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László Babai ∗

Department of Computer Science
University of Chicago

Chicago, IL 60637, U.S.A.
and

Department of Algebra
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Abstract

Heuristic algorithms manipulating finite groups often work under the
assumption that certain operations lead to “random” elements of the
group. While polynomial time methods to construct uniform random
elements of permutation groups have been known for over two decades,
no such methods have previously been known for more general cases such
as matrix groups over finite fields.

We present a Monte Carlo algorithm which constructs an efficient
nearly uniform random generator for finite groups G in a very general
setting. The algorithm presumes a priori knowledge of an upper bound n
on log |G|.

The random generator is constructed and works in time, polynomial
in this upper bound n. The process admits high degree of paralleliza-
tion: after a preprocessing of length O(n logn) with O(n4) processors,
the construction of each random element costs O(logn) time with O(n)
processors.

We use the computational model of “black box groups”: group ele-
ments are encoded as (0, 1)-strings of uniform length; and an oracle per-
forms group operations at unit cost. The group G is given by a list of
generators. The random generator will produce each group element with
probability (1/|G|)(1 ± ε) where ε can be prescribed to be an arbitrary
exponentially small function of n.

∗Research supported in part by NSF Grant CCR-8710078.
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The result is surprising because there does not seem to be any hope
to estimate the order of a matrix group in polynomial time. A number of
previous results have indicated close connection between nearly uniform
random generation and approximate counting.

The proof involves elementary combinatorial considerations for finite
groups as well as linear algebra and probabilistic techniques to analyse
random walks over vertex-transitive graphs, i.e. graphs with all vertices
“alike” (equivalent under the action of the automorphism group). The key
tool is a local expansion lemma for groups, which generalizes to vertex-
transitive graphs.

As a by-product, we obtain fairly general results on random walks on
vertex-transitive graphs which may be of interest in their own right.

1 Introduction

1.1 Random generation in finite groups

In manipulating finite groups, it is often desirable to have access to uniformly
distributed random elements of the group.

In [Ba1], “strong generators” for a chain of subgroups is constructed in
polynomial time under the assumption of access to to random elements; an
assumption justified by an application to a subcase of graph isomorphism. A
particularly efficient version of this algorithm, exploiting random elements with
great ingenuity, was found in [CFS]. Neumann and Praeger [NP] have recently
constructed efficient algorithms for certain matrix group problems assuming
access to random elements.

Heuristic algorithms often operate under the assumption that certain ele-
ments are “random”. Group theory packages such as CAYLEY and GAP in-
clude routines that are fast under the assumption of access to random elements.
On the other hand, in some cases, examples can be constructed to show that
the supposedly random elements they use are so highly non-random that the
algorithm is exponentially likely to output the wrong result.

For permutation groups (given by a list of generators), standard basic al-
gorithms due to Sims [Sim] suffice in order to construct uniformly distributed
random elements in polynomial time (cf. [FHL], [Je], [Kn], and the recent con-
siderable speedup [BCFLS].) It is crucial for those methods that a permutation
group G of degree n (= the number of elements permuted) possesses a sub-
group chain G = G0 ≥ G1 ≥ . . . ≥ Gn = 1 with small jumps: |Gi−1 : Gi| ≤ n.
This fact can be interpreted as a kind of self-reducibility of permutation groups
and is largely responsible for the sizable polynomial time library available for
permutation groups (cf. [KL]).

The situation is drastically different for another, potentially more important,
class of representations of finite groups: matrix groups over finite fields. Such
groups in general do not have subgroups of small index. While most finite simple
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groups are defined as matrix groups (cf. [Ca]), current algorithmic techniques
to handle them first convert them into permutation groups, thus incurring a
tremendous blowup of the size of the representation. For a group G of d × d
matrices over the field of q elements, typically |G| = qΘ(d2), and the elements
of G are represented as strings of length Θ(d2 log q). So this encoding of the
group elements is optimal. On the other hand, these groups typically act on
permutation domains of size at least n = qΘ(d), exponentially large compared
to the matrix representation. This effectively rules out handling matrix groups
even of modest dimension.

It should therefore be of particular interest to perform efficient group com-
putations in the matrix representation itself. Generating random elements in a
group of which we have no hope of determinig the approximate order (cf. Section
9) might seem an exaggerated goal. Yet, we solve this problem in polynomial
time in an even more general setting. While the random elements we construct
will be slightly non-uniformly distributed, such a small (and prescribable) devi-
ation from uniformity could hardly affect the potential applications.

1.2 Black box groups: the cost of random generation

Our model of computation is that of “black box groups”. Group elements are
encoded somehow (preferably by strings of uniform length, but the nature of
the encoding is irrelevant for our discussion). Group operations (multiplication,
inverse) are performed by an oracle (the black box). A “black box group” G
is given by a list of generators. Our cost measure comprises three elements:
the number of oracle calls (group operations), the cost of ordinary computation
that controls the oracle calls, and the number of random bits used.

The algorithm presumes a priori knowledge of an upper bound N on the
order of G. (In the matrix group case, N = qd

2
is a convenient upper bound;

typically log |G| = Θ(logN) in this case. More generally, for a black box group
with elements encoded as binary strings of length n, we may set N = 2n.) All
the three cost measures will be bounded by a polynomial of logN , clearly the
best we can hope for, up to the implied constant in the exponent. In fact,
while this statement describes the cost of the preprocessing phase (setting up
the random generator), the cost per random element will be O(logN) only.

The random group elements we generate will not be truly uniformly dis-
tributed. But their deviation from the uniform distribution can be made arbi-
trarily small: if each group element is to have probability (1/|G|)(1 ± ε) to be
selected, the costs will be polynomial in logN and log(1/ε).

To be more precise, our algorithm is Monte Carlo. If we wish that the
algorithm succeed with probability ≥ 1− δ in constructing a random generator,
uniform within (1± ε) in the above sense, then the cost is polynomial in logN ,
log(1/ε), and log(1/δ).

The cost per random group element requested will be O(logN + log(1/ε) +
log(1/δ)) (after preprocessing).
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In Section 9 we show that it is impossible to determine the approximate order
of black box groups. Indeed the situation is so bad one cannot tell elementary
abelian groups of such wildly differing orders as nearly 2n and about 2

√
n apart

with a polynomial number of oracle queries.
This makes our main result more surprising since for self-reducible languages,

approximate counting and nearly uniform random generation are known to be
equivalent [JVV].

1.3 Erdős - Rényi generators and straight line programs

Let G be a finite group and S a set of generators of G. A straight line program
in G with respect to S is a sequence of group elements g1, . . . , gm such that each
gi is either a member of S, or the inverse of gj for some j < i, or a product gjgk
for some j, k < i.

The Reachability Lemma [BSz] (cf. Section 6.2 below) asserts that every
element of a group G can be reached by a straight line program of length m ≤
(1 + log |G|)2. (Throughout this paper, log stands for base 2 logarithms.) The
lemma states the existence of such a straight line program but does not say how
to construct one. (If we knew how to, we would in particular solve the discrete
logarithm problem.)

