the control

and 2×CO2 simulations to project the local estimates of climate change. Conclusions are presented in

Section 5.

2. DATA AND STATISTICAL TECHNIQUE

The observational data used are monthly mean values of minimum, maximum and mean temperature at

31 selected stations covering the central region of Argentina during the period 1972–1994 for austral

summer (December–January–February) and winter (June–July–August) months, provided by the

National Weather Service of Argentina (SMN) and from the Instituto Nacional de Tecnologı́a

Agropecuaria (INTA). The stations are selected based on data quality and in order to assure an even

cover over the region. Figure 1 and Table I provide information about the location, distribution and index

of the stations and grid points used in this study.

Since the statistical relationships between large-scale and local scale variables should explain a great

portion of the local scale temperature variability, the large-scale variables used to derive the statistical

method should represent adequately the large-scale climate characteristics. In order to fulfil this condition,

NCEP re-analyses of monthly mean data in a 2.5° grid covering the sector 65–55°W and 30–40°S for the

same period are used. Figure 1 also shows the location and index of the grid points used. We will refer

to these data as ‘analyses’.

The condition noted above concerning the reliability of the large-scale variables should be pursued

using the present day simulations of the GCMs, in order to give some degree of confidence in the global

climate change estimates due to CO2 doubling projected by the models, and hence, to the local estimates

of global change. This topic will be addressed further on in this paper.

Following the methodology developed by Wigley et al. (1990), statistical relationships between

large-scale climatic variables, the predictors, and local scale minimum, maximum and mean temperature,

the predictands are derived by means of the multiple regression technique. We make use of interannual

variability in climate to derive the empirical relationships. The data used are divided into a calibration set

and an independent verification set. The equations are calibrated using the 1982–1994 period and an

Copyright © 1999 Royal Meteorological Society Int. J. Climatol. 19: 835–861 (1999)



S.A. SOLMAN AND M.N. NUN0 EZ838

independent verification period for years 1972–1981 is used to test the results against the known observed

variables.

It is desirable that the calibration period be as long as possible to increase the reliability of the statistical

analysis and to allow a range of natural variability, assuming that the expected changes in the mean

climate would lie within the range of natural variability (von Storch et al., 1993). In this study, the

calibration period comprises 13 years of data. With the aim of overcoming the first requirement cited

above, concerning the length of the calibration period, instead of using the time series of monthly mean

data, summer and winter month samples are constructed, so that for each season the data sample consists

of 39 months. The second requirement, concerning the range of variability, is analysed further on, in

terms of the analysis of the standard deviation of the predictands versus the range of variability of the

climatic change projected by the GCMs.

According to von Storch et al. (1993), the large-scale variables selected as predictors have to be strongly

linked to the local predictands. In this context, the predictor variables from the NCEP re-analyses selected

to derive the equations for minimum, maximum and mean station temperature, are: air temperature at 2

m, mean sea level pressure and zonal and meridional components of the wind at 200 and 700 hPa. With

the exception of the large-scale temperature at 2 m, which has an obvious relationship with local

temperatures, the other predictor variables add information about the circulation conditions. The zonal

and meridional components of the wind at 700 hPa take into account the advective effect; the mean sea

level pressure captures information about large-scale circulation; and 200 hPa, winds add information

about the position of the subtropical jet, which influences the characteristics of the tropospheric

Figure 1. Location and index of stations (asteriks) and grid-points (squares) used in this study

Copyright © 1999 Royal Meteorological Society Int. J. Climatol. 19: 835–861 (1999)
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Table I. Names, location and index of stations and grid points used in the analysis

Station name Longitude (°W) Latitude (°S) Station number

Rafaela 61.55 31.18 98
Pilar 63.88 31.67 111
Rosario 60.78 32.92 133
Rio Cuarto 64.23 33.12 138
Pergamino 60.55 33.93 145
Laboulaye 63.37 34.13 148
9 de Julio 60.88 35.45 178
Sta. Rosa 64.27 36.57 192
Azul 59.83 36.75 196
Pigüé 62.38 37.60 206
Mar del Plata 57.58 37.93 210
Bahia Blanca 62.17 38.73 221
Gral. Pico 63.75 35.70 334
Castelar 58.65 34.67 358
Marcos Juarez 62.15 32.70 369
La Plata 57.90 34.97 450
Pehuajó 61.90 35.87 456
Tres Arroyos 60.25 38.33 490
San Pedro 59.68 33.68 492
Anguil 63.82 36.50 446
Balcarce 58.30 37.75 400
Bordenave 63.02 37.85 343
Ceres 61.95 29.88 081
Concep. del Uruguay 58.33 32.48 497
Concordia 58.02 31.30 477
Coronel Suarez 61.95 37.50 204
Gualeguaychú 58.62 33.00 134
Paraná 60.51 31.82 114
Tandil 59.25 37.23 311
Zavalla 60.88 33.02 046
Junin 60.92 34.55 453

circulation. These variables have been used by other authors, such as Karl et al. (1990) and Wigley et al.

