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Local exact controllability for the 1-D compressible Navier-Stokes

equation

Sylvain Ervedoza ∗, Olivier Glass †, Sergio Guerrero ‡, Jean-Pierre Puel§

December 20, 2011

1 Introduction

In this article, we consider the compressible Navier-Stokes equation in one space dimension in a bounded
domain (0, L):

{

∂tρS + ∂x(ρSuS) = 0 in (0, T )× (0, L),
ρS(∂tuS + uS∂xuS)− ν∂xxuS + ∂xp(ρS) = 0 in (0, T )× (0, L).

(1.1)

Here ρS is the density, uS the velocity and p denotes the pressure, which follows the standard law:

p(ρS) = cpρ
γ
S , (1.2)

for some constants cp > 0 and γ ≥ 1. This law is the classical one when considering isentropic flows
(γ = 1.4 for perfect gases) or isothermal flows (γ = 1). We also impose the initial data:

(ρS , uS)|t=0 = (ρ0, u0) in (0, L), (1.3)

Let us emphasize that the boundary conditions do not appear in the equation (1.1), as frequently happens
when controlling hyperbolic equations like the equation of the density. They will be used as the controls
on the system. Our goal is to prove the local exact controllability to constant states (ρ, u), which of
course satisfy (1.1), when the velocity part of the target does not vanish. To be more precise, given
(ρ, u) ∈ R

∗
+ × R

∗, we want to prove that, for (ρ0, u0) close enough to (ρ, u), one can find a solution of
(1.1) with initial data (1.3) connecting the initial state to the target (ρ, u) in some time T .

The goal of this article is to prove the following result.

Theorem 1.1. Let u ∈ R
∗ and ρ ∈ R

∗
+. Let T > 0 satisfy

T >
L

|u| . (1.4)

Then there exists κ > 0 such that, for any u0 ∈ H3(0, L) and ρ0 ∈ H3(0, L) such that

‖u0 − u‖H3(0,L) + ‖ρ0 − ρ‖H3(0,L) < κ, (1.5)

there exists a solution (ρS , uS) of (1.1)–(1.3) satisfying

(ρS , uS)(T ) = (ρ, u) in (0, L). (1.6)

Besides, the controlled trajectory satisfies ρS ∈ H1((0, T ) × (0, L)) and uS ∈ H1((0, T );L2(0, L)) ∩
L2((0, T );H2(0, L)).
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Remark 1.2. It is likely that we can reduce the regularity asked on the initial data. However, as can be
seen in the proof, our method requires information on the second derivative of ρS, which can be obtained
using third derivatives of uS.

Remark 1.3. Conditions u 6= 0 and T > L/|u| appear natural if we want the velocity u to stay close
to u as, for example, the waves of density which travel at velocity u have to reach the boundary (where
the control acts) before time T . Actually, if we consider the linearized system around (ρ, 0), it appears
that the density is not controllable as can be seen in [20]. But this does not necessarily imply that the
nonlinear system is not controllable as the numerous examples of use of the so-called return method
[3, 9, 5] show.

Theorem 1.1 appears to be the first controllability result concerning a compressible and viscous
fluid except for the recent result by Amosova [2], which deals with a controllability problem concerning
compressible viscous fluids in dimension 1. In this paper, the author considers the equation in Lagrangian
coordinates, with zero boundary condition for the velocity on the boundaries of the interval and an
interior control on the velocity equation. She proves a result of local exact controllability to trajectories
for the velocity, provided that the initial density is already on the “targeted trajectory”. Our result
differs because:

• We consider boundary controls for both equations, but have no assumption on the initial density
except the smallness of ρ− ρ0,

• We suppose u 6= 0 and obtain a local exact controllability result for both the density and the
velocity to (ρ, u),

• The change of variable between Lagrangian and Eulerian coordinates (which consists in taking a
primitive of the density as a new space variable) does not leave the domain (or the control zone)
invariant.

Let us now give more references on control results for fluids.
Controllability problems for incompressible fluids have been extensively studied in the recent years.

In [3], Coron obtained a global exact controllability result for Euler equations in the 2 dimensional case
and Glass extended in [9] this result to the 3 dimensional case. Concerning incompressible Navier-Stokes
equations and related systems, Fursikov and Imanuvilov gave in [8] the first local exact controllability
result for boundary conditions on the normal velocity and on the curl. Then Imanuvilov in [14] gave
a local result for the no-slip Dirichlet boundary conditions and this result was extended by Fernandez-
Cara, Guerrero, Imanuvilov and Puel in [7]. Let us also mention the results and method of [11] where
a fictitious control is introduced and which can be applied to coupled systems like Boussinesq system.
Global controllability is here an open question and it is also the case for incompressible Navier-Stokes
equations, except for controls acting on the whole boundary (see Coron and Fursikov [4]). For Burgers
equation in 1-D Guerrero and Imanuvilov gave in [12] a counterexample for global controllability whereas
for 2-D Burgers equations, the situation is more complex and Imanuvilov and Puel in [15] proved global
controllability for a special geometry and gave a counterexample for another one.

Controllability problems have also been considered in the context inviscid compressible fluids. In
dimension one, since the compressible Euler equation is a hyperbolic system of conservation laws, the
general result of Li and Rao [16] applies to it and proves a local controllability result of classical solutions
(of class C1). For further results in this context, see the book [17] and the references therein. A local exact
controllability result for the one dimensional isentropic Euler equation in the context of weak entropy
solutions was established by Glass in [10]. Let us also mention a result of approximate controllability in
the 3-dimensional case by means of a finite number of modes, see Nersisyan [19].

The rest of the paper is devoted to the proof of Theorem 1.1. In Section 2, we describe the structure
of an operator, connected to a controllability problem which is still nonlinear but not as severely as
the original one and whose fixed point will give a solution to the controllability problem. In fact we
introduce a decoupling which gives a linear controllability problem for the velocity u and, once u is
given, a linear controllability problem for the density ρ. In Section 3, we describe how we solve the part
of the linear controllability problem concerning the velocity. In Section 4, we describe how we solve the
part concerning the density. In Section 5, we prove that the operator that we constructed admits a fixed
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point, proving Theorem 1.1. Finally, the appendix gives the details of some tedious computations and
some comments on the Cauchy problem for (1.1)–(1.3).

For the rest of the paper, we will assume, without loss of generality, that

u > 0.

It is just a matter of using the change of coordinates x→ L− x.

2 Main steps of the proof of Theorem 1.1

2.1 Reformulation

The general idea of the construction is to build an operator whose fixed points will give a solution
of the controllability problem. It is based on the resolution of controllability problems for suitable
approximations of equation (1.1) near the trajectory (ρ, u).

In our fixed point argument, it will be convenient to work within a class of functions vanishing at
time t = 0. Therefore, to take the initial data into account, we extend (ρ0, u0) into smooth functions on
R, still denoted the same, such that (ρ0 − ρ, u0 − u) vanish outside (−1, L + 1), in such a way that we
still have

‖ρ0 − ρ‖H3(R) + ‖u0 − u‖H3(R) < Cκ, (2.1)

for some constant C > 0 depending on L only.
We then define (ρin, uin) as the solution of

{

∂tρin + ∂x((ρ+ ρin)(u+ uin)) = 0 in [0, T ]× R,
(ρ+ ρin)(∂tuin + (u+ uin)∂xuin)− ν∂xxuin + p′(ρ+ ρin)∂xρin = 0 in [0, T ]× R,

(2.2)

with initial data
ρin(0) = ρ0 − ρ and uin(0) = u0 − u on R. (2.3)

The existence of (ρin, uin) is given in the next proposition, which is a direct consequence of a paper by
Matsumura and Nishida [18] (see also [13] for a related result).

Proposition 2.1. Set (ρ, u) ∈ R
∗
+ × R and T > 0. There exists κ,K > 0 such that, for any u0 ∈

u +H3(R) and ρ0 ∈ ρ +H3(R) satisfying (2.1), there exists a solution (ρin, uin) in L∞(0, T ;H3(R)) ∩
W 1,∞(0, T ;H2(R))× L∞(0, T ;H3(R)) ∩W 1,∞(0, T ;H1(R)) of (2.2)-(2.3), satisfying:

‖ρin‖L∞(0,T ;H3(R))∩W 1,∞(0,T ;H2(R)) + ‖uin‖L∞(0,T ;H3(R))∩W 1,∞(0,T ;H1(R))

≤ K
(

‖ρ0 − ρ‖H3(R) + ‖u0 − u‖H3(R)

)

. (2.4)

We give some explanations on Proposition 2.1 in Appendix 6.3.

As a consequence of Proposition 2.1, we will be able to suppose that ρin and uin are suitably small
by choosing initial data (ρ0, u0) sufficiently close to (ρ, u). To express this in a convenient manner, we
introduce

Rin := ‖ρin‖L∞(0,T ;W 2,∞(R))∩W 1,∞(0,T ;W 1,∞(R)) + ‖uin‖L∞(0,T ;W 2,∞(R))∩W 1,∞(0,T ;L∞(R)), (2.5)

which we will be able to consider small when taking κ small enough in (1.5). In particular it will be
systematically supposed to satisfy:

Rin ≤ min

{

1,
u

4
,
ρ

4

}

. (2.6)
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We can now reformulate the problem as follows. First, recall that T has been chosen large enough so
that (1.4) holds. We can thus introduce T0 > 0 such that

T0 ∈
(

0,
1

4

)

and 10T0 < T − L

u
. (2.7)

Now we choose a smooth cut-off function Λ such that

Λ : [0, T ] → [0, 1], Λ(t) =

{

1 for t ∈ [0, T0],
0 for t ∈ [2T0, T ],

(2.8)

and set
ρ = ρS − ρ− Λρin and u = uS − u− Λuin. (2.9)

Then our goal is to show that there exists a solution (ρ, u) of

∂tρ+ (u+ u+ Λuin)∂xρ+ ρ∂xu+
ρ

ν
p′(ρ)ρ = f(ρ, u) in [0, T ]× (0, L), (2.10)

(ρ+ Λρin)(∂tu+ u∂xu)− ν∂xxu = g(ρ, u) in [0, T ]× (0, L), (2.11)

where f(ρ, u) and g(ρ, u) are given as follows:

f(ρ, u) = −Λ′ρin + (Λ− Λ2)∂x(ρinuin)− Λ∂x(ρinu)− Λρ∂xuin − ρ∂xu+
ρ

ν
p′(ρ)ρ (2.12)

and

g(ρ, u) =− (ρ+ Λρin)Λ
′uin − (p′(ρ+ Λρin)− p′(ρ+ ρin))Λ∂xρin

+ ρin∂tuin(Λ− Λ2) + ρinu∂xuin(Λ− Λ2) + ρuin∂xuin(Λ− Λ2) + ρinuin∂xuin(Λ− Λ3) (2.13)

− Λ(ρ+ Λρin)∂x(uuin)− (ρ+ Λρin)u∂xu

− ρ(∂t(Λuin + u) + (u+ Λuin + u)∂x(Λuin + u))

− (p′(ρ+ Λρin + ρ)− p′(ρ+ Λρin))∂x(Λρin + ρ)− p′(ρ+ Λρin)∂xρ,

satisfying
ρ(0, ·) = ρ(T, ·) = 0 and u(0, ·) = u(T, ·) = 0. (2.14)

The lengthy computations leading to the expressions of f and g are detailed in Appendix 6.1 and 6.2
respectively.

Now to obtain a solution of (2.10)-(2.14), the idea is to find a fixed point to the application

F (ρ̂, û) := (ρ, u), (2.15)

where (ρ, u) is a suitable solution of

∂tρ+ (u+ u+ Λuin)∂xρ+ ρ∂xu+
ρ

ν
p′(ρ)ρ = f(ρ̂, û) in [0, T ]× (0, L), (2.16)

(ρ+ Λρin)(∂tu+ u∂xu)− ν∂xxu = g(ρ̂, û) in [0, T ]× (0, L), (2.17)

satisfying
ρ(0) = ρ(T ) = 0 and u(0) = u(T ) = 0. (2.18)

Of course, for this map to be well-defined, we need to make precise in which spaces the map F is defined
and how the solution (ρ, u) is constructed. Indeed, the existence of such (ρ, u) is not obvious since it is
a solution of a control problem that involves a heat type equation for the equation of the velocity and a
transport equation for the density. Details on the construction of F will be given afterwards.

Besides, to complete the proof of Theorem 1.1, we will have to construct a convex set which is stable
by F . This will be the main difficulty of the proof.

To simplify notations, we shall denote f(ρ̂, û) and g(ρ̂, û) simply by f̂ and ĝ, respectively.
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2.2 Construction of the fixed point map

The map F is constructed in two steps that will be detailed in the sections afterwards:

Step 1. Controlling u. For this to be done, we shall use a global Carleman estimate involving a weight
function that will “travel” at velocity u. This is the object of Section 3. The idea is very close to
the control of the classical heat equation, except that one should be cautious about the fact that
the weight functions travel along the characteristics.

Step 2. Constructing ρ. The idea is to use a backward solution vanishing at time T and a forward solution
vanishing at time 0 and to glue them along the characteristics of the flow. This construction is
very naive and natural, but the main difficulty is then to estimate the obtained ρ in an appropriate
space. Such an estimate is derived in Section 4.

We finally end this section by giving a description of the fixed point space.

2.3 Description of the fixed point space

The space where F is to be defined is a weighted space connected to the aforementioned Carleman
estimate. Let us first describe the weight function that we use. Set ψ ∈ C∞(R;R+) such that

3 ≤ min
[−5uT,L]

ψ ≤ max
[−5uT,L]

ψ ≤ 4, max
[−3uT,L]

ψ′ < 0 and min
[−5uT,−4uT ]

ψ′ > 0. (2.19)

Then, let θ = θ(t) ∈ C2([0, T ];R+) defined by

θ(t) =







t in [0, 2T0]
1 in [3T0, T − 3T0]
T − t in [T − 2T0, T ],

(2.20)

and being such that θ is increasing on [0, 3T0] and decreasing on [T − 3T0, T ].
We then define the weight function ϕ(t, x), depending on a positive parameter λ as follows

ϕ(t, x) =
1

θ(t)

(

e5λ − eλψ(x−ut)
)

, (t, x) ∈ (0, T )× R. (2.21)

To this weight we associate the time-dependent function

ϕ̌(t) := min
x∈[0,L]

ϕ(t, x) = ϕ(t, 0), t ∈ (0, T ). (2.22)

We also denote

ξ(t, x) =
1

θ(t)
eλψ(x−ut), (t, x) ∈ (0, T )× R. (2.23)

Note in particular that for all (t, x) ∈ (0, T )× R,

ξ ≥ 1. (2.24)

The parameter λ used in the above definition of ϕ in (2.21) will always be assumed to be positive and
larger than one, as well as the second parameter, called s, of the Carleman estimates:

s ≥ 1 and λ ≥ 1. (2.25)

We can now define the set on which F is to be defined. It depends on two constants

Rρ ∈ (0, 1) and Ru ∈ (0, 1). (2.26)

Given s, λ, Rρ and Ru, we define the spaces Xs,λ,Rρ
and Ys,λ,Ru

as follows:

Xs,λ,Rρ
= {ρ such that

ξ−1esϕρ ∈ L2((0, T )× (0, L)) with ‖ξ−1esϕρ‖L2((0,T )×(0,L)) ≤ Rρ,
ξ−3/2esϕ∂xρ ∈ L2((0, T )× (0, L)) with ‖ξ−3/2esϕ∂xρ‖L2((0,T )×(0,L)) ≤ Rρ,
∂tρ ∈ L2((0, T )× (0, L)) with ‖∂tρ‖L2((0,T )×(0,L)) ≤ Rρ,
esϕ̌/2ρ ∈ L∞((0, T )× (0, L)) with ‖esϕ̌/2ρ‖L∞((0,T )×(0,L)) ≤ Rρ,
esϕ̌/2∂xρ ∈ L∞((0, T );L2(0, L)) with ‖esϕ̌/2∂xρ‖L∞((0,T );L2(0,L)) ≤ Rρ,
(ξ−3/2esϕρ)(·, 0) ∈ L2(0, T ) with ‖λ1/2[ξ−3/2esϕρ](·, 0)‖L2(0,T ) ≤ Rρ,
(ξ−3/2esϕρ)(·, L) ∈ L2(0, T ) with ‖λ1/2[ξ−3/2esϕρ](·, L)‖L2(0,T ) ≤ Rρ,







































(2.27)
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Ys,λ,Ru
= {u such that u(t, L) = 0, t ∈ (0, T ),

esϕu ∈ L2((0, T )× (0, L)) with ‖s3/2λ2esϕu‖L2((0,T )×(0,L)) ≤ Ru,
ξ−1esϕ∂xu ∈ L2((0, T )× (0, L)) with ‖s1/2λξ−1esϕ∂xu‖L2((0,T )×(0,L)) ≤ Ru,
ξ−2esϕ∂xxu ∈ L2((0, T )× (0, L)) with ‖s−1/2ξ−2esϕ∂xxu‖L2((0,T )×(0,L)) ≤ Ru,
ξ−2esϕ∂tu ∈ L2((0, T )× (0, L)) with ‖s−1/2ξ−2esϕ∂tu‖L2((0,T )×(0,L)) ≤ Ru.