The main result of this paper can be viewed as an efficient version of the
Reachability Lemma. We show how to construct a straight line program that,
starting from an arbitrary set of generators of G, leads to a set of O(logN)
elements, from which nearly uniformly distributed random elements of G can
be obtained at the cost of only O(logN) multiplications per random element.
(As before, N is the upper bound on the order of G known a priori.)

Let g1, . . . , gk be a sequence of group elements. By a subproduct of this
sequence we mean an element of the form ge11 · · · g

ek

k , where ei ∈ {0, 1}. The
set of subproducts is the cube C(g1, . . . , gk) ⊆ G based on this sequence. A
random subproduct is a subproduct obtained by choosing the exponents ei by
independent flips of a fair coin. Note that these products are not necessarily
uniformly distributed over the cube. We shall be interested in the case when
they are nearly uniformly distributed.

A probability distribution over a set S is called ε-uniform if each element is
selected with probability (1/|S|)(1±ε), i.e. with probability between (1/|S|)(1−
ε) and (1/|S|)(1 + ε).

We call a sequence of elements h1, . . . , hk ∈ G a sequence of ε-uniform Erdős
- Rényi generators if every element of G is represented in (2k/|G|)(1± ε) ways
as a subproduct of the hi. In other words, we require that random subproducts
are ε-uniformly distributed over G.

Erdős and Rényi [ER, Theorem 1] proved that for

k ≥ 2 log |G|+ 2 log(1/ε) + log(1/δ), (1)
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a sequence of k random elements of G will be a sequence of ε-uniform Erdős -
Rényi generators with probability ≥ 1− δ.

The target of the straight line programs to be constructed is a short sequence
of ε-uniform Erdős - Rényi generators for G for any ε > 0, where “short” means
length

k = 2 logN + 2 log(1/ε) + log(1/δ). (2)

(Here, δ is the reliability parameter just mentioned, bounding the probability
of failure of our Monte Carlo algorithm to produce ε-uniform Erdős - Rényi
generators.) It is clear that once such generators have been constructed, ε-
uniform random elements of G cost k random bits and ≤ (k−1) multiplications
each.

1.4 The ingredients

The basic idea is to emulate the “cube doubling” technique of the proof of the
Reachability Lemma [BSz] which we review in Section 6.2.

The method requires reaching, in each phase, elements that cannot be rep-
resented as too short words in the current generators. This will be achieved
through the analysis of random walks in groups. The key ingredient in this
analysis is a local expansion property of groups (Section 3). This property has
independent interest in its own right and has already been applied in the con-
text of interactive proofs [Ba2], [Ba3]. More recently it has played a key role
in a very fast (nearly linear time) Monte Carlo algorithm to handle permuta-
tion groups with a small base (a case of particular importance in computational
group theory) [BCFS]. Curiously, while in the present paper we have to assume
an a priori bound on the order of G in order to know when to terminate the
algorithm, under the circumstances of [BCFS] the local expansion property is
utilized exactly in order to make such an a priori bound unnecessary.

The local expansion property generalizes (easily) to all vertex-transitive
graphs (even to infinite ones with some restrictions), with implications of quite
general nature on random walks. (In a vertex-transitive graph, all vertices are
equivalent under automorphisms; cf. Section 2).

The local expansion property is employed to show that random walks over
a vertex-transitive graph have a fair chance of being reasonably far from their
origin at a random time within a short period. The proof of this fact involves
elementary probabilistic arguments exploiting the symmetry of the graph (Sec-
tion 5); and a linear algebra argument exploiting local expansion (Section 4).
The latter requires a variant of the Cheeger-type [Ch] eigenvalue bound of Alon
[Alo], which in turn is used to deduce fast exit of a random walk from an ex-
panding subgraph (Section 4).

In Section 6.3 we indicate, reviewing ideas from [BCFLS], how to reduce, if
necessary, the number of input generators to O(logN).
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Having completed the description of the ingredients of Phase One of the
algorithm, we describe this phase in Section 7. The result there is a set of
O(logN) generators such that every element of G is representable as a product
of length O(logN) of these generators.

In Section 6.1 we show that such a set suffices to reach nearly uniform random
group elements by random walks of length, polynomial in logN . This will follow
from the expansion property and Alon’s mentioned eigenvalue bound [Alo].

In Section 8.1 we review the required modification of the Erdős - Rényi result
necessitated by the fact that the random elements generated by Phase One are
not strictly uniform. Section 8.2 completes the description of the algorithm and
its analysis.

We close this section with stating the main result of the paper.

Theorem 1.1 Let c, C > 0 be given constants, and let ε = N−c where N is
a given upper bound on the order of the group G. There is a Monte Carlo
algorithm which, given any set of generators of G, constructs a sequence of
O(logN) ε-uniform Erdős-Rényi generators at a cost of O((logN)5) group op-
erations. The probability that the algorithm fails is ≤ N−C .

If the algorithm succeeds, it permits the construction of ε-uniformly dis-
tributed random elements of G at a cost of O(logN) group operations per
random element.

The number of random bits required is O(log logN) bits per group operation.
The local computation consists merely of storing the labels of group elements
considered and is therefore bounded by O(n) time per group operation, where
n is the length of the codewords representing each group element.

The proof of Theorem 1.1 will be completed in Section 8. For a contrast,
we prove in Section 9 that in the “black box group” model, it is impossible to
obtain even a rough estimate of the order of the group within polynomial time.

2 Definitions, notation

All graphs in this paper are undirected. We consider finite graphs and groups
only, unless otherwise stated. Some of the results remain valid for the infinite
case with some restrictions (see the remarks in each section).

Throughout the paper, X will denote a graph with vertex set V . For v ∈ V ,
the ball of radius t about v is the set ΓtX(v) = {u ∈ V : distX(v, u) ≤ t}, where
distX(v, u) denotes the length of the shortest path in X between v and u. We
omit the subscript X if the graph of reference is clear from the context. The
diameter diam(X) is the greatest distance between pairs of vertices of X.

The degree deg(v) of vertex v is the number of its neighbors; so |Γ1(v)| =
deg(v) + 1. A graph is regular if each vertex has the same degree.
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A random walk over X is a Markov chain with V as the set of states; from
vertex v, a transition to each neighbor is allowed with probability 1/ deg(v).
Random walks over undirected graphs are reversible Markov chains.

The boundary of a subset D ⊆ V is the set ∂D = {w ∈ V \D : w is adjacent
to some v ∈ D}.

Let U ⊂ V be such that for every subset W ⊆ U we have |∂W | ≥ ε|W |.
Such a subset is called ε-expanding. Let Y denote the subgraph induced by U .
We call Y an ε-expanding subgraph.

The graph X is an ε-expander if every subset U ⊂ V with |U | ≤ |V |/2 is
ε-expanding. (Alon [Alo] calls these graphs ε-magnifiers.)