(1990), who included mean sea level pressure and 850 and 500 hPa winds as predictors. These predictor

variables are found to be highly correlated with the predictands, as can be seen in Table II, which shows

Table II. Spatial average of significant (p\0.95) correlation coefficients (r) between predictors and
predictands (station minimum, maximum and mean temperatures)

Predictors Summer months Winter months

Minimum Maximum MeanMinimum Maximum Mean

n r n r n r n r nr n r

31 0.81 31 0.81 31 0.800.82 31 0.93 31310.64TG
24 −0.40 9 −0.44 22 −0.56 30 −0.39 18 −0.47 16PG −0.48

12 −0.40 11 −0.36 15 −0.35−0.40 5−0.41 −0.35 107UG2
−0.36VG2 10 −0.41 12 — — —−0.38 21

15 −0.42 21 —UG7 — —−0.41 28 −0.44
9 −0.44 9 −0.40 20 −0.39−0.42 1316 −0.38 16VG7 −0.41

n indicates the number of stations in which the correlation is significative.
Abbreviations: TG, temperature at 2 m; PG, sea level pressure; UG2, 200 hPa zonal wind; VG2, 200 hPa
meridional wind; UG7, 700 hPa zonal wind; VG7, 700 hPa meridional wind.

Copyright © 1999 Royal Meteorological Society Int. J. Climatol. 19: 835–861 (1999)
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Table III. Spatial average of the percentage of explained variance for the calibration period (1982–1994) using
2 m large-scale temperature as the only predictor variable and using all predictors and in verification period,

1972–1981 (using all predictors)

s (%) (S.E.) Summer months Winter months

Calibration Verification Calibration Verification

TG All predictors All predictors TG All predictors All predictors

Minimum 49.3 75.9 (0.47) 56.4 (0.80) 66.6 77.5 (0.81) 61.6 (1.25)
Maximum 67.1 75.8 (0.68) 58.9 (1.20) 65.2 73.5 (1.03) 53.2 (1.20)
Mean 68.5 82.5 (0.35) 61.9 (0.95) 86.1 89.3 (0.28) 77.4 (0.52)

Standard errors (S.E.) are given in parenthesis.

the correlation coefficients between the predictor and predictand variables. Another condition taken into

account in the selection of the predictor variables is that the large-scale variables acting as predictors in

the statistical model had to be well-simulated by the GCMs. If the GCM fails in reproducing reasonably

well the present large-scale climate characteristics, any downscaling procedure will fail. This condition is

reasonably satisfied by the list of predictors used (see Carril et al., 1997).

A separate equation is derived for each station by regressing the reference set of observed temperatures

(minimum, maximum and mean) versus the large-scale variables, considering for each grid box the

stations which lie within it. For each station i, only the nearest grid point, n, is considered (see Figure 1

for reference). The equations are then of the form:

T %i,m=ai,m+bi,mTGn,m+ci,mPGn,m+di,mUG2n,m+ei,mVG2n,m+ fi,mUG7n,m+gi,mVG7n,m+e

where the subscript m indicates the season and T %i,m is the temperature estimated at station i ; TGn,m is the

temperature at grid point n ; PGn,m is the mean sea level pressure at grid point n ; UG2n,m is the 200 hPa

zonal component of the wind at grid point n ; VG2n,m is the 200 hPa meridional component of the wind

at grid point n ; UG7n,m is the 700 hPa zonal component of the wind at grid point n ; VG7n,m is the 700

hPa meridional component of the wind at grid point n ; ai,m, bi,m, ci,m, di,m, ei,m, fi,m and gi,m are the

regression coefficients for each station i ; e is the residual error term.

The regression equations are derived using stepwise multiple regression, in which each predictor

variable is evaluated for its individual significance level before being included in the equation and, with

each addition, each variable within the equation is then evaluated for its significance as part of the model.

A variable is included in the equation if it is significant at the 95% level and is retained if it is significant

at the 99% confidence level.

For all the stations, in summer and winter months, large-scale temperature is the predictor that explains

most of the predictand variance (as expected), while the other variables contribute an additional

percentage that varies with the predictand variable, station and time of the year. Results for minimum,

maximum and mean temperature for summer and winter months are summarized on Table III. Table IV

lists, by site, the predictor variables retained by the stepwise linear regression for each predictand, for

summer and winter months, respectively.