. (2.28)

Let us remark that both sets are convex and compact for the topology of L2((0, T )×(0, L)). Therefore, if
one shows that the map F maps Xs,λ,Rρ

×Ys,λ,Ru
into itself for convenient choices of parameters s, λ ≥ 1

and Rρ, Ru small enough, we are in position to prove the existence of a fixed point by Schauder’s fixed
point theorem, provided the continuity of F on Xs,λ,Rρ

×Ys,λ,Ru
endowed with the (L2((0, T )×(0, L)))2-

topology is proved. This will be the object of Section 5.

3 Controlling the velocity

In this section, we study the controllability problem attached to the parabolic equation (2.17). The term
ĝ = g(ρ̂, û) is considered as a source term. We are then in a familiar framework which can be handled
using Carleman estimates and duality arguments.

3.1 Construction of u

For sake of simplicity, let us introduce the following general heat equation:

a ∂tu+ b ∂xu− ν∂xxu = g in (0, T )× (0, L), u(t, L) = 0, in (0, T ) (3.1)

where a(t, x) ∈W 1,∞((0, T )× (0, L)), b(t, x) ∈ L∞(0, T ;W 1,∞(0, L)) and

inf
(t,x)∈(0,T )×(0,L)

{a(t, x)} > 0. (3.2)

The source term g is assumed to be given.
We also introduce the following control problem: find a trajectory u of (3.1) such that

u(0, ·) = u(T, ·) = 0 in (0, L). (3.3)

Here again, the control is hidden in the lack of boundary condition at x = 0 in (3.1).
To be more precise, we shall look for conditions on the source term g that guarantee the existence of

a controlled trajectory of (3.1) satisfying (3.3).
Of course, this corresponds to the construction of the u-part of F (ρ̂, û) with

a(t, x) := ρ+ Λρin(t, x), b(t, x) := (ρ+ Λρin(t, x))u and g := ĝ, (3.4)

provided that Rin is small enough to guarantee that a(t, x) := ρ+ Λρin(t, x) satisfies (3.2).
To solve this control problem, we first extend (3.1) on a larger domain, for instance (−4uT, L) and

extend a and b on (0, T )× (−4uT, L) such that the extensions, still denoted by a and b, satisfy:

a ∈W 1,∞((0, T )× (−4uT, L)), b ∈ L∞(0, T ;W 1,∞(−4uT, L)),

‖a‖W 1,∞((0,T )×(−4uT,L)) + ‖b‖L∞(0,T ;W 1,∞(−4uT,L)) ≤ β,
(3.5)

and
inf

(t,x)∈(0,T )×(−4uT,L)
{a(t, x)} ≥ α > 0. (3.6)

Note that, when constructing the u-part of F (ρ̂, û), the coefficients a and b given by (3.4) are naturally
defined on (0, T )× R and then this extension argument is not really needed.

We shall also consider the extension of g by 0 in (0, T )× (−4uT, 0), that we still denote the same for
sake of simplicity.
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We then consider the following control problem: find a control v so that the solution u of







a ∂tu+ b ∂xu− ν∂xxu = g + v1(0,T )×(−4uT,−uT ) in (0, T )× (−4uT, L),
u(t,−4uT ) = u(t, L) = 0, in (0, T ),
u(0, ·) = 0 in (−4uT, L),

(3.7)

satisfies
u(T, ·) = 0 in (−4uT, L). (3.8)

By restriction, solving (3.7)–(3.8) for some v yields a controlled trajectory u of (3.1) satisfying (3.3).
As it is classical now from the work of Fursikov-Imanuvilov [8], this issue can be addressed by proving

a Carleman estimate for the adjoint of the heat operator under consideration.
Hence, setting

Pa,b := a ∂t + b ∂x − ν∂xx on (0, T )× (−4uT, L),

with Dirichlet boundary conditions at x = −4uT and x = L, (3.9)

we are going to derive a Carleman estimate for the operator

P ∗
a,b = −∂t(a · )− ∂x(b · )− ν∂xx on (0, T )× (−4uT, L),

with Dirichlet boundary conditions at x = −4uT and x = L, (3.10)

with observation on (0, T )× (−4uT,−uT ).
We are now in position to state the following Carleman estimate:

Theorem 3.1. Assume that a and b satisfy conditions (3.5) and (3.6).
There exist s0 ≥ 1, λ0 ≥ 1 and C > 0, all depending on β and α, such that for all s ≥ s0 and λ ≥ λ0,

any smooth function z : [0, T ]× [−4uT, L] → R satisfying z(t, L) = 0 and z(t,−4uT ) = 0 satisfies

s3λ4
∫∫

(0,T )×(−4uT,L)

ξ3e−2sϕ|z|2 + sλ2
∫∫

(0,T )×(−4uT,L)

ξe−2sϕ|∂xz|2

+
1

s

∫∫

(0,T )×(−4uT,L)

1

ξ
e−2sϕ

(

|∂xxz|2 + |∂tz|2
)

≤ C

∫∫

(0,T )×(−4uT,L)

e−2sϕ
∣

∣P ∗
a,bz
∣

∣

2
+ Cs3λ4

∫∫

(0,T )×(−4uT,−uT )

ξ3e−2sϕ|z|2. (3.11)

The proof of Theorem 3.1 is given in Subsection 3.2. It is mainly classical (see Fursikov and Imanuvilov
[8]), except for what concerns the Carleman weight. Indeed, the classical Carleman weight usually takes
the form

ϕ̃(t, x) =
1

t(T − t)

(

e5λ − eλψ(x)
)

.

The differences between the weight (2.21) and the classical one are then the following: the weight function
θ (see (2.20)) is constant during a certain interval of time and the variable in the function ψ is x − ut
instead of x. This latest point somehow reflects the hyperbolic nature of the equation of ρ and the fact
that it is important to take into account the transport at velocity u. See also [1] for a similar Carleman
weight function.

As we shall see later, this particular form of the weight function will allow us to estimate the controlled
density in weighted functional spaces, which is a crucial step to develop the fixed point argument.

Relying on this Carleman estimate, we develop a duality argument using Theorem 3.1 and the method
developed by Fursikov and Imanuvilov [8]. Let us assume that g : (0, T )× (−4uT, L) → R satisfies

∫∫

(0,T )×(−4uT,L)

1

ξ3
e2sϕ|g|2 <∞. (3.12)
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We then introduce the functional J defined by

J(z) =
1

2

∫∫

(0,T )×(−4uT,L)

e−2sϕ|P ∗
a,bz|2 +

s3λ4

2

∫∫

(0,T )×(−4uT,−uT )

ξ3e−2sϕ|z|2

−
∫∫

(0,T )×(−4uT,L)

gz, (3.13)

among all z belonging to the space Y defined as the completion with respect to the norm

‖z‖2obs =
∫∫

(0,T )×(−4uT,L)

e−2sϕ|P ∗
a,bz|2 + s3λ4

∫∫

(0,T )×(−4uT,−uT )

ξ3e−2sϕ|z|2

of the space of functions in C∞([0, T ] × [−4uT, L]) vanishing at x = L and x = −4uT . Note that the
fact that ‖ · ‖obs is a norm is a consequence of the Carleman estimate (3.11).

Observe that thanks to (3.11) and (3.12), the linear map

z 7→
∫∫

(0,T )×(−4uT,L)

gz,

is well-defined and continuous on Y. Moreover, one easily checks that J is strictly convex and coercive
on the space Y endowed with the norm ‖ · ‖obs.

Therefore, it has a unique minimizer Z, for which, due to the coercivity of J , we have

‖Z‖2obs ≤ C
1

s3λ4

∫∫

(0,T )×(−4uT,L)

1

ξ3
e2sϕ|g|2. (3.14)

Besides, as a minimizer of J , Z satisfies, for all z ∈ Y,

∫∫

(0,T )×(−4uT,L)

e−2sϕP ∗
a,bzP

∗
a,bZ + s3λ4

∫∫

(0,T )×(−4uT,−uT )

ξ3e−2sϕzZ

=

∫∫

(0,T )×(−4uT,L)

gz. (3.15)

Consequently, if we set
u := e−2sϕP ∗

a,bZ, v := −s3λ4ξ3e−2sϕZ, (3.16)

it is not difficult to see that u satisfies, in the transposition sense,

a ∂tu+ b ∂xu− ν∂xxu = g + v1(−4uT,−uT ) in (0, T )× (−4uT, L), u(·,−4uT ) = 0 = u(·, L), (3.17)

Besides, due to (3.14), we get:

∫∫

(0,T )×(−4uT,L)

e2sϕ|u|2 + 1

s3λ4

∫∫

(0,T )×(−4uT,−uT )

1

ξ3
e2sϕ|v|2

≤ C
1

s3λ4

∫∫

(0,T )×(−4uT,L)

1

ξ3
e2sϕ|g|2. (3.18)

Of course, thanks to the exponential blow up of the weight function ϕ as t → 0 and as t → T , (see
(2.21)), this implies that u(0, ·) = u(T, ·) = 0 in (−4uT, L).

Moreover, by uniqueness of the solution in the transposition sense, since the source term belongs to
L2((0, T )× (−4uT, L)), u is a strong solution of (3.17).

With all these ingredients, we can obtain the following (the detailed proof is available in Section 3.3):

Theorem 3.2. Given g ∈ L2((0, T )× (−4uT, L)) satisfying (3.12) and a, b satisfying (3.5)–(3.6), there
exists a constant C depending only on β and α, such that for all s ≥ s0 and λ ≥ λ0, there exists a
solution u of (3.7)-(3.8) and such that
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s3λ4
∫∫

(0,T )×(−4uT,L)

e2sϕ|u|2 + sλ2
∫∫

(0,T )×(−4uT,L)

1

ξ2
e2sϕ|∂xu|2

+
1

s

∫∫

(0,T )×(−4uT,L)

1

ξ4
e2sϕ

(

|∂tu|2 + |∂xxu|2
)

≤ C

∫∫

(0,T )×(−4uT,L)

1

ξ3
e2sϕ|g|2. (3.19)

Remark 3.3. In this theorem and in the sequel, s0 and λ0 stand for two sufficiently large constants
which may change from line to line.

The u-part of F (ρ̂, û) is given by this u for a, b, g as indicated above:

a(t, x) := ρ+Λρin(t, x) in (0, T )× (−4uT, L), b(t, x) := (ρ+Λρin(t, x))u in (0, T )× (−4uT, L) (3.20)

with source term

g :=

{

ĝ in (0, T )× (0, L),
0 in (0, T )× (−4uT, 0).

(3.21)

Of course, it is easy to check that a and b satisfy (3.5)–(3.6) with β = 3ρu and α = ρ/2 by taking
Rin ≤ ρ/2. However, the fact that this g satisfies assumption (3.12) is not obvious. We will see later in
Section 5 Lemma 5.1 that this can be proved using the fact that (ρ̂, û) ∈ Xs,λ,Rρ

× Ys,λ,Ru
.

Remark 3.4. Note that the u-part of the control constructed above is known at x = L and corresponds
to the following boundary conditions for uS :

uS(t, L) = u+ Λuin.

This could very likely be reduced to uS(t, L) = u provided there is a regular solution (ρin, uin) of (2.2)
with uin(t, L) = 0 for t ∈ [0, T ], which would of course entail strong compatibility conditions on (ρ0, u0)
at x = L.

In Section 3.2 we prove Theorem 3.1 and we establish Theorem 3.2 in Section 3.3. For later use, in
Section 3.4, we also prove interpolation estimates to get estimates on the boundary, i.e. at x = 0 and
x = L, and in L∞((0, T )× (0, L)) and L1((0, T );W 1,∞(0, L)) norms.

To simplify notations, in the following, we set

QT = (0, T )× (−4uT, L).

3.2 Proof of Theorem 3.1

Let us begin this section by giving some properties of the Carleman weights. Thanks to the structure of
ϕ (see (2.21)–(2.23)) simple computations give

∂xϕ(t, x) = −λψ′(x− ut)ξ(t, x), ∂xxϕ(t, x) = −λ2(ψ′(x− ut))2ξ − λψ′′(x− ut)ξ(t, x).

Thus, due to (2.19) for some λ0 > 0, there exists a constant c∗ > 0 such that for λ ≥ λ0, ,

{

−∂xxϕ(t, x) ≥ c∗λ
2ξ(t, x),

−∂x((∂xϕ)3)(t, x) ≥ c∗λ
4ξ3(t, x),

∀(t, x) ∈ [0, T ]× [−2uT, L], (3.22)

whereas we obviously have for some constant C independent of λ

{

| − ∂xxϕ(t, x)| ≤ Cλ2ξ(t, x),
| − ∂x((∂xϕ)

3)(t, x)| ≤ Cλ4ξ3(t, x),
∀(t, x) ∈ [0, T ]× [−4uT, L]. (3.23)

One also easily checks that
{

∂xϕ(t,−4uT ) ≤ 0,
∂xϕ(t, L) ≥ 0,

∀t ∈ [0, T ]. (3.24)
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Besides

∂tϕ = −θ
′

θ
ϕ+ λuψ′(x− ut) ξ.

But ϕ ≤ θξ2 and λ ≤ Cξ for some C independent of λ > 0 (recall that ψ ≥ 3). We thus obtain the
bound

|∂tϕ| ≤ Cξ2 (3.25)

and, similarly,
|∂txϕ| ≤ Cλξ2, |∂ttϕ| ≤ Cξ3. (3.26)

for some constant C independent of λ. In the following, we shall always assume that λ ≥ λ0 so that
formulas (3.22)–(3.26) hold.

Proof of Theorem 3.1. Let z be a smooth function on [0, T ]× [−4uT, L] satisfying z(t,−4uT ) = z(t, L) =
0 and set h = a ∂tz + ν∂xxz.

We then introduce the function w = e−sϕz. Due to the blow up of the function ϕ as t → 0 and
t→ T , w satisfies

(ξ2w)(0, x) = (ξ2w)(T, x) = 0, x ∈ (−4uT, L),

still with the boundary conditions w(t,−4uT ) = w(t, L) = 0.
Then, setting

P0w = e−sϕ(a ∂t + ν∂xx)(e
sϕw),

we have that P0w = he−sϕ. We then compute the operator P0w:

P0w = P1w + P2w +Rw,

where






P1w = a ∂tw + 2ν s ∂xϕ∂xw,
P2w = ν ∂xxw + s a ∂tϕw + ν s2 (∂xϕ)

2w,
Rw = ν s ∂xxϕw.

Let us now compute the mean value of P1wP2w. Integrations by parts in space and time yield

ν

∫∫

QT

a ∂tw ∂xxw =
1

2
ν

∫∫

QT

∂ta |∂xw|2 − ν

∫∫

QT

∂xa ∂tw ∂xw

and
∫∫

QT

a ∂tw(s a ∂tϕw + νs2 (∂xϕ)
2 w) = −s

2

∫∫

QT

∂t(a
2 ∂tϕ) |w|2 − ν

s2

2

∫∫

QT

∂t(a (∂xϕ)
2)|w|2.

