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Abstract

Markovian growth-fragmentation processes describe a family of particles which can

grow larger or smaller with time, and occasionally split in a conservative manner.

They were introduced in [3], where special attention was given to the self-similar

case. A Malthusian condition was notably given under which the process does not

locally explode, in the sense that for all times, the masses of all the particles can

be listed in non-increasing order. Our main result in this work states the converse:

when this condition is not verified, then the growth-fragmentation process explodes

almost surely. Our proof involves using the additive martingale to bias the probability

measure and obtain a spine decomposition of the process, as well as properties of

self-similar Markov processes.
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1 Introduction

Informally, a growth-fragmentation process can be viewed as a branching particle

system, in which each particle has a mass that evolves continuously (and in particular

may grow) as time passes, independently of the other particles, and then splits in two.

When a split occurs, mass is conserved in the sense that the sum of the masses of the

two new particles is equal to that of the particle that just split. We may think for instance

of growth-fragmentations as a model for cell division, see e.g. [9]. The process is further

called self-similar when it fulfills a scaling property.

More precisely, a self-similar growth-fragmentation can be defined as follows, as was

done in [3]: start with a positive self-similar Markov process X = (X(t), t > 0) with no

positive jumps, and such that X either is absorbed at 0 after a finite (random) time or

converges to 0 in infinite time. We look at X(t) as the mass of a particle at time t and

whenever X makes a (necessarily negative) jump, we consider this as giving birth to

a new particle, whose original mass is equal to the size of the jump. The new particle

then grows and splits just as the original one, in turn begetting new particles, and so on.

Note that when the set of times at which a particle jumps (i.e. reproduces) is assumed to
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Local explosion in self-similar growth-fragmentation processes

be discrete, this description fits the framework [10] of Crump-Mode-Jagers branching

processes.

One of the main results established in [3] is that there is a simple Malthusian condition,

which is given in terms of the characteristics of the self-similar Markov process X, that

ensures that a.s., for all times t > 0, the particles generated by the growth-fragmentation

can be listed in the non-increasing order of their masses and then form a null sequence.

In short, our purpose in the present work is to show that conversely, when this condition

fails, the self-similar growth-fragmentation explodes, in the sense that for every non-

empty open interval I in (0,∞), there is a random time at which I contains infinitely

many particles.

There is already a vast literature dealing with explosion for various types of branching

processes; see in particular the recent works by Amini et al. [1] for age-dependent

branching processes, by Komjáthy [11] for Crump-Mode-Jagers processes, and the

references listed therein. In this regard, growth-fragmentations should be considered as

spatial branching processes, viewing the evolution of the mass of a particle as a spatial

displacement in the positive half-line. Plainly, the total number of particles may become

infinite (which would be often referred to as an explosion in the literature) without

inducing the local explosion phenomenon in which we are interested here. Typically,

this is the case when the system produces in finite time particles with arbitrarily small

masses, but only finitely many particles with masses at least ε for every ε > 0.

The fact that self-similar growth-fragmentations may explode has been first pointed

out in Section 3 of [4] for a very specific set of parameters. Roughly speaking, the idea

in [4] is that there is a natural genealogical line along which the mass of the particle

reaches 0 continuously in finite time; the new particles which branch off this specified

line start very close to zero, and one just needs that show that enough of them reach the

target interval at approximately the same time. Here, we shall follow the same general

idea, but the generality of our statements means that additional work will be needed.

Our main theorem will be stated at the end of the next section, after some preliminar-

ies about the construction of self-similar growth-fragmentations and the introduction

of relevant notation. The three main ingredients for its proof are then developed in

Section 3. As a first step, we analyze a truncation procedure and show that, without

loss of generality, we may assume that the intensity of birth events is finite. Next, we

dwell on changes of probability measures based on certain additive martingales and

on the so-called spinal decomposition for homogeneous growth-fragmentations. The

last ingredient consists in proving that under an appropriate hypothesis, self-similar

growth-fragmentations may in some sense start from 0+ if the index of self-similarity

α is strictly negative, and from +∞ if α > 0. This is essentially a consequence of the

fact that a similar property holds for certain positive self-similar Markov processes. The

proof of our main theorem will then be completed in the final section.

2 Preliminaries, notation, and main result

In order to make this model adapted to the upcoming proofs as well as better fitted

with the theory of [2], we will consider a slightly more general version than that described

informally in the introduction, where some jumps do not give birth to a new particle. To

be precise, recall first that X is characterized by an index of self-similarity α ∈ R and

the Laplace exponent Ψ of a spectrally negative Lévy process given by

Ψ(q) = −k +
1

2
σ2q2 + bq +

∫

(−∞,0)

(eqy − 1 + q(1− ey)) Λ(dy) , q > 0.

