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Abstract. The noncausal autoregressive process with heavy-tailed errors possesses a non-

linear causal dynamics, which allows for local explosion or asymmetric cycles often observed

in economic and financial time series. It provides a new model for multiple local explosions in

a strictly stationary framework. The causal predictive distribution displays surprising features,

such as the existence of higher moments than for the marginal distribution, or the presence

of a unit root in the Cauchy case. Aggregating such models can yield complex dynamics with

local and global explosion as well as variation in the rate of explosion. The asymptotic behavior

of a vector of sample autocorrelations is studied in a semi-parametric noncausal AR(1) frame-

work with Pareto-like tails, and diagnostic tests are proposed. Empirical results based on the

Nasdaq composite price index are provided.
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1. Introduction

A number of economic and financial time series possess nonlinear dynamic features such

as asymmetric cycles [Ramsey and Rothman (1996)] or speculative bubbles.1 It has been

1Two formal definitions of bubbles exist in the economic literature. In Rational Expectation (RE)

models for valuing firms, the value can be written as the sum of the "fundamental value", defined

as the discounted sum of future dividends, plus an additional term which is called economic bubble

by some authors [e.g. Flood and Garber (1980)]. On the other hand, equilibrium RE models
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noted that the mixed causal and noncausal linear autoregressive (AR) processes often pro-

vide a better fit to such time series than the standard causal autoregressive moving-average

(ARMA) processes [see e.g. Lanne et al. (2012), Lanne, Saikkonen (2011), Davis, Song

(2012), Chen et al. (2012)]. The traditional Box-Jenkins methodology based on Gaussian

linear processes were found insufficient to capture such features. Indeed, Gaussian AR

processes are the only processes with both causal and noncausal strong linear AR repre-

sentations2 [see Cheng (1992), Breidt, Davis (1992)]. In contrast, a non-Gaussian linear

noncausal process admits a nonlinear dynamics in direct time, which may produce local

explosion whenever the errors distribution has fat tails.

The aim of this paper is to analyze the dynamic properties of heavy-tailed noncausal

linear AR(1) processes that do not admit a causal linear AR representation, and to under-

stand their potential usefulness in applications. In particular, it provides a new model for

multiple local explosions in a strictly stationary framework. The transition distribution in

direct time displays surprising features, such as the existence of higher moments than for

the marginal distribution, or the presence of a unit root in the Cauchy case. We will also

show how such processes can be combined to disentangle local and global explosive patterns

and for modeling recursive explosions with different rates.

The paper is organized as follows. Section 2 reviews the main properties of strong

linear processes in the presence of heavy-tailed errors. In particular, we explain how local

explosion can arise when the linear process has a noncausal component and heavy-tailed

errors. Section 3 considers noncausal AR(1) processes with stable errors. We characterize

their stationary distribution and the existence of conditional moments. In the cases of the

noncausal AR(1) models with Cauchy and Lévy errors, we derive the closed form formula of

the conditional density in direct time. These results are used to obtain semi-strong causal

representations of the process. Aggregation of noncausal AR(1) processes is studied in

Section 4. Such aggregated processes are used to model local explosions with different rates

of explosion. We explain how to identify the different components and to disentangle local

admit a multiplicity of solutions, some of them featuring local explosions followed by a crash.

Such phenomena are called explosive or speculative bubbles by other authors [see e.g. Diba and

Grossman (1988), Evans (1991)]. In this article we only consider the second concept, interpreting

bubbles in a statistical sense, as local explosive behaviours.
2Any purely nondeterministic, second-order stationary process admits both a backward and a

forward looking weak moving average representation. However, in these representations, the errors

are only a sequence of centered, uncorrelated variables with a constant variance (that is, a weak

white noise). They are not independent in general.
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explosion components and global trend. In Section 5 we derive the asymptotic properties

of the sample autocorrelations for the noncausal Cauchy AR process. Next we explain

why the standard unit-root tests based on the detection of global stochastic trends can be

misleading when looking for local explosions. Finally, we study diagnostic tools. Monte-

Carlo experiments are presented in Section 6. An application on real data is proposed in

Section 7. Section 8 concludes. Proofs of the propositions and complementary results are

gathered in an appendix.

2. Strong linear processes

We consider a strong linear process (Yt), that is a two-sided moving average process:

Yt =

∞∑

h=−∞
ahεt−h, (2.1)

where (εt) is a sequence of independent and identically distributed (i.i.d.) real random

variables, (ah) is a sequence of real coefficients, satisfying for some s ∈ (0, 1),

E|εt|s <∞ and

∞∑

h=−∞
|ah|s <∞. (2.2)

It follows from Proposition 13.3.1 in Brockwell and Davis (1991) that the process (Yt) in

(2.1) is well defined. When ah = 0 for all h < 0, the process (Yt) is called purely causal

(with respect to (εt)); when ah = 0 for all h > 0, (Yt) is called purely noncausal. The

uniqueness of the MA representation in (2.1) with heavy-tailed errors was recently studied

by Gouriéroux and Zakoian (2015).

The trajectory of a strong linear process can be considered as a stochastic combination

of baseline deterministic functions.

i) Let us consider a strong purely causal (or backward looking) process. This process can

be written as: Yt =
+∞∑

τ=−∞
ετ1lτ≤tat−τ . Thus, the path of process (Yt) is a combination of

baseline paths Zτ (t) = 1lτ≤tat−τ , with stochastic i.i.d. coefficients ετ . Figure 1, left panel,

provides an illustration for a causal AR(1) process, Yt = ρYt−1 + εt with |ρ| < 1 (thus

ah = ρh for h ≥ 0). The baseline path shows an upward jump followed by an exponential

decrease.

ii) If now (Yt) is a strong purely noncausal (or forward looking) process, we have:

Yt =

+∞∑

τ=−∞
ετ1lτ≥taτ−t. (2.3)
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Figure 1. The baseline paths for causal and noncausal AR processes
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Figure 2. The baseline paths 1lτ≤tρ
t−τ
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τ−t
2 for mixed AR(2) processes

The path of process (Yt) is now a combination of the baseline paths Zτ (t) = 1lτ≥taτ−t, with

stochastic i.i.d. coefficients ετ . Figure 1, right panel, illustrates this baseline path for a

noncausal AR(1) process, Yt = ρYt+1 + εt with |ρ| < 1 (thus a−h = ρh for h ≥ 0). The

baseline path features an explosive growth followed by a vertical downturn at t = τ .

iii) Let us finally consider a mixed (causal and noncausal) process. The path of (Yt) is a

combination of the baseline paths Zτ (t) = 1lτ<tat−τ + 1lτ≥taτ−t, with stochastic i.i.d. co-

efficients ετ . For instance, if the model is the mixed AR(2): (1 − ρ1B)(1 − ρ2F )Yt =

εt, |ρ1| < 1, |ρ2| < 1, where B and F are the backward and forward operators, respec-

tively, we get Zτ (t) = (1 − ρ1ρ2)
−1
(
1lτ<tρ

t−τ
1 + 1 + 1lτ>tρ

τ−t
2

)
. The baseline path features

an explosive growth followed by an exponential decrease (see Figure 2).
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The noncausal MA(∞) representation (2.3) helps understanding the formation of bub-

bles in the dynamics of noncausal processes. First note that the presence of potentially fat

tailed error distributions is likely to produce extreme values of any sign over a finite time

period. Now suppose that a very large, say positive, value ετ occurs at time τ . According to

(2.3) if, for simplicity, the sequence (ah) is strictly decreasing, for t ≤ τ the weight of that

extreme value increases as t approaches τ . This explains the growth phase of the bubble.

At t = τ + 1, the extreme value cancels out from the sum and the bubble bursts.

There are two types of asymmetries in the shape of a bubble. Longitudinal asymme-

tries arise in calendar time when the growth and downturn periods have different lengths,

as illustrated in Figure 2. Transversal asymmetries arise when the curvature (resp. the

magnitude) at a peak and at a trough are different due to the coefficients of the MA(∞)

representation (resp. to the asymmetric tails of the error distribution).

3. The noncausal stable linear AR(1) process

In this section, we consider noncausal AR(1) processes with stable distributed errors. Let

X ∼ S(α, β, σ, µ) denote a variable following an α-stable distribution, where α ∈ (0, 2] is the

index of stability, β ∈ [−1, 1] is an asymmetry parameter, σ ∈ (0,∞) is a scale parameter,

and µ ∈ R is a location parameter.

In general, the probability density function (pdf) of a stable distribution is not known

explicitly, but its characteristic function ψ(s) = E(eisX) has the closed form:

logψ(s) = −σα|s|α
{
1− iβ (sign s) tan

(πα
2

)}
+ iµs,

if α 6= 1, and

logψ(s) = −σ|s|
{
1 + iβ (sign s)

2

π
log |s|

}
+ iµs,

if α = 1, where sign(x) denotes the sign of a real number x. The stable distribution with

β = 0 and exponent α = 2 (resp. α = 1) is the Gaussian distribution N(µ, σ2) (resp. the

Cauchy distribution C(µ, σ) whose pdf is σ
π{(x−µ)2+σ2} ) . The coefficient α determines the

tails of the distribution of X ∼ S(α, β, σ, µ) in the sense that, when α < 2,

E|X |p <∞ if and only if p < α. (3.1)

See Samorodnitsky and Taqqu (1994) for further details on stable variables.
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3.1. The process

Let us consider the forward looking AR process:

Yt = ρYt+1 + εt, |ρ| < 1, εt ∼ S(α, β, σ, 0), (3.2)

with i.i.d. backward "innovations" εt.3 In view of (3.1) and condition (2.2), the strictly

stationary solution of equation (3.2) is given by:

Yt =

∞∑

h=0

ρhεt+h. (3.3)

The stationary distribution of (Yt) is provided in the next proposition.

Proposition 3.1. The noncausal stable linear AR(1) process (3.2) has a stable station-

ary distribution given by:

Yt ∼ S
(
α, β,

σ

(1 − |ρ|α)1/α , 0
)
, if α 6= 1, ρ ≥ 0,

Yt ∼ S
(
α, β

1− |ρ|α
1 + |ρ|α ,

σ

(1− |ρ|α)1/α , 0
)
, if α 6= 1, ρ ≤ 0,

Yt ∼ S
(
1, β

1− |ρ|
1− ρ

,
σ

1− |ρ| ,−βσ
2

π

ρ log |ρ|
(1− ρ)2

)
, if α = 1.

In particular, the stationary distribution of the noncausal Cauchy linear AR(1) process

(α = 1, β = 0) is the Cauchy distribution C
(
0, σ

1−|ρ|

)
. When ρ ≥ 0, the asymmetry

parameter of Yt is that of the innovation ǫt; when ρ < 0, the sign of the asymmetry is

unchanged, but the asymmetry coefficient is smaller. Finally, when α = 1 and β 6= 0, a

location parameter appears in the distribution of Yt.

Now, let us consider the process in direct time. While for α < 2 the backward stable

transition pdf f(Yt|Yt+1) features fat tails, so that the p-th conditional moments do not

exist for p ≥ α , the next proposition shows that the forward transition pdf at any horizon

admits Pareto tails with tail parameter equal to 2α + 1, whenever ρ 6= 0. In the causal

AR(1) framework, similar results were obtained by Cambanis and Fakhre-Zakeri (Theorem

3, 1994) for the one-step predictor (h = 1) with time reversed.

Proposition 3.2. The noncausal stable linear AR(1) process (3.2) is an homogeneous

Markov process. Let α < 2. For any h ≥ 0, if |β| 6= 1 and ρ 6= 0, or if |β| = 1 and ρh+1 < 0,

we have

E(|Yt+h|p | Yt−1) <∞, a.s., if and only if − 1 < p < 2α+ 1. (3.4)

3Strictly speaking, innovations are not defined when α ≤ 1 because E(Yt | Yt+1) does not exist

but, when β = 0, replacing expectation by median we have: εt = Yt − med(Yt | Yt+1).
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If |β| = 1 and ρh+1 > 0, then E(|Yt+h|p | Yt−1) <∞, a.s. for all p > −1.

In particular, the forward conditional expectation E(Yt+h | Yt−1) always exists, whereas

the unconditional and backward conditional expectations exist only when α > 1. The next

result gives a closed-form expression of the conditional expectation for symmetric stable

distributions.