The Cayley graph C(G,S) of the group G with respect to the set S of gen-
erators has G for its vertex set; two vertices g, h ∈ G are adjacent iff sg = h for
some s ∈ S ∪ S−1. The assumption that S generates G ensures that C(G,S) is
connected.

The automorphisms of the graph X are its self-isomorphisms, i.e. those per-
mutations V → V which preserve both adjacency and nonadjacency of pairs of
vertices. The automorphisms form a group Aut(X) under composition; this is
a subgroup of Sym(V ), the symmetric group acting on V .

A permutation group G ≤ Sym(V ) is transitive if for every pair v, w of
elements of the permutation domain V there exists g ∈ G such that vg = w. A
graph X is vertex-transitive if Aut(X) is transitive. Informally this means that
all vertices are alike, a condition we shall frequently use. It implies for instance
that the expected time a random walk starting at v ∈ V takes to exit Γt(v) does
not depend on v.

The group G acts on the Cayley graph C(G,S) by right translations ρg :
x 7→ xg (g, x ∈ G). Hence all Cayley graphs are vertex-transitive. (The converse
is false; the smallest counterexample is Petersen’s graph.)

For additional definitions, see esp. Section 1.3 (ε-uniform probability distri-
bution, Erdős - Rényi generators, straight line program, random subproducts,
the cube over a sequence of group elements etc.).

3 Local expansion of vertex-transitive graphs

The following lemma is stated as Lemma 10.2 in [Ba3]. A weaker version was
announced in [Ba2, p.428]. This lemma is true for finite as well as infinite
groups.

Lemma 3.1 (Local Expansion of Groups). Let S denote a set of generators
of the group G, and set T = S ∪ S−1 ∪ {1}. Let D be any finite subset of
T t, the set of t-term products of members of T (in any order). Let, finally,
0 < α ≤ 1/(2t+ 1) be such that

|D| ≤ (1− 2αt)|G|. (3)
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Then for at least one generator g ∈ S,

|D \Dg| ≥ α|D|. (4)

For completeness, we include the short proof.

Proof. For a contradiction, suppose (4) fails for every g ∈ S.
The fact that S generates G means that G =

⋃
k≥0 T

k.

Let us observe that for each g ∈ S, |D\Dg−1| = |Dg\D| = |D\Dg| < α|D|.
Observing in addition that

D \Dxy ⊆ (D \Dy) ∪ (D \Dx)y, (5)

it follows by induction on k that for any u ∈ T k, we have

|D \Du| < kα|D|. (6)

As long as kα ≤ 1, this implies that u ∈ D−1D. Since α ≤ 1/(2t + 1), we
can choose k equal to 2t + 1 and so it follows that T 2t+1 ⊆ D−1D ⊆ T 2t and
therefore T 2t = T 2t+1 = . . . = G.

Next we observe that for any u ∈ G, the number of x ∈ D such that xu ∈ D
is greater than (1−2αt)|D|. This is the case because u ∈ T 2t and thus |D\Du| <
2αt|D|.

Consequently, the number of pairs (x, u) such that x ∈ D and xu ∈ D is
greater than (1 − 2αt)|G||D|. On the other hand, the number of such pairs is
precisely |D|2. Hence

(1− 2αt)|G||D| < |D|2, (7)

contradicting assumption (3). ♠

This lemma states that Cayley graphs have a certain local expansion property
which we make explicit below. The result extends in a very simple way to all
vertex-transitive graphs. Recall that Γt(v) denotes the set of vertices at distance
≤ t from v ∈ V .

Theorem 3.2 (Local Expansion of Vertex-Transitive Graphs). Let X
be a connected vertex-transitive graph with vertex set V . If D ⊆ Γt(v) and
|D| ≤ |V |/2 then |∂D| ≥ |D|/(4t).

In other words, under these conditions, the set D is 1/(4t)-expanding.

Proof. Let us first consider the case when X is a Cayley graph of a group G
with respect to the set S of generators. Then, setting α = 1/(4t) in the previous
lemma we obtain that |gD \ D| ≥ |D|/(4t) for at least one of the generators
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g ∈ G. (We use the lemma with multiplication in the reverse order, clearly an
equivalent statement.) But then gD\D ⊆ ∂D completing the proof in this case.

For the general case, let G be the automorphism group of X. Let us fix the
vertex v in X. Take the following |G|/|V |-fold cover Y of X: set V (Y ) = G;
and join g, h ∈ G if vg and vh are either adjacent in X or they coincide. (Y
is the lexicographic product of X and the complete graph on |G|/|V | vertices.)
Clearly, Y is connected, and G acts on Y by right translations. Therefore Y is
a Cayley graph of G. Let π : G → V be the projection defined by π(g) := vg

(g ∈ G). We observe that π preserves distances, with the exception of the cases
when distY (g, h) = 1 and distX(π(g), π(h)) = 0. In particular, D ⊆ ΓtX(v)
implies π−1(D) ⊆ ΓtY (1). We can thus apply the result to the set π−1(D) in
the Cayley graph Y . Noting that ∂(π−1(D)) = π−1(∂(D)) we conclude that
|∂D|/|D| = |π−1(∂D)|/|π−1(D)| ≥ 1/(4t). ♠

Remark 3.3. Lemma 3.1 remains valid for infinite groups provided the set S
of generators is finite. Our proof of Theorem 3.2 remains valid if X is locally
finite (the vertices have finite degree) and AutX has a transitive subgroup G
such that the stabilizer Gv of a vertex is finite.

We note that some of the most studied random walks are over Cayley graphs
of infinite groups (cf. [MW], [Va]).

Remark 3.4. Theorem 3.2 implies that every vertex-transitive graph of diame-
ter ∆ is a 1/(4∆)-expander. This result can be improved by a factor of 2, using
a result of D. Aldous [Ald].

Proposition 3.5. Let X be a vertex-transitive graph of diameter ∆. Then X
is a 1/(2∆)-expander.

Proof. For Cayley graphs, this is stated as Lemma 3.1 in [Ald]. The reduction
of the general case to Cayley graphs is identical with the corresponding argument
in the proof of Theorem 3.2. ♠

Remark 3.6. For completeness, we indicate the short and elegant proof of
Aldous for the case of Cayley graphs.

Let X = C(G,S) be a Cayley graph of diameter ∆; and A ⊂ G. First we
observe that for some x ∈ G,

|A ∩Ax| ≤ |A|2/|G|, (8)

since, as seen by easy counting, the average over x ∈ G of the left hand side is
equal to the right hand side. (This observation, rediscovered in [Ald] and also in
[CFS], is implicit in [ER, pp. 133-134] and is explicitly stated in [BE, Lemma].)
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If |A| ≤ |G|/2, it follows that |Ax \ A| ≥ |A|/2. We now have x = g1 · · · gd
for some d ≤ ∆ and gi ∈ S ∪ S−1. Let xi = gi · · · gd. Observing that

|Ax \A| ≤
d∑
i=1

|Axi \Axi+1| =
d∑
i=1

|Agi \A|, (9)

we infer that |Agi \A| ≥ |A|/(2∆) for some gi, thus proving that X is a 1/(2∆)-
expander. ♠

4 Rapid exit from expanding subgraphs: the
eigenvalue bound

In this section we show that random walks tend to exit rapidly from expanding
subsets. The result is analogous to the fact that random walks over expanders
mix rapidly.