For almost all the stations, large-scale temperature, mean sea level pressure and 700 hPa zonal wind are

the predictor variables retained in the regressive models, while the other predictor variables contribute

significantly only for some locations.

As mentioned before, the statistical method developed is based on statistical relationships between

large-scale climatic variables and local scale temperatures, making use of the interannual variability of

climate. Moreover, one of the assumptions underlying the applicability of the statistical technique to

climate change scenarios is that the projected changes of the mean climate should lie within the natural

variability of the observed climate. In other words, we must assume that expected altered mean climate

is sufficiently near the present one. In this context, it is pertinent to examine the mean interannual

Copyright © 1999 Royal Meteorological Society Int. J. Climatol. 19: 835–861 (1999)
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Table IV. List of predictor variables retained by the stepwise linear regression for each
predictand, at each station used in the analysis

Maximum MeanSite Minimum

Summer months
T,U2 T,U2,V2T,U2,V2,U798
T,U2 T,U2,P,V2,V7111 T,P,U2,V7
T,U7 T,U7,V2,PT,P,U7133

T,V2,U7,P T,U2 T,V2,U2138
T,P,U7 T,U7,PT,V2,U7,P,U2145
T,U2,V7 T,P,U2,V2,V7148 T,U7,V2,P,V7
T,U7 T,U7,PT,V2,U7,P,U2178

T,U7,V2,P,V7192 T,V2 T,P,U2,V7
T,U7 T,P,U7T,V2,U7,P,V7196

T,V2,U7,P,V7206 T,U2,P,V2 T,P,U7
T,U7,V7 T,P,U7210 T,P,U7,V7
T,V2,P,U7 T,P,U2T,P,U7,V7221
T,V2,U7 T,U7,V7334 T,V2,U7
T,P T,P,U7,V2T,P,U7,V7358
T,U2,V7 T,U2,P,U7369 T,P,U7,V2,U2
T T,P,U7T,V7,P,U7450
T,U7,V7 T,U7456 T,V2,U7
T,V2,U7,P T,P,U7T,V2,U7,P490

T,P,U7,V2,U7492 T,V2,U7,P T,U7,V2,P
T,U2,V2,U7,V7 T,V7T,V2446
T,V2,V7 T,V7,P,V2400 T,V2,P,U7,V7
T,V2,P,U2 T,P,U2,U7T,U7,P,V2,V7343

T,V2,U2,V7081 T,U2,P T,U2,V2,V7
T,U7 T,U7,V7,V2T,V7,P,U7497

T,V7,P,U7477 T,U2,V7 T,P,U2,U7
204 T,V2,U7,P T,U2,P T,U2,V7

T,U7 T,U7,V2,PT,V7,P,U7134
T,U2 T,U7,V2114 T,V2,U7,P
T,U7,V7 T,U7,PT,V2,U7,P311
T,U7,V2 T,P,U7046 T,P,U7
T,V7 T,V2,P,U7T,V2,U7,U2453

Winter months
98 T T,P T,V7

T,U7,U2,V7111 T,U7,P,V7T,U2,P
T,U7 T,P,U2T,P,U2,V7133
T,V2,U2 T,U7,P,V7138 T,P,U2
T,V2 T,PT,P,U2145

T,P,U2148 T,P T,U2
T,V2,P T,V7T,P178

T,P192 T,P T,U7
T,P,U7,U2196 T,P,U2 T,U2,V7

T,P,U2,V7 T,PT,P206
T,P,V7 T210 T,P,V7
T,P T,P,U2T,V7221

T,P,U2334 T,P T,V7
T,P TT,P,V7358

T,P,U2369 T,U2 T,P,U2,V7
T,P T450 T,P,V7,U2
T,P T,V7T,P456
T,P T,U7490 T,P
T T,P,U2,V7T,P,U2,V7492

T,P,U2 T,P T,V7446
T,P,V2 T,P400 T,U7,P,V7

Copyright © 1999 Royal Meteorological Society Int. J. Climatol. 19: 835–861 (1999)
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Table IV. (continued)

Site Minimum Maximum Mean

343 T,V2 T,P,U2 T,P,U2
081 T,P T,V7 T,P,U7
497 T,P,U2,V7 T,U2 T,P,U2,V7
477 T,P,U2,V7 T,U2 T,U2,P,V7
204 T,P T,P,U2 T,U7,U2
134 T,P,V7 T,U2 T,U2,P,V7
114 T,P,U2 T,V2 T,P,V2,V7
311 T,P T,P,U2 T,V7
046 T,P,U2 T,V2 T,P
453 T,P,V7 T,V2,P T

variability of the predictands and of the main predictor variable, the large-scale 2 m temperature, (TGn,m),

during the training period, in order to check consistency between both patterns.