Then, we integrate by parts in space and we obtain

2 ν2 s

∫∫

QT

∂xϕ∂xw ∂xxw = −ν2 s
∫∫

QT

∂xxϕ |∂xw|2 + ν2 s

∫ T

0

∂xϕ(t, x) |∂xw(t, x)|2
∣

∣

∣

∣

∣

x=L

x=−4uT

,

and

2 ν s

∫∫

QT

∂xϕ∂xw (s a ∂tϕw + ν s2(∂xϕ)
2 w) = −ν s2

∫∫

QT

∂x(a ∂xϕ∂tϕ)|w|2

− ν2 s3
∫∫

QT

∂x((∂xϕ)
3)|w|2.

Combining all these computations, we get
∫∫

QT

P1wP2w =
1

2
ν

∫∫

QT

∂ta |∂xw|2 − ν

∫∫

QT

∂xa ∂tw ∂xw

−s
2

∫∫

QT

∂t(a
2 ∂tϕ)|w|2 − ν

s2

2

∫∫

QT

∂t(a (∂xϕ)
2)|w|2

−ν2 s
∫∫

QT

∂xxϕ |∂xw|2 − ν s2
∫∫

QT

∂x(a ∂xϕ∂tϕ)|w|2

−ν2 s3
∫∫

QT

∂x((∂xϕ)
3)|w|2 + ν2 s

∫ T

0

∂xϕ(t, x) |∂xw(t, x)|2
∣

∣

∣

∣

∣

x=L

x=−4uT

.
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Recalling the fact that a ∈W 1,∞((0, T )× (0, L)) and the formulas (3.22)–(3.26), we obtain, for λ and s
large enough,

∫∫

QT

P1wP2w

≥ c∗s
3λ4

∫∫

QT

ξ3 |w|2 + c∗sλ
2

∫∫

QT

ξ|∂xw|2 − C

∫∫

QT

|∂tw||∂xw|

− C

(

s3λ4
∫∫

(0,T )×(−4uT,−2uT )

ξ3|w|2 + sλ2
∫∫

(0,T )×(−4uT,−2uT )

ξ|∂xw|2
)

≥ c∗s
3λ4

∫∫

QT

ξ3|w|2 + c∗
2
sλ2

∫∫

QT

ξ|∂xw|2 −
C

sλ2

∫∫

QT

1

ξ
|∂tw|2

− C

(

s3λ4
∫∫

(0,T )×(−4uT,−2uT )

ξ3|w|2 + sλ2
∫∫

(0,T )×(−4uT,−2uT )

ξ|∂xw|2
)

, (3.27)

for some c∗ > 0 and C > 0, both independent of s ≥ s1 and λ ≥ λ1.
Now, we estimate the L2(L2)-norm of ∂tw. In order to do that, we observe that

|∂tw| ≤ C|P1w|+ Csλξ|∂xw|.

Therefore
1

s

∫∫

QT

1

ξ
|∂tw|2 ≤ C

∫∫

QT

|P1w|2 + Csλ2
∫∫

QT

ξ|∂xw|2. (3.28)

Similarly, from the definition of P2 we get

1

s

∫∫

QT

1

ξ
|∂xxw|2 ≤ C

∫∫

QT

|P2w|2 + Cs3λ4
∫∫

QT

ξ3|w|2, (3.29)

for s large enough.
But, using the fact that P1w + P2w = he−sϕ −Rw,

∫∫

QT

|P1w|2 +
∫∫

QT

|P2w|2 +
∫∫

QT

P1wP2w ≤ 2

∫∫

QT

|h|2e−2sϕ + 2

∫∫

QT

|Rw|2,

and therefore estimates (3.27)–(3.28)–(3.29) yield, for s ≥ s2 and λ ≥ λ2 and for some constant C > 0
independent of s and λ

s3λ4
∫∫

QT

ξ3|w|2 + sλ2
∫∫

QT

ξ|∂xw|2 +
1

s

∫∫

QT

1

ξ

(

|∂xxw|2 + |∂tw|2
)

+

∫∫

QT

(|P1w|2 + |P2w|2)

≤ C

∫∫

QT

|h|2e−2sϕ + C

∫∫

QT

|Rw|2 + C

sλ2

∫∫

QT

1

ξ
|∂tw|2

+ C

(

s3λ4
∫∫

(0,T )×(−4uT,−2uT )

ξ3|w|2 + sλ2
∫∫

(0,T )×(−4uT,−2uT )

ξ|∂xw|2
)

.

Of course, |Rw| ≤ Csλ2ξ|w| and thus this term can be easily absorbed by the left hand side: for
some constant C independent of s and λ, for s ≥ s3 and λ ≥ λ3,

s3λ4
∫∫

QT

ξ3|w|2 + sλ2
∫∫

QT

ξ|∂xw|2 +
1

s

∫∫

QT

1

ξ

(

|∂xxw|2 + |∂tw|2
)

+

∫∫

QT

(|P1w|2 + |P2w|2) ≤ C

∫∫

QT

|h|2e−2sϕ

+ C

(

s3λ4
∫∫

(0,T )×(−4uT,−2uT )

ξ3|w|2 + sλ2
∫∫

(0,T )×(−4uT,−2uT )

ξ|∂xw|2
)

. (3.30)
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Now, we introduce a nonnegative smooth function χ that vanishes identically on (−uT, L) and that
takes value one on (−4uT,−2uT ) and we compute P2w ξ χ

2 w:

∫∫

QT

P2w ξ χ
2 w = ν

∫∫

QT

∂xxw ξ χ
2 w +

∫∫

QT

s a ∂tϕ ξ χ
2|w|2 + νs2

∫∫

QT

(∂xϕ)
2ξ χ2|w|2.

But

ν

∫∫

QT

∂xxw ξ χ
2w = −ν

∫∫

QT

|∂xw|2ξ χ2 +
ν

2

∫∫

QT

|w|2∂xx(ξχ2),

and therefore,

ν

∫∫

QT

|∂xw|2ξ χ2 = −
∫∫

QT

P2w ξ χ
2w +

ν

2

∫∫

QT

|w|2∂xx(ξχ2) +

∫∫

QT

s a ∂tϕ ξ χ
2|w|2

+ νs2
∫∫

QT

(∂xϕ)
2ξ χ2|w|2. (3.31)

Using
∣

∣

∣

∣

∫∫

QT

P2w ξ χ
2w

∣

∣

∣

∣

≤ C

s3/2λ2

(
∫∫

QT

|P2w|2 + s3λ4
∫∫

QT

ξ2χ4|w|2
)

,

we thus obtain

ν

∫∫

(−4uT,−2uT )

|∂xw|2ξ χ2

≤ C

s3/2λ2

∫∫

QT

|P2w|2 +
(

Cs3/2λ2 + Cλ2 + Cs+ Cs2λ2
)

∫∫

(0,T )×(−4uT,−uT )

ξ3|w|2

≤ C

s3/2λ2

∫∫

QT

|P2w|2 + Cs2λ2
∫∫

(0,T )×(−4uT,−uT )

ξ3|w|2,

for s, λ ≥ 1.
From (3.30), we then obtain

s3λ4
∫∫

QT

ξ3|w|2 + sλ2
∫∫

QT

ξ|∂xw|2 +
1

s

∫∫

QT

1

ξ

(

|∂xxw|2 + |∂tw|2
)

+

∫∫

QT

(|P1w|2 + |P2w|2)

≤ C

∫∫

QT

|h|2e−2sϕ + Cs3λ4
∫∫

(0,T )×(−4uT,−uT )

ξ3|w|2. (3.32)

We now recall that z = wesϕ, and thus

|z|e−sϕ ≤ |w|, |∂xz|e−sϕ ≤ C(|∂xw|+ sλξ|w|),
|∂tz|e−sϕ ≤ C(|∂tw|+ sξ2|w|), |∂xxz|e−sϕ ≤ C(|∂xxw|+ sλξ|∂xw|+ s2λ2ξ2|w|).

Of course, this immediately yields

s3λ4
∫∫

QT

ξ3e−2sϕ|z|2 + sλ2
∫∫

QT

ξ e−2sϕ|∂xz|2 +
1

s

∫∫

QT

1

ξ
e−2sϕ

(

|∂xxz|2 + |∂tz|2
)

≤ C

∫∫

QT

|a ∂tz + ν∂xxz|2e−2sϕ + Cs3λ4
∫∫

(0,T )×(−4uT,−uT )

ξ3|z|2e−2sϕ.

Taking s large enough, the lower order terms (∂ta)z + ∂x(bz) can be absorbed by the left hand side due
to conditions (3.5) on a, b, thus yielding (3.11).
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3.3 Proof of Theorem 3.2.

Proof of Theorem 3.2. Let us multiply the equation (3.17) by u ξ−2 e2sϕ:

∫∫

QT

(a ∂tu+ b ∂xu− ν∂xxu)u e
2sϕ 1

ξ2
=

∫∫

QT

(g + v1(−4uT,−uT ))u e
2sϕ 1

ξ2
. (3.33)

Note that this computation and the ones afterwards are mainly formal since the weight function θ(t)
vanishes at time t = 0 and t = T . To make these computations rigorous, one could introduce, for ε > 0,

θε(t) =







θ(t+ ε) for t ∈ (0, 3T0),
1 for t ∈ (3T0, T − 3T0)
θ(t− ε) for t ∈ (T − 3T0, T ),

and ϕε(t, x) =
1

θε(t)

(

e5λ − eλψ(x−ut)
)

. (3.34)

Then, all the computations below can be done with ϕε instead of ϕ and passing to the limit ε → 0, we
recover the desired estimates. We will not detail this passage to the limit below, which is left to the
readers.

Let us now come back to identity (3.34) and estimate each term in it:

∣

∣

∣

∣

∫∫

QT

a ∂tuu e
2sϕ 1

ξ2

∣

∣

∣

∣

=

∣

∣

∣

∣

−1

2

∫∫

QT

|u|2∂t
(

a e2sϕ
1

ξ2

)∣

∣

∣

∣

≤ Cs

∫∫

QT

|u|2e2sϕ,

∣

∣

∣

∣

∫∫

QT

b ∂xuu e
2sϕ 1

ξ2

∣

∣

∣

∣

=

∣

∣

∣

∣

−1

2

∫∫

QT

|u|2∂x
(

b e2sϕ
1

ξ2

)
∣

∣

∣

∣

≤ Csλ

∫∫

QT

1

ξ
|u|2e2sϕ,

and
∣

∣

∣

∣

∫∫

QT

(g + v1(−4uT,−uT ))ue
2sϕ 1

ξ2

∣

∣

∣

∣

≤ C

s3/2λ2

∫∫

QT

(|g|2 + |v1(−4uT,−uT )|2)e2sϕ
1

ξ3
+ Cs3/2λ2

∫∫

QT

1

ξ
|u|2e2sϕ,

for s, λ ≥ 1. Therefore we focus on the term

−ν
∫∫

QT

∂xxuue
2sϕ 1

ξ2
= ν

∫∫

QT

|∂xu|2e2sϕ
1

ξ2
− ν

2

∫∫

QT

|u|2∂xx
(

e2sϕ
1

ξ2

)

,

which yields

ν

∫∫

QT

|∂xu|2e2sϕ
1

ξ2
≤
∣

∣

∣

∣

ν

∫∫

QT

∂xxuue
2sϕ 1

ξ2

∣

∣

∣

∣

+ Cs2λ2
∫∫

QT

|u|2e2sϕ,

for s, λ ≥ 1. Combining the above estimates and the identity (3.33), we obtain

∫∫

QT

|∂xu|2e2sϕ
1

ξ2
≤ Cs2λ2

∫∫

QT

|u|2e2sϕ +
C

s3/2λ2

∫∫

QT

(|g|2 + |v1(−4uT,−uT )|2)e2sϕ
1

ξ3
, (3.35)

and, according to (3.18),

sλ2
∫∫

QT

|∂xu|2e2sϕ
1

ξ2
≤ C

∫∫

QT

|g|2e2sϕ 1

ξ3
, (3.36)

Now, multiply (3.17) by ∂tu e
2sϕ/ξ4:

∫∫

QT

a|∂tu|2e2sϕ
1

ξ4
+

∫∫

QT

b ∂xu ∂tu e
2sϕ 1

ξ4
− ν

∫∫

QT

∂xxu ∂tu e
2sϕ 1

ξ4

=

∫∫

QT

(g + v1(−4uT,−uT ))∂tu e
2sϕ 1

ξ4
.

(3.37)

We then have

inf
(t,x)

{a}
∫∫

QT

|∂tu|2e2sϕ
1

ξ4
≤
∫∫

QT

a|∂tu|2e2sϕ
1

ξ4
,
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whereas the second and the last terms in (3.37) can be handled as follows:

∣

∣

∣

∣

∫∫

QT

b ∂xu ∂tu e
2sϕ 1

ξ4

∣

∣

∣

∣

≤ C

(

s

∫∫

QT

1

ξ3
|∂xu|2e2sϕ +

1

s

∫∫

QT

1

ξ5
|∂tu|2e2sϕ

)

,

∣

∣

∣

∣

∫∫

QT

(g + v1(−4uT,−uT )) ∂tu e
2sϕ 1

ξ4

∣

∣

∣

∣

≤ Cs

∫∫

QT

(|g|2 + |v1(−4uT,−uT )|2)e2sϕ
1

ξ3
+
C

s

∫∫

QT

|∂tu|2e2sϕ
1

ξ5
.

We then focus on the cross term:

−ν
∫∫

QT

∂xxu ∂tu e
2sϕ 1

ξ4
= −ν

2

∫∫

QT

|∂xu|2∂t
(

e2sϕ

ξ4

)

+ ν

∫∫

QT

∂xu∂tu∂x

(

e2sϕ

ξ4

)

,

which implies that

∣

∣

∣

∣

−ν
∫∫

QT

∂xxu ∂tu e
2sϕ 1

ξ4

∣

∣

∣

∣

≤ Cs

∫∫

QT

|∂xu|2
e2sϕ

ξ2
+ Csλ

∫∫

QT

|∂xu||∂tu|
e2sϕ

ξ3

≤ C(s+ s2λ2)

∫∫

QT

|∂xu|2
e2sϕ

ξ2
+

inf(t,x){a}
2

∫∫

QT

|∂tu|2
e2sϕ

ξ4
. (3.38)

Putting the above estimates in (3.37) and choosing s large enough, we obtain

inf
(t,x)

{a}
∫∫

QT

|∂tu|2e2sϕ
1

ξ4
≤ Cs

∫∫

QT

(|g|2 + |v1(−4uT,−uT )|2)e2sϕ
1

ξ3
+ Cs2λ2

∫∫

QT

|∂xu|2
e2sϕ

ξ2
,

which, due to (3.36), implies

1

s

∫∫

QT

|∂tu|2e2sϕ
1

ξ4
≤ C

∫∫

QT

|g|2e2sϕ 1

ξ3
. (3.39)

Finally, to obtain an estimate on ∂xxu, we use the equation (3.17):

1

s
|∂xxu|2e2sϕ

1

ξ4
≤ C

s
|∂tu|2e2sϕ

1

ξ4
+
C

s
(|g|2 + |v1(−4uT,−uT )|2)e2sϕ

1

ξ4
.

Integrating this estimate and using (3.18) and (3.39), we easily obtain

1

s

∫∫

QT

|∂xxu|2e2sϕ
1

ξ4
≤ C

∫∫

QT

|g|2e2sϕ 1

ξ3
. (3.40)

This concludes the proof of Theorem 3.2.

3.4 Interpolation estimates

In the sequel, it will be important to have estimates on the value of u and ∂xu at x = 0 and x = L. In
order to do this, we will use the following result:

Proposition 3.5. There exists a constant C independent of s, λ ≥ 1 and Ru, such that for all w ∈
Ys,λ,Ru

,

s2λ3
∫ T

0

|w(t, 0)|2e2sϕ(t,0) 1

ξ(t, 0)
dt ≤ CR2

u. (3.41)

and

λ

(

∫ T

0

|∂xw(t, 0)|2e2sϕ(t,0)
1

ξ3(t, 0)
dt+

∫ T

0

|∂xw(t, L)|2e2sϕ(t,L)
1

ξ3(t, L)
dt

)

≤ CR2
u. (3.42)
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Proof of Proposition 3.5. We focus on the estimate of w at x = 0, the other ones being completely
similar.