Here, k > 0 is the killing rate, σ2 > 0 the Gaussian coefficient, b ∈ R the drift coefficient,

and Λ the Lévy measure which governs the rate of the jumps and fulfills the condition
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∫

(−∞,0)
(1 ∧ y2)Λ(dy) < ∞. X can then be constructed as the Lamperti transform of

the aforementioned Lévy process (see below for details). We implicitly assume that

the killing rate k is not 0, or that the right-derivative of Ψ satisfies Ψ̇(0+) < 0, which

is the necessary and sufficient condition for X to be absorbed at 0 after a finite time

or to converges to 0 in infinite time. We now suppose that Λ is given as the sum of

two measures, Λ = Λ1 + Λ2, so that the jumps of X can be seen as coming from two

independent Poisson point processes, one corresponding to Λ1 and the other to Λ2. We

will say that a new particle arises from a jump of X if this jump comes from the measure

Λ1, but not from Λ2.

In the next section, we give a precise construction of the growth-fragmentation

process, first assuming that the total mass of Λ1 is finite and then treating the general

case. This construction is reminiscent of the “branching Lévy process” from [2]. We then

introduce some important notions and notation, and finally state our main theorem.

2.1 A construction of growth-fragmentations by truncation

Let U = ∪∞
n=0{0, 1}

n be the infinite binary tree. Elements of U are written as u =

u1u2 . . . un where ui ∈ {0, 1} and n = |u| > 0 is the generation of u. As usual, the

ancestor, that is the unique element at generation 0, is the empty word ∅. If n > 0 then

we let u− = u1 . . . un−1 be the parent of u. We will build the growth-fragmentation as

the multiset (i.e. elements may be repeated and appear with their multiplicity) valued

process

X(t) = {{Xu(t) : u ∈ U and bu 6 t < du}}, t > 0,

where Xu is the size of the particle u at time t, and bu and du are its birth and death

times.

We start with the homogeneous case when the self-similarity index α is equal to

0, and assume further that Λ1 is a finite measure. The idea is that each particle, say

u, evolves as the exponential of a (possibly killed) Lévy process up to an independent

random time which has the exponential law with parameter Λ1((−∞, 0]). If the particle

is still alive at that time, then it splits. That is, the particle u then dies giving birth to

two children. The left child u0 gets a fraction eJ of the mass, where the distribution of J

is Λ1 renormalized, and the right child u1 has the complementary mass.

Specifically, for all u ∈ U , let ξu = (ξu(t), 0 6 t < ζu) be a Lévy process with Laplace

exponent Ψ2 defined by

Ψ2(q) = −k +
1

2
σ2q2 +

(

b+

∫

(−∞,0)

(1− ey)Λ1(dy)
)

q +

∫

(−∞,0)

(eqy − 1 + q(1− ey))Λ2(dy).

(Note that the drift term has changed due to the compensation term for Λ1 which

is otherwise not taken into account.) The lifetime ζu of ξu follows the exponential

distribution with parameter k, and in particular ζu = ∞ a.s. if k = 0. Let as well Tu be an

exponential random variable with parameter Λ1((−∞, 0]) and Ju be a random variable

with distribution 1
Λ1((−∞,0])Λ1. We take all of these independent, and write P for the law

of the family of triples (ξu, Tu, Ju)u∈U .

Now we can build a homogeneous growth-fragmentation (which is also called a

compensated fragmentation in [2]) recursively on the generations, using the notation

χ, β, δ rather than X, b, d for the sake of avoiding later on a possible confusion with the

self-similar case α 6= 0. We first let χ∅(t) = exp(ξ∅(t)) for 0 = β∅ 6 t < δ∅ = ζ∅ ∧ T∅.

Next for u 6= ∅, we write v = u
− for the parent of u and assume first that χv(δ

−
v
) > 0.

That is Tv < ζv and the particle v is still alive at age Tv. We then let βu = δv and

χu(βu) = χv(δ
−
v
)eJv if u = v0 and χu(βu) = χv(δ

−
u
)(1 − eJv) if u = v1. Further we let

δu = βu + ζu ∧ Tu and finally, for t ∈ [βu, δu), we let χu(t) = χu(βu)e
ξu(t−βu). On the other

ECP 21 (2016), paper 66.
Page 3/12

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/16-ECP13
http://www.imstat.org/ecp/


Local explosion in self-similar growth-fragmentation processes

hand, if χv(δ
−
v
) = 0, that is if the particle v already has died before reaching the age Tv,

then for definitiveness we let βu = δu = ∞ and agree that χu(δ
−
u
) = 0.

For the general self-similar case α 6= 0, the growth-fragmentation process is obtained

by applying a standard Lamperti-type time-change (see [12]) to the homogenous process

χ constructed in the above paragraph. We also introduce the following notation: if u ∈ U
and t < βu, we let χ̄u(t) be equal to χv(t), where v is the only ancestor of u to be alive at

time t in χ. We also let

bu =

∫ βu

0

χ̄u(r)
−αdr, du =

∫ δu

0

χ̄u(r)
−αdr,

and τu be the time-change defined by

τu(t) = inf
{

s > 0 :

∫ s

0

χ̄u(r)
−αdr > t

}

.