Figure 2 shows the mean interannual standard deviations of the observed minimum, maximum and

mean temperature and of the temperature at 2 m from the analyses for summer and winter months. The

observed temperatures show a variability maximum over the northern part of the domain and minimum

values at the coastal regions, reflecting the moderating influence of the ocean. The large-scale temperature

replicates quite well the variability distribution, though it tends to be less variable than the observations,

due to the fact that the grid point represents the spatial average within the grid box.

The consequence of this, as it will be shown in next section, is that the estimated temperature samples

will represent lower variability when compared with observations.

3. RESULTS OF THE REGRESSION

The validity of the statistical method developed will be tested in terms of the spatial distribution of the

percentage of observed variance explained by the regression and the comparison between the estimated

versus the observed mean temperature fields for the independent verification period. We also analysed the

spatial autocorrelation patterns of the observed and the estimated temperature fields, to check spatial

consistency of the downscaled variables. In order to evaluate how well the statistical model captures the

interannual variability of the predicted variables, the model has been tested using simulations of the

interannual variability of mean, minimum and maximum temperatures. Results for selected stations are

shown.

Figures 3 and 4 display the percentage of observed variance explained by the statistical method for

minimum, maximum and mean temperature for summer and winter months, for the calibration and

independent verification periods, respectively. The overall results are summarized in Table III, which

displays the explained variances and standard errors of estimation averaged over all sites, for the

calibration and verification periods, respectively.

For most of the stations, a substantial part of the observed variability can be explained by the

large-scale predictor variables, though the performance of the model varies from site to site. In general,

the model performs better in the south-eastern part of the domain. This can be due to the fact that the

stations in this area are mostly under the influence of large-scale activity associated with the extratropical

westerlies and also due to smaller interannual variability, as was previously noted. Except for maximum

temperature, predictability is slightly better for winter months, probably due to large-scale synoptic

systems, which control the dominant processes during this period of the year, while for summer months

smaller scale processes, not well-captured by the large-scale predictors, are also important.

The performance of the regression model is similar for minimum and maximum temperatures, but is

noticeably better for mean temperature. This can be attributed to the fact that the main large-scale

Copyright © 1999 Royal Meteorological Society Int. J. Climatol. 19: 835–861 (1999)



LOCAL ESTIMATES OF GLOBAL CLIMATE CHANGE 843

Figure 2. Standard deviation (°C) of minimum, maximum and mean temperatures as derived from observed data and standard
deviation of 2 m temperature from NCEP re-analyses for the calibration period for summer months (left panels) and winter months

(right panels)

Copyright © 1999 Royal Meteorological Society Int. J. Climatol. 19: 835–861 (1999)
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Figure 2 (Continued)

predictor is the mean temperature at 2 m. Large-scale temperature extremes or other variables that take

into account the content of water vapour in the atmosphere, relevant for the minimum and maximum

temperatures, are not used as predictors since they are not as well simulated by GCMs as mean

temperature.

The area averaged explained variances, shown in Table III, are comparable with those obtained by

other authors using different methodologies (e.g. in Wigley et al., 1990; Burger, 1996; Schubert and

Henderson-Sellers, 1997; Wilby et al., 1998).

The explained variance declines on average by 20% between calibration and independent verification.

This result is similar to that obtained in other studies (Wigley et al., 1990).

Another test of the model performance is conducted by comparing the estimated field of the

predictands versus the observed temperatures, averaged over the verification period. Figures 5 and 6 show

the minimum, maximum and mean temperatures, estimated and observed for summer and winter months,

respectively.

The spatial pattern of estimated minimum, maximum and mean temperatures match well with

observations. Note also that the horizontal gradients are in good agreement. Maximum temperature is

slightly underestimated for summer months over the whole domain, with an error of less than 1°C, less

than the range of the natural variability shown in Figure 2. This can be due to the strong influence of

convective processes during this season, not well-captured by the large-scale predictors, as mentioned

before.

The patterns of spatial autocorrelation for the estimated temperature fields are compared with

observations and with the main large-scale predictor, temperature at 2 m. Results for maximum

temperature for summer months are shown in Figure 7. We can confirm from Figure 7 that the estimated

temperature field is consistent with the observations in terms of the spatial autocorrelation.

Significance testing of station means and variances has also been done to test the performance of the

statistical model in its different phases (calibration and verification). We used the standard t-test for

evaluating differences in the means and Levene’s test for differences in the standard deviations. The null

hypothesis is rejected at a significance level of 5% for the means and at 10% for the standard deviations.