Let η = η(x) be a smooth positive function on (0, L) that takes value 1 close to x = 0 and vanishing
at x = 1. Then

s2λ3
∫ T

0

|w(t, 0)|2e2sϕ(t,0) 1

ξ(t, 0)
= −s2λ3

∫∫

(0,T )×(0,L)

∂x

(

η|w|2e2sϕ 1
ξ

)

= −s2λ3
∫∫

(0,T )×(0,L)

|w|2∂x
(

ηe2sϕ
1

ξ

)

− 2s2λ3
∫∫

(0,T )×(0,L)

w ∂xw ηe
2sϕ 1

ξ

≤ Cs3λ4
∫∫

(0,T )×(0,L)

|w|2e2sϕ + Cs2λ3
∫∫

(0,T )×(0,L)

|w||∂xw|e2sϕ
1

ξ

≤ Cs3λ4
∫∫

(0,T )×(0,L)

|w|2e2sϕ + Csλ2
∫∫

(0,T )×(0,L)

|∂xw|2e2sϕ
1

ξ2
,

for s, λ ≥ 1.
The proof of (3.42) follows the same lines and is left to the reader.

We will also need estimates on some norms of the elements of Ys,λ,Ru
.

Lemma 3.6. There exists a constant C independent of s, λ ≥ 1 and Ru such that for any w ∈ Ys,λ,Ru
,

‖w‖L∞((0,T )×(0,L)) ≤ CRu exp
(

−s
2
(e5λ − e4λ)

)

≤ CRu, (3.43)

‖w‖L1((0,T );W 1,∞(0,L)) ≤ CRu exp
(

−s
2
(e5λ − e4λ)

)

≤ CRu, (3.44)

Proof of Lemma 3.6. Estimate (3.43) follows from the fact that w ∈ Ys,λ,Ru
implies s−1/2ξ−2esϕw lies in

the ball of H1(0, T ;L2(0, L))∩L2(0, T ;H2(0, L)) of radius Ru. Hence it belongs to the ball of L∞((0, T )×
(0, L)) with radius CRu, where the constant comes from the injection

H1(0, T ;L2(0, L)) ∩ L2(0, T ;H2(0, L)) → L∞((0, T )× (0, L)).

We then remark that there exists a constant C such that for all s, λ ≥ 1,

s−1/2ξ−2esϕ ≥ C exp
(s

2
(e5λ − e4λ)

)

.

This concludes the proof of (3.43).
The proof of (3.44) follows the same line, by using the continuous injection of L2(0, T ;H2(0, L)) into

L1(0, T ;W 1,∞(0, L)).

4 Controlling ρ

In this section, we construct a solution of the controllability problem attached to the ρ-part of the map
F defined in (2.16). We assume that u has been constructed as in Section 3 and belongs to some Ys,λ,Ru

.

4.1 Constructing ρ

As we will see below, the construction of the controlled density ρ is very natural. Indeed, the main
remark consists in the fact that the density is transported among the flow of velocity u + u + Λuin,
which is close to u. Hence, we will construct a forward solution ρf of (2.16), a backward solution ρb of
(2.16) and glue these two solutions according to the characteristics of the flow. To be more precise, we
introduce ρf defined by







∂tρf + (u+ u+ Λuin)∂xρf + ρ∂xu+ ρ
ν p

′(ρ)ρf = f̂ in [0, T ]× (0, L),
ρf (0, x) = 0 in (0, L),
ρf (t, 0) = 0 in (0, T ),

(4.1)
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and ρb defined by






∂tρb + (u+ u+ Λuin)∂xρb + ρ∂xu+ ρ
ν p

′(ρ)ρb = f̂ in [0, T ]× (0, L),
ρb(T, x) = 0 in (0, L),
ρb(t, L) = 0 in (0, T ).

(4.2)

For equations (4.1) and (4.2) to be well-posed, first remark that u+ u+Λuin is in L1(0, T ;W 1,∞(0, L))
so the transport equation is easily solvable by characteristics. But one should also guarantee that
u + u + Λuin is positive on the space boundaries (0, T ) × {0, L}. Actually, we will need an even more
restrictive condition on that quantity.

In this section, we will assume that u belongs to Ys,λ,Ru
for some parameter s, λ,Ru to be determined.

And we will also assume that Ru and Rin are small enough so that the L∞((0, T ) × (0, L))-bound of u
given by Lemma 3.6 and the smallness of uin (coming from (2.5)–(2.6)) imply

u+ u+ Λuin ≥ L

T − 8T0
in [0, T ]× [0, L], (4.3)

where T0 is defined in (2.7). Note that this choice can be done independently of s and λ thanks to
Lemma 3.6.

Then we introduce the flow associated to the transport equation of ρ, given by

∂tX(t, τ, a) = u+ u(t,X(t, τ, a)) + Λuin(t,X(t, τ, a)), X(τ, τ, a) = a. (4.4)

For later use, it is convenient to introduce extensions of u and Λuin to (t, x) ∈ [0, T ]×R (with comparable
norms), so that we can consider the flow X(t, τ, a) to be defined on [0, T ]× [0, T ]× R.

Due to (4.3), it is easy to check that there exists

[a0, b0] ⊂ (−∞, 0),

such that
X(T, 0, a0) > L, X(·, 0, a0)−1(L) ≤ T − 3T0 and X(·, 0, b0)−1(0) ≥ 3T0,

see Figure 1.

b0 0 L t = 0

3T0

ρf

ρb

T

T − 3T0

a0

Figure 1: Geometric setting on a0, b0. The straight lines represent the lines t 7→ (t, a0 + ut) and
t 7→ (t, b0 + ut), which approximate the flow X.

We take η ∈ C∞(R;R) such that

η(a) = 1 for a < a0 and η(a) = 0 for a > b0. (4.5)

Remark that for Ru small enough, a0, b0 and η can be taken to be independent of u. We set

ρ(t, x) = ρf (t, x)(1− η(X(0, t, x))) + ρb(t, x)η(X(0, t, x)). (4.6)
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Easy computations then show that ρ solves the equation of conservation of mass (2.16), and that

ρ(0, x) = ρ(T, x) = 0 in [0, L],

due to the time boundary conditions on ρf and ρb and (4.5).
Since this ρ is admissible for the control problem corresponding to the ρ-part of F , we choose this ρ.

4.2 A new unknown µ

An important argument concerning the control of ρ consists in introducing a new quantity which we will
denote by µ. This quantity will be easier to handle in the estimates.

To explain why this new unknown is relevant, let us consider for a few lines the following simplified
form of (2.10)–(2.11):

∂tρ̃+ u∂xρ̃+ ∂xũ = 0 in [0, T ]× (0, L), (4.7)

∂tũ+ u∂xũ− ∂xxũ+ ∂xρ̃ = g in [0, T ]× (0, L), (4.8)

where g belongs to C∞
c ((0, T )× (0, L)), our goal being to find a trajectory (ρ̃, ũ) such that (ρ̃(0), ũ(0)) =

(ρ̃(T ), ũ(T )) = 0.
Of course, a natural strategy would be to use a Carleman estimate directly on the parabolic part

to estimate ũ in terms of ρ̃ and a corresponding weighted estimate for ρ̃ in terms of ũ, but we did not
manage to find a suitable set for a fixed point argument. However, if one introduces µ̃ = ũ + ∂xρ̃, one
easily checks that (4.7)–(4.8) could be reduced to

∂tµ̃+ u∂xµ̃ = 0 in [0, T ]× (0, L), (4.9)

∂tũ+ u∂xũ− ∂xxũ+ (µ̃− ũ) = g in [0, T ]× (0, L). (4.10)

Here, the coupling between the two equations is somewhat weaker and the freedom on the choices of the
parameters s and λ in the Carleman estimates of Section 3 will hence allow us to set up a fixed point
strategy.

Differentiating (2.16) with respect to x and multiplying it by the constant ν/ρ, we have

ρ

(

∂t

(

ν

ρ2
∂xρ

)

+ (u+ u+ Λuin)∂x

(

ν

ρ2
∂xρ

))

+ ρ

(

p′(ρ)
ρ

ν
+ ∂x(u+ Λuin)

)(

ν

ρ2
∂xρ

)

+ ν∂xxu

=
ν

ρ
∂xf̂ . (4.11)

Of course, since both ρf and ρb satisfy (2.16), they also satisfy equation (4.11).
Besides, adding it to the equation of u (see (2.17)), one easily obtains that

µf (t, x) = u+
ν

ρ2
∂xρf , µb(t, x) = u+

ν

ρ2
∂xρb. (4.12)

both solve the equation

ρ(∂tµ+ (u+ u+ Λuin)∂xµ) + ρ

(

p′(ρ)
ρ

ν
+ ∂x(u+ Λuin)

)

µ

=
ν

ρ
∂xf̂ + ĝ − Λρin(∂tu+ u∂xu) + ρ∂x [u(u+ Λuin)] + p′(ρ)

ρ2

ν
u. (4.13)

or, equivalently
∂tµ+ (u+ u+ Λuin)∂xµ+ kµ = h, (4.14)

where the source term h is defined by

ρh :=
ν

ρ
∂xf̂ + ĝ − Λρin(∂tu+ u∂xu) + ρ∂x [u(u+ Λuin)] + p′(ρ)

ρ2

ν
u,
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and the potential term k is

k := p′(ρ)
ρ

ν
+ ∂x(u+ Λuin). (4.15)

Note that, to complete the equations (4.14), one should further introduce boundary conditions in space
and time. From the definition of µf and µb in (4.12), one easily checks that the boundary conditions in
time simply are

µf (0, x) = 0 for x ∈ (0, L), µb(T, x) = 0 for x ∈ (0, L), (4.16)

whereas the boundary conditions in space are given by the equations (4.1)–(4.2) satisfied by ρf and ρb
respectively:

µf (t, 0) = mf (t) := u(t, 0) +
ν

ρ2

(

1

u+ u(t, 0) + Λuin(t, 0)

)

(

f̂(t, 0)− ρ ∂xu(t, 0)
)

, (4.17)

µb(t, L) = mb(t) :=
ν

ρ2

(

1

u+ Λuin(t, L)

)

(

f̂(t, L)− ρ ∂xu(t, L)
)

, (4.18)

where we have used in (4.18) that the function u constructed in Section 3 vanishes at x = L.
Note that, due to the fact that ρf (t, 0) = ρb(t, L) = 0, we have the following identities

ρf (t, x) :=
ρ2

ν

∫ x

0

(µf − u)(t, y) dy, ρb(t, x) := −ρ
2

ν

∫ L

x

(µb − u)(t, y) dy, (4.19)

which will be used in the sequel.

Remark 4.1. Note that ρf and ρb correspond to primitives of µf and µb respectively according to
the formula (4.12). However, µ = u + ν∂xρ/ρ

2 is a priori different from µf (t, x)(1 − η(X(0, t, x))) +
µb(t, x)η(X(0, t, x)).

Our goal in the next subsections is to obtain suitable estimates on the functions µf , µb, ρf , ρb that
we constructed.

4.3 Preliminaries: estimates on the flow

In order to estimate ρ, we will first need estimates on the flowX. In particular, the estimates measure how
close X is to (t, x) 7→ x+ tu when Rin and Ru are small, and give consequences on the weight functions
of Section 2.3 (since the Carleman weight is calibrated with respect to the straight flow (t, x) 7→ x+ tu).

Lemma 4.2. For all (t, x) ∈ (0, T )× (0, L) and τ ∈ (0, T ) such that X(τ, t, x) ∈ (0, L),

|(X(τ, t, x)− τu)− (x− tu)| ≤ C|τ − t|‖u+ Λuin‖L∞((0,T )×(0,L)). (4.20)

Proof of Lemma 4.2. Let us define

Γ(τ, t, x) = (X(τ, t, x)− τu)− (x− tu).

As one immediately checks, Γ(t, t, x) = 0. Besides, Γ(τ, t, x) satisfies the equation

dΓ(τ, t, x)

dτ
= (u+ u(τ,X(τ, t, x)) + Λuin(τ,X(τ, t, , x)))− u

= u(τ,X(τ, t, x)) + Λuin(τ,X(τ, t, , x))

Γ(t, t, x) = 0.

Therefore,
∣

∣

∣

∣

dΓ(τ, t, x)

dτ

∣

∣

∣

∣

≤ ‖u+ Λuin‖L∞((0,T )×(0,L)),

and estimate (4.20) immediately follows.
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In the following, we shall use the following simple identity on the Carleman weight, which comes from
the design of the weight function in (2.21):

ϕ(τ, x− (t− τ)u)

{

≥ ϕ(t, x) for all (t, τ) satisfying 0 < τ ≤ t ≤ T − 3T0,
= ϕ(t, x) for all (t, τ) satisfying 3T0 < τ ≤ t ≤ T − 3T0.

(4.21)

Of course, when following the characteristic flow associated to u+ u+ Λuin, these formula are not true
anymore but we still obtain the following approximation lemma:

Lemma 4.3. There exist constants C0 > 0, λ0 > 0, s0 > 0 such that for all p ∈ [−4,−2], for all
(t, x) ∈ (0, T − 3T0)× (0, L), for all τ ≤ t such that X(τ, t, x) ∈ (0, L), for all λ ≥ λ0 and s ≥ s0,

p log (ξ(τ,X(τ, t, x)))− 2sϕ(τ,X(τ, t, x)) ≤ p log (ξ(t, x))− 2sϕ(t, x)

+ C0sλe
4λ‖u+ Λuin‖L∞((0,T )×(0,L)). (4.22)

Proof of Lemma 4.3. This follows from an explicit computation of the difference and we shall prove the
following equivalent form of (4.22):

2s(ϕ(τ,X(τ, t, x))− ϕ(t, x)) + p log

(

ξ(t, x)

ξ(τ,X(τ, t, x))

)

≥ −Csλe4λ‖u+ Λuin‖L∞((0,T )×(0,L)). (4.23)

First, for all τ ∈ (0, t) and t ≤ T − 3T0,

ϕ(τ,X(τ, t, x))− ϕ(t, x) =
1

θ(τ)

(

e5λ − eλψ(X(τ,t,x)−uτ)
)

− 1

θ(t)

(

e5λ − eλψ(x−ut)
)

=

(

1

θ(τ)
− 1

θ(t)

)

(

e5λ − eλψ(X(τ,t,x)−uτ)
)

+
1

θ(t)

(

eλψ(x−ut) − eλψ(X(τ,t,x)−uτ)
)

=

(

θ(t)

θ(τ)
− 1

)

1

θ(t)

(

e5λ − eλψ(X(τ,t,x)−uτ)
)

+
1

θ(t)
eλψ(X(τ,t,x)−uτ)(eλ(ψ(x−ut)−ψ(X(τ,t,x)−uτ)) − 1).

Using (2.19), Lemma 4.2, τ ≤ t and exp(y)− 1 ≥ y, we thus obtain

ϕ(τ,X(τ, t, x))− ϕ(t, x) ≥
(

θ(t)

θ(τ)
− 1

)

1

θ(t)

(

e5λ − eλψ(X(τ,t,x)−uτ)
)

− C

θ(t)
e4λλt‖u+ Λuin‖L∞((0,T )×(0,L)).

Since t ≤ T − 3T0, t/θ(t) is bounded:

ϕ(τ,X(τ, t, x))− ϕ(t, x) ≥
(

θ(t)

θ(τ)
− 1

)

1

θ(t)

(

e5λ − eλψ(X(τ,t,x)−uτ)
)

(4.24)

−Ce4λλ‖u+ Λuin‖L∞((0,T )×(0,L)).

Let us emphasize that the first term in the right-hand side is positive for τ < t.
We now focus on the estimate of log(ξ(t, x)/ξ(τ,X(τ, t, x))). According to the definition of ξ in (2.23),

log

(

ξ(t, x)

ξ(τ,X(τ, t, x))

)

= log

(

θ(τ)

θ(t)

)

+ λ (ψ(x− ut)− ψ(X(τ, t, x)− uτ)) .

Of course, from (4.20), we immediately deduce that, for p ∈ [−4,−2] and τ ≤ t,
∣

∣

∣

∣

p log

(

ξ(t, x)

ξ(τ,X(τ, t, x))

)
∣

∣

∣

∣

≤ C

(

θ(t)

θ(τ)
− 1

)

+ Cλt‖u+ Λuin‖L∞((0,T )×(0,L)), (4.25)

where we used
∣

∣

∣

∣

log

(

θ(τ)

θ(t)

)∣

∣

∣

∣

= log

(

θ(t)

θ(τ)

)

≤ θ(t)

θ(τ)
− 1.