Finally, we let Xu(t) = χu(τu(t)) for bu 6 t < du.

Remark 2.1. Consider for t > 0 the left-most word u(t) = 00 . . . 0, where the number

of zeroes is such that bu(t) 6 t < du(t). Then the line of descent u(t) can be seen as

the Eve of the growth-fragmentation process with the notations of [3], and the process

(Xu(t)(t), t > 0) is a positive self-similar Markov process with characteristics (Ψ, α),

meaning that it is constructed from a spectrally negative Lévy process with Laplace

exponent Ψ and the Lamperti transformation with parameter α that has been described

above.

Remark 2.2. We will sometimes need to have a version of the process which starts with

a particle of size x 6= 1. In this case, the construction is the same, except that we start

with X∅(0) = x, that is ξ∅(0) = lnx. We call Px this distribution.

When the measure Λ1 has infinite total mass, the above construction is not possible

since there would be infinitely many branching events in a bounded time interval. Instead,

we are going to use an approximation scheme to define X. For ε > 0, we let

Λ
(ε)
1 (dx) = ✶{x<−ε}Λ1(dx), and Λ

(ε)
2 (dx) = Λ2(dx) + ✶{x>−ε}Λ1(dx).

The effect of this is that, when a particle splits in two, if the second child is too small

(having a fraction smaller than 1− e−ε of its parent’s mass), then we “erase” it, which

we signify by shifting the corresponding part of Λ1 into Λ2.

Plainly, Λ
(ε)
1 is a finite measure, and we then let X

(ε) be the self-similar growth-

fragmentation processes with corresponding Lévy measures Λ
(ε)
1 and Λ

(ε)
2 . By standard

properties of Lévy processes (see Lemma 3 and Equation (19) in [2]), the X
(ε) can

naturally be coupled such that the multisets

X
(ε)(t) = {{X(ε)

u
(t) : u ∈ U and b(ε)

u
6 t < d(ε)

u
}}

are increasing as ε decreases. And thus we can define the general growth-fragmentation

process X(t) as the increasing limit of X(ε)(t) as ε → 0+.

2.2 Cumulant and additive martingales

For q > 0, we let

κ(q) = Ψ(q) +

∫

(−∞,0)

(1− ey)qΛ1(dy).

The function κ: R+ → (−∞,∞] is convex, and takes finite values on [2,∞) at least.

Note also that κ(q) is finite for all q > 0 if and only if the measure Λ1 is finite. The function
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κ acts as cumulant generating function for the mean intensity of the homogeneous

growth-fragmentation process χ, in the sense that we have, for all t > 0 and q > 0 such

that κ(q) < ∞,

E
[

∑

u∈U

χq
u
(t)

]

= etκ(q). (2.1)

(We stress that in the sum above, it is implicitly agreed that only the u ∈ U with

βu 6 t < δu are taken into account.) As a consequence, for q such that κ(q) < ∞, the

process Mq = (Mq(t), t > 0) defined by

Mq(t) = e−tκ(q)
∑

u∈U

χq
u
(t)

is a martingale, which we call an additive martingale. This was introduced in [2]; see in

particular Theorem 1 and Corollary 3 there.

2.3 Main result

It is known from [3] that, if α = 0 or if κ takes a non-positive value, then, almost surely,

for all t > 0 and ε > 0, there are only finitely many particles in (ε,∞), or equivalently,

the population of X(t) can be ranked in non-increasing order. We will now establish the

converse under a slight technical condition on κ that will be enforced throughout the

rest of this work:

either κ(0+) = ∞ or κ̇(0+) < 0,

where κ̇ stands for the right-derivative of the convex function κ. We stress that this

assumption is very mild. For instance, it is always fulfilled if Ψ̇(0+) < 0 since obviously

κ̇ 6 Ψ̇ (in particular, it is always fulfilled if the killing rate k = 0), or if Λ1 has infinite

total mass (since then κ(0+) = ∞).

If α = 0, then the number of particles of the homogeneous growth-fragmentation

process χ is simply a branching process. We say that there is extinction if this process

dies out, that is if there exists t > 0 such that there are no particles alive at time t:

{u ∈ U : βu 6 t < δu} = ∅. Implicitly ruling out the degenerate case Λ1 = 0 when no

birth event ever happens, we see by letting q = 0 in (2.1) that extinction occurs a.s. if

and only if κ(0) 6 0.