Lemma 4.1. Let λ denote the largest eigenvalue of the adjacency matrix
of an ε-expanding subgraph Y of a regular graph X of degree d. Then λ ≤
d− ε2/(4 + 2ε2).

This is a local variant of Alon’s Cheeger-type inequality [Alo, Lemma 2.4]. The
difference is that Alon requires the graph itself to be expanding in the sense that
every subset U of V with |U | ≤ |V |/2 has boundary |∂U | ≥ ε|U |. His conclusion
is that the second largest eigenvalue of X is ≥ d − ε2/(4 + 2ε2). (The largest
eigenvalue of X is d.)

The proof of this lemma follows, mutatis mutandis, the steps of Alon’s proof.
We indicate the required alterations.

Proof (sketch). Consider an eigenvector corresponding to λ. The components
of this vector are labeled by the vertices in U ; let xi denote the component
corresponding to i ∈ U . Then

λ = (
∑

xixj)/(
∑

x2
i ), (10)

where the summation in the numerator extends over all adjacent pairs of vertices
i, j ∈ U . For convenience, let us introduce additional variables xi for i ∈ ∂U
and set them to zero: xi = 0 (i ∈ ∂U). This way equation (10) remains in force.
We can now rewrite equation (10) as follows:

d− λ = (1/2)(
∑

(xi − xj)2)/(
∑

x2
i ), (11)

where the summation in the numerator extends over all adjacent pairs of vertices
i, j ∈ U ∪ ∂U .
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Adapting Alon’s trick, we use the max flow-min cut theorem to obtain a flow
along which the terms x2

i can be broken down to edgewise increments “going
toward ∂U”.

Let W = {i′ : i ∈ U ∪ ∂U} be a disjoint copy of U ∪ ∂U .
Consider the graph F with vertex set {u0, u∞} ∪ U ∪W where u0 is a new

source, joined to each vertex in U with an edge of capacity 1 + ε; u∞ is a new
sink joined to each vertex in W by an edge of unit capacity, and we have unit
capacity edges of the form (i, j′) where either i = j or i, j are adjacent in X
(i ∈ U, j ∈W ).

Claim. The maximum (u0, u∞)-flow in this network has value |U |(1 + ε).

We omit the easy proof which which closely follows Alon’s argument. The rest
of the proof is identical with Alon’s, with minor difference in notation. For the
reader’s convenience, we recite the proof.

Let now h(i, j) denote the value of an optimum flow through the edge (i, j′)
for i, j ∈ U ∪ ∂U . (We set h(i, j) = 0 when i ∈ ∂U .)

Then by Kirchhoff’s law, for every i ∈ U ,∑
j

h(i, j) = 1 + ε, (12)

since the flow value h(u0, i) = 1+ε. (The summation extends over the neighbors
of i in X.)

Since 0 ≤ h(i, j) ≤ 1, it follows that∑
j

h(i, j)2 ≤ 1 + ε2. (13)

Again by Kirchhoff’s law, for every i ∈ U ∪ ∂U ,∑
j

h(j, i) ≤ 1 (14)

since the flow value h(u0, i) ≤ 1. It follows that∑
j

h(j, i)2 ≤ 1. (15)

Here is thus the breakdown of the denominator of eqn. (11) to increments:

ε
∑
i

x2
i ≤

∑
i

x2
i (
∑
j

(h(i, j)− h(j, i))) =
∑
i,j

h(i, j)(x2
i − x2

j ), (16)

where the summation extends over all adjacent pairs i, j ∈ U ∪∂U . (We use the
fact that xi = 0 for i ∈ ∂U .)
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We use inequalities (13) and (15) to estimate a related sum:

∑
i,j h(i, j)2(xi + xj)2 ≤ 2

∑
h(i, j)2(x2

i + x2
j )

= 2
∑
i x

2
i (
∑
j(h(i, j)2 + h(j, i)2)) ≤ 2(2 + ε2)(

∑
x2
i ). (17)

Combining inequalities (16) and (17), we obtain the following inequalities, where
all summations extend over pairs (i, j), i, j ∈ U∪∂U . We shall apply the Cauchy-
Schwarz inequality.

d− λ ≥
∑
i,j(xi − xj)2∑

x2
i

·
∑
i,j h(i, j)2(xi + xj)2∑
i,j h(i, j)2(xi + xj)2

≥
(
∑
i,j h(i, j)|x2

i − x2
j |)2

2(2 + ε2)(
∑
i x

2
i )2

≥ ε2/(4 + 2ε2). (18)

This completes the proof of the Lemma. ♠

We continue to use the above notation. We estimate the probability of a random
walk exiting U in terms of the largest eigenvalue.

Proposition 4.2. Let v0 be a vertex in U . Let us consider a random walk over
X, starting from v0. The probability that the first ` steps will all be within U
is ≤ (|U |)1/2(λ/d)`.

Proof. Let A denote the adjacency matrix of U . Then (1/d)A describes the
transition probabilities between pairs of vertices of U . (Note: this is not a
stochastic matrix since it is possible to exit from the set U .) Let e0 denote the
column vector of length |U | with 1 in position v0 and 0 elsewhere. Let j be
the all-ones vector. Then the probability that the random walk makes no exit
from U during the first ` steps is eT0 (A/d)`j where the superscript T refers to
transpose. Now A is a symmetric matrix hence A = CTDC for some orthogonal
matrix C and diagonal matrix D. All diagonal entries of D are at most λ in
absolute value. Therefore

eT0 A
`j = (Ce0)TD`(Cj) ≤ ‖Ce0‖ · ‖D‖` · ‖Cj‖ = 1 · λ` · (|U |)1/2.♠ (19)

Corollary 4.3. Let U be an ε-expanding subset of the vertices of a regular
graph X of degree d. Then the probability that during its first ` steps, a
random walk over X starting in U does not exit U is less than

|U |1/2 exp(−ε2`/(d(4 + 2ε2))).♠ (20)
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5 Random walks over vertex-transitive graphs

The results of the previous section guarantee that over a locally expanding
graph, a random walk has a good chance of going reasonably far within a short
time. The difficulty in using this fact is that we cannot point to a particular
point in time at which the random walk is likely to be at a reasonably great
distance.

In this section, we exploit the symmetry of our graphs to show that a random
walk stopping at a random time has a fair chance of ending up reasonably far.