Proposition 3.3. For ρ 6= 0 and β = 0, we have:

E(Yt+h | Yt−1) = sign(ρ)|ρ|(h+1)(α−1)Yt−1, ∀h ≥ 0.

In particular, for Cauchy processes (α = 1), when ρ 6= 0 we have:

E(Yt+h | Yt−1) = sign(ρ)Yt−1, ∀h ≥ 0.

This result is unexpected. Indeed, in the L2 framework, if (Xt) is a stationary strong

noncausal AR(1): Xt = ρXt+1 +Wt, |ρ| < 1, Wt
iid∼ (0, σ2), then (Xt) can be expressed

as a weak causal AR(1) with the same AR coefficient: Xt = ρXt−1 +W ∗
t , where (W ∗

t ) is a

weak white noise with variance σ2 (see e.g. Brockwell and Davis (1991), Proposition 4.4.2).

It follows that if E(Xt | Xt−1) is linear in Xt−1, we must have E(Xt | Xt−1) = ρXt−1.

In contrast, Proposition 3.3 shows that the first-order prediction of Yt is E(Yt | Yt−1) =

|ρ|α−1Yt−1 6= ρYt−1. The Cauchy process, for α = 1, is even more intriguing as it has a unit

root when ρ > 0, although the process is stationary.

Remark 3.1 (Stable AR(1) process with drift). The introduction of a location

parameter in the stable distribution of the innovations (ǫ∗t ) is tantamount to adding an

intercept to Model (3.2). The noncausal stable linear AR process with drift µ writes

Zt = µ+ ρ∗Zt+1 + ε∗t , |ρ∗| < 1. (3.5)

Studying the solutions to this model is straightforward, noting that there is a one-to-one

relation between the solutions (Yt) of Model (3.2) and (Zt) of model (3.5) via the relation

Yt = Zt − µ
1−ρ∗

. It thus follows from Proposition 3.5 that, for ρ∗ 6= 0, we have, for h ≥ 0:

E(Zt+h | Zt−1) = |ρ∗|(h+1)(α−1)Zt−1 +
µ

1− ρ∗

(
1− |ρ∗|(h+1)(α−1)

)
.

Interestingly, the adjunction of a constant does not remove the martingale property in the

Cauchy case (α = 1 and ρ∗ > 0).

In the next section, we focus on the model with Cauchy and Lévy errors.
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3.2. Causal predictive distributions in the Cauchy and Lévy cases

The predictive distributions of the process (Yt) (and the causal first and second-order mo-

ments when they exist) generally do not admit closed form expressions. Two exceptions are

the noncausal AR(1) processes with Cauchy and Lévy backward innovations, obtained for

(α, β) = (1, 0) and (α, β) = (1/2, 1), respectively.

3.2.1. Noncausal Cauchy linear AR(1) process

The following result gives the Markov transition of the process (Yt) in direct time.

Proposition 3.4. The causal transition pdf of the noncausal Cauchy linear AR(1) pro-

cess at horizon h is given by:

fh(Yt|Yt−h) =
1

πσh

1

1 + (Yt−h − ρhYt)2/σ2
h

σ2 + (1 − |ρ|)2Y 2
t−h

σ2 + (1 − |ρ|)2Y 2
t

, where σh = σ
1− |ρ|h
1− |ρ| .

Therefore, the Pareto tail index of the predictive density is equal to 4, at any prediction

horizon. This is only in the limiting case h = ∞ that we observe a discontinuity in the

value of the tail index, that is, for the stationary distribution. Straightforward calculation

shows that the conditional density fh(· | Yt−h) is unimodal, for any value of Yt−h.

Proposition 3.4 allows to obtain the causal conditional cdf of the noncausal Cauchy

process (see Appendix B). The process also admits a strong causal nonlinear autoregressive

representation which is derived in Appendix C.

The first and second-order causal conditional moments of the process exist by Proposi-

tion 3.4. The conditional mean was derived in Proposition 3.3. We now give a closed-form

expression of the conditional second-order moment for the noncausal Cauchy process.

Proposition 3.5. For ρ 6= 0, when α = 1 and β = 0 in Model (3.2), we have:

E(Yt | Yt−1) = sign(ρ)Yt−1, E(Y 2
t | Yt−1) =

1

|ρ|Y
2
t−1 +

σ2

|ρ|(1− |ρ|) .

Despite the nonlinear causal autoregression, both processes (Yt) and (Y 2
t ) admit a semi-

strong linear causal representation, that is, with linear causal innovations Yt −E(Yt | Yt−1)

and Y 2
t −E(Y 2

t | Yt−1), respectively, that are martingale difference sequences, but not i.i.d.

In fact, (Yt) has a semi-strong AR(1) representation of the form:

Yt = sign(ρ)Yt−1 + σtηt, σ2
t =

(
1

|ρ| − 1

)
Y 2
t−1 +

σ2

|ρ|(1− |ρ|) , (3.6)

where E(ηt | Yt−1) = 0, E(η2t | Yt−1) = 1. When ρ > 0, the process (Yt) is a condition-

ally heteroskedastic non integrable martingale sequence. Interestingly, the errors display
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GARCH-type effects, which increase when ρ approaches 0, but vanish when |ρ| increases to

1. In view of (3.6), (Yt) might be called a double semi-strong AR(1) process (see Ling and

Li (2008)). However, the innovations ηt are not independent. Indeed, by Proposition 3.4

for h = 1, the conditional density of ηt depends on the past: with Yt given by (3.6),

fη(ηt|Yt−1) =
1√

|ρ|(1 − |ρ|)π
σ{σ2 + (1− |ρ|)2Y 2

t−1}3/2
{σ2 + (Yt−1 − ρYt)2}{σ2 + (1− |ρ|)2Y 2

t }
.

The recursive equations (3.6) associated with the first and second-order conditional causal

moments seem explosive: the AR coefficient on the square Y 2
t is 1/|ρ| > 1 and the coefficient

of Yt−1 in the expression of E(Yt | Yt−1) leads to a unit root phenomenon, if ρ > 0, and to

a periodicity with period 2, if ρ < 0. This is not surprising since the unconditional first and

second-order moments do not exist. However, the infinite moments of the unconditional

distribution do not have the same implications on the process in reverse time. Indeed, in

reverse time the process does not explose, since |ρ| < 1, and infinite moments are just a

consequence of the fat tail of the backward innovations. Similar formulas can be derived at

any prediction horizon h > 0 with ρ replaced by ρh and σ by σh, respectively.

3.2.2. Noncausal Lévy Autoregressive Process

Let us now consider Model (3.2) under the assumption that εt ∼ S(1/2, 1, 1, 0), that is

when εt follows a Lévy (µ, c) distribution with parameters µ = 0, c = 1. This means that εt

only takes positive values, which is appropriate for modelling (positive) prices or nominal

interest rates. More precisely, the density of εt is given by:

fε(x) =
1√
2π

1

x3/2
exp

(−1

2x

)
Ix>0. (3.7)

Let us assume ρ > 0 to ensure the positivity of Yt. By Proposition 3.1, the stationary

distribution of Yt is also a Lévy distribution, with parameters µ = 0, c = 1/(1−√
ρ)2. Thus,

the stationary density of the noncausal Lévy linear AR process is:

f(y) =
1√
2π

1

1−√
ρ

1

y3/2
exp

(−1

2y

1

(1 −√
ρ)2

)
Iy>0. (3.8)

Proposition 3.6. The causal transition pdf of the noncausal Lévy linear AR process,

with ρ > 0, is given by:

f(Yt|Yt−1) =
1√
2π

(

Yt−1

Yt(Yt−1 − ρYt)

)3/2

exp

( −(Yt−1 −√
ρYt)

2Yt−1Yt(1−√
ρ)2(Yt−1 − ρYt)

)

I0<ρYt<Yt−1
.
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Figure 3. Simulations of Model (3.2) with α = 1, β = 0, σ = 0.5 and ρ = 0.5 (left panel), ρ = 0.9

(right panel).

The support of the causal transition pdf is bounded from above. For this reason, the

maximum rate of explosion of a bubble is 1/ρ. It is also worth noting that the moments

of Yt conditional on Yt−1 exist at any order (which also follows from Proposition 3.2 in the

case β = 1 and ρ > 0), whereas the unconditional expectation of Yt does not exist.

By Proposition 3.3, the process has a semi-strong AR(1) causal representation: Yt =

1√
ρYt−1+vt, where E(vt | Yt−1) = 0. The bubble phenomenon can be more prominent than

with Cauchy distributed errors, especially when ρ is close to zero.

3.3. Locally explosive phenomena

In Section 2 we have shown that the path of a noncausal linear AR process is a combination

of right-censored increasing exponential curves (if ρ > 0) with i.i.d. stochastic coefficients.

When the error distribution has fat tails, an extreme value from the right tail creates a jump

of Yt preceded by a local upward trend toward that extreme value. Conversely, an error

from the left tail will create a symmetric pattern, able to represent a deflationary spiral.

Depending on the purpose, the noncausal model can be adapted to only one type of locally

explosive phenomenon, bubble or deflationary spiral, by choosing an error distribution on

R
+ with a fat right tail, or on R

− with a fat left tail.

We provide in Figure 3 the simulated paths of the noncausal Cauchy process based

on the forward autoregression (3.2), where the εt are drawn independently in the Cauchy

distribution (with σ = 1) and ρ = 0.5 (left panel) or ρ = 0.9 (right panel). For ρ = 0.9, we

clearly observe the bubble phenomenon at regular intervals. Note that the bubble collapse

can be sudden, i.e. a crash within single period, or it can take place gradually.

The heavy-tailed noncausal AR models can represent multiple local explosions and offer the

possibility of predicting the times and sizes of the explosions. Bubbles are created when the
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noncausal innovation takes an extreme value, and the date at which that extreme value is

reached is the date of bubble collapse. Therefore, it is possible to predict the date of a bubble

collapse by considering the extreme behaviour of noncausal innovations εt.4 At time t, we

can compute the probability of a bubble collapse at t+h as P (Yt+h−ρYt+h+1 > c | Yt), for

some extreme critical level c. By updating these probabilities and following their evolution,

we obtain a tool for early warning of the bubble collapse. Thus, contrary to a belief common

to economists (see e.g. Cooper (2008)), it seems possible to detect a bubble in its inflationary

phase, and to predict the future bubbles (see Phillips et al. (2015) for a similar remark).

4. Aggregation of noncausal processes

4.1. Aggregation of a continuum of noncausal Cauchy AR(1)

Noncausal AR(1) processes with stable distributions can generate a series of local explo-

sions, but only with the same (stochastic) rate of increase determined by the coefficient ρ.

Aggregation of such basic processes allows us to get bubbles with different rates of increase.

For simplicity, we focus on basic Cauchy AR(1) processes in this section.

Let us first consider an aggregate process from a finite set of noncausal Cauchy AR(1)

processes. The process is defined by

Yt = c

J∑

j=1

πjYj,t, with Yj,t = ρjYj,t+1 + εj,t, |ρj | < 1, j = 1, . . . , J, (4.1)

where (εj,t)j=1,...,J is a family of i.i.d. standard Cauchy white noises, c > 0, πj ≥ 0 and
∑J

j=1 πj = 1. By construction, this process can generate successive bubbles, with rates

of increases 1/ρj (if ρj > 0) and occurrences governed by the weights πj . However, the

aggregation destroys the Markov property of the noncausal aggregate process in reverse

time.

The aggregation can be extended to a continuum of values of parameter ρ, with a

probability distribution π on (−1, 1) (which can be either continuous or discrete). Let

Yt := Yt(c, π) = c

∫

(−1,1)

Yρ,tdπ(ρ), (4.2)

where Yρ,t = ρYρ,t+1 + ερ,t, |ρ| < 1, c > 0, and (ερ,t) are i.i.d. standard Cauchy white

noises. Let us denote Eπ(f) =
∫
f(ρ)dπ(ρ) for any function f : (−1, 1) 7→ R such that the

4The predictive distributions at any horizon can be estimated and used to predict the dates and

magnitudes of downturns at given horizons [see Gouriéroux and Jasiak (2015)].
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integral exists. The following proposition gives a sufficient condition for the existence of

process Yt.

Proposition 4.1. Assume that, for some s ∈ (0, 1),

∞∑

i=0

{
Eπ(|ρ|i|)

}s
<∞. (4.3)

Then, Yt is well defined and we have:

Yt =
∑

i≥0

∫
ρiερ,t+idπ(ρ). (4.4)

Moreover, the process (Yt)t≥0 is strictly stationary and ergodic, and Yt follows the Cauchy

distribution with scale parameter cEπ

{
1

1−|ρ|

}
.