If α 6= 0, assuming that X is constructed from a homogeneous version χ as before,

then we say that X dies suddenly if χ goes extinct. Note that, because of the Lamperti

time-change, it is possible for X to reach ∅ continuously in the sense that χ does not go

extinct and nonetheless X(t) = ∅ for t sufficiently large. For example, Corollary 3 in [3]

shows that this happens if α < 0 and inf κ < 0.

We introduce the following fundamental assumption:

∀q > 0, κ(q) > 0, (H)

and claim that under (H) and for α 6= 0, the growth-fragmentation process explodes

almost surely in finite time in the following sense.

Theorem 2.3. We assume (H) and α 6= 0, and restrict ourselves to the event where X

does not suddenly die. Then, for every 0 < a < a′, there exists a.s. a random time t > 0

such that X(t) has infinitely many elements in the open interval (a, a′).

Remark 2.4. Under (H), we have κ(0) > 0 and therefore the probability that X does not

suddenly die is strictly positive (note that κ(0) > 0 also rules out the case when Λ1 = 0).

Actually, a simple generalization of our argument yields a stronger version of Theorem

2.3. Specifically, for every 0 < a1 < a′1 < a2 < a′2 < · · · < an < a′n, there exists a.s. a

random time t > 0 such that X(t) has infinitely many elements in each of the intervals
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(ai, a
′
i). However, for the sake of simplicity, we shall concentrate on the case of a single

interval.

3 Truncation, tilting, and starting from a boundary

Throughout this section, it is assumed that (H) holds.

3.1 Reduction by truncation

We start with a simple general statement about the minimum of κ.

Lemma 3.1. The cumulant function κ reaches its positive minimum on [0,∞) at a value

qm > 0.

Proof. We investigate the limits of κ when q tends to the boundaries of its domain

{q > 0 : κ(q) < +∞}. First for q → +∞, notice that the integral term in κ−Ψ converges

to 0 by dominated convergence, implying that κ has the same limit as Ψ at infinity. Taking

the limit as q → ∞ in the formula eΨ(q) = E[eqξ(1)] where ξ is a Lévy process with Laplace

exponent Ψ, it is clear that Ψ(+∞) = +∞ if P(ξ(1) > 0) > 0, and Ψ(+∞) < 0 otherwise.

Thus, assuming (H), we have κ(+∞) = +∞.

Recall then that κ is convex and introduce

q = inf{q > 0 : κ(q) < ∞} = inf

{

q > 0 :

∫

(−∞,0)

(1− ey)qΛ1(dy) < ∞

}

.

Note that, by monotone convergence, κ(q) converges to κ(q) as q decreases to q. If

κ(q) = +∞ then κ reaches its minimum on the open interval (q,∞), while if κ(q) < ∞,

then it is reached on [q,∞). This proves our claim if either q = 0 and κ(0) = +∞, or

q > 0. It remains to consider the case when κ(0) < +∞. But then we have assumed that

κ̇(0+) < 0, and the same conclusion follows.

Next for ε > 0, we introduce

κ(ε)(q) = Ψ(q) +

∫

(−∞,−ε)

(1− ey)qΛ1(dy),

that is κ(ε) is the cumulant associated to the truncated homogeneous growth-fragmen-

tation χ
(ε). We want to prove the following:

Proposition 3.2. For ε small enough, we have κ(ε)(q) ∈ (0,+∞) for all q > 0 and the

right derivative κ̇(ε)(0+) of κ(ε) at 0 is strictly negative.

Proof. We first make a simple remark. Let any q0 > 0 such that κ(q0) < ∞. Then for

q > q0, we always have

|κ(ε)(q)− κ(q)| 6

∫

[−ε,0)

(1− ey)q0Λ(dy),

which implies that κ(ε) converges uniformly to κ on the interval [q0,∞). This guarantees

that its infimum also converges, and thus infq>q0 κ
(ε)(q) > 0 for ε small enough, and this

infimum is actually a minimum. Also, invertedly, if q0 is such that κ(q0) = ∞, then κ(ε)

converges uniformly to infinity on [0, q0].

Assume by contradiction that there is a sequence (εn, n ∈ Z+) which tends to 0, and

a sequence (qn, n ∈ Z+) such that κ(εn)(qn) 6 0. Then, as n tends to infinity, qn must

converge to q = inf{q > 0 : κ(q) < ∞}. Indeed, if a subsequential limit was strictly

smaller or larger than q, then the previous paragraph would be contradicted.
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Now let q′ and q′′ be such that q < q′ < q′′. By standard convexity properties, for n

large enough that we have qn < q′,

κ(εn)(q′)− κ(εn)(qn)

q′ − qn
6 κ̇(εn)(q′′).

However since κ(εn)(qn) 6 0 for all n, we also have

lim inf
ε→0

κ(εn)(q′)− κ(εn)(qn)

q′ − qn
> lim inf

ε→0

κ(εn)(q′)

q′ − qn
=

κ(q′)

q′ − q
.