Let X be a vertex-transitive graph. Let x0 be the start vertex (origin) and
xt the position at time t of a random walk over X. Let ξt = dist(x0, xt). Let
η` = max{ξ0, ξ1, . . . , ξ`}. Fix positive integers k and ` such that

Prob(η` ≥ 4k + 1) ≥ 1/2, (21)

i.e. with probability ≥ 1/2, by time ` the random walk will have reached distance
≥ 4k + 1 from the origin at least once.

Lemma 5.1. Let k and ` satisfy (21). Let τ be a random number selected
uniformly from {k + 1, k + 2, . . . , `}. Then

Prob(ξτ ≥ k + 1) ≥ 1/16. (22)

Informally, the Lemma says that a random walk of random length ≤ ` has a
fair chance of ending at distance ≥ k + 1.

Proof. Let Bj denote the event (ξj ≤ 2k).

Claim 1. There exists an m ≤ ` such that Prob(Bm) ≤ 2/3.
We prove the Claim. Let Aj denote the event that j is the first time that ξj ≥

4k+1 happens. Then the Aj are mutually disjoint events, and
∑`
j=1 Prob(Aj) ≥

1/2. By vertex-transitivity, the distribution of dist(xj , xj+m) is the same as the
distribution of ξm. By the triangle inequality we observe that if ξj ≥ 4k+1 and
dist(xj , xj+m) ≤ 2k then ξj+m ≥ 2k + 1. Hence

Prob(Bj+m|Aj) ≤ 1− Prob(Bm). (23)

For a contradiction assume now that Prob(Bm) > 2/3 for all m ≤ `. Then

1/3 > Prob(B̄`) ≥
∑̀
j=1

Prob(B̄`|Aj)Prob(Aj) > (2/3)
∑̀
j=1

Prob(Aj) ≥ 1/3,

(24)
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a contradiction, proving Claim 1.
Let now Cj denote the event that (ξj ≤ k). Let further T = {t : 0 ≤ t ≤

`; Prob(Ct) > 3/4.

Claim 2. |T |/` ≤ 3/4.
Let m be the integer guaranteed to exist by Claim 1; so Prob(Bm) ≤ 2/3.

Using, as before, vertex-transitivity and the triangle inequality, we observe that
for t ∈ T , we have

Prob(Cm±t|B̄m) ≤ 1− Prob(Ct) < 1/4; (25)

and therefore

Prob(Cm±t) ≤ Prob(Cm±t|B̄m) · Prob(B̄m) + Prob(Bm) <
1− (3/4)Prob(B̄m) ≤ 1− (3/4)(1/3) = 3/4. (26)

Hence if t ∈ T then m ± t 6∈ T . It follows that |T | ≤ 3`/4. We also note that
T ⊇ {0, 1, 2, . . . , k}.

To conclude the proof of the Lemma we infer that Prob(τ ∈ T ) < |T |/` ≤
3/4. Therefore Prob(C̄τ ) ≥ Prob(C̄τ |τ 6∈ T )Prob(τ 6∈ T ) ≥ (1/4)(1/4) = 1/16.
♠

The results of the previous two sections guarantee that inequality (21) auto-
matically holds in vertex-transitive graphs for some reasonable value of `. The
results thus add up to the following.

Theorem 5.2. Let X be a connected vertex-transitive graph of degree d on
the vertex set V . Assume, for some k ≥ 0, that |Γ4k(v)| ≤ |V |/2 for some (any)
v ∈ V . Let τ be a random number selected uniformly from {k+ 1, k+ 2, . . . , `},
where

` ≥ 513k2d · (2 ln 2 + ln |Γ4k(v)|). (27)

Then inequality (22) holds, i.e. with probability ≥ 1/16, a random walk of length
τ , starting at v, will end outside Γk(v).

Remark 5.3. A sufficient condition to ensure |Γ4k(v)| ≤ |V |/2 is that k <
diam(X)/8.

Remark 5.4. The following trivial estimate is useful in applications of Theorem
5.2.

ln |Γ4k(v)| < min{4k ln d, ln |V | − ln 2}. (28)

Proof. Let U = Γ4k(v). By Theorem 3.2, this set is ε-expanding in the sense
defined in Section 4 for ε = 1/(16k). Substituting a value ` satisfying (27) we
obtain |U |1/2 exp(−ε2`/(d(4 + 2ε2))) < 1/2. Hence, by Corollary 4.3, inequality
(21) holds. An application of Lemma 5.1 concludes the proof. ♠
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6 Further preliminaries: rapid mixing, reacha-
bility, and reducing the number of generators

In the next section we describe Phase One of the algorithm. The output will
be a logarithmic number of generators such that each element of G can be
represented as a product of logarithmic length of these generators. First we
show how such an output can be used to obtain ε-uniform random elements for
any ε > 0.

6.1 Rapidly mixing random walks

We prove that random walks over vertex-transitive graphs of small degree and
diameter rapidly approach the uniform distribution.

Lemma 6.1. Let X be a vertex-transitive graph of degree d and diameter ∆.
Then the second eigenvalue of the adjacency matrix ofX is λ2 ≤ d−1/(16.5∆2).

Proof. By Proposition 3.5 we know that X is a 1/(2∆)-expander. By Alon’s
eigenvalue bound [Alo, Lemma 2.4], we obtain

d− λ2 ≥ γ2/(4 + 2γ2) ≥ 1/(16∆2 + 2) (29)

where γ ≥ 1/(2∆) is the expansion rate. ♠

The following well known estimate shows how to use the eigenvalue gap to find
nearly uniformly distributed vertices.

Consider the following lazy random walk on the graph X: we begin each step
by flipping a fair coin. If it comes out heads, we don’t move in this step; else
we move to a neighbor, each neighbor having equal probability to be visited.
If A denotes the adjacency matrix of X, then the transition matrix of the lazy
random walk is (A+ dI)/(2d). This matrix is positive semidefinite so we won’t
have to worry about negative eigenvalues.

Proposition 6.2. Let X be a regular graph of degree d and let v0, vi ∈ V . Let
λ2 be the second largest eigenvalue of the adjacency matrix A of X. Let p(`)
denote the probability that after ` steps, the lazy random walk starting at v0,
arrives at v1. Then

|p(`)− (1/|V |)| ≤ ((d+ λ2)/2d)`. (30)

Proof. Let eh denote the column vector of length |V | with 1 in position vh
and 0 elsewhere (h = 0, i). Set B = (A + dI)/(2d) and µ = (d + λ2)/(2d).
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The largest eigenvalue of B is 1, the second largest is µ, and all eigenvalues are
nonnegative. Clearly,

p(`) = eT0 B
`ei, (31)

where the superscript T stands for transpose.
Let CT denote the matrix whose columns form an orthonormal eigenbasis of

A; let |V |−1/2j be the first column (corresponding to eigenvalue λ1 = d) where
j denotes the all-ones vector. Now B = CTDC where D is a diagonal matrix
with diagonal entries 1, µ, . . .. Let E denote the diagonal matrix with diagonal
entries 1, 0, 0, . . .. Clearly, CTEC = (1/|V |)J , where J is the all-ones matrix.
Let D1 = D − E. We note that ‖D1‖ = µ. We infer that

|p(`)− (1/|V |)| = |(Ce0)T (D`
1(Cei)| ≤ ‖Ce0‖ · ‖D1‖` · ‖Cei‖ = 1 ·µ` · 1.♠ (32)

The last two results combine to an estimate on the deviation from uniform
distribution of lazy random walks on vertex-transitive graphs. Recall that a
probability distribution over V is ε-uniform if every element has probability
(1/|V |)(1± ε) to be selected.