Example 4.1 (Discrete measure). Suppose that the support of probability measure

π is {ρj}j∈N, where the ρj ’s belong to (−1, 1) and are ranked in increasing order. Let

πj = π({ρj}) (with πj > 0 and
∑

j≥0 πj = 1). Then, the condition in (4.3) becomes

∞∑

i=0




∑

j≥0

|ρj |iπj





s

<∞. (4.5)

Using the elementary inequality (x + y)s ≤ xs + ys, for x, y ≥ 0 and s ∈ (0, 1), we get

a sufficient condition for strict stationarity:
∑

j≥0

πs
j

1−|ρj |s < ∞, and a necessary condition

for the existence of the sum in (4.5) is: Eπ

(
1

1−|ρ|

)
=
∑

j≥0
πj

1−|ρj | < ∞. For instance if

πj = π̃j for j > 0 and |ρj | = 1 − ρ̃j , for some π̃, ρ̃ ∈ (0, 1), a necessary condition for strict

stationarity of (Yt) is π̃ < ρ̃.

The distribution of the strictly stationary aggregated process is characterized by its

characteristic function Ψ(u0, . . . , uk) = E[exp{i(∑k
ℓ=0 uℓYt+ℓ)}], for (u0, . . . , uk) ∈ R

k+1.

Proposition 4.2. Assume that (4.3) holds and, for any t ∈ Z, assume that the process

{ερ,t, (ρ, t) ∈ (−1, 1)× Z
+} is independent. We have, for (u0, . . . , uk) ∈ R

k+1,

Ψ(u0, . . . , uk) = exp



−cEπ




k−1∑

h=0

∣∣∣∣∣

h∑

ℓ=0

ρh−ℓuℓ

∣∣∣∣∣+

∣∣∣
∑k

ℓ=0 ρ
k−ℓuℓ

∣∣∣
1− |ρ|





 .

Thus, the linear combination
∑k

ℓ=0 uℓYt+ℓ follows a Cauchy distribution, with scale pa-

rameter equal to the expectation in the brackets. The joint distribution of (Yt,Yt+k) is

characterized below.

Corollary 4.1. Under the assumptions of Proposition 4.2, we have

E[exp{i(u0Yt + ukYt+k)}] = exp

[
−cEπ

{
1

1− |ρ|
(
|u0|(1− |ρ|k) + |ρku0 + uk|

)}]
.
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4.2. Identification and estimation of the explosive patterns

Let us now show that the parameters characterizing the local explosive patterns are iden-

tifiable from the bivariate distribution of (Yt,Yt+1).

4.2.1. Identification

From Corollary 4.1, it follows that

Ψ̃(u) := logE[exp{i(Yt + uYt+1)}] = −cEπ

(
1 +

|ρ+ u|
1− |ρ|

)
. (4.6)

The proposition below shows how to derive the local explosion parameters c and π from the

joint characteristic function Ψ̃. Let Ψ̃(2)(u) = ∂2Ψ̃(u)
∂u2 .

Proposition 4.3. Assume that the measure π admits a density, dπ(ρ) = π(ρ)dρ. Then,

under (4.3), the parameters c, π are identifiable from the joint distribution of (Yt,Yt+1). We

have, for ρ ∈ (−1, 1),

π(ρ) =
(1− |ρ|)Ψ̃(2)(−ρ)

∫ 1

−1
(1− |u|)Ψ̃(2)(−u)du

, c = −1

2

∫ 1

−1

(1 − |u|)Ψ̃(2)(−u)du.

4.2.2. Estimation of the local explosion structure

The relations in Proposition 4.3 can be used to estimate the density π and the constant

c from observations Y1, . . . ,Yn. First note that, because the distribution of (Yt,Yt+1) is

symmetric, we have Ψ̃(u) = logE[cos(Yt + uYt+1)]. It follows that

Ψ̃(2)(u) = −E[Y2
t+1 cos(Yt + uYt+1)]

E[cos(Yt + uYt+1)]
−
(
E[Yt+1 sin(Yt + uYt+1)]

E[cos(Yt + uYt+1)]

)2

.

Note that: (i) the expectations appearing in the latter formula exist, by arguments given

in the proof of Proposition 3.3, and using the fact that the distribution of Yt is a Cauchy;

(ii) E[cos(Yt + uYt+1)] = eΨ̃(u) > 0. A consistent estimator of Ψ̃(2)(u) is thus, by applying

the ergodic theorem to the process (Yt) (see Proposition 4.1),

̂̃Ψ
(2)

(u) = −
∑n

t=1 Y2
t+1 cos(Yt + uYt+1)∑n

t=1 cos(Yt + uYt+1)
−
(∑n

t=1 Yt+1 sin(Yt + uYt+1)∑n
t=1 cos(Yt + uYt+1)

)2

,

with by convention Yn+1 = 0.

The parameters c, π can next be estimated, for ρ ∈ (−1, 1), as follows:

π̂(ρ) =
(1 − |ρ|) ̂̃Ψ

(2)

(−ρ)
∫ 1

−1(1− |u|) ̂̃Ψ
(2)

(−u)du
, ĉ = −1

2

∫ 1

−1

(1 − |u|) ̂̃Ψ
(2)

(−u)du.
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The above estimators are derived under the assumption of a continuous distribution π.

These results are modified when π is discrete. Let us, for example, consider the case where

the support of π is a countable set, as in Example 4.1. By (4.6) we have

Ψ̃(u) = −c


1 +

∑

j∈N

πj
|ρj + u|
1− |ρj |


 .

The first and second right-derivatives of Ψ̃ are

∂Ψ̃(u)

∂u+
= −c

∑

j∈N

πj
1− |ρj |

{Iu≥−ρj
− Iu<−ρj

}, ∂2Ψ̃(u)

∂(u+)2
= 0.

The second-order right derivative is no longer informative about parameters c and π. How-

ever, these parameters can be identified by considering the location and size of the jumps

in the first-order right derivative.

4.2.3. Specification tests

Instead of considering the joint distribution of (Yt,Yt+1), let us now consider the joint

distribution of (Yt,Yt+k). By Corollary 4.1 we have,

Ψ̃k(u) := logE[exp{i(Yt + uYt+k)}] = −cEπ

{
1− |ρ|k + |ρk + u|

1− |ρ|

}
.

Let us also assume in this section that the support of the measure π is [0, 1). We thus have

Ψ̃k(u) = −cEπ

{
1

1−ρ(1− ρk + |ρk + u|)
}
. We obtain alternative estimators of the bubble

parameters, for ρ ∈ (0, 1),

π̂k(ρ) =
(1− ρ)ρk−1 ̂̃Ψ

(2)

k (−ρk)
∫ 1

−1(1− u)uk−1 ̂̃Ψ
(2)

k (−uk)du
, ĉk = −1

2

∫ 1

−1

(1− u)uk−1 ̂̃Ψ
(2)

k (−uk)du,

where ̂̃Ψ
(2)

k is the sample counterpart of the second derivative of Ψ̃k. We get a sequence

of estimators of π indexed by k, which can be used to construct specification tests, since

all the estimators converge to the same function if the underlying process is an aggregated

noncausal Cauchy AR(1) process.

4.3. Locally explosive model with a Gaussian AR(1) component

The identification and estimation methods can be extended for applications to models that

include a Gaussian AR(1) component. Let us now assume that the observations are gener-

ated by the following model

Zt = Yt + Yt, (4.7)
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where (Yt) is the aggregated Cauchy AR(1) process defined in (4.2), and (Yt) is the Gaussian

AR(1) process

Yt = rYt+1 + σηt, (ηt)
iid∼ N (0, 1), r 6= 1,

where (ηt) is i.i.d. and is independent from the noises (ερ,t). Note that it is equivalent to

write the Gaussian process in either the causal or noncausal forms which are distributionally

equivalent. The characteristic function of (Zt, Zt+1) is, for u0, λ ∈ R,

Ψ(u0, λu0) := E[exp{iu0(Zt + λZt+1)}]

= exp

{
−u

2
0σ

2(1 + 2λr + λ2)

2(1− r2)
− c|u0|Eπ

(
1 +

|ρ+ λ|
1− |ρ|

)}
. (4.8)

The argument u0, that is the difference of tail magnitudes of the Gaussian and Cauchy

distributions, can be used to disentangle both components. We have

lim
u0→0

logΨ(u0, λu0)

|u0|
:= −cEπ

(
1 +

|ρ+ λ|
1− |ρ|

)
, (4.9)

whereas

lim
u0→∞

logΨ(u0, λu0)

u20
:= −σ

2(1 + 2λr + λ2)

2(1− r2)
. (4.10)

We deduce the following proposition.

Proposition 4.4. Under the assumptions of Proposition 4.3, all parameters r, σ, c, π

are identifiable in the aggregated noncausal Cauchy AR(1) with additional Gaussian AR(1)

process defined in (4.7).

This deconvolution result above is important from the modeling perspective. In practice,

it is difficult to disentangle the global and local explosive patterns. Global explosive pat-

terns are generally modeled by means of close to unit root (Gaussian) model, that is an

AR model with coefficient r close to 1. In contrast, bubbles consist in local explosive pat-

terns. Proposition 4.4 reveals the possibility of identifying the global and local explosive

components.

Finally, the explicit form of the characteristic function (CF) in (4.8) suggests an estima-

tion procedure based on the comparison of the empirical CF (ECF) and the theoretical CF

of (Zt, Zt+1). Suppose for simplicity that the probability distribution π is a point mass at

some AR coefficient ρ0, that is Yt = cYρ0,t. Given observations (Z1, . . . , Zn), the parameter

θ = (ρ, r, c, σ)′ can be estimated by minimizing a distance between the CF and the ECF

defined by

Ψ̃n(u, λu) =
1

n

n∑

t=1

cos{u(Zt + λZt+1)}. (4.11)
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The CF estimator is defined by

θ̂n = arg min
θ∈Θ

∫

R2

|Ψ̃n(u, λu)−Ψ(u, λu)|2dW (u, λ), (4.12)

where Θ denotes the parameter space and W (·) is a nonnegative weighting function. There

is an abundant literature on ECF-based estimation methods which goes back to Paulson

et al. (1975) and Heathcote (1977) in the case of i.i.d. data. For dependent data, see for

instance Yu (2004), Taufer and Leonenko (2009) and the references therein. We leave the

theoretical properties of the estimator in (4.12) for further research.

5. Estimation and diagnostic checking in the noncausal heavy-tailed AR(1) model

We first derive the asymptotic properties of the sample autocorrelation function (ACF) for

the noncausal AR(1) model under weak semi-parametric assumptions on the tail behaviour

of the errors. Next, we discuss the unit root (UR) hypotheses and tests.

5.1. Estimating the AR coefficient

In this section, we consider estimating the AR coefficient in a non-causal AR(1) process with

heavy-tailed errors whose distribution is not fully specified. More specifically, we assume

Yt = ρYt+1 + εt, |ρ| < 1, (εt) i.i.d., (5.1)

where, for simplicity, the distribution of εt is symmetric and the distribution of |εt| is

regularly varying with index −α, that is,

P (|εt| > x) = x−αL(x), (5.2)

with α ∈ (0, 2) and L(x) a slowly varying function at infinity. An estimator of the AR

coefficient ρ in Model (5.1)-(5.2) is the first sample autocorrelation:

ρ̂n =

n∑

t=2

YtYt−1/

n∑

t=1

Y 2
t , (5.3)

when the observations are Y1, . . . , Yn. More generally, we define, for ℓ ≥ 0,

ρ̂n(ℓ) =

n∑

t=ℓ+1

YtYt−ℓ/

n∑

t=1

Y 2
t , (5.4)

with ρ̂n(1) = ρ̂n. Note that the theoretical autocorrelations of the process (Yt) do not exist.

However, we have the following result.
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Proposition 5.1 (Davis and Resnick, 1985). Let (Yt) be the strictly stationary so-

lution of model (5.1)-(5.2). Then, the estimators defined in (5.4) are consistent, that is,

for ℓ ≥ 1, ρ̂n(ℓ) → ρℓ, in probability.