We then deduce (4.23) from (4.24) and (4.25) for s and λ large enough.
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Lemma 4.4. There exist constants C0 > 0, λ0 ≥ 1, s0 ≥ 1 such that for all p ∈ [−4,−2], for all
(t, x) ∈ (0, T − 3T0)× (0, L), for all λ ≥ λ0 and s ≥ s0,

∫ t

t∗(t,x)

ξp(τ,X(τ, t, x))e−2sϕ(τ,X(τ,t,x))dτ ≤ tξp(t, x)e−2sϕ(t,x)eC0sλe
4λ‖u+Λuin‖L∞ , (4.26)

where t∗(t, x) is defined as follows:

t∗(t, x) := inf
{

τ0 ∈ (0, t) such that ∀τ ∈ (τ0, t), X(τ, t, x) ∈ (0, L)
}

. (4.27)

We also have

ξp(t∗(t, x), X(t∗(t, x), t, x))e−2sϕ(t∗(t,x),X(t∗(t,x),t,x)) ≤ ξp(t, x)e−2sϕ(t,x)eC0sλe
4λ‖u+Λuin‖L∞ , (4.28)

The time t∗(t, x) corresponds to the entrance time in (0, T ) × (0, L) of the line of the characteristic
through (t, x). Accordingly,

t∗(t, x) =

{

0 if x ≥ X(t, 0, 0),
X(·, t, x)−1(0) if x ≤ X(t, 0, 0).

Proof of Lemma 4.4. Taking the exponential of (4.22), we obtain, for all τ ≤ t,

ξp(τ,X(τ, t, x))e−2sϕ(τ,X(τ,t,x)) ≤ ξp(t, x)e−2sϕ(t,x) exp(C0sλe
4λ‖u+ Λuin‖L∞).

This immediately yields (4.28) by taking τ = t∗(t, x) and (4.26) by integration between t∗(t, x) and t.

We now prove that, for t fixed, the map x ∈ [0,min{X(t, 0, 0), L}] 7→ t∗(t, x) is a C1-diffeomorphism:

Lemma 4.5. For t ∈ (0, T ), the map

t∗t : x ∈ [0,min{X(t, 0, 0), L}] 7→ t∗(t, x)

is a C1 diffeormorphism of bounded jacobian for

‖u+ Λuin‖L∞ ≤ u

2
and ∂x(Λuin + u) ∈ L1((0, T );L∞(0, L)).

We then have the estimate:

2

3u
exp(−‖∂x(Λuin + u)‖L1((0,T );L∞(0,L))) ≤ |∂xt∗t (x)| ≤

2

u
exp(‖∂x(Λuin + u)‖L1((0,T );L∞(0,L))). (4.29)

Proof. We rather study the inverse of t∗t , which is deduced easily by the formula

X(t, t∗(t, x), 0) = x.

Hence we define
x̃t : τ ∈ [0, t] 7→ X(t, τ, 0).

One easily checks that X satisfies

d

dt
(∂τX(t, τ, 0)) = ∂x(Λuin + u)(t,X(t, τ, 0))∂τX(t, τ, 0), (4.30)

whereas

∂τX(t, τ, 0)|t=τ =
d

dτ
(X(τ, τ, 0))− ∂tX(t, τ, 0)|t=τ = −(u+ Λuin + u)(τ, 0).

Hence

∂τ x̃t(τ) = −(u+ Λuin + u)(τ, x) exp

(
∫ t

τ

∂x(Λuin + u)(τ ′, X(τ ′, τ, 0))∂τX(τ ′, τ, 0) dτ ′
)

,

from which we easily deduce Lemma 4.5.
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4.4 Estimates on µ

In this section, we focus on getting estimates for µf and µb.
In order to do that, we will assume that h writes

h = h1 + h2, (4.31)

with
∫∫

(0,T )×(0,L)

1

ξ4
e2sϕ|h1|2 +

∫∫

(0,T )×(0,L)

1

ξ3
e2sϕ|h2|2 <∞. (4.32)

In other words, h1 has a bit less “integrability” near t = 0 and t = T than h2.
To be more precise on the decomposition (4.31), we will introduce f̃ and g̃ defined by:

f̃ := f̂ − ρ

ν
p′(ρ)ρ̂+ Λρin∂xû, (4.33)

g̃ := ĝ + p′(ρ+ Λρin)∂xρ̂, (4.34)

(recall that f̂ and ĝ were introduced in (2.16)-(2.17)) and h1 and h2 as follows:

ρh1 := −ν
ρ
Λρin∂xxû− Λρin∂tu, (4.35)

ρh2 := (p′(ρ)− p′(ρ+ Λρin)) ∂xρ̂+
ν

ρ
∂xf̃ + g̃ − ν

ρ
Λ∂xρin∂xû (4.36)

+ρ∂x [u(u+ Λuin)] + p′(ρ)
ρ2

ν
u− Λρinu∂xu.

In particular, we have (see (2.8))

h1(t, x) = 0 ∀(t, x) ∈ (3T0, T )× (0, L). (4.37)

Of course, we shall check later, see Section 5, that these choices for h1 and h2 indeed satisfy condition
(4.32).

We shall also assume that Λuin + u ∈ L∞((0, T )× (0, L)) ∩ L1((0, T );W 1,∞(0, L)) with

‖Λuin + u‖L∞((0,T )×(0,L))∩L1((0,T );W 1,∞(0,L)) ≤ 1. (4.38)

Let us emphasize that this can be done for Rin ≤ 1/2 and u ∈ Ys,λ,Ru
with Ru small enough independent

of s, λ according to Lemma 3.6.
Note that this also imposes k ∈ L1(0, T ;L∞(0, L)) and

‖k‖L1((0,T );L∞(0,L)) ≤ T

(

p′(ρ)
ρ

ν
+ 1

)

(4.39)

(see (4.15)).
Finally, we will also assume that the boundary conditions µf and µb satisfy;

[ξ−3/2esϕ](t, 0)mf (t) ∈ L2(0, T − 3T0), [ξ−3/2esϕ](t, L)mb(t) ∈ L2(3T0, T ). (4.40)

We now explain how to estimate µf and µb.
We first focus on µf , solution of (4.14), (4.16), (4.17) and in that section only, we remove the subscript

f (we will explain in Lemma 4.7 that our estimates also apply to µb):
{

∂tµ+ (u+ u+ Λuin)∂xµ+ kµ = h in (0, T )× (0, L),
µ(t, 0) = m(t), µ(0, ·) = 0.

(4.41)

Using the characteristics X(t, τ, a) defined in (4.4), one easily checks that, for (t, τ, a) ∈ [0, T ] ×
[0, T ]× [0, L], such that X(t, τ, a) ∈ [0, L],

µ(t,X(t, τ, a)) = µ(τ, a)e−
∫

t

τ
k(τ ′,X(τ ′,τ,a)) dτ ′

+

∫ t

τ

h(τ̃ , X(τ̃ , τ, a))e−
∫

τ̃

τ
k(τ ′,X(τ ′,τ,a)) dτ ′

dτ̃ .

Of course, due to the fact that the characteristics go from left to right, see (4.3), for x ∈ [0, L] and
t ∈ [0, T ], we have two cases, depending on the position of x with respect to the characteristic X(t, 0, 0):

21



• x ≥ X(t, 0, 0): in this case, we use the above formula to get:

µ(t, x) =

∫ t

0

h(τ̃ , X(τ̃ , t, x))e−
∫

τ̃

0
k(τ,X(τ,t,x)) dτdτ̃ . (4.42)

• x ≤ X(t, 0, 0): in this case, the characteristic through (t, x) lies outside (0, L) at time t = 0. We
shall therefore take τ = t∗(t, x) and a = 0 in the above formula:

µ(t, x) = m(t∗(t, x))e−
∫

t

t∗(t,x)
k(τ,X(τ,t,x)) dτ +

∫ t

t∗(t,x)

h(τ̃ , X(τ̃ , t, x))e−
∫

τ̃

t∗(t,x)
k(τ,X(τ,t,x)) dτdτ̃ .

(4.43)

Recall that k is supposed to be in L1(0, T ;L∞(0, L)) (see (4.39)), so that in particular
∣

∣

∣
e−

∫
t

τ
k(τ ′,X(τ ′,t,x)) dτ ′

∣

∣

∣
≤ C, ∀(t, τ) ∈ [0, T ]2. (4.44)

Let us begin with the estimates in the zone “below the diagonal”, that is for (t, x) satisfying x >
X(t, 0, 0). Using (4.26) for p = −3 and p = −4, for (t, x) ∈ (0, T − 3T0)× (0, L) with x > X(t, 0, 0),

|µ(t, x)|2 ≤C
(
∫ t

0

|h(τ,X(τ, t, x))|dτ
)2

≤C
(
∫ t

0

|h1(τ,X(τ, t, x))|2 e
2sϕ(τ,X(τ,t,x))

ξ4(τ,X(τ, t, x))
dτ

)(
∫ t

0

ξ4(τ,X(τ, t, x))e−2sϕ(τ,X(τ,t,x))dτ

)

+ C

(
∫ t

0

|h2(τ,X(τ, t, x))|2 e
2sϕ(τ,X(τ,t,x))

ξ3(τ,X(τ, t, x))
dτ

)(
∫ t

0

ξ3(τ,X(τ, t, x))e−2sϕ(τ,X(τ,t,x))dτ

)

≤C
(
∫ t

0

|h1(τ,X(τ, t, x))|2 e
2sϕ(τ,X(τ,t,x))

ξ4(τ,X(τ, t, x))
dτ

)

tξ4(t, x)e−2sϕ(t,x)eC0sλe
4λ‖u+Λuin‖L∞

+ C

(
∫ t

0

|h2(τ,X(τ, t, x))|2 e
2sϕ(τ,X(τ,t,x))

ξ3(τ,X(τ, t, x))
dτ

)

ξ3(t, x)e−2sϕ(t,x)eC0sλe
4λ‖u+Λuin‖L∞ ,

In particular, this implies that, for all t ≤ T − 3T0 such that X(t, 0, 0) ≤ L,

∫ L

X(t,0,0)

|µ(t, x)|2 e
2sϕ(t,x)

ξ3(t, x)
dx ≤ Ce4λeC0sλe

4λ‖u+Λuin‖L∞

∫ t

0

∫ L

0

|h1(τ, y)|2
e2sϕ(τ,y)

ξ4(τ, y)
dτdy

+ CeC0sλe
4λ‖u+Λuin‖L∞

∫ t

0

∫ L

0

|h2(τ, y)|2
e2sϕ(τ,y)

ξ3(τ, y)
dτdy. (4.45)

Here, we have used Lemma 4.5. Of course, similar estimates can be done in the zone “above the diagonal”,
that is for (t, x) ∈ (0, T − 3T0)× (0, L) with x < X(t, 0, 0), except for what concerns the boundary term.
This term can be handled using (4.28) with p = −3 as follows:

∣

∣

∣
m(t∗(t, x))e−

∫
t

t∗(t,x)
k(τ,X(τ,t,x)) dτ

∣

∣

∣

2

≤ |m(t∗(t, x))|2
(

e2sϕ(t
∗(t,x),0)

ξ3(t∗(t, x), 0)

)

(

ξ3(t, x)e−2sϕ(t,x)
)

eC0sλe
4λ‖u+Λuin‖L∞ .

In particular, this implies that, for all t ≤ T − 3T0,

∫ min{X(t,0,0),L}

0

|µ(t, x)|2 e
2sϕ(t,x)

ξ3(t, x)
dx ≤ CeC0sλe

4λ‖u+Λuin‖L∞

∫ t

0

|m(τ)|2 e
2sϕ(τ,0)

ξ3(τ, 0)
dτ

+ Ce4λeC0sλe
4λ‖u+Λuin‖L∞

∫ t

0

∫ L

0

|h1(τ, y)|2
e2sϕ(τ,y)

ξ4(τ, y)
dτdy (4.46)

+ CeC0sλe
4λ‖u+Λuin‖L∞

∫ t

0

∫ L

0

|h2(τ, y)|2
e2sϕ(τ,y)

ξ3(τ, y)
dτdy,
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where we have used that the map x 7→ t∗(t, x) defines a change of variable of bounded jacobian, see
Lemma 4.5.

Therefore, combining (4.45)–(4.46), for all t ∈ [0, T − 3T0], we have

∫ L

0

|µ(t, x)|2 e
2sϕ(t,x)

ξ3(t, x)
dx ≤CeC0sλe

4λ‖u+Λuin‖L∞

∫ T−3T0

0

|m(τ)|2 e2sϕ(τ, 0)

ξ3(τ, 0)
dτ

+ Ce4λeC0sλe
4λ‖u+Λuin‖L∞

∫ T−3T0

0

∫ L

0

|h1(τ, y)|2
e2sϕ(τ,y)

ξ4(τ, y)
dτdy (4.47)

+ CeC0sλe
4λ‖u+Λuin‖L∞

∫ T−3T0

0

∫ L

0

|h2(τ, y)|2
e2sϕ(τ,y)

ξ3(τ, y)
dτdy.

We can now estimate µf .

Lemma 4.6 (Estimates on µf ). Assume that

• h1 and h2 given by (4.35)–(4.36) satisfy (4.32);

• Λuin + u belongs to L∞((0, T )× (0, L)) ∩ L1((0, T );W 1,∞(0, L)) and satisfies (4.38);

• [ξ−3/2esϕµf ](t, 0) belongs to L2(0, T ).

Then there exist constants C, s0 and λ0 such that for s ≥ s0 and λ ≥ λ0,

sup
[0,T−3T0]

∫ L

0

|µf (t, x)|2
e2sϕ(t,x)

ξ3(t, x)
dx+

∫ T−3T0

0

∫ L

0

|µf (t, x)|2
e2sϕ(t,x)

ξ3(t, x)
dtdx

≤ CeC0sλe
4λ‖u+Λuin‖L∞

∫ T−3T0

0

|mf (τ)|2
e2sϕ(τ, 0)

ξ3(τ, 0)
dτ (4.48)

+ Ce4λeC0sλe
4λ‖u+Λuin‖L∞

∫ T−3T0

0

∫ L

0

|h1(τ, y)|2
e2sϕ(τ,y)

ξ4(τ, y)
dτdy

+ CeC0sλe
4λ‖u+Λuin‖L∞

∫ T−3T0

0

∫ L

0

|h2(τ, y)|2
e2sϕ(τ,y)

ξ3(τ, y)
dτdy.

Proof of Lemma 4.6. The proof follows directly from (4.47) and the fact that

∫ T−3T0

0

∫ L

0

|µf (t, x)|2
e2sϕ(t,x)

ξ3(t, x)
dtdx ≤ C sup

[0,T−3T0]

∫ L

0

|µf (t, x)|2
e2sϕ(t,x)

ξ3(t, x)
dx.

Similarly, one can derive estimates on µb:

Lemma 4.7 (Estimates on µb). Assume that

• h1 and h2 given by (4.35)–(4.36) satisfy (4.32) and (4.37);

• Λuin + u belongs to L∞((0, T )× (0, L)) ∩ L1((0, T );W 1,∞(0, L)) and satisfies (4.38);

• [ξ−3/2esϕµb](t, L) belongs to L2(0, T ).

Then there exist constants C, s0 and λ0 such that for s ≥ s0 and λ ≥ λ0,

sup
[3T0,T ]

∫ L

0

|µb(t, x)|2
e2sϕ(t,x)

ξ3(t, x)
dtdx+

∫ T

3T0

∫ L

0

|µb(t, x)|2
e2sϕ(t,x)

ξ3(t, x)
dtdx

≤ CeC0sλe
4λ‖u+Λuin‖L∞

∫ T

3T0

|mb(τ)|2
e2sϕ(τ, L)

ξ3(τ, L)
dτ (4.49)

+ CeC0sλe
4λ‖u+Λuin‖L∞

∫ T

3T0

∫ L

0

|h2(τ, y)|2
e2sϕ(τ,y)

ξ3(τ, y)
dτdy.
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Proof of Lemma 4.7. Set µ(t, x) = µb(T − t, L−x). Then µ solves an equation of the form (4.14) (k(t, x)
replaced by −k(T − t, L− x)), where h1 can be taken to be 0 since it vanishes outside (0, 3T0)× (0, L),
and thus estimate (4.47) applies since we never use the sign of the derivative of ψ (which has changed
doing this transform), but only the direction of monotonicity of θ. Undoing the change of variables, we
obtain (4.49).