Theorem 6.3. Let X be a vertex-transitive graph of degree d and diameter
∆. After ` steps, the lazy random walk, starting at a given vertex, ends at an
ε-uniformly distributed random vertex, where

ε < |V | exp(−`/(33∆2d)). (33)

Proof. Using the notation of the previous proof, we have µ = (d+ λ2)/(2d) <
1− 1/(33∆2d) < exp(−1/(33∆2d)) by Lemma 6.1. Now apply Proposition 6.2.
♠

6.2 The Reachability Lemma

The following result appears in [BSz] as Theorem 3.1.

Lemma 6.4 (Reachability Lemma, [BSz]). Given a set S of generators of
the finite group G, every element of G can be reached from S by some straight
line program of length < (1 + log |G|)2.

We briefly review the proof since it provides the basic motivation of Phase
One of our algorithm.

What one proves in effect is the following.

Lemma 6.5. Given a set S of generators of the finite group G, there exists a
straight line program of length < (log |G|)2 which reaches a sequence of elements
h1, . . . , ht such that
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(i) t ≤ log |G|;

(ii) every element of G can be represented as a product x−1y, where x, y
belong to the cube C(h1, . . . , ht).

Recall (Section 1.3) that C(h1, . . . , ht) is defined as the set of subproducts
he11 · · ·h

et
t where ei ∈ {0, 1}. Hence every element of G can be represented

as a product of length ≤ 2t− 1 of the hi and their inverses.
This clearly implies the Reachability lemma. We prove Lemma 6.5.

Proof. For i ≥ 0, suppose hj has already been defined for all j, 1 ≤ j ≤ i.
(This is certainly true in the initial case i = 0.) Let Ci = C(h1, . . . , hi) denote
the cube based on the sequence h1, . . . , hi. (For i = 0 we set C0 = {1}.) Let
hi+1 ∈ C−1

i CiS be such that

Ci ∩ Cihi+1 = ∅. (34)

If no such hi+1 exists, declare t = i and halt.
Clearly Ci+1 = Ci ∪ Cihi, hence |Ci+1| = 2|Ci|. Consequently, t ≤ log |G|,

verifying condition (i).
Set D = C−1

i Ci. If some x ∈ DS is not an appropriate choice for hi+1

because it violates equation (34) then x ∈ D. If none of the elements of DS
are appropriate then DS ⊆ D, therefore G = DSN ⊆ D, hence D = G. This
proves that it was correct to conclude that i = t: condition (ii) holds.

Finally since hi+1 ∈ C−1
i CiS, the “straight line cost” of adding hi+1 to

S ∪ {h1, . . . , hi} is ≤ (2i− 1). Hence the total cost is ≤
∑t
i=1(2i− 1) = t2. ♠

6.3 Reducing the number of generators: Phase Zero

A group G of order ≤ N cannot have subgroup chains of length greater than
logN . Therefore any set of > logN generators is redundant. We may, however,
not be able to recognize which generators can be omitted.

A simple Monte Carlo algorithm to reduce the number of generators of a
black box group to O(logN) is described in [BCFLS]. In this section, we review
the result. For the definition of “subproducts”, see Section 1.3.

Lemma 6.6 [BCFLS] Let m denote the length of the longest subgroup chain in
the group G. (Note: m ≤ log |G|.) Let S be an ordered sequence of generators
of G. Let further T be a set of 2m + t random subproducts of S. Then the
probability that T does not generate G is less than exp(−t2/(4m+ 2t)).

It follows that for any ε > 0, a set of ≥ 2m + ln(1/ε) + 2(m ln ε)1/2 random
subproducts generate G with probability ≥ 1− ε.
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Corollary 6.7. Let G be a group given by a set S of generators and an upper
bound N for |G|. For any constant c > 0, a Monte Carlo algorithm constructs,
with probability ≥ 1−N−c, a set of O(logN) generators for G. The cost of the
algorithm is O(|S| logN) group operations.

The algorithm simply consists of taking the stated number of random subprod-
ucts.

Remark 6.8. Another Monte Carlo algorithm, also described in [BCFLS],
requires O(|S| log |S| log(1/ε)) group operations to obtain O(logN) generators
with probability ≥ 1− ε.

Since |S| would normally not be greater than (logN)O(1), this algorithm is
considerably faster than the one described in Corollary 6.7, as long as we do not
insist on the same degree of reliability (which is exponential in logN in Cor.
6.7).

We remark that these algorithms, like those in the rest of the paper, are not
Las Vegas; we have no way of knowing that the algorithm succeeded in actually
finding a set of generators. But it is up to us to set the reliability parameter ε;
the cost will be proportional to log(1/ε).

7 The algorithm: Phase One

Now we turn to the description of the first (main) phase of the algorithm. Let
G be a group of order known to be ≤ N .

The input of Phase One is the integer N and a set S of generators of G.
If successful, the output of Phase One will be another set S′ of generators

such that

(i) |S′| = |S|+ c1 logN ;

(ii) every element of G can be represented as a product of length ≤ c2 logN
of elements of S′ and their inverses.

Our Monte Carlo algorithm is not Las Vegas; we have no way of checking
whether or not Phase One was successful, i.e. whether or not objective (ii)
was met. However, the probability that Phase One fails is exponentially small
as a function of logN .

For definiteness, we shall state concrete values of the constants in the algo-
rithm. In particular, we can choose c1 = xxx and c2 = xxx.

The algorithm will construct an increasing sequence S = S1 ⊂ S2 ⊂ . . . ⊂
Sm = S′ of subsets of G, where m = c3 logN . The sets will have cardinality

|Si| = |S|+ c4(i− 1), (35)
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where c4 = c1/c3 (cf. (i)).
In each round, we have to augment Si by a set Ri+1 of c4 elements, to obtain

Si+1 (1 ≤ i ≤ m− 1). We set R1 = S.
To obtain the elements of Ri+1 for i ≥ 1, we consider random walks on the

Cayley graph Xi = C(G,Si). Each of the c4 elements of Ri+1 is obtained as the
result of a random walk of random length, starting at the identity. The length
of the random walk is a random integer between 2i+ 1 and `i where

`i = d2052i2|Si| ln(2N)e. (36)

(Distinct random choices should be made for each new element.)
Here is a pseudo-code of the algorithm.

procedure PHASE ONE(N,S)
Initialize: S′ := S
for i = 1 to c3 logN do

initialize: R = ∅
for j = 1 to c4 do

select random integer τ ∈ {2i+ 1, . . . , `i}
make random walk of length τ , starting from 1,

in the Cayley graph C(G,S′)
add the element reached to R

end
set S′ := S′ ∪R

end

In this procedure, `i is defined by equation (36), where |Si| = |S| + c4(i − 1)
(eqn. (35)).