Remark 5.1. Despite the fact that, for stable errors, E(Yt | Yt−1) 6= ρYt−1 by Propo-

sition 3.3, the sample AR coefficient defined in (5.3) converges to ρ. Thus the asymptotic

analysis of the empirical ACF reveals serial dependence in reverse time, not in direct time.

The asymptotic distribution of a vector of sample autocorrelations of the noncausal

AR process, in terms of stable variables, is the following. Let, for M ≥ 1, ρ̂n =

(ρ̂n(1), . . . , ρ̂n(M))′, ρ = (ρ, . . . , ρM )′ and let

an = inf{x : P (|ε1| > x) ≤ n−1}, ãn = inf{x : P (|ε1ε2| > x) ≤ n−1}.

Proposition 5.2 (Davis and Resnick, 1986). Let (Yt) be the strictly stationary so-

lution of Model (5.1)-(5.2) with E|εt|α = ∞. Then

a2n
ãn

(ρ̂n − ρ)
d→ Z := (Z1, . . . , ZM ), (5.5)

where, Zℓ =
∑∞

j=1{ρj+ℓ−ρ|j−ℓ|}Sj/S0, for ℓ = 1, . . . ,M, and S0, S1, S2, . . . are independent

stable random variables; S0 is positive with index α/2 and Sj, for j ≥ 1, has index α.

When α = 1 the convergence in (5.5) holds with a2n/ãn = n/ logn. If the law of |εt| is

asymptotically equivalent to a Pareto, (5.5) holds with a2n/ãn = (n/ logn)α.

Remark 5.2. In particular, for the noncausal Cauchy process, the estimator of the AR

coefficient defined in (5.3) satisfies, when |ρ| < 1, n
logn (ρ̂n − ρ)

d→ (1 + ρ)S1/S0. It can be

noted that S1 is standard Cauchy-distributed, while S0 has a Lévy distribution concentrated

on (0,∞), with density given in (3.7). Therefore,

n

logn
(ρ̂n − ρ)

d→ (1 + ρ)Y X, (5.6)

where X,Y are independent with Y ∼ C(0, 1) and X ∼ χ2(1). Contrary to the standard

situation where the rate of convergence is
√
n and the limiting distribution is Gaussian, the

above asymptotic distribution does not admit a finite expectation and is reached at a faster

rate.

Remark 5.3. The knowledge of index α is not required for the computation of the

ordinary least-squares estimator of ρ, but its asymptotic distribution depends on α. After

estimating ρ in a first step, the tail index α can be estimated from a standard approach in



18 C. Gouriéroux and J-M. Zakoian

the second step. For instance, the Hill estimator can be used (for its main properties under

various assumptions see Embrechts et al. (1997), Theorem 6.4.6).

Remark 5.4. If the errors distribution is completely known, a far more efficient es-

timator is the Maximum-Likelihood estimator (MLE). For α-stable causal and noncausal

AR processes, the asymptotic distribution of the MLE was established by Andrews et al.

(2009) [see also Lanne and Saikkonen (2011)]. With Cauchy errors, for instance, the MLE

converges faster to ρ than the first sample autocorrelation (n instead of n/ logn), but the

limiting distribution has no simple closed form.

5.2. Unit root hypothesis and test in the Cauchy case

The noncausal AR Cauchy process with ρ > 0 has the particularity of producing explosive

features while being a stationary martingale. The speed of explosion of a bubble is in

average strictly larger than 1, which is the unit root, to compensate the collapse behavior.

This can be illustrated by plotting Yt against Yt−1 for simulated paths of the noncausal

AR(1) process with Cauchy errors (see Figure 4). The theoretical result in Proposition

3.5 concerning the conditional mean is confirmed by the simulated data, the slopes being

almost equal to 1 and -1, respectively5. However, we also observe plots almost on the line

Yt = 0. They correspond to the dates at which the large (multiple) bubbles collapse.

The difference between the rate of explosion of the bubble for a given trajectory and the

average rate of explosion of the process, equal to 1 under the martingale hypothesis, explains

why the standard UR tests often provide strange results. See e.g. Homm and Breitung

(2012) for a survey of UR tests for detecting bubbles, and Evans (1991), Charemza and

Deadman (1995) for pitfalls in testing for explosive bubbles.

Standard UR tests, based on a difference between ρ̂n and 1, will fail in detecting locally

explosive features in the noncausal AR Cauchy model, although the martingale property is

satisfied when ρ > 0 by Proposition 3.5. This is not surprising as the asymptotic properties

of standard UR tests are often derived under assumptions which are not satisfied by the

noncausal Cauchy AR(1) model, such as the non stationarity under the null hypothesis.

In our framework, a test for bubbles would need to detect successive transitory explosions

along the observed trajectory, and not an explosive behavior in average, or a breakpoint in

5In fact slightly larger than 1 and slightly smaller than −1, respectively, to compensate the

observations at collapse times.
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Figure 4. Scatterplot of Yt against Yt−1 for the the Cauchy AR(1) simulation of Figure 3 with ρ = 0.9

(left panel) and ρ = −0.9 (right panel).

the explosive behavior in average, as in Busetti and Taylor (2004), Phillips et al. (2011) or

Phillips et al. (2015) approaches.

5.3. Diagnostic checking

After estimating the coefficient ρ, it is important to verify the independence of the resid-

uals in (5.1). In this respect, diagnostic checks can be based on the first-order residual

autocorrelation. Let us define the backward residuals

ε̂∗t = Yt − ρ̂nYt+1, t = 1, . . . , n− 1,

in the estimation of Model (5.1)-(5.2). Similarly, we define the forward residuals

ε̂t = Yt − ρ̂nYt−1, t = 2, . . . , n.

To check the white noise property, we consider the (backward and forward) residuals first-

order autocorrelations defined by

R∗
n =

n−1∑

t=2

ε̂∗t ε̂
∗
t−1/

n−1∑

t=1

(ε̂∗t )
2, Rn =

n∑

t=3

ε̂tε̂t−1/

n∑

t=2

ε̂2t .

5.3.1. Asymptotic behaviour under correct specification

The asymptotic distributions of statistics Rn and R∗
n under model (5.1)-(5.2), that is under

correct specification, are as follows:
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Proposition 5.3. Let (Yt) be the strictly stationary solution of Model (5.1)-(5.2). Then

a2n
ãn
R∗

n
d−→ ρ2S1/S0 − {1− ρ2}

∞∑

j=2

ρj−1Sj/S0, (5.7)

where the Sj are independent stable variables as described in Proposition 5.2. If α ≥ 1

and |εt| is asymptotically equivalent to a Pareto, the statistic Rn has the same asymptotic

distribution as R∗
n. In particular, for the noncausal Cauchy AR process we have:

n

logn
R∗

n
d−→ R and

n

logn
Rn

d−→ R, as n→ ∞,

with R = ρ(1 + 2ρ)Y X, where X,Y are independent with Y ∼ C(0, 1) and X ∼ χ2(1).

Similar results could be established for higher-order residual autocorrelations (see Lin and

McLeod (2008) for portmanteau tests in the case of causal AR processes with stable errors).

Thus, at least when α ≥ 1 and the errors distribution is asymptotically equivalent to a

Pareto, the empirical autocorrelations of the residuals ε̂∗t and ε̂t have the same asymptotic

behaviour. This is a consequence of the weak causal linear representation:

Yt = ρYt−1 + ut, (5.8)

where the ut are "empirically uncorrelated" variables, in the sense that, for any ℓ > 0,

n∑

t=ℓ+1

utut−ℓ/

n∑

t=1

u2t → 0, in probability as n→ ∞. (5.9)

In the standard case where errors εt admit finite variance, (ut) is a weak white noise and

the same result is true. In our framework, the ut’s do not admit second-order moments.

A surprising difference with the classical case is the coexistence of the "empirically" weak

linear representation (5.8)-(5.9) and the semi-strong linear representation (3.6). Table 1

summarizes the different representations which can be defined for the noncausal Cauchy

AR(1) process.

5.3.2. Asymptotic behaviour of statistics under a (near) random walk

Let us now discuss the behavior of the statistics Rn and R∗
n when the DGP is a strong AR(1)

with root at or near unity. More precisely, we consider a time series that is generated by

Yn,t = anYn,t−1 + ξt, t ≥ 1, an = exp(c/n), (5.10)

for some random initial value Y0 whose distribution is independent of n and of (ξt), where c

is a real constant. When c = 0, the model has a unit root; when c < 0, the model is stable
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Name Equation Noise properties

Strong noncausal linear Yt = ρYt+1 + εt (εt/σ)
i.i.d.∼ C(0, 1)

Semi-strong causal linear Yt = sign(ρ)Yt−1 + σ(Yt−1)ηt
E(ηt | Yt−1) = 0

E(η2
t | Yt−1) = 1

Strong causal nonlinear Yt = G(Yt−1, vt) (vt)
i.i.d.∼ N (0, 1)

Weak causal linear Yt = ρYt−1 + ut empirically uncorrelated:
∑n

t=ℓ+1 utut−ℓ → 0

Table 1: Representations of the noncausal Cauchy AR(1) with |ρ| < 1

for finite n, and it has explosive features for c > 0. The errors may be dependent, but are

assumed to satisfy the following conditions:

A0: ξ = (ξt) is a strictly and second-order stationary process, E(ξt) = 0 and E(ξ2t ) > 0.

A1: The strong mixing coefficients6 of the process ξ are such that

∞∑

h=0

{αξ(h)}
ν

2+ν <∞ for some ν > 0, with E|ξt|2+ν <∞.

Pham (1986) showed that A0-A1 hold for a large class of processes, the strong mixing

coefficients converging to zero exponentially fast. As far as GARCH are concerned, results

on strict stationarity and strong mixing have been derived by numerous authors (see for

instance Chapter 3 in Francq and Zakoïan (2010) and the references therein). Note that

models (5.1)-(5.2) and (5.10) are non nested. Model (5.10), which was studied by Phillips

(1987) under slightly more general conditions than A0-A1, might be erroneously estimated

as a noncausal Cauchy AR in practice. The following result shows that the statistics Rn and

R∗
n computed from the process (Yn,t) have an asymptotic behavior which is very different

from that obtained in Proposition 5.3.

Proposition 5.4. For the (near) random walk (5.10) under A0-A1, for any c ∈ R:

n

logn
|R∗

n| −→ ∞ and
n

logn
|Rn| −→ ∞, in probability as n→ ∞.

Therefore, tests based on Rn or R∗
n, to be defined in Section 7, can distinguish a unit root

due to a stationary noncausal AR process from a unit root created by a (near) random walk

model.

6defined by αξ(h) = supA∈σ(ξu,u≤t), B∈σ(ξu,u≥t+h) |P (A ∩ B)− P (A)P (B)| .
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6. A Monte Carlo study

In this section, we study the behaviours of the estimator ρ̂n and the statistics for diagnostic

checking introduced in Section 5.3. We also compare ρ̂n with the ML estimator of ρ.

6.1. Behaviour of ρ̂n in finite samples

We simulated N = 5, 000 paths of model (3.2) with α = 1 and β = 0, for different values of

ρ, ranging from 0.1 to 0.9, and different sample sizes (n=500, 2000, 5000). Table 2 shows

characteristics of the empirical distribution of n
log n (ρ̂n − ρ) over the N simulated paths.

Increasing the sample size does not entail much distorsion of the sample distributions,

indicating that the normalization by n
logn is appropriate for finite sample sizes. The median

is always very small, and the first and third quartiles are rather close in modulus, at least

for ρ sufficiently far from 1, indicating that ρ̂n is approximately symmetrically distributed

around ρ. The probability of ρ̂n exceeding 1 is extremely small, even for ρ = 0.9, showing

that any standard unit-root test would reject the unit-root hypothesis. Comparison with the

asymptotic distribution in (5.6), see the case n = ∞ in Table 2, leads to mixed conclusions.

On the one hand, the center of the finite sample distributions (in the interquartile interval)

appears to be well approximated by the asymptotic distribution, at least for n sufficiently

large and ρ not too close to 1. On the other hand, for ρ > 0, the absolute values of the

quantiles of the asymptotic distribution increase with ρ with a proportionality factor of

1 + ρ. This pattern does not appear in finite sample size for large values of ρ, and this is

particularly true for the extreme quantiles q0.1 and q0.9.