Results for both, calibration and independent verification periods showed that for all locations, the

estimated series of minimum, maximum and mean temperatures do not differ significantly from the

observed series.

For climate impact studies, however, not only must the time-averaged spatial distribution of the

temperature be properly estimated, but the interannual variability is also important. Hence, the model has

been tested regarding its performance in capturing the time evolution and the interannual variability of
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predictands. Many studies have carried out the evaluation of the statistical model in terms of the analysis

of the estimated versus observed time series for area-averaged predictands (Corte-Real et al., 1993; von

Storch et al., 1993; Noguer, 1994). Nevertheless, the evaluation of the temporal evolution of the spatial

Figure 3. Spatial pattern of explained variance in calibration for summer (left panel) and winter months (right panel) for the
minimum (top), maximum (centre) and mean (bottom) temperatures
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Figure 4. Same as Figure 3 for the verification period

average would obscure the model’s ability in capturing the local scale variability, particularly if the

stations are distributed in an a region of marked topographic or land–ocean contrasts. In this study, the

temporal evolution of the resulting statistical prediction of minimum, maximum and mean temperatures

at selected stations is compared against the observations for the verification period (1972–1981). Note
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that we are not working strictly with time series, instead, each year number on the time axis in the graphs

represents December, January and February (DJF) of year 1972 (June, July and August for winter) (JJA)

of year 1973, and so on, until year 1981.

Figure 5. Mean fields of estimated (left panels) and observed (right panels) minimum (top), maximum (centre) and mean (bottom)
temperatures averaged over the verification period for summer months
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Figure 6. Same as Figure 5 for winter months

The results for four of the stations, Castelar (358), Azul (196), Mar del Plata (210) and Pergamino (145)

are shown in Figure 8, where the estimated versus observed minimum, maximum and mean temperatures

for summer and winter months are shown. The selection of these stations was made on the basis of their

geographical locations. Mar del Plata is on the southern coast, strongly influenced by the land–sea
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contrast, Castelar and Pergamino are influenced by thermal contrasts due to the presence of wide rivers

and Azul is in a region without any significant thermal contrast. It can be seen that the regression

equations capture the temporal evolution quite well, though as previously noted, the estimated tempera-

Figure 7. Patterns of spatial autocorrelation of observed (a) and estimated (b) maximum temperature and temperature at 2 m from
the NCEP re-analysis (c) for summer months

Copyright © 1999 Royal Meteorological Society Int. J. Climatol. 19: 835–861 (1999)
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tures contain less interannual variability than the observed temperatures. The statistical model also

captures the weaker interanual variability observed for summer months compared with winter months. It

is also important to note that positive/negative anomalies of the observed samples (not shown) are

represented by positive/negative anomalies of the estimated samples. It appears that for some locations,

the estimated versus observed curves show a slight underestimation of the maximum temperature for

summer months and better agreement is found for the mean and minimum temperatures. This may be an

artefact of the predictor variables selected to calibrate the equations. Maximum temperatures are not as

well-estimated as minimum temperatures, probably due to the fact that the maximum temperature is more

strongly controlled by other factors, such as soil moisture and cloudiness, which have not been taken into

account. However, the evolution of the estimated and observed variables are highly coherent and the

general performance of the statistical model is quite reasonable, bearing in mind the simplicity of the

model and the limitations due to the size of the data set used to fit the model. Once a good performance

of the statistical model has been demonstrated using an independent verification period, we could

re-calculate the regression coefficients using the whole data sample, the period 1972–1994, with the aim

of improving their statistical reliability.

The successful reconstruction of the summer and winter monthly mean temperatures from the

large-scale predictors indicates that the procedure developed may be used with GCM data, on the

condition that the credibility of GCM simulated large-scale predictor variables used is satisfied. Assuming

that the relationships derived will be maintained in a global change scenario, it is possible to project the

global change at the local scale.

4. APPLICATION OF THE STATISTICAL METHOD TO GCM OUTPUTS

In this section, the statistical model developed and tested against observations will be applied to GCM

simulated large-scale variables.

Results from three climate simulations are used in this study. For the present day climate simulation,

the results from HADAM and MPI GCMs are used. HADAM is the first version of the Hadley Centre

Atmospheric Model, with prescribed sea surface temperatures. It is a grid point model with a horizontal

resolution of 2.5° latitude by 3.75° longitude and 19 hybrid levels in the vertical. The reference climate is

obtained by a 49 year control integration with a fixed concentration of CO2 of 321 ppmv, which is

equivalent to the observed CO2 concentration of the early 1950s. A detailed analysis of the performance

of the model can be found in Murphy (1995). The data available for use are monthly means of 2 m air

temperature, mean sea level pressure and zonal and meridional components of the wind at 200 and 700

hPa. Since there are missing values in the first years of the integration, only 45 years of data, from

January 1948 to December 1992 are employed in this study. A constant concentration of CO2 is used

throughout the 45 year control simulation. This experiment assumes that the CO2 in the control

simulation is in a quasi-equilibrium state, though the real climate is in a transient state. Consequently, it

is inappropriate to assign a model year to a calendar year, so that the climatology of the control

simulation will be used as the present climate in this work.