Theorem 7.1 For any constant c5 > 0 and appropriate positive constants c3,
c4, procedure PHASE ONE constructs, with probability > 1− exp(−c5 logN),
a set S′ such that the Cayley graph C(G,S′) has diameter ≤ 16c3 logN . The
cost of the algorithm is O((logN)5) group operations and O((logN)5 log logN)
random bits.

The cost estimate presumes that |S| = O(logN), an assumption justified in
Section 6.3.

Proof. Let R′i = Ri ∪ {1}; Ci = R′1 · · ·R′i, C0 = {1}. As in the proof of the
Reachability Lemma, if

Ri+1 6⊆ C−1
i Ci, (37)

then |Ci+1| ≥ 2|Ci|. Our objective was to select a small number of elements to
guarantee that (37) has a good chance to hold.
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Let Xi = C(G,Si). Observe that

C−1
i Ci ⊆ Γ2i

i (38)

where Γti denotes the ball of radius t about the identity element in Xi. It
follows by Theorem 5.2 and Remark 5.4 that each element added to Ri+1 has
probability ≥ 1/16 to be outside Γ2i

i , unless 2i ≥ diamC(G,Si)/8 (see Remark
5.3).

Consequently, as long as 16i < diamC(G,Si), the probability that (37) fails
is ≤ (15/16)c4 . E.g. for c4 = 11, this probability is < 0.4917 < 1/2.

Let now c′3 = (16/15)c4 and c3 > c′3. Then by a Chernoff estimate, a
Bernoulli trial with probability of success 1/c′3, if repeated c3 logN times, has
more than logN successes with probability > 1 − exp(−c5 logN). Since the
cardinality of Ci cannot double more than logN times, an easy argument shows
that with probability > 1− exp(−c5 logN) we must reach diamXi ≤ 16i. ♠

We call PHASE ONE successful if its output meets the diameter bound stated in
Theorem 7.1. The probability that PHASE ONE is unsuccessful is exponentially
small in logN .

Proposition 7.2 After a successful completion of PHASE ONE (at a cost
of O((logN)5) group operations), we are able to generate, for any ε > 0, ε-
uniformly distributed random elements ofG at a cost ofO((logN)4+(logN)3 log(1/ε))
group operations per random element.

Proof. According to Theorem 6.3, lazy random walks of length ` ≥ 33∆2d(lnN+
ln(1/ε)) will produce ε-uniformly distributed random elements of G, where ∆ is
the diameter and d the degree of the Cayley graph C(G,S′) obtained in Phase
One. Both quantities are O(logN). ♠

8 The Erdős - Rényi generators

The aim of the second phase is to set up, at a cost not greater than that of the
first phase, a generator producing ε-uniform random elements of G at greatly
reduced cost per random element compared to the cost stated in Proposition
7.2.

8.1 The Erdős - Rényi theorem

Erdős and Rényi [ER, Theorem 1] proved that for

k ≥ 2 log |G|+ 2 log(1/ε) + log(1/δ), (39)
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a sequence of k random elements of G will be a sequence of ε-uniform Erdős -
Rényi generators with probability ≥ 1− δ.

The slight problem with applying this result is that the random elements
obtained after Phase One (Proposition 7.2) are not truly uniformly distributed.

However, an easy modification of the Erdős-Rényi argument yields the fol-
lowing result.

Theorem 8.1 Let γ > 1,

k ≥ 2 log |G|+ 2 log(1/ε) + log(1/δ) + log(γ), (40)

and 0 < ω ≤ (γ − 1)|G|/2k.
Then a sequence of k random elements of G from an ω-uniform distribution

will form a sequence of ε-uniform Erdős - Rényi generators with probability
≥ 1− δ.

The proof is identical with that of the original result of Erdős and Rényi except
that in their Lemma, the upper bound on the quantity D2

k should be D2
k <

γ · 2k (rather than 2k(1 − 1/|G|)). (This quantity is defined as the variance
of the number of representations of a truly uniform random element of G as a
subproduct of the given k-tuple.)

8.2 The algorithm: Phase Two

Phase Two of the algorithm assumes successful completion of Phase One.
The input of Phase Two is a pair of positive parameters ε, δ, together with

the output of a (successful) Phase One, i.e. a set S′ of ≤ c6 logN generators
of G such that every element of G can be represented as a product of length
≤ c2 logN of elements of S′ and their inverses. (We assume Phase Zero (Section
6.3) was successfully completed, if necessary, before Phase One.)

The output of Phase Two is a sequence of k elements of G which, with
probability ≥ 1− δ, form a sequence of ε-uniform Erdős-Rényi generators. Here

k = d2 logN + 2 log(1/ε) + log(1/δ) + 1e (41)

procedure PHASE TWO(ε, δ, S′).

Set ω = ε2δ/N2. Generate k random elements of G which are ω-uniformly
distributed, according to Proposition 7.2, where k is defined by eqn. (41). End.

Theorem 8.2. With probability ≥ 1 − δ, procedure PHASE TWO produces
a sequence of ε-uniform Erdős-Rényi generators. The cost of the procedure is
O((logN)5 + (logN)3(log(1/ε) + (log(1/δ))2)) group operations.
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Proof. We set γ = 2 and apply Theorem 8.1. Our choice of k satisfies the
condition in Theorem 8.1 since |G| ≤ N . Our choice of ω satisfies the second
condition in Theorem 8.1, namely ω ≤ (γ − 1)|G|/2k since now

ω = ε2δ/N2 ≤ (ε2δ/N2)(|G|/2) = (γ − 1)|G|/2k.

By Theorem 8.1, all that remains to be justified is the claimed cost.
By Proposition 7.2, the cost is O(k((logN)4 + (logN)3 log(1/ω))). Since

log(1/ω) = O(logN + log(1/ε) + log(1/δ)), the stated bound is immediate. ♠

Remark 8.3. Presumably in most applications, ε and δ need not be smaller
than (1/N)O(1). In these cases, we conclude that the combined total cost of
Phases One and Two is O((logN)5) group operations. After Phase Two, the
cost of ε-uniform random elements is O(logN) group operations per random
element. This justifies Theorem 1.1.

Remark 8.4. The length of the input strings (generators of the group G) is
n ≥ logN , so our algorithms are polynomial time.

The repeated doubling process seems inherently sequential and there does
not seem any way to make this algorithm RNC. But from a practical point
of view, massive parallelization is possible. Indeed, every round of Phase One
can be performed in RNC optimally, i.e. with only a logarithmic loss in time
× number of processors (because a random walk of length r in a group can
be performed in log r rounds, using r/2 parallel processors, each capable of
performing a single group operation per round).