6.2. Statistics for diagnostic checking

Let us now study the statistics of Proposition 5.3. We only present, in Table 3, results

for the sample size n = 5000. The behaviour of the statistics Rn and R∗
n is very similar,

whatever the values of n and ρ. The previous comments concerning the convergence to

the asymptotic distribution, that is the distribution of R, still apply. The two statistics

Rn and R∗
n having the same asymptotic distribution, they cannot be used to distinguish

between a causal and a noncausal AR process. For this purpose, it can be useful to consider

the (backward and forward) serial correlation between a residual and a squared lagged



Local Explosion Modelling by Noncausal Process 23

n ρ Mean Std q0.1 q0.25 Median q0.75 q0.9 P [ρ̂n > 1]
500 0.1 0.104 7.050 -1.547 -0.428 -0.000 0.446 1.563 0.0003

0.3 0.101 5.324 -1.688 -0.482 0.000 0.488 1.659 0.0008
0.5 0.058 4.479 -1.811 -0.515 0.001 0.517 1.709 0.0017
0.7 -0.010 3.780 -1.791 -0.553 0.002 0.512 1.661 0.0033
0.9 -0.060 2.866 -1.544 -0.512 -0.004 0.450 1.301 0.0123

2000 0.1 0.140 16.08 -1.690 -0.423 0.003 0.429 1.657 0.0000
0.3 0.108 9.929 -1.838 -0.477 0.000 0.478 1.813 0.0002
0.5 0.079 8.187 -1.936 -0.524 -0.000 0.513 1.907 0.0006
0.7 0.021 6.650 -1.954 -0.549 -0.002 0.530 1.878 0.0010
0.9 -0.066 4.626 -1.707 -0.519 -0.003 0.495 1.578 0.0029

5000 0.1 0.195 35.45 -1.756 -0.422 0.000 0.432 1.717 0.0000
0.3 0.099 16.571 -1.928 -0.478 0.000 0.479 1.880 0.0001
0.5 -0.138 11.518 -2.054 -0.525 0.000 0.522 1.983 0.0002
0.7 0.021 9.255 -2.156 -0.551 0.000 0.544 2.032 0.0003
0.9 -0.053 6.947 -1.906 -0.541 0.000 0.511 1.808 0.0011

∞ 0.1 - - -2.634 -0.428 0.000 0.428 2.634 -
0.3 - - -3.111 -0.506 0.000 0.506 3.111 -
0.5 - - -3.592 -0.584 0.000 0.584 3.592 -
0.7 - - -4.072 -0.662 0.000 0.662 4.072 -
0.9 - - -4.549 -0.740 0.000 0.740 4.549 -

Table 2: Characteristics of the empirical distribution of n
log n

(ρ̂n − ρ) over 50,000 simulated paths.

The empirical α-quantile is denoted qα. The last column gives the frequency of ρ̂n exceeding 1.

The results for n = ∞ are obtained by simulations of the asymptotic distribution in (5.6).
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ρ q0.1 q0.25 Median q0.75 q0.9

R∗
n 0.1 -0.175 -0.045 0.000 0.047 0.195

0.3 -0.664 -0.170 0.000 0.173 0.695

0.5 -1.305 -0.337 0.000 0.345 1.339

0.7 -2.058 -0.535 0.001 0.545 2.068

0.9 -2.596 -0.724 0.001 0.749 2.731

Rn 0.1 -0.174 -0.045 0.000 0.047 0.194

0.3 -0.663 -0.170 0.000 0.173 0.692

0.5 -1.305 -0.337 0.000 0.341 1.327

0.7 -2.045 -0.538 0.000 0.536 2.027

0.9 -2.528 -0.719 0.000 0.719 2.599

R 0.1 -0.287 -0.047 0.000 0.047 0.287

0.3 -1.148 -0.187 0.000 0.187 1.148

0.5 -2.394 -0.390 0.000 0.390 2.394

0.7 -4.024 -0.654 0.000 0.654 4.024

0.9 -6.030 -0.981 0.000 0.981 6.030

Table 3: Characteristics of the empirical distributions of n
logn

R∗
n and n

log n
Rn over 50,000 simulated

paths for n = 5, 000. The asymptotic distribution in Proposition 5.3 (the law of R) is evaluated by

simulation.
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ρ q0.1 q0.25 Median q0.75 q0.9

T ∗
n 0.1 -0.595 -0.127 0.000 0.130 0.610

0.3 -0.606 -0.128 0.000 0.130 0.614

0.5 -0.610 -0.130 0.000 0.129 0.616

0.7 -0.635 -0.133 0.000 0.131 0.622

0.9 -0.651 -0.135 0.000 0.134 0.662

Tn 0.1 -51.33 -44.54 -0.220 44.19 51.11

0.3 -121.5 -105.3 0.139 104.8 121.0

0.5 -144.5 -125.2 -0.162 124.5 144.0

0.7 -82.62 -71.47 -0.272 71.07 82.16

0.9 -8.570 -7.384 -0.054 7.348 8.518

Table 4: Characteristics of the empirical distributions of n
log n

T ∗
n and n

log n
Tn over 5,000 simulated

paths for n = 5, 000.

residual. Let us consider the statistics:

T ∗
n =

n−1∑

t=2

ε̂∗t (ε̂
∗
t−1)

2/D∗
n, Tn =

n∑

t=3

ε̂t(ε̂t−1)
2/Dn,

where D∗
n =

√(∑n−1
t=1 (ε̂

∗
t )

2
)(∑n−1

t=1 (ε̂
∗
t )

4
)
, and Dn =

√(∑n−1
t=1 (ε̂t)

2
)(∑n−1

t=1 (ε̂t)
4
)
.

While (εt) is an i.i.d. sequence, the variables ut = Yt − ρYt−1 are only "empirically un-

correlated" [see (5.9)] and this should reflect in the behaviour of T ∗
n and Tn. The results

presented in Table 4 confirm this intuition. The derivation of the asymptotic distributions

of such statistics is left for further research.

6.3. ML estimation of the non causal AR(1) Cauchy model

To gauge the efficiency loss due to the LS estimation of the non causal AR(1) Cauchy model,

we studied by Monte-Carlo experiments the properties of the ML estimator. Results are

displayed in Table 5. The efficiency loss of the LSE appears clearly by comparing Tables

5 and 2, but the MLE requires knowledge of the errors distribution which is a strong

assumption.
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n ρ Mean Std q0.1 q0.25 Median q0.75 q0.9
500 0.1 -0.020 4.190 -3.411 -1.029 -0.001 0.996 3.414

0.3 -0.049 3.633 -3.278 -1.010 -0.002 0.960 3.218
0.5 -0.063 3.023 -2.968 -0.960 -0.003 0.889 2.872
0.7 -0.073 2.334 -2.431 -0.824 -0.004 0.763 2.251
0.9 -0.069 1.370 -1.472 -0.509 -0.005 0.454 1.296

2000 0.1 -0.013 4.075 -3.477 -1.040 -0.000 1.011 3.409
0.3 -0.020 3.643 -3.280 -1.007 -0.003 0.984 3.221
0.5 -0.020 3.042 -2.935 -0.946 -0.001 0.917 2.877
0.7 -0.023 2.330 -2.378 -0.795 -0.000 0.775 2.319
0.9 -0.024 1.348 -1.428 -0.495 -0.001 0.481 1.368

5000 0.1 -0.012 4.323 -3.485 -1.051 -0.001 1.007 3.490
0.3 -0.018 3.721 -3.314 -1.019 -0.001 0.981 3.279
0.5 -0.017 3.074 -2.953 -0.961 -0.000 0.927 2.899
0.7 -0.012 2.358 -2.363 -0.807 -0.001 0.794 2.343
0.9 -0.007 1.372 -1.422 -0.492 0.000 0.489 1.404

Table 5: Characteristics of the empirical distribution of n(ρ̂ML,n − ρ) over 5,000 simulated paths

of non causal AR(1) Cauchy models. The empirical α-quantile is denoted qα.

7. An application

Many researchers found evidence of a speculative bubble in the series of the Nasdaq com-

posite price index (see Homm and Breitung (2012), Phillips et al. (2011), and the references

therein). Figure 5 plots the monthly time series of the Nasdaq real price7 from February

1973 to December 2012. To gauge the adequacy of the noncausal Cauchy AR(1) model,

we use the same data set as Phillips et al. (2011): the sample under study covers the

period from February 1973 to June 2005 and comprises 389 observations. We introduce the

statistics

Z∗
n =

n

log n

∣∣∣∣
R∗

n

ρ̂n(1 + 2ρ̂n)

∣∣∣∣ , Zn =
n

logn

∣∣∣∣
Rn

ρ̂n(1 + 2ρ̂n)

∣∣∣∣ .

Proposition 5.3 shows that the adequacy of the model is rejected at level α ∈ (0, 1) if

Z∗
n > ζ1−α, where ζ1−α is the (1 − α) quantile of the variable |XY |, using for instance the

statistics Z∗
n. The results displayed in Table 6 (left panel) show that the null hypothesis of

a noncausal Cauchy AR(1) model cannot be rejected at any reasonable level for the tests

based on Zn or Z∗
n. The p-values are obtained from 1, 000, 000 simulations of the variable

|Y |X of Proposition 5.3. In view of Proposition 5.4, if the DGP was a unit-root or near

unit-root model of the form (5.10) under A0-A1, the statistics Zn and Z∗
n would converge

7The Consumer Price Index (CPI), which can be obtained from the Federal Reserve Bank of St.

Louis, was used to convert nominal prices into real prices.
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to infinity in probability. Thus, the probability that the p-value be arbitrarily close to 1

should converge to 1. The results clearly do not support this hypothesis. In other words,

the test procedures confirm what is seen on Figure 5. Indeed, the local explosive behaviour

is more visible than the slight global stochastic trend.

Finally, we estimated the Cauchy AR(1) model with Gaussian component in (4.7). To

compute the CF estimator, we used a discrete set up based on a grid (u1, λ1), . . . , (um, λm)

for evaluating of the integral in (4.12). A preliminary estimator was obtained using a

uniform weighting function W (·). The estimator in (4.12) is thus obtained as

θ̂n = arg min
θ∈Θ

m∑

i=1

|Ψ̃n(ui, λiui)−Ψ(ui, λiui)|2.

We then considered the weight function

Wθ(u, λ) = [Var(cos{u(Zt + λZt+1)})]−1 = {0.5(1 + Ψ(2u, 2λu))− {Ψ(u, λu)}2}−1.

where the CF function Ψ is evaluated at the parameter θ. The second step estimator is

thus obtained as

θ̂∗
n = arg min

θ∈Θ

m∑

i=1

|Ψ̃n(ui, λiui)−Ψ(ui, λiui)|2Wθ̂n
(ui, λi).

The results of Table 6 (right panel) (obtained for the grid u ∈
{0.0005, 0.001, 0.01, 0.1, 0.5, 1, 2, 3, 5} and λ ∈ {0.1,−0.2, 0.5,−1,−0.5, 1, 2,−2, 5}) confirm

the existence of a non-causal Cauchy AR coefficient close to 1, while the Gaussian part

presents a relatively small AR coefficient. The causal part is thus clearly stationary.

ρ̂n Z∗
n Zn pval(Z∗

n) pval(Zn)

0.998 0.980 1.030 0.341 0.333

ρ̂n r̂n ĉn σ̂n

0.978 0.263 1.377 1.048

Table 6: NASDAQ index : Testing adequacy of the Cauchy AR(1) model (left panel); Cauchy

AR(1) model with a Gaussian component (right panel).

8. Concluding remarks

By considering a noncausal AR(1) process, with α-stable noncausal innovations, we have

derived special nonlinear features of its causal representation, such as locally explosive

7The rejection of nonstationarity was expected since the objective of the transformation of nom-

inal prices to real prices is to eliminate global trend effects.
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Figure 5. Real Nasdaq prices from February 1973 to December 2012.

features. The basic noncausal α-stable AR(1) process can be used as a cornerstone to

create local explosions in dynamic models, with different magnitudes and rates of explosion

by aggregation. We have seen that the noncausal Cauchy AR(1) process features a unit

root. This questions the interpretation of the unit root hypothesis. Indeed, a unit root

can represent a global explosive behaviour (stochastic trend) as well as a local explosion

(bubble). We discussed the interpretation of the standard tests introduced in the literature

to detect bubbles. These tests are often designed for detecting global explosions rather than

local ones. We also highlighted the possibility to predict the times at which bubbles collapse.