Recall that by monotone convergence, limq→q+ κ(q) = κ(q) > 0, so we may choose q′

close enough to q such that

κ(q′)

q′ − q
> κ̇(q′′).

This leads to a contradiction, since one readily checks that κ̇(εn)(q′′) also converges to

κ̇(q′′) as n tends to infinity.

We have thus proven that for ε > 0 sufficiently small, κ(ε)(q) > 0 for all q > 0, and

the fact that κ(ε)(q) < ∞ is obvious since Λ1((−∞,−ε)) < ∞. It remains to verify that

κ̇(ε)(0+) < 0, which is straightforward by monotone convergence when κ(0) < +∞ and

κ̇(0+) < 0. So assume that κ(0) = +∞. Then by monotone convergence, limε→0 κ
(ε)(0) =

∞, and we may choose ε > 0 small enough so that κ(ε)(0) > κ(2) > κ(ε)(2). By convexity,

this forces κ̇(ε)(0+) < 0.

The construction of growth-fragmentation processes by truncation shows that

X
(ε)(t) ⊂ X(t) for every ε > 0. An important consequence of Proposition 3.2, combined

with Lemma 3.3 for us is that, in order to prove Theorem 2.3, we can restrict ourselves

to the cases where Λ1 is finite. For this, we also need the following elementary lemma.

Lemma 3.3. Let, for ε > 0, X(ε) be the truncation of X defined in Section 2.1. Then,

almost surely, X dies suddenly if and only if X(ε) dies suddenly for all ε > 0.

Proof. Equivalently, we can just prove that, in the homogeneous case, χ goes extinct if

and only if all its truncations χ(ε) do, so we now assume that α = 0. The direct implication

is immediate, so we focus on the reverse. For n ∈ Z+, let Z
(ε)
n be the number of particles

of χ(ε)(n), and Zn be that of χ(n). By homogeneity, these are all Galton-Watson processes

(possibly taking infinite values, but that does not pose a problem, as is shown in [14],

Appendix B), and we also have

Zn = lim
ε→0

Z(ε)
n .

We let respectively p and pε be the extinction probabilities of (Zn, n ∈ Z+) and (Z
(ε)
n , n ∈

Z+), and F and Fε be their generating functions, i.e. F (x) = E[xZ1 ] and Fε(x) = E[xZ
(ε)
1 ]

for x > 0. We know that pε decreases to a certain limit p′ as ε tends to 0, and we will show

that p′ = p. Note that p < 1 by Remark 2.4, this implies that E[Z1] > 1, and by monotone

convergence, E[Z
(ε)
1 ] > 1 for ε small enough, which in turn shows that (Z

(ε)
n , n ∈ Z+)

is supercritical, and thus pε < 1. Again by monotone convergence, Fε(x) increases to

F (x) for all x ∈ [0, 1), and this implies uniform convergence on the compact interval

[0, pε0 ], for a fixed small enough ε0. We can then take the limit in the standard fixed point

relation Fε(pε) = pε to obtain F (p′) = p′. Thus p′ is a fixed point of F , but p′ < 1, and F

classically only has one fixed point apart from 1, implying p = p′.

The conclusion that we draw from this section is that there is no loss of generality in

assuming that the measure Λ1 is finite. This will simplify matters greatly, and we will do

it from now on.
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3.2 Tilted probabilities and spinal decomposition

We investigate in this section the additive martingale Mq and what happens when we

use it to bias the distribution of the homogeneous growth-fragmentation process.

Proposition 3.4. There exist q+ > q− > 0 such that κ̇(q−) < 0 < κ̇(q+) and the martin-

gales Mq− and Mq+ both converge in Lp for some p > 1.

Proof. We use Theorem 2.3 from [8]. This theorem states in particular that, if Λ1 has

finite total mass, then we can look at (χ(n), n ∈ Z+) as a branching random walk, and

use Biggins’ Theorem 1 from [5], which gives the Lp-convergence under two conditions:

one is κ̇(q) < κ(q)/q, the other is an integral condition which is satisfied for p > 1 small

enough. Consider then qm > 0, the location which minimizes κ and recall Proposition

3.2. Since κ is strictly convex, we then have κ̇(q) > 0 for q > qm, and κ̇(q) < 0 for q < qm.

Using continuity and the facts that κ(qm) > 0 and κ̇(qm) = 0, we obtain that κ̇(q) < κ(q)/q

for all q close enough to qm.

We now consider such a q = q±, and thus assume that the martingale Mq converges

in Lp for some p > 1.

Lemma 3.5. The limit Mq(∞) of Mq is equal to zero on the event where χ goes extinct,

and is strictly positive on the event where χ does not become extinct.