Once we have the Erdős-Rényi generators, each random group element can
be obtained in O(log n) rounds using O(n) processors.

9 Impossibility of approximating the order

Below, when we talk about black box groups, we have an infinite sequence of
black box groups in mind, one for every n.

The elements of the nth black box group are encoded as binary strings of
length n; so N = 2n is an upper bound on the order of the group.

Let p be a fairly large prime, not bounded by any polynomial of n, and let
m ≥ 2 be such that pm < 2n. (So m can still be quite large.) Let G be a
cyclic group of order p and H an elementary abelian group of order pm, i.e. the
direct sum of m copies of G. Assume H is given by a basis T , i.e. a set of m
generators. On the other hand, assume G is given by a list S of m randomly
selected elements (which of course form a redundant set of generators of G).
The encoding of each group is done by random injections G,H → {0, 1}n.

We claim that no polynomial time Monte Carlo algorithm has a chance of
distinguishing the two groups.
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Indeed, let ϕ : H → G be the homomorphism obtained by extending the
bijection T → S of the (ordered) lists of generators.

Let us follow the course of a Monte Carlo algorithm, applied to (H,T ). The
algorithm computes a sequence of group elements h1, . . . , ht. Let gi = ϕ(hi).

Claim. The probability that there exist i, j ≤ t such that hi 6= hj but gi = gj
is less than t2/(2p).

Proof. The probability here is understood to refer to a fixed set T and a random
choice of S. The probability that any particular element h−1

i hj 6= 1 belongs to
the kernel of ϕ is (pm−1 − 1)/(pm − 1) < 1/p; thus the probability that this
happens to at least one element of this type is less than

(
t
2

)
/p. ♠

In the cases when this does not happen, there is a measure-preserving trans-
formation between the runs of the algorithm on (H,T ) (with random labeling
of the elements of H) and the runs of the algorithm on G (with random list
of m generators and random labeling of the elements) which preserves all the
codewords (code(hi) =code(gi) for every i ≤ t).

Let us now consider a black box group defined as follows: we flip a coin to de-
cide whether the group will be (G,S) or (H,T ); and perform the randomization
in encoding as well as the randomization of S in case of (G,S).

It follows that a (fixed) Monte Carlo algorithm running in time t is expected
to have no more than t2/p advantage at guessing the order of the group. (The
actual advantage is a random variable, depending on the random choices made
in the previous paragraph. We consider the advantage to be a nonnegative value;
i.e. being able to guess wrong 60% of the time also counts as 10% advantage.
Clearly, this is as unlikely as being able to guess right 60% of the time.)

Let us now consider the following group oracle. The oracle consists of a black
box group for every n; the elements of the nth group are encoded by strings of
length n. Each of the groups is selected at random as just described, with p = pn
between 2

√
n and 21+

√
n and m approximately

√
n.

Then, for any randomized oracle Turing machine M running in time t(n)
on inputs of length n, the following event is true with probability 1: For all
but finitely many values of n, the machine M has no more than 2n2t(n)22−

√
n

advantage at guessing whether the order of the nth group is less than 21+
√
n or

more than 2n/2.
(The role of the n2 factor inserted is to make the probability for the nth group

less than 1/n2; then by the Borel-Cantelli lemma, almost surely this happens a
finite number of times only.)

Hence this is true for all Turing machines simultaneously with probability
1. It follows that there exists a group oracle for which the above statement is
still true for every Turing machine M .

We summarize the result.

Proposition 9.1. There exists a group oracle, i.e. a sequence of black box
groups Bn with the following properties:
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(i) for every n, the elements of Bn are encoded as binary strings of length n;

(ii) Bn is an elementary abelian group of order either < 21+
√
n or more than

2n/2;

(iii) for every t(n)-time-bounded randomized oracle Turing machine M and
for every n > n0(M), the machnie M has no more than 2n2t(n)22−

√
n

advantage at guessing whether |Bn| < 21+
√
n or |Bn| > 2n/2.

In particular, no polynomial time Monte Carlo algorithm can guess the loga-
rithm of the order of a black box group within a factor of

√
n.

10 Some applications

10.1 Permutation groups with a small base

A base of a permutation group G ≤ Sym(Ω) is a set ∆ ⊆ Ω such that no element
of G \ {1} fixes ∆ pointwise. ∆ is a small base if |∆| is bounded by polylog(n),
where n = |Ω|. Such groups are particularly significant in computational group
theory. Clearly, 2|∆| ≤ |G| < n|∆| (the first inequality assumes sequential
irredundance of ∆ in some ordering), so G has a small base precisely if log |G|
is bounded by polylog(n).

A combination of the nearly uniform generator of this paper and the efficient
data structure of [CFS] yield a nearly linear time algorithm for basic manipula-
tion (membership, order, etc.) for groups with a small base. More specifically
we obtain:

If N is an a priori bound on the order of G ≤ Sn then basic group manipulation
can be solved in Monte Carlo time O(n(logN)c) for an absolute constant c.

The constant c does not seem small enough to make this algorithm competitive
in practice. A substantially better constant has been obtained in [BCFS]; work
on that paper has been a source of motivation for this work. In addition, an
application of the Local Expansion Lemma to the product of partial transversals
in [BCFS] allows to avoid the need for an a priori bound on |G|.

10.2 Sylow subgroups of small index

Let G be a black box group, N a known upper bound on |G|, and r a known
upper bound on the index of a Sylow p-subgroup. Then, a Sylow p-subgroup
can be constructed in Monte Carlo time r(logN)c.
The algorithm uses the Monte Carlo polynomial time recognition algorithm of
nilpotence [BCFLS]. A group is a p-group if and only if it is nilpotent and all
generators have order a power of p. We build a p-subgroup P , starting from
P = {1}, by adding a random element g ∈ G whenever 〈P, g〉 is a p-group. We
stop after O(logN) rounds.
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10.3 Interactive proofs

This author introduced his version of interactive proofs [Ba2] in order to put
the problems of matrix group order and nonmembership into suitably low com-
plexity classes [Ba3]. The Local Expansion Lemma was a key tool. The result
of the present paper allows a very simple “nonmembership” protocol for black
box groups, along the lines of the quadratic nonresiduosity protocol of [GMR]:
to verify that g 6∈ G, the verifier privately generates random elements hi ∈ G,
and for each i flips a coin to decide whether to show hi or hig to the prover.
Subsequently, the prover has to guess for each i the outcome of the coin flip.
If indeed g 6∈ G, he can answer correctly all the time; otherwise he is unlikely
to answer correctly more than 51% of the time. – I do not know such a simple
protocol to verify the order of G [Ba3].
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[BLS] L. Babai, E. M. Luks, Á. Seress, Permutation groups in NC, in: Proc.
19th ACM STOC, 1987, pp. 409-420.
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