The analysis of our paper may help explain why mixed causal-noncausal linear AR models

with heavy-tailed errors provide good fit on a large number of macroeconomic and financial

time series. Indeed, these models are able to represent jumps, bubbles, and more generally

asymmetric peaks with different speeds of increase and decrease. Such nonlinear features

are often encountered in speculative markets, such as the market of physical commodities

or the market of electronic currencies as the bitcoin (see e.g. Gouriéroux, Hencic (2015)).
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Appendix: Proofs and complementary results

A. Proofs

A.1. Proof of Proposition 3.1

For α 6= 1, the characteristic function of Yt is

E[exp(ivYt)] =

∞∏

h=0

E[exp{ivρhεt+h}]

= exp

∞∑

h=0

(−σα|v|α|ρ|hα
{
1− iβ (sign v)

(
sign(ρ)h

)
tan

(πα
2

)}
)

= exp

{
−σα|v|α

(
1

1− |ρ|α − iβ (sign(v))

1− sign(ρ)|ρ|α tan
(πα

2

))}

= exp

{
−
(

σ

(1 − |ρ|α)1/α
)α

|v|α
(
1− iβ (sign(v)) (1− |ρ|α)

1− sign(ρ)|ρ|α tan
(πα

2

))}
.

This is the characteristic function of a stable distribution whose asymmetry parameter

depends on the sign of ρ. For α = 1, we have

E[exp(ivYt)] =

∞∏

h=0

E[exp{ivρhεt+h}]

= exp

{ ∞∑

h=0

−σ|v||ρ|h − ivβσ
2

π

∞∑

h=0

ρh log |vρh|
}

= exp

{ −σ|v|
1− |ρ| − ivβσ

2

π

(
log |v|
1− ρ

+
ρ log |ρ|
(1− ρ)2

)}
.

A.2. Proof of Proposition 3.2

i) Let us first show that the causal Markov property holds (see also Cambanis and Fakhre-

Zakeri (1994), p. 217). Denote by f∗ the transition pdf in direct time and by f∗ the

transition pdf in reverse time. For any lag p, we have:

f∗(Yt|Yt−1, . . . , Yt−p) =
f(Yt, Yt−1, . . . , Yt−p)

f(Yt−1, . . . , Yt−p)

=
f(Yt)f

∗(Yt−1|Yt) . . . f∗(Yt−p|Yt−p+1)

f(Yt−1)f∗(Yt−2|Yt−1) . . . f∗(Yt−p|Yt−p+1)
=
f(Yt)f

∗(Yt−1|Yt)
f(Yt−1)

.

We deduce that the process (Yt) is also causal Markov, with causal transition:

f∗(Yt|Yt−1) =
f(Yt)f

∗(Yt−1|Yt)
f(Yt−1)

. (A.1)
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ii) Now, the forward recursive equation at horizon h+ 1 is given by

Yt−1 = ρh+1Yt+h + εt−1 + ρεt + . . .+ ρhεt+h−1

= ρh+1Yt+h + εt−1,h, say.

The backward innovation εt−1,h at lead h+1 follows a stable distribution with tail exponent

α. Letting fε,h denote the pdf of εt−1,h, the pdf of Yt−1 given Yt+h is thus the function

y 7→ fε,h{y − ρh+1Yt+h}. By the Bayes formula, the pdf of Yt+h given Yt−1 = y is thus the

function

g : x 7→ fε,h{y − ρh+1x}fY (x)/fY (y),

where fY denotes the marginal pdf of Yt. If |β| 6= 1, the support of the stable pdf of εt−1,h

and Yt is R. It follows that when x→ ±∞,

g(x) ∼ C(y)|x|−α−1|y − ρh+1x|−α−1 ∼ C∗(y)|x|−2(α+1),

where C(y) and C∗(y) are constants depending on y, which may change according to whether

x → +∞ or x → −∞. Thus the integral of |x|pg(x) over any infinite interval excluding 0

(resp. over any finite interval including 0) is finite iff p < 2α+ 1 (resp. p > −1).

Now if |β| = 1, the support of the stable pdf of εt−1,h and Yt is either R
+ or R

−. It

follows that when ρh+1 > 0, the support of the density g is a compact; when ρh+1 < 0 it is

bounded below or above. Thus we have established the proposition.

A.3. Proof of Proposition 3.3

When β = 0, we have, by the arguments used to obtain Proposition 3.1,

Yt ∼ S
(
α, 0,

σ

(1− |ρ|α)1/α , 0
)
, εt−1,h ∼ S

(
α, 0, σ

(
1− |ρ|(h+1)α

1− |ρ|α
)1/α

, 0

)
.

It follows that, for any u ∈ R,

E
(
eiuYt−1 | Yt+h

)
= eiuρ

h+1Yt+hE
(
eiuεt−1,h | Yt+h

)

= exp

{
iuρh+1Yt+h − |σu|α 1− |ρ|(h+1)α

1− |ρ|α
}
,

and thus for any u, v ∈ R,

E
(
eiuYt−1+ivYt+h

)
= E

{
E
(
eiuYt−1 | Yt+h

)
eivYt+h

}

= exp

{
−|σu|α 1− |ρ|(h+1)α

1− |ρ|α
}
E
{
ei{v+uρh+1}Yt+h

}

= exp

{
−
(
|u|α(1 − |ρ|(h+1)α) + |v + uρh+1|α

) σα

1− |ρ|α
}
.
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Thus, for u > 0 and ρh+1 > 0,
[
∂

∂u
E(eiuYt−1+ivYt+h)

]

v=0

= −E(eiuYt−1 )
(
|u|α−1(1− |ρ|(h+1)α) + ρh+1|uρh+1|α−1

) ασα

1− |ρ|α

= −E(eiuYt−1 )|u|α−1 ασα

1− |ρ|α , (A.2)

and
[
∂

∂v
E(eiuYt−1+ivYt+h )

]

v=0

= −E(eiuYt−1)|uρh+1|α−1 ασα

1− |ρ|α (A.3)

= ρ(h+1)(α−1)

[
∂

∂u
E(eiuYt−1+ivYt+h )

]

v=0

.

On the other hand, for u 6= 0,
[
∂

∂u
E(eiuYt−1+ivYt+h )

]

v=0

= iE(Yt−1e
iuYt−1 ),

[
∂

∂v
E(eiuYt−1+ivYt+h )

]

v=0

= iE(Yt+he
iuYt−1 ).

Note that the latter expectations exist, by the Dirichlet’s test8 for improper integrals and

using the equivalent of the density of an α-stable variable in the neighborhood of infinity,

f(x) ∼ K
|x|α+1 . Therefore, for u > 0 and ρh+1 > 0,

E
{(
Yt+h − ρ(h+1)(α−1)Yt−1

)
eiuYt−1

}
= 0. (A.4)

It can be checked that for u < 0 and ρh+1 > 0 both derivatives in (A.2) and (A.3) have

opposite signs, thus (A.4) continues to hold. If now ρh+1 < 0, we obtain
[
∂

∂v
E(eiuYt−1+ivYt+h )

]

v=0

= −(−ρ)(h+1)(α−1)

[
∂

∂u
E(eiuYt−1+ivYt+h )

]

v=0

, if α 6= 1

and
[
∂

∂v
E(eiuYt−1+ivYt+h)

]

v=0

= −
[
∂

∂u
E(eiuYt−1+ivYt+h )

]

v=0

if α = 1.

Finally, we have

E
{(
Yt+h − sign(ρ)|ρ|(h+1)(α−1)Yt−1

)
eiuYt−1

}
= 0, for any u ∈ R. (A.5)

The conclusion follows from Bierens (Theorem 1, 1982).

8Let f and g denote two real functions defined on [a,∞) and regulated on every interval [a, b]

with b > a (that is, admitting left-hand and right-hand limits at all points x > a and a right-hand

limit at a). If f is decreasing and limx→∞ f(x) = 0, if supb |
∫ b

a
g(x)dx| < ∞, then the integral

∫∞

a
f(x)g(x)dx exists.
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A.4. Proof of Proposition 3.4

From the Proof of Proposition 3.2, the pdf of Yt given Yt−h = y is the function

g : x 7→ fε,h−1{y − ρhx}fY (x)/fY (y),

where fY is the marginal pdf of Yt and fε,h−1 is the pdf of
∑h−1

i=0 ρ
iεt−i. By Proposition

3.1, Yt ∼ C
(
0, σ

1−|ρ|

)
, and fε,h−1 is the pdf of the C(0, σh). The conclusion follows.

A.5. Proof of Proposition 3.5

The proof of Proposition 3.5 uses the special form of the transition pdf and is given for

σ = 1 and ρ 6= 0.

i) Let us first compute the conditional moment of 1 + (1− |ρ|)2Y 2
t . We get:

Et−1[1 + (1− |ρ|)2Y 2
t ] =

∫ +∞

−∞

1

π

1

1 + (Yt−1 − ρYt)2
[1 + (1− |ρ|)2Y 2

t−1]dYt

=
1

π
[1 + (1 − |ρ|)2Y 2

t−1]

∫ +∞

−∞

1

1 + (Yt−1 − ρYt)2
dYt

=
1

|ρ| [1 + (1− |ρ|)2Y 2
t−1].

We deduce the second equality in Proposition 3.5:

E(Y 2
t | Yt−1) =

1

|ρ|Y
2
t−1 +

1

|ρ|(1− |ρ|) . (A.6)

ii) By the same method, we can retrieve the conditional mean already obtained in Propo-

sition 3.3 using characteristic functions. Let us symmetrically compute:

Et−1[1 + (Yt−1 − ρYt)
2] =

1

π
[1 + (1− |ρ|)2Y 2

t−1]

∫ −∞

−∞

1

1 + (1 − |ρ|)2Y 2
t

dYt

=
1

1− |ρ| [1 + (1− |ρ|)2Y 2
t−1]

=
1

1− |ρ| + (1 − |ρ|)Y 2
t−1.

We deduce that:

2ρYt−1E(Yt | Yt−1) = 1 + Y 2
t−1 + ρ2E(Y 2

t | Yt−1)−
1

1− |ρ| − (1− |ρ|)Y 2
t−1

= − |ρ|
1− |ρ| + |ρ|Y 2

t−1 + ρ2E(Y 2
t | Yt−1) = 2|ρ|Y 2

t−1,
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by applying expression (A.6). Therefore, we have E(Yt | Yt−1) = signρYt−1, which provides

the first formula in Proposition 3.5.

A.6. Proof of Proposition 3.6

Since the transition pdf in reverse time being is given by:

f∗(Yt−1|Yt) =
1√
2π

1

(Yt−1 − ρYt)3/2
exp

( −1

2(Yt−1 − ρYt)

)
IYt−1−ρYt>0,

we deduce, by (A.1) and (3.7), the transition pdf in direct time is

f∗(Yt|Yt−1) =
1√
2π

(
Yt−1

Yt(Yt−1 − ρYt)

)3/2

exp

( −1

2(1−√
ρ)2

(
1

Yt
− 1

Yt−1

))

× exp

( −1

2(Yt−1 − ρYt)

)
I0<ρYt<Yt−1

.

The conclusion follows.

A.7. Proof of Proposition 4.1

We have

|Yt| =

∣∣∣∣∣∣

∫ ∑

i≥0

ρiερ,t+idπ(ρ)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

i≥0

Xt,i

∣∣∣∣∣∣
, Xt,i =

∫
ρiερ,t+idπ(ρ).

To verify that |Yt| is a.s. finite, it suffices to check that E|Yt|s < ∞. Note that, for any

integrable function H (with respect to π), the random variable
∫
ερ,tH(ρ)dπ(ρ) follows a

Cauchy distribution with scale parameter Eπ |H(ρ)|, provided the latter expectation is finite.

Therefore, the variable Xt,i follows a Cauchy distribution with scale parameter Eπ(|ρ|i).
Thus E|Xt,i|s = {Eπ(|ρ|i)}sms where, for s ∈ (0, 1), ms is the s-th order moment of the

C(0, 1). Using the elementary inequality (x + y)s ≤ xs + ys for x, y ≥ 0 and s ∈ (0, 1), we

then have

E|Yt|s ≤
∑

i≥0

E |Xt,i|s =
∑

i≥0

{Eπ(|ρ|i)}sms <∞.

Thus Yt is well defined and (4.4) holds. The Cauchy distribution of Yt follows, noting that

Eπ

{
1

1−|ρ|

}
exists under (4.3).