Proof. We adapt a fairly standard argument. For n ∈ Z+, recall that Zn is the number of

particles of χ(n) and that (Zn, n ∈ Z+) is a Galton-Watson process. Moreover, the event

{Mq(∞) = 0} is hereditary for this Galton-Watson process in the sense that Mq(∞) = 0

if and only if for every individual alive at time 1, the analoguous additive martingale

corresponding to the descendants of this individual also has limit zero. Its probability

must then be equal to either 1 or the probability of extinction. However the first case

is excluded, since we have E[Mq(∞)] > 0 by L1-convergence. The event {Mq(∞) = 0}
then contains the event of extinction and they have the same probability, and they must

almost surely be equal.

We next use the additive martingale Mq for q = q± to define two tilted proba-

bility measures, Q+ and Q−. Formally, denote by T the space of families of triples

((ξu, Tu, Ju) : u ∈ U) where ξu is a càdlàg real path (possibly with finite lifetime), Tu ∈
(0,∞) and Ju ∈ (−∞, 0), and recall that P is the probability measure on T under which

the triples (ξu, Tu, Ju) for u ∈ U are i.i.d.; more precisely each ξu is a spectrally negative

Lévy process with Laplace exponent Ψ2, Tu has the exponential law with parameter

Λ1((−∞, 0)), Ju has the law Λ1(·)/Λ1((−∞, 0)), and finally ξu, Tu, Ju are independent.

Recall also the construction of the processes (χu(t) : βu 6 t < δu) from the preceding,

and consider the filtration

F(t) = σ
(

1{βu6s<δu}χu(s) : 0 6 s 6 t,u ∈ U
)

.

We endow the infinite binary tree with its discrete sigma-algebra (i.e. its power

set) P(U) and for every t > 0, we define two tilted probability measures Q±,t on

(T × U ,F(t)⊗ P(U)) by the following formula:

Q±,t
[

A× {u}
]

= e−tκ(q±)E
[

χq±
u

(t)1A

]

, A ∈ F(t),u ∈ U .

(recall that χu(t) is implicitly assumed to be 0 if we do not have βu 6 t < δu.) In particular,

Q±,t is the joint law of a growth-fragmentation χ observed up to time t and a randomly

tagged particle u
∗ ∈ U which is alive at time t, Q±,t-a.s. The following compatibility

property of the laws (Q±,t, t > 0) follows immediately from the martingale property of

Mq± and the branching property of homogeneous growth-fragmentations.

ECP 21 (2016), paper 66.
Page 8/12

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/16-ECP13
http://www.imstat.org/ecp/


Local explosion in self-similar growth-fragmentation processes

Proposition 3.6. The measures (Q±,t, t > 0) are compatible in the sense that, for s 6 t,

if
(

(χ(r), r ∈ [0, t]),u∗
)

has distribution Q±,t, then, letting v
∗ be the ancestor of u∗ which

is alive at time s,
(

(χ(r), r ∈ [0, s]),v∗
)

has distribution Q±,s.

By Kolmogorov’s theorem, there exists a probability measure Q± describing the joint

distribution of a growth-fragmentation χ = (χ(t) : t > 0) and a selected line of descent

(u∗(t) : t > 0), that is a process with values in U with the property that for every 0 6 s 6 t,

the particle u
∗(s) is the ancestor at time s of the particle u

∗(t), such that the distribution

of
(

(χ(r), r ∈ [0, t]),u∗(t)
)

under Q± is Q±,t.

Under Q±, the selected line of descent (u∗(t), t > 0) serves as a spine of the process,

and if we follow it we get a particular Markov process. We write χ∗(t) = χu∗(t)(t), call χ
∗

the selected particle, and claim:

Proposition 3.7. We work underQ± and for t > 0, we let ξ∗(t) = log
(

χ∗(t)
)

. The process
(

ξ∗(t), t > 0
)

is a Lévy process with Laplace exponent Φ±(·) = κ(q± + ·)− κ(q±).

Proof. For the sake of simplicity, we drop ± from the notation and simply write q = q±,

Q = Q±.

Let us show the independence and stationarity of the increments of ξ∗. Let 0 6 s 6 t,

we have, for appropriate functions f and G, and using the branching property at time s,

Q
[

f(ξ∗(t)− ξ∗(s))G(ξ∗(r), r 6 s))
]

= e−tκ(q)E
[

∑

u∈U

χq
u
(s)G

(

log(χu(r)(r)), r 6 s
)

∑

v∈U

(

χuv(t)

χu(s)

)q

f
(

log(χuv(t))− log(χu(s)))
)

]

= e−sκ(q)E
[

∑

u∈U

χq
u
(s)G

(

log(χu(r)(r)), r 6 s
)

]

e−(t−s)κ(q)E
[

∑

v∈U

χq
v
(t− s)f

(

log(χv(t− s))
)

]

= Q
[

f(ξ∗(t− s))
]

Q
[

G(ξ∗(r), r 6 s)
]

.