In the following, we explain how to deduce estimates on ∂xρ and ρ from (4.48)–(4.49) for µf and µb.

4.5 Estimates on ∂xρ

Having obtained estimates on µf and µb, we can deduce estimates on ∂xρf and ∂xρb.
By construction, we have

∂xρf =
ρ2

ν
(µf − u).

Thus estimates on ∂xρf can be immediately deduced from the ones on µf and u:

‖ξ−3/2esϕ∂xρf‖L2((0,T−3T0)×(0,L)) ≤ ‖ξ−3/2esϕµf‖L2((0,T−3T0)×(0,L)) + ‖ξ−3/2esϕu‖L2((0,T )×(0,L)).
(4.50)

Similarly, estimates on ∂xρb follows from the ones on µb and u:

‖ξ−3/2esϕ∂xρb‖L2((3T0,T )×(0,L)) ≤ ‖ξ−3/2esϕµb‖L2((3T0,T )×(0,L)) + ‖ξ−3/2esϕu‖L2((0,T )×(0,L)). (4.51)

Remark that, since we assume that u ∈ Ys,λ,Ru
for some Ru, ξ

−2esϕu ∈ H1(0, T ;L2(0, L)), hence it is
L∞(0, T ;L2(0, L)). Therefore, using the L∞(0, T − 3T0;L

2(0, L)) estimates on ξ−3/2esϕµf in (4.48), we
deduce that ξ−2esϕ∂xρf ∈ L∞(0, T − 3T0;L

2(0, L)). Similarly, ξ−2esϕ∂xρb ∈ L∞(3T0, T ;L
2(0, L)) and

we have the estimates:

‖ξ−2esϕ∂xρf‖L∞(0,T−3T0;L2(0,L)) ≤ ‖ξ−3/2esϕµf‖L∞(0,T−3T0;L2(0,L)) + ‖ξ−2esϕu‖H1(0,T ;L2(0,L)), (4.52)

‖ξ−2esϕ∂xρb‖L∞(3T0,T ;L2(0,L)) ≤ ‖ξ−3/2esϕµb‖L∞(3T0,T ;L2(0,L)) + ‖ξ−2esϕu‖H1(0,T ;L2(0,L)). (4.53)

In the following, we assume that we have estimates on the L2((0, T −3T0)× (0, L)) and L2((3T0, T )×
(0, L)) norms of ξ−3/2esϕ∂xρf and ξ−3/2esϕ∂xρb, respectively, and also on the L∞(0, T − 3T0;L

2(0, L))
and L∞(3T0, T ;L

2(0, L)) norms of ξ−2esϕ∂xρf and ξ−2esϕ∂xρb.

4.6 Estimates on ρ

We can now deduce estimates on ρ.

• Step 1. Estimates on ρf (t, L).

Note that ρf solves equation (2.16) with ρf (0, x) = 0 and ρf (t, 0) = 0 by construction. Therefore,
for t such that X(t, 0, 0) ≤ L, ρf (t, L) is given by

ρf (t, L) =

∫ t

0

(f̂ − ρ∂xu)(τ,X(τ, t, L)) exp

(

−ρ
ν
p′(ρ)(t− τ)

)

dτ,

whereas, for t such that X(t, 0, 0) ≥ L, ρf (t, L) is given by

ρf (t, L) =

∫ t

t∗(t,L)

(f̂ − ρ∂xu)(τ,X(τ, t, L)) exp

(

−ρ
ν
p′(ρ)(t− τ)

)

dτ.

Therefore, following the proof of Lemma 4.6, we get

Lemma 4.8. There exist constants C, s and λ0 such that for s ≥ s0 and λ ≥ λ0,

∫ T−3T0

0

|ρf (t, L)|2
e2sϕ(t,L)

ξ2(t, L)
dt ≤ CeCsλe

4λ‖u+Λuin‖L∞

∫ T−3T0

0

∫ L

0

|f̂(τ, y)|2 e
2sϕ(τ,y)

ξ2(τ, y)
dτdy

+ CeCsλe
4λ‖u+Λuin‖L∞

∫ T−3T0

0

∫ L

0

|∂xu(τ, y)|2
e2sϕ(τ,y)

ξ2(τ, y)
dτdy. (4.54)
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Proof of Lemma 4.8. The proof follows line to line the one of Lemma 4.6 and is left to the reader.

• Step 2. Global estimates on ρ.

Here is a key lemma that will allow us to obtain global estimates on ρ directly from the ones on ∂xρf ,
∂xρb and the one of ρf (t, L) above:

Lemma 4.9. There exists a constant C > 0 independent of s and λ such that for all a ∈ H1(0, L), for
all t ∈ (0, T ), for all s, λ ≥ 1,

|a(0)|2 e
2sϕ(t,0)

ξ2(t, 0)
+ sλ

∫ L

0

|a(x)|2 e
2sϕ(t,x)

ξ(t, x)
dx ≤ C

sλ

∫ L

0

|a′(x)|2 e
2sϕ(t,x)

ξ3(t, x)
dx+ |a(L)|2 e

2sϕ(t,L)

ξ2(t, L)
. (4.55)

Proof of Lemma 4.9. The proof is based on the following identity:

|a(L)|2 e
2sϕ(t,L)

ξ2(t, L)
− |a(0)|2 e

2sϕ(t,0)

ξ2(t, 0)
=

∫ L

0

∂x

(

|a(x)|2 e
2sϕ(t,x)

ξ2(t, x)

)

dx

= 2

∫ L

0

a(x)a′(x)
e2sϕ(t,x)

ξ2(t, x)
dx− 2sλ

∫ L

0

|a(x)|2ψ′(x− ut)
e2sϕ(t,x)

ξ(t, x)
dx.

Since ψ′(x− ut) is negative on (0, L) for t ∈ (0, T ) by construction (see (2.19)), there exists c∗ > 0 such
that

ψ′(x− ut) ≤ −c∗, (t, x) ∈ (0, L)× (0, T ).

But we also have
∣

∣

∣

∣

∣

2

∫ L

0

a(x)a′(x)
e2sϕ(t,x)

ξ2(t, x)
dx

∣

∣

∣

∣

∣

≤ c∗sλ

∫ L

0

|a(x)|2 e
2sϕ(t,x)

ξ(t, x)
dx+

1

c∗sλ

∫ L

0

|a′(x)|2 e
2sϕ(t,x)

ξ3(t, x)
dx,

which yields the result.

Using Lemma 4.9, we immediately obtain:

Lemma 4.10. For s ≥ s0 and λ ≥ λ0,

sλ

∫ T−3T0

0

∫ L

0

|ρf (t, x)|2
e2sϕ(t,x)

ξ(t, x)
dtdx ≤ C

sλ

∫ T−3T0

0

∫ L

0

|∂xρf (t, x)|2
e2sϕ(t,x)

ξ3(t, x)
dtdx

+ C

∫ T−3T0

0

|ρf (t, L)|2
e2sϕ(t,L)

ξ2(t, L)
dt (4.56)

and

∫ T

3T0

|ρb(t, 0)|2
e2sϕ(t,0)

ξ2(t, 0)
dt+ sλ

∫ T

3T0

∫ L

0

|ρb(t, x)|2
e2sϕ(t,x)

ξ(t, x)
dtdx

≤ C

sλ

∫ T

3T0

∫ L

0

|∂xρb(t, x)|2
e2sϕ(t,x)

ξ3(t, x)
dtdx. (4.57)

Using Lemma 4.10 and the definition of ρ, we obtain the following estimates on ρ:

∫ T

0

∫ L

0

|ρ|2 e
2sϕ

ξ
dtdx ≤ C

s2λ2

∫ T

3T0

∫ L

0

|∂xρb|2
e2sϕ

ξ3
dtdx

+
C

s2λ2

∫ T−3T0

0

∫ L

0

|∂xρf |2
e2sϕ

ξ3
dtdx+

C

sλ

∫ T−3T0

0

|ρf (t, L)|2
e2sϕ(t,L)

ξ2(t, L)
dt. (4.58)

Using (4.57) and since ρf (t, 0) = 0 by construction, we deduce

∫ T

0

|ρ(t, 0)|2 e
2sϕ(t,0)

ξ2(t, 0)
dt ≤ C

sλ

∫ T

3T0

∫ L

0

|∂xρb|2
e2sϕ

ξ3
dtdx. (4.59)
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Similarly, ρb(t, L) = 0, and then

∫ T

0

|ρ(t, L)|2 e
2sϕ(t,L)

ξ2(t, L)
dt =

∫ T

0

|ρf (t, L)|2
e2sϕ(t,L)

ξ2(t, L)
dt, (4.60)

which is estimated by Lemma 4.8.
Finally, let us explain how to obtain L∞((0, T )× (0, L)) bounds on ρ. We do it independently for ρf

and ρb. Using that ρf (t, 0) = 0 and (4.52), we immediately get by Sobolev embedding that ρfe
sϕ̌/2 ∈

L∞((0, T −3T0)× (0, L)). Similarly, ρbe
sϕ̌/2 ∈ L∞((3T0, T )× (0, L)). Thus, ρesϕ̌/2 ∈ L∞((0, T )× (0, L)).

To get an estimate on ∂tρ in L2((0, T )× (0, L)), we then use the equation of ρ (see (2.16)).

5 The fixed point argument

In this section we prove that the operator described in Section 2 admits a fixed point provided that
the initial data is chosen suitably small and that the parameters s, λ, Rρ and Ru are suitably chosen.
This fixed point is obtained via Schauder’s fixed point theorem. Hence we are going to focus on the two
following issues:

• the operator F : (ρ̂, û) 7→ (ρ, u) maps the set Xs,λ,Rρ
× Ys,λ,Ru

into itself for conveniently chosen
parameters s, λ, Rρ and Ru;

• F is continuous on Xs,λ,Rρ
× Ys,λ,Ru

equipped with the L2((0, T )× (0, L))2- topology.

We first focus on the first item in Sections 5.1–5.2 and then develop the fixed point argument in Section
5.3.

5.1 Estimates on u

To get estimates on the function u constructed in Section 3, we shall use Theorem 3.2 and Proposition
3.5. Therefore, we shall first derive an estimate on the L2((0, T )× (0, L))-norm of esϕ ĝ ξ−3/2:

Lemma 5.1. There exists a constant C independent of s, λ ≥ 1 and Rρ, Ru, Rin ≤ 1 such that for all
(ρ̂, û) ∈ Xs,λ,Rρ

× Ys,λ,Ru
,

‖ĝ esϕ ξ−3/2‖L2((0,T )×(0,L)) ≤ C
(

Rρ +Os,λ(Rin) +R2
u,
)

. (5.1)

‖g̃ esϕ ξ−3/2‖L2((0,T )×(0,L)) ≤ C
(

Os,λ(Rin) +R2
ρ +R2

u.
)

, (5.2)

where ĝ = g(ρ̂, û) is defined in (2.13) and g̃ is defined in (4.34).

Proof of Lemma 5.1. It is a matter of estimating the different terms in ĝ and g̃ by using the estimates on
ρ̂ and û in Xs,λ,Rρ

and Ys,λ,Ru
. We regroup the terms that are treated likewise. The various constants

C below are independent of s, λ and Rρ, Ru and Rin.

• First using the uniform bound on ρin and the definition of Xs,λ,Rρ
one has immediately

‖p′(ρ+ Λρin)∂xρ̂ e
sϕξ−3/2‖L2((0,T )×(0,L)) ≤ CRρ.

It is the only term estimated by Rρ; it appears in ĝ but not in g̃.

• Now, using that the following terms are compactly supported in time in (T0, 2T0), we also have

∥

∥

∥

∥

(

− (ρ+ Λρin)Λ
′uin − (p′(ρ+ Λρin)− p′(ρ+ ρin))Λ∂xρin

+ ρin∂tuin(Λ− Λ2) + ρinu∂xuin(Λ− Λ2) + ρuin∂xuin(Λ− Λ2)

+ ρinuin∂xuin(Λ− Λ3)

)

esϕξ−3/2

∥

∥

∥

∥

L2((0,T )×(0,L))

≤ Os,λ(Rin)

(see (2.5)).
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• Next, by using the definition of Ys,λ,Ru
and (2.24),

∥

∥

(

Λ(ρ+ Λρin)∂x(ûuin)
)

esϕξ−3/2
∥

∥

L2((0,T )×(0,L))
≤ Os,λ(Rin)Ru.

• We obtain the following estimate by using the definition of Ys,λ,Ru
, (2.24) and (3.43) in Lemma 3.6:

∥

∥

(

(ρ+ Λρin)û ∂xû
)

esϕξ−3/2
∥

∥

L2((0,T )×(0,L))
≤ CR2

u.

• Next, again using Lemma 3.6, one obtains
∥

∥

∥

∥

ρ̂

(

∂t(Λuin) + (u+ Λuin + û)∂x(Λuin)

)

esϕξ−3/2

∥

∥

∥

∥

L2((0,T )×(0,L))

≤ CRρRin.

• Using that for some constant c independent of s, λ ≥ 1 one has sup(t,x){s1/2ξ1/2e−sϕ̌/2} ≤ c, one
obtains:

∥

∥

∥

∥

ρ̂

(

∂tû+ (u+ Λuin + û)∂xû

)

esϕξ−3/2

∥

∥

∥

∥

L2((0,T )×(0,L))

≤ CRρRu.

• Using the regularity of p and the boundedness of ρ and ρ̂, we get that pointwise
∣

∣p′(ρ+ Λρin + ρ̂)− p′(ρ+ Λρin)
∣

∣ ≤ C|ρ̂|,
and similarly as above,

∥

∥

∥

∥

(

[

p′(ρ+ Λρin + ρ̂)− p′(ρ+ Λρin)
]

∂x(Λρin + ρ̂)

)

esϕξ−3/2

∥

∥

∥

∥

L2((0,T )×(0,L))

≤ CRρ(Rin +Rρ).

Gathering all the estimates above, we reach the conclusion.

Using the estimates of Lemma 5.1, according to Theorem 3.2, we obtain

s3/2λ2‖u esϕ‖L2((0,T )×(0,L)) + s1/2λ‖∂xu esϕ ξ−1‖L2((0,T )×(0,L))

+ s−1/2‖∂xxu esϕ ξ−2‖L2((0,T )×(0,L)) + s−1/2‖∂tu esϕ ξ−2‖L2((0,T )×(0,L))

≤ C1

(

Rρ +Os,λ(Rin) +R2
u

)

. (5.3)

Hence we get to the following statement.

Corollary 5.2. There exist c1 > 0, R1 > 0 independent of s, λ such that, if

Ru ≤ R1, (5.4)

and
Rρ ≤ c1Ru, (5.5)

then for any s ≥ s1, λ ≥ λ1, there exists K1(s, λ,Ru) > 0 such that if

Rin ≤ K1(s, λ,Ru), (5.6)

then the u-part of F (ρ̂, û) belongs to Ys,λ,Ru
for any (ρ̂, û) in Xs,λ,Rρ

× Ys,λ,Ru
and conditions (4.3) and

(4.38) are satisfied.

Proof. The fact that one can choose c1 and R1 such that the u-part of F (ρ̂, û) belongs to Ys,λ,Ru
follows

from (5.3). Indeed, take R̃1 small enough such that C1R̃
2
1 ≤ R̃1/3. Then, set c1 = 1/(3C1) and take Rin

small enough so that Os,λ(Rin) ≤ R̃u/(3C1).

Conditions (4.3) and (4.38) need to be proved. Applying Lemma 3.6, there exists a constant R̂1

independent of s, λ ≥ 1 such that, taking Ru and Rin smaller than R̂1, we can furthermore guarantee
that conditions (4.3) and (4.38) hold.

We thus set R1 = min{R̃1, R̂1}.

In the sequel, we choose Ru, Rρ and Rin so that (5.4), (5.5), (5.6) are satisfied. In particular,
u ∈ Ys,λ,Ru

and conditions (4.3) and (4.38) are satisfied.
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5.2 Estimates on ρ

To get estimates on ρ, we shall use the estimates given in Section 4. They will be based on estimates on
µf , µb. Of course, these first require to get estimates on the source terms h1, h2 given in (4.35)-(4.36),
and the boundary terms mf , mb given by (4.17)–(4.18).