The strict stationarity of (ερ,t)t∈Z, for any ρ ∈ (−1, 1), entails that the joint distribution

of any n-uple (Yt1+h, . . . ,Ytn+h) does not depend of h. The strict stationarity of (Yt)

follows.

Let us now turn to ergodicity. Denote by (Ω,B, P ) the underlying probability space

and let Ω+ = R
Z
+

denote the space of all functions Z
+ 7→ R, endowed with the product
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σ-algebra A = B(R)Z+

, where B(R) is the Borel σ-algebra on R. A set B ∈ B is called

invariant for (Yt)t≥0 if there exists A ∈ A such that, for all t ∈ Z,

B = {(Yt,Yt+1, . . .) ∈ A}. (A.7)

The process (Yt)t≥0 is ergodic if any invariant set B ∈ A satisfies P (B) = 0 or P (B) = 1

(see for instance Krengel (1985), p. 26). We have, by (4.4),

Yt =
∑

i≥0

X
[i]
t+i, where X

[i]
t+i =

∫
ρiερ,t+idπ(ρ)

are independent (though not identically distributed) random variables. Let A = A0 ×A1 ×
. . . ∈ A such that (A.7) holds for all t ∈ Z. It follows that

B = {(Y0,Y1, . . .) ∈ A} ∩ {(Y1,Y2, . . .) ∈ A}

= {Y0 ∈ A0,Y1 ∈ A0 ∩ A1,Y2 ∈ A1 ∩ A2, . . .}

= {X [0]
0 +

∑

i≥1

X
[i]
i ∈ A0,Y1 ∈ A0 ∩ A1,Y2 ∈ A1 ∩ A2, . . .}.

Denoting by g the density of
∑

i≥1X
[i]
i with respect to the Lebesgue measure on R, we thus

have, using the independence between the X
[i]
i ,

P (B) =

∫
P


X [0]

0 + z ∈ A0,Y1 ∈ A0 ∩ A1,Y2 ∈ A1 ∩ A2, . . .

∣∣∣∣
∑

i≥1

X
[i]
i = z


 g(z)dz

=

∫
P
[
X

[0]
0 + z ∈ A0

]
P


Y1 ∈ A0 ∩ A1,Y2 ∈ A1 ∩ A2, . . .

∣∣∣∣
∑

i≥1

X
[i]
i = z


 g(z)dz

:=

∫
P
[
X

[0]
0 + z ∈ A0

]
G(z)dz. (A.8)

It follows that

P (B) ≤
∫
P


Y1 ∈ A0 ∩A1,Y2 ∈ A1 ∩ A2, . . .

∣∣∣∣
∑

i≥1

X
[i]
i = z


 g(z)dz

= P [Y1 ∈ A0 ∩ A1,Y2 ∈ A1 ∩ A2, . . .] .

But B = {Y1 ∈ A0,Y2 ∈ A1, . . .} entails

P (B) ≥ P [Y1 ∈ A0 ∩ A1,Y2 ∈ A1 ∩ A2, . . .] .

Hence,

P (B) = P [Y1 ∈ A0 ∩ A1,Y2 ∈ A1 ∩ A2, . . .] =

∫
G(z)dz. (A.9)
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Assume that P (B) 6= 0. Then, the set E = {z,G(z) > 0} has positive Lebesgue measure

and, by (A.8) and (A.9), we get P
[
X

[0]
0 + z ∈ A0

]
= 1 for almost all z ∈ E. But since X

[0]
0

has a continuous distribution, this entails A0 = R. By induction, we can prove that Ak = R

for all k ≥ 0, from which we deduce that P (B) = 1. To conclude, note that sets of the form

A0 ×A1 × . . . generate A. The ergodicity of (Yt)t≥0 is thus established.

A.8. Proof of Proposition 4.2

We have,

Ψ(u0, . . . , uk)

= E

[
exp

{
i

(
k∑

ℓ=0

uℓ

∫
Yρ,t+ℓdπ(ρ)

)}]

= E


exp



i




k∑

ℓ=0

uℓ

∫ ∑

j≥0

ρjερ,t+ℓ+jdπ(ρ)










= E

[
exp

{
i

∫ [k−1∑

h=0

ερ,t+h

(
h∑

ℓ=0

ρh−ℓuℓ

)
+

(
k∑

ℓ=0

ρk−ℓuℓ

) ∞∑

h=k

ρh−kερ,t+h

]
dπ(ρ)

}]
.

Note that, for any integrable function H (with respect to π), the random variable
∫
ερ,tH(ρ)dπ(ρ) follows a Cauchy distribution with scale parameter Eπ |H(ρ)|, provided

the latter expectation is finite. Thus we have,

E

[
exp

{
i

∫
ερ,tH (ρ) dπ(ρ)

}]
= exp [−Eπ |H(ρ)|] .

By the independence of the sequence (ε·,t)t∈Z, the conclusion follows.

A.9. Proof of Proposition 4.3

We have, for u ∈ (0, 1),

Ψ̃(u) = −c
∫ −u

−1

(
1− ρ+ u

1 + ρ

)
π(ρ)dρ − c

∫ 0

−u

(
1 +

ρ+ u

1 + ρ

)
π(ρ)dρ

−c
∫ 1

0

(
1 +

ρ+ u

1− ρ

)
π(ρ)dρ

= −c(1− u)

∫ −u

−1

1

1 + ρ
π(ρ)dρ − c

∫ 0

−u

(
1 + 2ρ+ u

1 + ρ

)
π(ρ)dρ

−c(1 + u)

∫ 1

0

1

1− ρ
π(ρ)dρ,
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and for u ∈ (−1, 0),

Ψ̃(u) = −c(1− u)

∫ 0

−1

1

1 + ρ
π(ρ)dρ− c

∫ −u

0

(
1− 2ρ− u

1− ρ

)
π(ρ)dρ

−c(1 + u)

∫ 1

−u

1

1− ρ
π(ρ)dρ.

Thus for u ∈ (0, 1),

∂Ψ̃(u)

∂u
= c

∫ −u

−1

1

1 + ρ
π(ρ)dρ− c

∫ 0

−u

1

1 + ρ
π(ρ)dρ − c

∫ 1

0

1

1− ρ
π(ρ)dρ,

∂2Ψ̃(u)

∂u2
= − 2c

1− u
π(−u),

and for u ∈ (−1, 0),

∂Ψ̃(u)

∂u
= c

∫ 0

−1

1

1 + ρ
π(ρ)dρ + c

∫ −u

0

1

1− ρ
π(ρ)dρ − c

∫ 1

−u

1

1− ρ
π(ρ)dρ,

∂2Ψ̃(u)

∂u2
= − 2c

1 + u
π(−u).

The formulas for π and c follow.

A.10. Proof of Proposition 5.1

The result is a consequence of Davis and Resnick (1985, Theorem 4.2). Indeed, the AR

process (Yt) admits an infinite moving average representation (3.3), in which the sequence

(εt) is i.i.d. with regularly varying tail probabilities. We have Yt =
∑∞

h=0 chεt+h with

ch = ρh and ρ < 1; so the condition (2.6) in Davis and Resnick (1985),
∑∞

h=0 |ch|δ <∞, is

satisfied for any δ > 0.

A.11. Tail behaviours in the Cauchy and Pareto cases

i) First suppose that, in (5.1), εt/σ has a standard Cauchy distribution. It follows from

the definition of an (see Proposition 5.2), that an/σ is the quantile of order 1/2n of the

standard Cauchy distribution:

an = σ
[
tan

{ π

2n

}]−1

∼ 2σ

π
n.

Elementary computation shows that, for x > 0 and ut = εt/σ,

P (|u1u2| > x) =

(
2

π

)2 ∫ ∞

0

tan−1
(y
x

) 1

1 + y2
dy := I1(x) + I2(x) + I3(x)
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where

I1(x) =

(
2

π

)2 ∫ x

0

y

x

1

1 + y2
dy ∼

(
2

π

)2
log x

x
as x→ ∞,

I2(x) =

(
2

π

)2 ∫ x

0

(y
x

)3
g
(y
x

) 1

1 + y2
dy,

where g is a function which is continuous on [0, 1], from which it follows that I2(x) =

O(1/x) as x→ ∞, and, for some constant K > 0,

I3(x) =

(
2

π

)2 ∫ ∞

x

tan−1
( y
x

) 1

1 + y2
dy ≤ K tan−1

(
1

x

)
= O

(
1

x

)
as x→ ∞.

It follows that

P (|ε1ε2| > x) ∼
(
2σ

π

)2
log x

x
as x→ ∞.

Thus

ãn ∼
(
2σ

π

)2

n logn.

ii) Now suppose that, in (5.1), |ut| = |εt|/σ is Pareto distributed. Thus P (|u1| > x) ∼
(x/x0)

−α for some x0 > 0 as x → ∞. Thus an = x0n
1/α. Elementary computation shows

that

P (|u1u2| > x) ∼ x2α0
log xα

xα
as x→ ∞.

Thus

ãn ∼ x−2
0 (n logn)1/α.

A.12. Proof of Proposition 5.2

The distribution of εt being symmetric, it follows from Davis and Resnick (1986, Theorem

4.4, ii)), that:

a2n
ãn

{ρ̃n − ρ} d→




∞∑

j=1

{ρ(ℓ+ j) + ρ(ℓ− j)− 2ρ(ℓ)ρ(j)}Sj/S0




ℓ=1,...,M

where, in view of the MA(∞) representation (3.3), for h ≥ 0,

ρ(h) = ρ(−h) =
∑∞

j=0 ρ
jρj+h

∑∞
j=0 ρ

2j
= ρh.

The convergence in (5.5) follows. Results for the particular cases follow from Appendix A.11.

For the Cauchy distribution, i) shows that a2n/ãn ∼ n/ logn. For the Pareto distribution,

ii) shows that a2n/ãn ∼ (n/ logn)1/α.
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A.13. Proof of Proposition 5.3

Let us denote, for i ≥ 0,

Cn(i) =

n∑

t=1

YtYt−i, Dn(i) =

n∑

t=1

εtεt−i,

with by convention Yt = εt = 0 for t ≤ 0. By Davis and Resnick (1986, Theorem 3.3), we

have the following weak convergences for the partial sums of the i.i.d. process:

(a−2
n Dn(0), ã

−1
n Dn(1), . . . , ã

−1
n Dn(h))

d→ (S0, S1, . . . , Sh),

where the variables Si are as in Proposition 5.2. Up to some negligible terms, we have,

n−1∑

t=1

ε̂2t =

n−1∑

t=1

{εt + (ρ− ρ̂n)Yt+1}2

= Dn(0) + 2(ρ− ρ̂n){Cn(1)− ρCn(0)}+ (ρ− ρ̂n)
2Cn(0)

= Dn(0)− (ρ− ρ̂n)
2Cn(0).

Since a−2
n Cn(0) converges in distribution (Theorem 4.2 in Davis and Resnick, 1985), we

have:

a−2
n

n−1∑

t=1

ε̂2t = a−2
n Dn(0) +OP (a

−2
n ãn)

2. (A.10)

We also have:

n−1∑

t=1

ε̂tε̂t−1 =
n−1∑

t=1

{εt + (ρ− ρ̂n)Yt+1}{εt−1 + (ρ− ρ̂n)Yt}

= Dn(1) + (ρ− ρ̂n){Cn(2)− 2ρCn(1) + Cn(0)}+ (ρ− ρ̂n)
2Cn(1).

Now, by using the MA(∞) representation (3.3), for h ≥ 0,

Cn(h) =
n∑

t=1


∑

i≥0

ρiεt+i




∑

i≥0

ρiεt+i−h




=
n∑

t=1

∑

i≥0

ρ2i+h(εt+i)
2 +

n∑

t=1

∑

i,j≥0,i6=j

ρi+j+hεt+iεt+j .

By Davis and Resnick (1986, Propositions 4.2 and 4.3), we have

a−2
n

n∑

t=1

∑

i≥0,i6=j

ρi+j+hεt+iεt+j → 0 in probability,

a−2
n




n∑

t=1

∑

i≥0

ρ2i+h(εt+i)
2 −

∑

i≥0

ρ2i+hDn(0)


 → 0 in probability,
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and thus

a−2
n

(
Cn(h)−

ρh

1− ρ2
Dn(0)

)
→ 0 in probability.