We then only need to check that the moments match up with the announced Laplace

exponent. For t > 0 and p > 0, we have

Q[epξ
∗(t)] = e−tκ(q)E

[

∑

u∈U

χq
u
(t)χp

u
(t)

]

= et(κ(p+q)−κ(q)),

which ends the proof.

In their most influential contribution, Lyons et al. [13] pointed at the well-known

spine-decomposition of branching processes under the tilted probability measure that

is induced by an additive martingale. Roughly speaking, it states that the descent

of particles who are sibling of the spine evolve according to independent branching

processes with the original (i.e. non-tilted) distribution. We shall now state a version of

this spine decomposition in the setting of homogeneous growth-fragmentations.

We work under Q = Q± and write u
∗(∞) = u∗

1u
∗
2 · · · for the spine, that is the infinite

word induced by the selected line of descent. For every n > 1, we denote by χn the

sub-growth-fragmentation generated by the n-th sibling particle of the spine, namely

v
∗
n = u∗

1 · · ·u
∗
n−1(1− u∗

n). Specifically, write s = βv∗
n

for the birth-time of that particle and

set for t > 0

χn(t) = {{χv∗
n
u(t+ s) : u ∈ U and βv∗

n
u 6 t+ s < δv∗

n
u}}.

Lemma 3.8. Let (xn)n>1 be a sequence of positive real numbers. Under Q± and condi-

tionally on χv∗
n

(βv∗
n

) = xn for n > 1, the sub-growth-fragmentations χn are independent

and each has the law Pxn
.

More than 20 years after the publication of [13], the proof of Lemma 3.8 is nowa-

days standard and follows from calculations similar to those performed in the proof of

Proposition 3.7. Details are left to the interested readers.
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3.3 Starting near a boundary

We recall that X denotes the growth-fragmentation process obtained from χ by the

Lamperti transformation. In this section, we shall mainly study effects of the Lamperti

transformation under the tilted probability laws Q±.

We first consider the Lamperti transformation applied to the selected particle
(

χ∗(t) :

t > 0
)

. That is, we introduce the time-change defined by

τ∗(t) = inf
{

s > 0 :

∫ s

0

χ∗(r)−αdr > t
}

,

and the selected particle for the self-similar growth-fragmentation X is given by X∗(t) =

χ∗(τ∗(t)). We stress that X∗ has lifetime

ζ∗ =

∫ ∞

0

χ−α
u∗(r)(r)dr,

as τ∗(t) < ∞ if and only if t < ζ∗. Recall from Proposition 3.7 that underQ±, ξ∗ = log
(

χ∗
)

is a Lévy process with Laplace exponent Φ±, and thus X∗ is a self-similar Markov process

with characteristics (Φ±, α).

Next observe that Φ±(0) = 0 and Φ̇±(0) = κ̇(q±). So under Q+ (respectively, under

Q−) we see that the Lévy process ξ∗ has no killing and that its expectation is positive

(respectively, negative). We readily deduce the following statement from the law of large

numbers.

Corollary 3.9. (i) Suppose α > 0. Under Q+, ζ∗ is an a.s. finite random variable and

lim
t→ζ∗

X∗(t) = +∞.

(ii) Suppose α < 0. Under Q−, ζ∗ is an a.s. finite random variable and

lim
t→ζ∗

X∗(t) = 0.

We now arrive at a key step in the proof of local explosion. For α < 0, we consider

the self-similar growth-fragmentation starting from a single particle with a small initial

size (that is, we work under Px with x ≪ 1) and show that for every 0 < a < a′, we can

find a time-interval [t, t′] such that the probability that X has particles in (a, a′) for all

times r ∈ [t, t′] remains bounded away from 0 as x tends to 0. A similar property holds

for α > 0, except that the initial size x now tends to +∞. Here is the precise statement.

Lemma 3.10. Fix 0 < a < a′. There exist 0 < t < t′ such that:

(i) if α < 0, then

lim inf
x→0+

Px[X(r) ∩ (a, a′) 6= ∅ for all t 6 r 6 t′] > 0.

(ii) if α > 0, then

lim inf
x→+∞

Px[X(r) ∩ (a, a′) 6= ∅ for all t 6 r 6 t′] > 0.

Proof. (i) We assume α < 0 and shall first establish the assertion of the statement

when Px is replaced by its tilted version Q+
x . The martingale we use for this tilting

transformation is

Mq+(t) = x−q+e−tκ(q+)
∑

u∈U

χq+
u
(t).