The atmospheric component of the MPI climate model is the ECHAM-2 model, with a horizontal

resolution of 5.6°×5.6° and 19 vertical levels. A complete description of this model can be found in

Cubasch et al. (1992). The MPI ocean model includes cross-isopycnal mixing, convective exchange and a

mixed-layer model. The deep ocean uses eight isopycnal levels in the vertical.

Possible anthropogenic climate change at local scale will be assessed by applying the statistical method

to the results of the perturbed run conducted with the MPI coupled ocean–atmosphere model. For the

perturbed simulation, the IPCC ‘A’ scenario is assumed (IPCC, 1990). A complete validation of the

control and perturbed runs with this version of the model for the South American region can be found

in Carril et al. (1997). In that paper, particular attention was given to the evaluation of the model

performance regarding those variables that are important for climate impact studies and for the

dynamical and thermodynamical behaviour of the model: surface air temperature, mean sea level pressure

and near-surface winds.
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Table V. Correlation coefficient, bias (°C) and root mean square error (°C) between 2
m temperature derived from the HADAM and the MPI control simulations and the

NCEP re-analysis, for summer and winter months

HADAM MPI

Summer Winter Summer Winter

COR 0.95 0.96 0.95 0.93
BIAS (°C) 0.98 0.05 0.17 0.009
RMS (°C) 3.11 2.56 2.55 2.24

In order to test the ability of the GCM in simulating the observed climate, the present day experiments

will be first evaluated specifically for our region of interest against the NCEP re-analyses data. The

long-term means of the predictor variables will be analysed. Only results for temperature will be shown

as it is the most relevant variable in this study. Then, the ability of the statistical method in scaling down

the information given by the GCM will be examined, with the aim of evaluating whether it is possible to

provide reliable estimations of the local variables. The data from the GCM outputs were first interpolated

to the 2.5° grid used to fit the statistical model.

4.1. Control run of the HADAM and MPI GCMs

Figure 9 shows the long-term mean 2 m temperature field for summer and winter months from the

NCEP analyses and simulated with HADAM and MPI GCMs and Table V presents some measures of

model performance: pattern correlation coefficient (COR), regional bias (BIAS) and root mean square

error (RMS) (see Giorgi et al., 1994 for definitions). The overall pattern of the temperature field is

reasonably well-reproduced by both models. Nevertheless, for both summer and winter, the HADAM

model is anomalously warmer than observations in the northern part of the domain, producing a greater

meridional temperature gradient across the region. The differences between observed and simulated mean

temperature with HADAM GCM are greater for summer months. The MPI simulated temperature field

agrees quite well with the analyses, though rather colder than the analyses for winter months in the

southern part of the domain.

Nevertheless, MPI model gives a climate simulation closest to the observed climate in the region of

interest, and therefore, we will consider this model for the climate change large-scale estimations.

An estimation of the minimum, maximum and mean temperatures for summer and winter months are

made by using the simulated large-scale predictors from the two present day simulations and the resulting

local temperatures are then compared against the observations. The local temperatures estimated from

GCM simulations cannot, of course, be compared directly with observations. In the comparison between

observed and estimated temperatures, it should be taken into account that the observed mean is calculated

for the verification period (1972–1981) and the estimated mean is obtained from a number of model years

(45 years for HADAM GCM; no information was available concerning the number of model years for

MPI GCM) representative of the present climate conditions.

Figures 10 and 11 show the estimated temperatures obtained from the HADAM and MPI large-scale

predictors, respectively. Compared with the spatial patterns of observed temperatures in Figure 5, for

summer months, it can be seen that differences between the estimated values from the HADAM model

and observed minimum and mean temperatures are well within the observed interannual variability,

except in the northern part of the domain, where the model mean temperature is overestimated. This

results in a larger meridional temperature gradient in the estimated field compared with observations.

Nevertheless, the overall pattern is reasonably well-reproduced. The differences are larger for maximum

temperature, particularly in the northern part of the domain, where the estimation exceeds the observed

values by more than 3°C. These differences, larger than the observed variability, are probably due to the

fact that the simulated predictors do not represent the present climate adequately in that area.
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Figure 9. Mean 2 m temperature fields as derived from NCEP re-analyses (upper panels), HADAM GCM (centre panels) and MPI
GCM (bottom panels) control experiments for summer months (left) and winter months (right)
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For winter months, the differences between estimated and observed (Figures 10 and 6) minimum and

maximum temperatures are larger over the entire domain. However, the estimated pattern of mean

temperature shows better agreement.