Moreover, we have

ρ̂n − ρ = {Cn(0)}−1
n∑

t=1

Ytεt−1 = {Cn(0)}−1
∑

i≥0

ρiDn(i + 1).

Therefore

ã−1
n

n−1∑

t=1

ε̂tε̂t−1 = ã−1
n Dn(1)− ã−1

n

∑

i≥0

ρiDn(i+ 1)
Cn(2)− 2ρCn(1) + Cn(0)

Cn(0)
+ oP (1)

= ã−1
n Dn(1)− ã−1

n {1− ρ2}
∑

i≥0

ρiDn(i + 1) + oP (1)

= ρ2ã−1
n Dn(1)− ã−1

n {1− ρ2}
∑

i≥1

ρiDn(i + 1) + oP (1).

Together with (A.10), this establishes (5.7).

To get the asymptotic distribution of Rn under the assumptions of Proposition 5.3, write

Rn = Un/Vn where Un =
∑n

t=3 ε̂tε̂t−1 and Vn =
∑n

t=2 ε̂
2
t . Similarly, let R∗

n = U∗
n/V

∗
n where

U∗
n =

∑n−1
t=2 ε̂tε̂t−1 and V ∗

n =
∑n−1

t=1 (ε̂t)
2. We note that

Vn − V ∗
n =

n∑

t=2

(Yt − ρ̂nYt−1)
2 −

n−1∑

t=1

(Yt − ρ̂nYt+1)
2 = (1− ρ̂∗2n )(Y 2

n − Y 2
1 ),

Un − U∗
n =

n∑

t=3

(Yt − ρ̂nYt−1)(Yt−1 − ρ̂nYt−2)−
n−1∑

t=2

(Yt − ρ̂nYt+1)(Yt−1 − ρ̂nYt)

= (1− ρ̂2n)(YnYn−1 − Y2Y1).

By the stationarity of (YnYn−1), we have anYnYn−1 → 0 in probability as n → ∞, for

any deterministic sequence (an) converging to zero. Because V ∗
n = OP (n), it follows that

(n/ logn)1/αYnYn−1/V
∗
n tends to zero in probability when α ≥ 1. By the same argument

we find that

n

logn
(R∗

n − Rn) =
n

logn

U∗
n − Un

V ∗
n

+
n

logn

Un

VnV ∗
n

(V ∗
n − Vn) → 0,

in probability as n → ∞. Therefore, the asymptotic distributions of n
lognRn and n

lognR
∗
n

are the same when α ≥ 1.

Now we turn to the Cauchy case. In view of the independence between S1 and the Sj

for j ≥ 2, the right hand side has the same distribution as the variable ρ(1 + 2ρ)S1/S0. By

the arguments used to obtain (5.6), the last part of Proposition 5.3 is established.
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A.14. Proof of Proposition 5.4

We have

1√
n

n∑

t=3

ε̂tε̂t−1 =
1√
n

n∑

t=3

{ξt + (1− ρ̂n)Yn,t−1}{ξt−1 + (ρ̂n − 1)Yn,t−2}

=
1√
n

n∑

t=3

ξtξt−1 +
1√
n
X1n +

1√
n
X2n,

where

X1n = n(1− ρ̂n)

(
1

n

n∑

t=3

Yn,t−1ξt−1 +
1

n

n∑

t=3

Yn,t−2ξt

)
,

X2n = {n(1− ρ̂n)}2
1

n2

n∑

t=3

Yn,t−1Yn,t−2.

Phillips (1987) established the following weak convergence for the near unit root process

(5.10):

(Z1n, Z2n) =

(
1

n2

n∑

t=1

Y 2
n,t,

1

n

n∑

t=1

Yn,t−1ξt

)
d→ (Z1, Z2)

for some real random variables Z1 and Z2 depending on c. It follows that, by the continuous

mapping theorem,

X1n = Z−1
1n Z2n{anZ2n + σ2 + a−1

n Z2n + oP (1)} d→ Z−1
1 Z2(2Z2 + σ2),

and thus 1√
n
X1n → 0 in probability. Similarly, 1√

n
X2n → 0 in probability. It follows that

1√
n

n∑

t=3

ε̂tε̂t−1
d
=

1√
n

n∑

t=3

ξtξt−1
d→ N (0, σ4

ξ ).

We also have

1

n

n∑

t=3

ε̂2t =
1

n

n∑

t=3

{ξt + (1− ρ̂n)Yn,t−1}2 =
1

n

n∑

t=3

ξ2t +
1

n
X3n +

1

n
X4n,

where

X3n = 2(1− ρ̂n)

n∑

t=3

Yn,t−1ξt, X4n = {n(1− ρ̂n)}2
1

n2

n∑

t=3

Y 2
n,t−1.

By arguments already used,

1

n

n∑

t=3

ε̂2t =
1

n

n∑

t=3

ξ2t + oP (1) = σ2
ξ + oP (1).

The convergence in probability of n|Rn|/ logn to infinity follows. The convergence of

n|R∗
n|/ logn is established similarly.
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B. Causal conditional cdf

Tedious computation in the Cauchy case, using the conditional density function derived in

Proposition 3.4, allows to obtain the conditional cdf.

Proposition B.1. The causal conditional cdf of the noncausal Cauchy linear AR pro-

cess is given, for σ = 1, by:

F (Yt|Yt−1) =
α(Yt−1, ρ

∗)

π
log

{
1 + (1− |ρ∗|)2Y 2

t

1 + (Yt−1 − ρ∗Yt)2
ρ∗2

(1− |ρ∗|)2
}

+
β(Yt−1, ρ

∗)

π

{π
2
− sign(ρ∗) tan−1(Yt−1 − ρ∗Yt)

}

+
1− β(Yt−1, ρ

∗)

π

{
tan−1[(1− |ρ∗|)Yt] +

π

2

}
,

where

α(Yt−1, ρ
∗) =

ρ∗(1− |ρ∗|)2Yt−1

(1− 2|ρ∗|)2 + (1− |ρ∗|)2Y 2
t−1

,

β(Yt−1, ρ
∗) =

|ρ∗|{(1− |ρ∗|)2Y 2
t−1 − (1− 2|ρ∗|)}

(1− 2|ρ∗|)2 + (1− |ρ∗|)2Y 2
t−1

.

Examples of conditional cdf are displayed in Figure 6, for ρ = ±0.9 and different values

of Yt−1. For the same values, examples of functions Φ−1[F (· | Yt−1)] are displayed in Figure

7.

C. Causal strong nonlinear AR representation

We consider the nonlinear (or generalized) causal innovations of the process [see e.g. Rosen-

blatt (2000), Corollary 5.4.2, and Gouriéroux and Jasiak (2005)]. For a Markov process,

the nonlinear innovations are defined in a unique way if they are standard Gaussian, i.i.d.,

and in an increasing relationship with Yt conditional on Yt−1.

Denote by F (·|y) the conditional cumulative distribution function (cdf) of Yt given

Yt−1 = y. The Gaussian nonlinear innovations are defined by:

vt = Φ−1[F (Yt | Yt−1)], (C.1)

where Φ is the cdf of the standard normal. Processes (Yt) and (vt) generate the same

information set at any date t. Relationship (C.1) can be inverted to derive the causal
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Figure 6. Examples of conditional cdf F (· | Yt−1) of Proposition B.1, for different values of (ρ, Yt−1).
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Figure 7. Examples of functions Φ−1[F (· | Yt−1)] of Proposition B.1, for different values of (ρ, Yt−1).
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strong nonlinear AR representation of process (Yt):

Yt = G(Yt−1, vt), (vt)
i.i.d.∼ N (0, 1), (C.2)

with G(Yt−1, .) = F−1[Φ(.) | Yt−1]. (C.3)

Therefore, process (Yt) admits in reverse time a strong linear AR representation, (3.2), in

which the backward innovation εt is independent of the future Yt+1, Yt+2, . . . , and a causal

strong nonlinear representation given by (C.2)-(C.3). The forward strong nonlinear innova-

tion vt is independent of the past Yt−1, Yt−2, . . . The causal nonlinear Gaussian innovations

can be used to simulate paths of the noncausal AR process, but these paths can also be

deduced from the noncausal strong linear representation. In the first case, the simulated

path is deduced in direct time from an initial value Y0; in the second case, it is deduced in

reverse time from a terminal value YT , say. Note that simulating paths through the non-

linear Gaussian innovations requires knowing explicitly the conditional cdf. The explicit

conditional cdf in the Cauchy case was derived in Proposition B.1.

C.1. Simulations of nonlinear Gaussian innovations

For a simulated sequence (Y s
t ) of the noncausal Cauchy AR(1) process, let us consider the

associated simulated nonlinear causal Gaussian innovation as vst = Φ−1[F (Y s
t |Y s

t−1)], and

noncausal Gaussian innovations as:

ws
t = Φ−1[Fε(ε

s
t )] = Φ−1[Fε(Y

s
t − ρY s

t+1)],

where Fε(ε) =
1

π
[tan−1(ε) +

π

2
] is the cdf of the Cauchy distribution. In view of Equation

(3.6), we can also consider, for ρ 6= 0, the standardized causal innovations

ηst =
√
|ρ|(1− |ρ|) Y s

t − sign(ρ)Y s
t−1√

(1− |ρ|)2 (yst−1)
2 + σ∗2

.

We provide in Figure 8 and 9 the associated plots of vst , η
s
t , for ρ = 0.1, ρ = 0.5, ρ =

±0.9, and ws
t . While the graphs of the nonlinear Gaussian innovations vst appear similar

to simulations of independent standard Gaussian variables, the graphs of the standardized

causal innovations ηst display much more extreme values (of both signs). We report in

Table 7 some descriptive statistics for the two series, in the case ρ = 0.9, showing that

the distribution of the ηst ’s is asymmetric and strongly leptokurtic. Results not reported

here obtained for a larger sample size (n = 20000) show that the empirical variance of ηst

converges to 1, as expected. The empirical autocorrelation functions of vst , η
s
t , (v

s
t )

2, (ηst )
2,
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mean stand. dev. skewness exc. kurtosis

vst 0.026 0.963 0.133 0.094

ηst 0.018 0.792 0.392 8.164

Table 7: Descriptive statistics for the nonlinear Gaussian innovations vst and the standardized

causal innovations ηs
t of Figure 8 for ρ = 0.9.

displayed in Figure 10 for ρ = 0.9, confirm the absence of autocorrelation of the nonlinear

Gaussian innovations, the standardized causal innovations and their square. Similar graphs

were obtained for the other values of ρ.

C.2. The pattern of impulse response

We follow the definition of shocks by means of the causal innovations of the observable

process (Yt), that is, the approach developed by Sims (1980). The paths are also required

when we want to analyze causal impulse responses. The procedure is the following one:

i) From any simulated path vst , t varying, of the causal nonlinear Gaussian noise, we de-

duce a simulated path (Y s
t ) of the process by applying recursively the formula: Y s

t =

G(Y s
t−1, v

s
t ), t = 1, 2 . . . , with some initial value Y s

0 .

ii) The effect of a transitory shock of magnitude δ at time τ is deduced by computing

recursively: for t = 1, 2 . . . ,

Y s
t (δ) = G{Y s

t−1(δ), v
s
t (δ)}, with vst (δ) =





vst , t 6= τ,

vsτ + δ t = τ.

The shocks are introduced by means of the causal Gaussian nonlinear innovations (vst ).

We provide in Figure 11 the impulse response function corresponding to different mag-

nitudes δ of the transitory shock for one simulation. We observe a transitory effect of the

shock when it occurs at a standard period, and a more persistent effect when the shock oc-

curs at the beginning of an explosive bubble. The procedure could be replicated to evaluate

the uncertainty in the effect of shocks.
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Figure 8. Nonlinear Gaussian innovations vst = Φ−1[F (Y s
t |Y s

t−1)] (left panels) and standard-

ized causal innovations ηs
t of equation (3.6) (right panels) for the simulations of Figure 3 (ρ =

0.1, 0.5, 0.9,−0.9 from up to bottom).
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Figure 9. Noncausal innovations ws
t = Φ−1[Fε(ε

s
t)] for the simulations of Figure 3.
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Figure 10. Empirical autocorrelation functions of vst , η
s
t , (v

s
t )

2, (ηs
t )

2 (from left to right and up to

bottom) for the simulations of Figure 8 with ρ = 0.9).
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