Lemma 5.3. There exists a constant C independent of s, λ and Rρ, Ru, Rin such that for all ρ̂ ∈ Xs,λ,Rρ

and û, u ∈ Ys,λ,Ru
,

exp(C0sλe
4λ‖u+ Λuin‖L∞((0,T )×(0,L))) ≤ C(1 +Os,λ(Rin)), (5.7)

‖f̃ esϕξ−1‖L2((0,T )×(0,L)) ≤ C
(

Os,λ(Rin) +R2
u +R2

ρ

)

, (5.8)

‖f̂ esϕξ−1‖L2((0,T )×(0,L)) ≤ C
(

Os,λ(Rin) +Rρ +R2
u

)

, (5.9)

‖h1 esϕξ−2‖L2((0,T )×(0,L)) ≤ Ce4λsR2
in + e−4λR2

u, (5.10)

‖h2 esϕξ−3/2‖L2((0,T )×(0,L)) ≤ C

(

Os,λ(Rin) +
1

s3/2λ2
Ru +R2

ρ +R2
u

)

, (5.11)

‖mf (·)esϕξ−3/2‖L2(0,T ) ≤ C

(

1√
λ
(Ru +Rρ) +Os,λ(Rin)

)

, (5.12)

‖mb(·)esϕξ−3/2‖L2(0,T ) ≤ C

(

1√
λ
(Ru +Rρ) +Os,λ(Rin)

)

, (5.13)

where f̂ = f(ρ̂, û) and f̃ are given by (2.12) and (4.33).

Proof of Lemma 5.3. All these estimates are obtained independently and we prove them one by one.

• Proof of (5.7). Using Lemma 3.6,

exp(C0sλe
4λ‖u‖L∞((0,T )×(0,L))) ≤ exp(C0sλe

4λ exp(−sϕ̌(t)/2)Ru)
≤ exp(C0sλe

4λ exp(−s(e5λ − e4λ)/2)Ru) ≤ C,

since λ ≥ 1. On the other hand,

exp(C0sλe
4λ‖uin‖L∞((0,T )×(0,L))) = (1 +Os,λ(Rin)).

These estimates yield (5.7).

• Proof of (5.8). The function f̃ is defined by (4.33): using the definition of f̂ = f(ρ̂, û) in (2.12), we
get:

f̃ = −Λ′ρin + (Λ− Λ2)∂x(ρinuin)− Λ(∂xρin)u− Λ ρ̂ ∂xuin − ρ̂ ∂xû, (5.14)

The first two terms −Λ′ρin + (Λ−Λ2)∂x(ρinuin) are compactly supported in time away from t = 0 and
t = T (in (T0, 2T0)) and depend only on ρinuin, so

‖
(

−Λ′ρin + (Λ− Λ2)∂x(ρinuin)
)

e2sϕξ−1‖L2((0,T )×(0,L)) ≤ Os,λ(Rin).

Next, using the L∞((0, T )× (0, L)) norm of ∂xρin, we infer

‖ − Λ(∂xρin)u e
sϕξ−1‖L2((0,T )×(0,L)) ≤ CRinRu ≤ CR2

in + CR2
u.

Similarly,
‖ − Λ ρ̂ ∂xuine

sϕξ−1‖L2((0,T )×(0,L)) ≤ CRρRin ≤ CR2
ρ + CR2

in.

Finally, the term ρ ∂xu is quadratic:

‖ρ̂ ∂xû esϕξ−1‖L2((0,T )×(0,L)) ≤ CRρRu ≤ CR2
ρ + CR2

u.

This concludes the estimate (5.8) on f̃ .
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• Proof of (5.9). Of course, we already have the estimate (5.8), so we only need to estimate

f̂ − f̃ =
ρ

ν
p′(ρ)ρ̂− Λρin∂xû.

By definition,
‖ρ̂ esϕξ−1‖L2((0,T )×(0,L)) ≤ Rρ.

The last term satisfies

‖Λρin∂xû esϕξ−1‖L2((0,T )×(0,L)) ≤ CRinRu ≤ CR2
in + CR2

u.

This concludes the proof of (5.9) since, due to (2.26), R2
ρ ≤ Rρ.

• Proof of (5.10). Using the definition of Ys,λ,Ru
,

‖Λρin ∂xxû esϕξ−2‖L2((0,T )×(0,L)) ≤ C
√
sRinRu ≤ Cse4λR2

in + e−4λR2
u.

and using Corollary 5.2, that

‖Λρin∂tu esϕξ−2‖L2((0,T )×(0,L)) ≤ C
√
sRinRu ≤ Cse4λR2

in + e−4λR2
u. (5.15)

According to the definition of h1 in (4.35), we thus obtain (5.10).

• Proof of (5.11). Recall the definition of h2 in (4.36):

ρh2 = (p′(ρ)− p′(ρ+ Λρin)) ∂xρ̂+
ν

ρ
∂xf̃ + g̃ − ν

ρ
Λ∂xρin∂xû

+ ρ∂x [u(u+ Λuin)] + p′(ρ)
ρ2

ν
u− Λρinu∂xu. (5.16)

We shall estimate each term separately.

⋆ Using the fact that p′ is Lipschitz (in a neighborhood of ρ), we deduce

‖ (p′(ρ)− p′(ρ+ Λρin)) ∂xρ̂ e
sϕξ−3/2‖L2((0,T )×(0,L)) ≤ CRinRρ ≤ CR2

in +R2
ρ.

⋆ Estimates on ∂xf̃ . To estimate the second term ν∂xf̃/ρ, we develop it. Differentiating f̃ , we have

∂xf̃ = −Λ′∂xρin + (Λ− Λ2)∂xx(ρinuin)− Λ∂x((∂xρin)u)− Λ∂x(ρ̂ ∂xuin)− ∂xρ̂ ∂xû− ρ̂ ∂xxû. (5.17)

The first two terms are compactly supported in time away from t = 0 and t = T and depend only on
(ρin, uin)

‖
(

−Λ′∂xρin + (Λ− Λ2)∂xx(ρinuin)
)

esϕξ−3/2‖L2((0,T )×(0,L)) ≤ Os,λ(Rin).

The third one is estimated as follows

‖Λ∂x((∂xρin)u)esϕξ−3/2‖L2((0,T )×(0,L)) ≤ CRinRu ≤ CR2
in + CR2

u.

Similarly,
‖Λ∂x(ρ̂ ∂xuin)esϕξ−3/2‖L2((0,T )×(0,L)) ≤ CRinRρ ≤ CR2

in + CR2
ρ.

Finally, the last terms are quadratic:

‖∂xρ̂ ∂xû esϕξ−3/2‖L2((0,T )×(0,L)) ≤ ‖s1/2ξ1/2∂xρ̂‖L∞((0,T );L2(0,L))‖s−1/2∂xû e
sϕξ−2‖L2(0,T ;L∞(0,L))

≤ CRρRu ≤ CR2
ρ + CR2

u,

where we used the Sobolev embedding L2(0, T ;H1(0, L)) → L2(0, T ;L∞(0, L)) on s−1/2∂xu e
sϕξ−2 and

the fact that s1/2ξ1/2e−sϕ̌/2 is uniformly bounded on (0, T )× (0, L).
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Similarly

‖ρ̂ ∂xxû esϕξ−3/2‖L2((0,T )×(0,L)) ≤ ‖s1/2ρ̂ξ1/2‖L∞((0,T )×(0,L))‖s−1/2∂xxûe
sϕξ−2‖L2((0,T )×(0,L))

≤ CRρRu ≤ CR2
ρ + CR2

u.

To sum up, we have obtained the following estimate on ∂xf̃

‖∂xf̃ esϕξ−3/2‖L2((0,T )×(0,L)) ≤ C
(

Os,λ(Rin) +R2
ρ +R2

u

)

.

⋆ Let us now come back to the estimates of the terms of h2. We already have an estimate on g̃, which
is the one given by Lemma 5.1. Going on,

‖Λ∂xρin∂xû esϕξ−3/2‖L2((0,T )×(0,L)) ≤ CRinRu ≤ CR2
in +R2

u.

Similarly,
‖Λρin∂xu esϕξ−3/2‖L2((0,T )×(0,L)) ≤ CRinRu ≤ CR2

in +R2
u.

Then we have again a quadratic term

‖∂x [u(u+ Λuin)] e
sϕξ−3/2‖L2((0,T )×(0,L)) ≤ ‖∂xu esϕξ−1‖L2((0,T )×(0,L))‖u‖L∞((0,T )×(0,L))

+ CRin
(

‖∂xu esϕξ−1‖L2((0,T )×(0,L)) + ‖uesϕ‖L2((0,T )×(0,L))

)

≤ CR2
u + CR2

in.

Finally, there is a linear term in u:

‖u esϕξ−3/2‖L2((0,T )×(0,L)) ≤
C

s3/2λ2
Ru.

These estimates all together yield (5.11).

• Proof of (5.12). Thanks to (4.3), we have

∥

∥

∥

∥

1

u+ u(t, 0) + Λuin(t, 0)

∥

∥

∥

∥

L∞(0,T )

≤ 2

u
≤ C.

It follows that
|mf (t)| ≤ |u(t, 0)|+ C|f̂(t, 0)|+ C|∂xu(t, 0)|.

The difficult part consists in the estimate of f̂(t, 0): for all t ∈ (0, T ),

f̂(t, 0) = −Λ′ρin(t, 0) + (Λ− Λ2)∂x(ρinuin)(t, 0)− Λ∂x(ρinû)(t, 0)− Λρ̂(t, 0)∂xuin(t, 0)

− ρ̂(t, 0)∂xû(t, 0) +
ρ

ν
p′(ρ)ρ̂(t, 0).

Hence

|mf (t)| ≤ |u(t, 0)|+ C|∂xu(t, 0)|+ C| − Λ′ρin(t, 0) + (Λ− Λ2)∂x(ρinuin)(t, 0)|+ C|ρ̂(t, 0)|.

Using the interpolation results of Proposition 3.5, we have that

‖(esϕξ−3/2u)(t, 0)‖L2(0,T ) + ‖(esϕξ−3/2∂xu)(t, 0)‖L2(0,T ) ≤
C

sλ3/2
Ru +

C

λ1/2
Ru ≤ C√

λ
Ru.

Then, since ρ̂ ∈ Xs,λ,Rρ
,

‖(esϕξ−3/2ρ̂)(t, 0)‖L2(0,T ) ≤
C√
λ
Rρ.

Finally, since ρin(t, 0), ∂xρin(t, 0), ∂xuin(t, 0) all are in L∞(0, T ), we have

‖
(

−Λ′ρin(t, 0) + (Λ− Λ2)∂x(ρinuin
)

esϕξ−3/2)(t, 0)‖L2(0,T ) ≤ Os,λ(Rin),
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which proves (5.12).

• Proof of (5.13). This is the same proof as the one of (5.12). Actually, it is even easier to get (5.13)
since u(t, L) = 0.

The proof of Lemma 5.3 is complete.

We can now turn to the proof that the ρ-part of F is sent into Xs,λ,Rρ
for a proper choice of the

parameters.

• All the assumptions of Lemmas 4.6 and 4.7 are satisfied due to Corollary 5.2 and Lemma 5.3. We
therefore obtain, for s ≥ s0 and λ ≥ λ0,

‖µfesϕξ−3/2‖L∞((0,T−3T0);L2(0,L)) + ‖µfesϕξ−3/2‖L2((0,T−3T0);L2(0,L))

≤ C(1 +Os,λ(Rin))

[(

1√
λ
(Ru +Rρ) +Os,λ(Rin)

)

+
(

e8λsR2
in +R2

u

)

+

(

Os,λ(Rin) +
1

s3/2λ2
Ru +R2

ρ +R2
u

)]

≤ C

(

1√
λ
(Ru +Rρ) +Os,λ(Rin) +R2

ρ +R2
u

)

,

provided that Rin is sufficiently small depending on s and λ. Here, we have used (5.10)-(5.12). Similarly,

‖µbesϕξ−3/2‖L∞((3T0,T );L2(0,L)) + ‖µbesϕξ−3/2‖L2((3T0,T );L2(0,L))

≤ C

(

1√
λ
(Ru +Rρ) +Os,λ(Rin) +R2

ρ +R2
u

)

.

From estimates (4.50)-(4.51), we deduce

‖∂xρfesϕξ−3/2‖L2((0,T−3T0);L2(0,L)) ≤ C

(

1√
λ
(Ru +Rρ) +Os,λ(Rin) +R2

ρ +R2
u

)

+
C

s3/2λ2
Ru

≤ C

(

1√
λ
(Ru +Rρ) +Os,λ(Rin) +R2

ρ +R2
u

)

, (5.18)

and, similarly,

‖∂xρbesϕξ−3/2‖L2((3T0,T );L2(0,L)) ≤ C

(

1√
λ
(Ru +Rρ) +Os,λ(Rin) +R2

ρ +R2
u

)

. (5.19)

Then, using estimates (4.52),

‖∂xρfesϕξ−2‖L∞((0,T−3T0);L2(0,L)) + ‖∂xρbesϕξ−2‖L∞((3T0,T );L2(0,L))

≤ C

(

1√
λ
(Ru +Rρ) +Os,λ(Rin) +R2

ρ +R2
u

)

+
√
sRu.

Hence we have

‖∂xρfesϕ̌/2‖L∞((0,T−3T0);L2(0,L)) + ‖∂xρbesϕ̌/2‖L∞((3T0,T );L2(0,L))

≤ Ce−sϕ(T/2,0)/4
(

1√
λ
(Ru +Rρ) +

√
sRu +Os,λ(Rin) +R2

ρ +R2
u

)

≤ 1√
λ
(Ru +Rρ) +

1√
s
Ru +Os,λ(Rin) +R2

ρ +R2
u, (5.20)

since ϕ(T/2, 0) is the minimum of ϕ on (0, T ) × (0, L) and s exp(−sϕ̌(T/2, 0)/4) is bounded uniformly
in s ≥ 1.
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According to Corollary 5.2 and to estimate (5.9), Lemma 4.8 then yields, for all s ≥ s0 and λ ≥ λ0,

‖(esϕξ−1ρf )(t, L)‖L2(0,T−3T0) ≤ C(1 +Os,λ(Rin))
(

Os,λ(Rin) +Rρ +R2
u

)

+ C(1 +Os,λ(Rin))
Ru
s1/2λ

≤ C

(

Os,λ(Rin) +Rρ +R2
u +

Ru
s1/2λ

)

. (5.21)

Note that this last estimate and the fact that ρb(t, L) = 0 by construction imply in particular that

√
λ‖(esϕξ−3/2ρ)(t, L)‖L2(0,T ) ≤

√
λ‖(esϕξ−3/2ρf )(t, L)‖L2(0,T−3T0)

≤ C

λ

(

Os,λ(Rin) +Rρ +R2
u +

Ru
s1/2λ

)

, (5.22)

where we used that λ3/2ξ−1/2 is uniformly bounded in s, λ ≥ 1, (t, x) ∈ [0, T ] × [0, L]. According to
Lemma 4.10, using (5.18) and (5.21), we thus have

‖ρfesϕξ−1/2‖L2((0,T−3T0)×(0,L)) ≤
C

sλ

(

1√
λ
(Ru +Rρ) +Os,λ(Rin) +R2

ρ +R2
u

)

+
C√
sλ

(

Os,λ(Rin) +Rρ +R2
u +

Ru
s1/2λ

)

≤C
(

1√
sλ

(Ru +Rρ) +Os,λ(Rin) +R2
ρ +R2

u

)

. (5.23)

Using Lemma 4.10 estimate (4.57), the fact that ρf (t, 0) = 0 by construction and λ3/2ξ−1/2 bounded
uniformly in s, λ and (t, x), we also have

√
λ‖ρ(t, 0)esϕξ−3/2‖L2(0,T ) ≤

√
λ‖ρb(t, 0)esϕξ−3/2‖L2(3T0,T ) ≤

1

λ
‖ρb(t, 0)esϕξ−1‖L2(3T0,T )

≤ C
1√
sλ λ

(

1√
λ
(Ru +Rρ) +Os,λ(Rin) +R2

ρ +R2
u

)

. (5.24)

and

‖ρbesϕξ−1/2‖L2((3T0,T )×(0,L)) ≤
C

sλ

(

1√
λ
(Ru +Rρ) +Os,λ(Rin) +R2

ρ +R2
u

)

. (5.25)

Combining (5.23) and (5.25), we obtain

‖ρ esϕξ−1‖L2((0,T )×(0,L)) ≤ ‖ρ esϕξ−1/2‖L2((0,T )×(0,L)) ≤ C

(

1√
sλ

(Ru +Rρ) +Os,λ(Rin) +R2
ρ +R2

u

)

.