Note that, by scaling, its distribution does not depend on x.
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We have seen that under Q+
x , X

∗ is a self-similar Markov process with characteristics

(Φ+, α), and started from x. Since Φ̇+(0
+) = κ̇(q+) > 0 and −α > 0, it is known 0+

is an entrance boundary for this process. That is, as its starting point x tends to 0,

X∗ converges weakly in the sense of Skorokhod to a self-similar process (Y +(t), t >

0) started from Y +(0) = 0 with càdlàg paths and no positive jumps, and such that

limt→∞ Y +(t) = +∞ a.s. See [6] or [7]. In particular, given any 0 < c < c′, there exist

two times 0 < s < s′ such that P[∀r ∈ (s, s′), Y +(r) ∈ (c, c′)] > 0. Picking now arbitrary

0 < a < c < c′ < a′ and s < t < t′ < s′, the Portmanteau theorem then yields

lim inf
x→0+

Q+
x [X(r) ∩ (a, a′) 6= ∅ for all t 6 r 6 t′]

> lim inf
x→0+

Q+
x [X

∗(r) ∈ (a, a′) for all t 6 r 6 t′]

> P[Y +(r) ∈ (c, c′) for all s 6 r 6 s′] > 0.

In order to establish a similar inequality under Px rather than Q+
x , we use the Lp

convergence of the martingale Mq given in Proposition 3.4 for a certain p > 1. Indeed,

letting p′ = (1− 1/p)−1 be the Hölder conjugate of p, we have

Q+
x [X(r) ∩ (a, a′) 6= ∅ for all t 6 r 6 t′]

= Ex[Mq+(∞)1
X(r)∩(a,a′) 6=∅ for all t6r6t′]]

6
(

Ex[Mq+(∞)p]
)1/p(

Px[X(r) ∩ (a, a′) 6= ∅ for all t 6 r 6 t′]
)1/p′

.

Recall that Ex[Mq(∞)p] does not depend on x. Since we have already proved that the

left-hand side is bounded from below, our claim follows.

(ii) The case α > 0 is similar with simple modifications. That is, we first establish

a bound under the tilted measure Q−
x , using the fact that since Φ̇−(0

+) = κ̇(q−) < 0

and −α < 0, +∞ is an entrance boundary for the self-similar Markov process with

characteristics (Φ−, α) (this follows straightforwardly from [6] or [7] by considering the

inverse of the self-similar Markov process). Then we deduce the analog result under Px,

using Hölder’s inequality as in (i).

We have now all the ingredients needed for the proof of Theorem 2.3.

4 Proof of Theorem 2.3

Our final preparatory assertion compares the distributions of the growth-fragmen-

tation under P and under the tilted probability measures.

Proposition 4.1. The distribution of X under P and conditionally on no sudden death is

equivalent to that under Q±.

Proof. Because the convergence limt→∞ Mq±(t) = Mq±(∞) holds in L1(P), it is immedi-

ately seen that the distribution of X under Q± has density Mq±(∞) with respect to P. By

Lemma 3.5, this density is strictly positive on the event of no sudden death and is zero

on the event of suddent death, and thus we have the wanted equivalence conditionally

on no sudden death.

In particular, in order to prove that the conclusion in Theorem 2.3 holds a.s. under

the conditional probability P given that the self-similar growth-fragmentation X does

not suddenly die, it is enough to show that the same assertion holds Q±-a.s. It is more

convenient for us to work under Q− when α < 0, and under Q+ when α > 0.

Specifically, assume first that α < 0. Recall Lemma 3.8 and the notation there, and in

particular that v∗
n is the n-th sibling particle of the selected line of descent. Since its

size at birth cannot exceed the size of the selected particle χ∗ = eξ
∗

immediately before

the jump of χ∗ at which v
∗
n is born, and since limt→∞ χ∗(t) = 0 a.s. under Q−, the size
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at birth of the particle v
∗
n converges to 0 as n → ∞, Q−-a.s. Let us write Xn for the

Lamperti transform of χn, the sub-growth-fragmentation generated by v
∗
n, and recall

from Lemma 3.10, that we can find ε > 0 and xε > 0 sufficiently small such that

Px

[

Xn(r) ∩ (a, a′) 6= ∅ for all t 6 r 6 t′
]

> ε for all x < xε.

Combining these observations with the spine decomposition under Q− stated in Lemma

3.8, and applying the Borel-Cantelli lemma, we deduce that Q−-a.s. there are infinitely

many integers n such that Xn(r) ∩ (a, a′) 6= ∅ for all t 6 r 6 t′. But the time bv∗
n

at

which the particle v
∗
n is born in the self-similar growth-fragmentation X converges

to the lifetime ζ∗ of the selected particle X∗, which is finite Q−-a.s. To complete the

proof, we only consider siblings of the selected line of descent which are born at times

bv∗
n

> ζ∗ − (t′ − t) (a condition which holds whenever n is sufficiently large), we conclude

that X(ζ∗ + t) possesses infinitely many elements in (a, a′), a.s.

This proves Theorem 2.3 in the case α < 0; the proof for α > 0 is the same up to

obvious modifications (in particular, one works under Q+ and the selected particle now

converges to +∞ at its lifetime).
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