Figure 10. Estimated minimum (top), maximum (centre) and mean (bottom) temperatures from HADAM control simulation for
summer months (left panels) and winter months (right panels)
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Figure 11. Same as Figure 10 for MPI control simulation

The pattern of estimated temperatures obtained using the MPI large-scale predictors (Figure 11)

matches well with the observations for summer months, though minimum and mean temperatures are

slightly underestimated in the southeast part of the domain. However, the summer differences are well

within the range of the observed variability. For winter months, the differences between observed and
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estimated temperatures are larger. This may be due to the fact that the MPI model is less accurate at

simulating the extratropical temperatures for winter months than for summer months (Carril et al., 1997).

Thus, it is concluded that the dissimilarity of the estimated versus the observed mean temperatures is most

likely due to the performance of the GCM simulation for winter months.

To sum up these results, we can conclude that the MPI model provides reliable estimates of the

large-scale 2 m temperatures and the statistical model is able to provide information on the local scale.

Hence, it is possible to project changes in the large-scale temperature forcing onto local scale monthly

mean temperatures.

4.2. Estimation of local temperature changes

Climate models do not simulate the present climate perfectly, as we can infer from the previous

analysis. However, we can assign a degree of confidence to the simulated changes from the present to the

future climate, since the GCMs do provide a good representation of the large-scale atmospheric

circulation and the feedbacks involved in climate change.

The characteristics of the global scale changes simulated in the ‘scenario A’ experiment conducted with

the MPI model for the South American region, are detailed in Carril et al. (1997). We will give only a

brief summary of the regional features of the induced climate change. An increase of surface air

temperature, maximum over the continent, is the most immediate effect in the perturbed simulation. For

summer months an increase of temperature greater than 2°C over central Argentina is predicted, while for

winter months the temperature increase is lower. The SLP change projected by the MPI model shows an

increase in pressure over a great part of the continent, a weak intensification of the subtropical

anticyclones, a deepening of the subpolar trough, and an intensification of the westerly winds. For

summer months the amplitude of the pressure anomalies is lower than in winter.

Figure 12 shows the difference between the perturbed and control simulated large-scale mean tempera-

ture, which is the most relevant large-scale predictor, for summer and winter months in the region of

interest. Maximum warming is located in the western part of the domain for summer months (2.4°C), and

in the north-eastern part of the domain for winter months (2°C). A larger warming is projected for

summer months than for winter months.

The application of the relationships derived between the local predictands and the large-scale predictors

to the GCM simulated changes provides a reliable estimation of the possible anthropogenic changes in the

local variables. To accomplish this, differences between the simulated predictors in the perturbed run and

the control run are used as input variables to estimate possible changes in the local minimum, maximum

and mean temperatures. The results are summarized in Figure 13.

Figure 12. Temperature change (2×CO2-CONTROL) as derived from the MPI GCM for summer months (left) and winter months
(right)
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Figure 13. Minimum (top), maximum (centre) and mean (bottom) temperature change estimated from large-scale changes given by
MPI GCM for summer months (left panels) and winter months (right panels)

For both summer and winter months, the temperatures increases are slightly smaller than the simulated

by the GCM (as in Wilby et al., 1998), and are well within the observed interannual variability range,

giving a degree of confidence to the estimated anomalies. The temperature increase is smaller for
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minimum temperature than for maximum temperature for almost all the stations, yielding an enhanced

temperature amplitude in both seasons. The enhanced temperature amplitude for summer months is larger

than for winter months. The estimated maximum temperature increase is found to be larger for summer

months than for winter months for all the stations, while for minimum temperature, the increase for

summer and winter months are similar. These conclusions may be useful for climatic change impact

studies, noting that the downscaling does not provide a prediction, but rather a more reliable regional

scenario. It is also worth noting that the spatial pattern of temperature increases given by the GCM is

different from that estimated by the statistical model, indicating that individual site changes can differ

from the grid point changes.

5. SUMMARY AND CONCLUSIONS

For the purposes of estimating potential temperature changes at the local scale, a statistical approach was

developed to downscale grid point information produced by GCMs. Empirical relationships were derived

between large-scale air temperature at 2 m, mean sea level pressure and zonal and meridional components

of the wind at 200 and 700 hPa from NCEP re-analysis data (the predictors) and station minimum, mean

and maximum temperatures (the predictands) for summer and winter months, making use of the

interannual variations in climate, by means of a stepwise linear regression method (Wigley et al., 1990) for

31 stations covering the central region of Argentina. The regression equations were calibrated using data

for the period 1982–1994 and tested on an independent data set, for the period 1972–1981, by estimating

the predictands and comparing these with the observed values.