(5.26)
Similarly, combining (5.23), (5.25) and estimates (5.18), (5.19), we obtain

‖∂xρ esϕ ξ−3/2‖L2((0,T )×(0,L)) ≤ C

(

1√
λ
(Ru +Rρ) +Os,λ(Rin) +R2

ρ +R2
u

)

. (5.27)

Finally, to get an L∞((0, T )× (0, L))-bound on ρ, we first obtain L∞((0, T )× (0, L))-bounds on ρf , ρb,
using the fact that ρf (t, 0) = 0 and ρb(t, L) = 0. Therefore, since ∂xρfe

sϕ̌/2 ∈ L∞((0, T − 3T0);L
2(0, L))

and ∂xρbe
sϕ̌/2 ∈ L∞((3T0, T );L

2(0, L)), we can use Poincaré estimate:

‖ρfesϕ̌/2‖L∞((0,T−3T0)×(0,L)) + ‖ρbesϕ̌/2‖L∞((0,T−3T0)×(0,L))

≤ 1√
λ
(Ru +Rρ) +

1√
s
Ru +Os,λ(Rin) +R2

ρ +R2
u, (5.28)

according to the estimates (5.20).
Thus, gluing these estimates, we obtain

‖ρ esϕ̌/2‖L∞((0,T )×(0,L)) ≤
1√
λ
(Ru +Rρ) +

1√
s
Ru +Os,λ(Rin) +R2

ρ +R2
u. (5.29)

We have obtained the following.
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Proposition 5.4. There exist R2 > 0, s2 ≥ s1 and λ2 ≥ λ1 (s1 and λ1 are the ones given by Corollary
5.2) such that the following holds. If

Ru ≤ R2 and Rρ = c1Ru, (5.30)

where c1 is given by Corollary 5.2, there exists K2(s2, λ2, Ru) ≤ K1(s2, λ2, Ru) (K1 is the one given by
Corollary 5.2) such that if

Rin ≤ K2(s2, λ2, Ru), (5.31)

then the ρ-part of F (ρ̂, û) belongs to Xs2,λ2,Rρ
for any (ρ̂, û) in Xs2,λ2,Rρ

× Ys2,λ2,Ru
.

Moreover, using Corollary 5.2, the map F maps Xs2,λ2,Rρ
× Ys2,λ2,Ru

into itself.

Proof of Proposition 5.4. Estimates (5.20), (5.22), (5.24), (5.26), (5.27), (5.28) and (5.29) show that ρ
satisfies

‖ξ−1esϕρ‖L2((0,T )×(0,L)) + ‖ξ−3/2esϕ∂xρ‖L2((0,T )×(0,L)) + ‖esϕ̌/2ρ‖L∞((0,T )×(0,L))

+ ‖esϕ̌/2∂xρ‖L∞((0,T );L2(0,L)) + ‖λ1/2[ξ−3/2esϕρ](·, 0)‖L2(0,T ) + ‖λ1/2[ξ−3/2esϕρ](·, L)‖L2(0,T ) ≤ R

where, for some C2 independent of s, λ and Rρ, Ru, Rin,

R = C2

((

1√
s
+

1√
λ

)

(Rρ +Ru) +R2
ρ +R2

u +Os,λ(Rin)

)

.

Using Corollary 5.2, with the choices proposed in the Proposition 5.4, we already know that the
u-part of F (ρ̂, û) belongs to Ys2,λ2,Ru

for any (ρ̂, û) in Xs2,λ2,Rρ
× Ys2,λ2,Ru

.
Furthermore, using the constants c1 > 0 and R1 > 0 of Corollary 5.2, taking Rρ = c1Ru, we can

choose R2 ≤ R1 such that for Ru ≤ R2, and Rρ = c1Ru

C2R
2
ρ ≤ Rρ/4 and C2R

2
u ≤ Rρ/4.

We then can choose s̃2 ≥ s1 and λ2 ≥ λ1 so that for s ≥ s̃2,

C2

(

1√
s
+

1√
λ2

)

(Rρ +Ru) ≤
Rρ
4
.

We then finally choose Rin ≤ K1(s, λ2, Ru) small enough so that C2Os,λ2
(Rin) ≤ Rρ/4. We thus obtain

R ≤ Rρ provided Ru ≤ R2, Rρ = c1Ru, λ = λ2, s ≥ s̃2 and Rin ≤ K2(s, λ2, Ru).
Of course, we shall furthermore estimate ∂tρ in L2((0, T )× (0, L)): Using equation (2.16), we have

‖∂tρ‖L2((0,T )×(0,L)) ≤ C‖f̂‖L2((0,T )×(0,L)) + C‖∂xu‖L2((0,T )×(0,L))

+ C‖∂xρ‖L2((0,T )×(0,L)) + C‖ρ‖L2((0,T )×(0,L)).

But all the terms in the right hand side can be bounded by

exp(−sϕ(T/2, 0)/4)(Rρ +Ru),

hence we can choose s2 ≥ s̃2 large enough such that

‖∂tρ‖L2((0,T )×(0,L)) ≤ Rρ.

This completes the proof of Proposition 5.4.

Remark 5.5. We emphasize that the possibility of choosing the second parameter λ (besides s) is required
in our proof in order to suitably estimate mfe

sϕξ−3/2 and mbe
sϕξ−3/2 in L2(0, T ), see estimates (5.12)

and (5.13) respectively. More precisely, this comes from the fact that mf and mb involve the terms
∂xu(t, 0) and ∂xu(t, L) respectively.
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5.3 Conclusion

Proof of Theorem 1.1. We begin with the topological aspects. We equip Xs,λ,Rρ
× Ys,λ,Ru

with the
L2((0, T )× (0, L))2 topology.

Let us first check that Xs,λ,Rρ
×Ys,λ,Ru

is compact. It is closed under the L2((0, T )× (0, L))2 conver-
gence, because clearly the uniform inequalities defining it are stable under a passage to the limit in the
sense of distributions. Now that it is relatively compact is a consequence of the uniform estimate defining
Xs,λ,Rρ

×Ys,λ,Ru
. Let (ρn, un) a sequence inXs,λ,Rρ

×Ys,λ,Ru
. Then (un) is bounded in L2(0, T ;H2(0, L))

and in H1(0, T ;L2(0, L)), hence is it relatively compact in L2((0, T )× (0, L)) by interpolation and Rel-
lich’s theorem. All the same, (ρn) is bounded in L2(0, T ;H1(0, L)) and in H1(0, T ;L2(0, L)), so the
compactness follows easily.

Now, we choose the parameters Rρ, Ru, Rin, s = s2 and λ = λ2 as to satisfy the assumptions of
Proposition 5.4. Hence the map F maps Xs,λ,Rρ

× Ys,λ,Ru
into itself.

Let us now turn to the continuity of the operator F described above under the L2 topology. Consider
(ρn, un) a sequence in Xs,λ,Rρ

× Ys,λ,Ru
, converging to (ρ, u) in L2((0, T ) × (0, L))2, and consequently

in any topology stronger than L2((0, T ) × (0, L))2 for which Xs,λ,Rρ
× Ys,λ,Ru

is still relatively com-
pact: (un) also converges in the sense of the weak L2(0, T ;H2(0, L)) and H1(0, T ;L2(0, L)) topologies
and the strong L∞((0, T ) × (0, L)) and L2((0, T );W 1,∞(0, L)) ones; (ρn) also converges in the sense of
the weak L2(0, T ;H1(0, L)) and H1(0, T ;L2(0, L)) topologies and the strong L∞((0, T );L2(0, L)) and
L2((0, T );L∞(0, L)) ones.

Let us prove that the images under F converge correspondingly. By the compactness of Xs,λ,Rρ
×

Ys,λ,Ru
, we only have to prove that F (ρ, u) is the unique limit point of the sequence (F (ρn, un)). Hence

we suppose (relabeling the subsequence) that F (ρn, un) converges to (ρ∞, u∞) and have to prove that
(ρ∞, u∞) = F (ρ, u). Then it is clear using the convergences above that each term in g(ρn, un) converges in
the sense of distributions to its counterpart in g(ρ∞, u∞). Due to the uniform estimates of (g(ρn, un))n) in
L2((0, T )×(0, L); esϕξ−3/2 dx dt) (see Subsection 5.1), one has the weak L2((0, T )×(0, L)) convergence of
esϕξ−3/2g(ρn, un) towards e

sϕξ−3/2g(ρ, u). Hence one sees that we can pass to the limit in the variational
formulation (3.15), so by uniqueness in Lax-Milgram’s theorem, the u-part of F (ρ, u) coincides with u∞.
Reasoning in the same way, using the uniqueness of the solution of the transport equations (4.1)-(4.2),
we obtain F (ρ, u) = (ρ∞, u∞).

In that case, all the assumptions of Schauder’s fixed point theorem are fulfilled. Consequently, F
admits a fixed point (ρ, u) in Xs,λ,Rρ

×Ys,λ,Ru
. That it satisfies the equation comes from the construction.

That (ρ, u)(T ) = 0 comes from the definition of the space Xs,λ,Rρ
× Ys,λ,Ru

and of the weight function
ϕ. The regularity of the controlled trajectory also follows easily.

This concludes the proof of Theorem 1.1.

6 Appendix

6.1 Computation of f

To compute f in (2.12), we use that

∂tρS + ∂x(ρSuS) = 0 in (0, T )× (0, L).

Thus, setting ρ = ρS − ρ− Λρin and u = uS − u− Λuin, we have

0 =∂t(ρ+ Λρin) + ∂x ((ρ+ ρ+ Λρin)(u+ u+ Λuin))

=∂tρ+ Λ′ρin + Λ∂tρin + ∂x ((ρ+ Λρin)(u+ Λuin)) + ∂x (ρ(u+ u+ Λuin)) + ∂x ((ρ+ Λρin)u)

=∂tρ+ (u+ u+ Λuin)) ∂xρ+ ρ∂xu

+ Λ′ρin − Λ∂x ((ρ+ ρin)(u+ uin)) + ∂x ((ρ+ Λρin)(u+ Λuin)) + ρ∂x(u+ Λuin) + Λ∂x(ρinu),

where we used (2.2) in the last identity.
This yields to f as in (2.12) once we have remarked that:

−Λ∂x ((ρ+ ρin)(u+ uin)) + ∂x ((ρ+ Λρin)(u+ Λuin)) = ∂x(ρinuin)
(

Λ2 − Λ
)

.
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6.2 Computation of g

We start by using the equation of uS (see the second equation in (1.1)) as well as the expressions of uS
and ρS (see (2.9)) :

0 =(ρ+ ρ+ Λρin)[∂tu+ ∂t(Λuin) + (u+ u+ Λuin)(∂xu+ Λ∂xuin)]

− ν∂xxu− νΛ∂xxuin + p′(ρ+ ρ+ Λρin)(∂xρ+ Λ∂xρin).

Since we look for the equation of u written in (2.11), we regroup the previous expression in the following
way:

0 =(ρ+ Λρin)(∂tu+ u∂xu) + Λ(ρ+ Λρin)(∂tuin + (u+ Λuin)∂xuin)

+ (ρ+ Λρin)(Λ
′uin + Λ∂x(uuin) + u∂xu)

+ ρ[∂tu+ ∂t(Λuin) + (u+ u+ Λuin)(∂xu+ Λ∂xuin)]

− ν∂xxu− νΛ∂xxuin + p′(ρ+ Λρin)∂xρ+ Λp′(ρ+ Λρin)∂xρin

+ (p′(ρ+ ρ+ Λρin)− p′(ρ+ Λρin))(∂xρ+ Λ∂xρin).

Next, we replace (ρ+ Λρin)(∂tu+ u∂xu)− ν∂xxu by g. This yields

g(ρ, u) =− Λ((ρ+ Λρin)(∂tuin + (u+ Λuin)∂xuin)− ν∂xxuin + p′(ρ+ Λρin)∂xρin)

− (ρ+ Λρin)(Λ
′uin + Λ∂x(uuin) + u∂xu) (6.1)

− ρ[∂tu+ ∂t(Λuin) + (u+ u+ Λuin)(∂xu+ Λ∂xuin)]

− (p′(ρ+ ρ+ Λρin)− p′(ρ+ Λρin))(∂xρ+ Λ∂xρin)− p′(ρ+ Λρin)∂xρ.

The last two lines in this expression are exactly the two last lines in (2.13). In the second line of
(6.1), the first term is the first one in the first line of (2.13) while the second and third terms correspond
to the third line of (2.13).

We still have to work with the first line of (6.1). For this, we make the difference between the first
line of (6.1) and the equation of uin (see (2.2)) :

(ρ+ ρin)(∂tuin + (u+ uin)∂xuin)− ν∂xxuin + p′(ρ+ ρin)∂xρin = 0.

We obtain

−Λ[(ρ+ Λρin)(∂tuin + (u+ Λuin)∂xuin)− ν∂xxuin + p′(ρ+ Λρin)∂xρin]

+Λ[(ρ+ ρin)(∂tuin + (u+ uin)∂xuin)− ν∂xxuin + p′(ρ+ ρin)∂xρin]

= −Λ[(ρ+ Λρin)(∂tuin + (u+ Λuin)∂xuin)− (ρ+ ρin)(∂tuin + (u+ uin)∂xuin)]

−Λ∂xρin(p
′(ρ+ Λρin)− p′(ρ+ ρin)).

In this last identity, the last term is the second term in the first line of (2.13) while, by a simple
computation, the first term equals

ρin∂tuin(Λ− Λ2) + ρinu∂xuin(Λ− Λ2) + ρuin∂xuin(Λ− Λ2) + ρinuin∂xuin(Λ− Λ3),

which constitutes exactly the second line of (2.13).

6.3 Remarks of Proposition 2.1

Actually, Matsumura and Nishida [18, Theorem 7.1] prove a much stronger result than the one stated in
Proposition 2.1 (see also [6]):

Theorem 6.1. Let ρ be such that p′(ρ) > 0. Then there exists a constant c > 0 such that, if (ρ0 − ρ) ∈
H3(R3), u0 ∈ H3(R3) and

‖ρ0 − ρ‖H3(R) + ‖u0‖H3(R) ≤ c,
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then the three-dimensional isentropic compressible Navier-Stokes equation:






∂tρ+ div (ρu) = 0,
∂t(ρu) + div (ρu⊗ u)− µ∆u− (λ+ µ)∇divu+∇P (ρ) = 0,
(ρ, u)|t=0 = (ρ0, u0),

has a unique global solution (ρ, u) such that the density ρ− ρ ∈ C(R+;H3(R))∩C1(R+;H2(R)) and the
velocity u ∈ C(R+;H3(R3)) ∩ C1(R+;H1(R3)). Moreover for some C > 0:

‖(ρ− ρ, u)‖L∞(R+;H3(R)2)∩W 1,∞(R+;H2(R)×H1(R3)) ≤ C‖(ρ0 − ρ, u)‖H3(R).

Let us add several comments on this result.

• Mastumura and Nishida’s result give global in time solutions. We merely need the local result.

• In fact Mastumura and Nishida consider even the more general system, non isentropic, with the
equation of temperature. The isentropic case is actually simpler and still contained in their analysis
(see the end of [18, Section 1]).

• Mastumura and Nishida’s result is three-dimensional, but their analysis (relying only on energy
estimates and characteristics for the density equation) applies in the one dimensional setting.
Actually, the one dimensional case would be much simpler, since the Morrey-Sobolev injections are
better, and the energy estimates way simplify.

• In the above result, the reference velocity u is not taken into account as in Proposition 2.1. But
it is just a matter of taking the Galilean invariance of the equation into account to deduce this
statement.
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