According to von Storch et al. (1993), three conditions must be fulfilled for this statistical approach to

be useful: first, the statistical relationship between large-scale predictors and local scale predictands should

explain a great part of the observed variability of the local variable; secondly, the large-scale parameters

should be well-simulated by climate models; and thirdly, the expected changes in the mean climate should

lie within the range of its natural variability, captured by the calibration data. We have checked to what

extent the above assumptions are fulfilled in order to establish the degree of confidence that can be placed

in the estimated changes projected at local scale.

Despite the simplicity of the statistical approach described, it was demonstrated that it is able to

satisfactorily reproduce the spatial patterns and time evolution of the summer and winter months’

minimum, maximum and mean station temperatures. A great part of the observed variability of the local

predictands is explained by the large-scale predictors. However, the prediction skill of the statistical model

varied between the stations and the seasons. In almost all cases, the estimates are less accurate during the

summer months, probably due to smaller scale processes, such as convective processes, not well-captured

by the large scale predictands.

The procedure was applied to the present day climate simulations provided by the HADAM and MPI

GCMs, which were validated in order to check the second assumption listed above. In general, both of

the GCMs are reasonably successful at simulating the major features of the observed mean predictors,

although the MPI model shows better agreement when compared with the analyses. The estimated

patterns of minimum, maximum and mean temperatures using the MPI simulation for the present climate

compared quite well with the observations, though minimum and mean temperatures for summer months

are slightly underestimated in the southeast part of the domain, partly due to the lower confidence in the

GCM predictors. Nevertheless, the differences are well within the range of the observed variability. This

result enables us to confirm that the technique could be used as an effective tool for downscaling

large-scale information provided by the GCMs to local scales, and hence, to assess possible changes in

local temperature extremes over the region of interest. However, we cannot be sure if the relationships

derived between the predictors and the predictands will still be valid under future climate conditions. A

fundamental assumption made by all statistical downscaling methods regards the stationarity of the

relationships between large-scale predictors and local scale predictands (Wilby, 1997; Wilby et al., 1998).

If the regression models derived are to be applicable to future climates, the model parameters must be
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shown to be robust with respect to climate changes. In other words, the relationships between the local

variables (the predictands) and the large-scale predictors must be time invariant, i.e. stationary. The

successful performance of the statistical model using an independent data set, provides some confidence

on the stability of the statistical relationships under climate variability experienced up to date. However,

there can be no guarantee that the statistical relationships are stable to future climate scenarios.

Nevertheless, since the temperature changes projected by the GCMs are well within the range of the

natural variability of the observed climate (as shown by comparing Figures 2 and 12), it is possible to

assume that the statistical relationships will still be valid under climate change conditions. In this context,

the reliability of the application to enhanced greenhouse gases experiments should be taken as the more

justifiable local estimate.

Bearing this in mind, the response of the climate system to the enhanced emission scenario simulated

by the MPI model is used to infer the local temperature changes. For summer and winter months, the

temperature changes are well within the observed range of interanual variability, fulfilling the third

assumption cited above. For both seasons, a smaller increase was found in the minimum than in the

maximum temperature, yielding an enhanced temperature amplitude. At almost all the stations, the

maximum temperature increase was found to be larger for summer months than for winter months, while

minimum temperature increases were similar for both seasons.

It should be pointed out that the reliability of the results presented in this study, regarding the future

changes in local temperature, are highly dependent on the reliability of the GCM simulated large-scale

changes. Though all general circulation models project a global scale temperature increase, there are

differences in the spatial patterns and the magnitude of the warming (Henderson-Sellers and Hansel,

1995). With the improvement of current climate models, in terms of resolution, parameterizations and

atmosphere–ocean interactions, our uncertainty in this respect will be greatly reduced.

The statistical method described is based on grid point information, and current GCMs have little

predictive capability at the individual grid points. Nevertheless, the information deduced at the local scale

from control experiments shows considerable agreement when compared with observed values.

Despite the encouraging results shown, the method has some limitations. One of the uncertainties, as

in all statistical approaches, is the non-stationartiy of the time series used in the analysis. We should also

point out that longer time series should yield more consistent results, as a greater range of natural

variability would be considered. Improved results might be obtained by using more sophisticated

techniques, such as the method described by von Storch et al. (1993), in which a larger spatial domain for

the predictor variables is used to specify the local parameters, since the GCMs performs better at such

scales.
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