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Abstract

In this paper, we address the task of appearance based

person reidentification in infrared image sequences. While

common approaches for appearance based person reidenti-

fication in the visible spectrum acquire color histograms of

a person, this technique is not applicable in infrared for ob-

vious reasons. To tackle the more difficult problem of per-

son reidentification in infrared, we introduce an approach

that relies on local image features only and thus is com-

pletely independent of sensor specific features which might

be available only in the visible spectrum. Our approach

fits into an Implicit Shape Model (ISM) based person de-

tection and tracking strategy described in previous work.

Local features collected during tracking are employed for

person reidentification while the generalizing appearance

codebook used for person detection serves as structuring

element to generate person signatures. By this, we gain an

integrated approach that allows for fast online model gen-

eration, a compact representation, and fast model match-

ing. Since the model allows for a joined representation of

appearance and spatial information, no complex represen-

tation models like graph structures are needed. We evaluate

our person reidentification approach on a subset of the CA-

SIA infrared dataset.

1. Introduction

A common task in visual surveillance is the tracking of

persons. In many cases, it is not sufficient to track a person

when it continuously appears in the camera’s field of view,

but to also determine if a person that enters the cameras field

of view has been seen before. In typical surveillance situ-

ations, this reidentification of persons cannot be conducted

by using common biometric approaches like face recogni-

tion, because the persons faces may not always be visible

and the camera resolution may not be sufficient to allow for

face recognition at all. In these cases, person reidentifica-

tion can be performed just on global appearance informa-

tion of the person assuming that a person wears the same

clothes in the time period that is relevant for reidentifica-

tion. In this paper, we focus on reidentification situations

where this assumption holds. Since the ability for surveil-

lance at night becomes more and more important, the use

of infrared cameras for surveillance applications increases,

too. This is only consequent because typical surveillance

scenarios mainly involve the surveillance of people which

makes thermal sensors well suited. For that reason, surveil-

lance tasks like person reidentification have to be tackled

in infrared data too. In this paper, we face the task of per-

son reidentification in infrared and present an integrated ap-

proach, that uses local image features for person detection,

tracking and reidentification.

While some approaches focus on person tracking in in-

frared [9, 4, 13, 18], only little research tackles the task of

appearance based person reidentification in infrared. This

is most likely due to the inherent difficulties for person rei-

dentification that exists here. Most person reidentification

approaches for the visible spectrum focus on using color,

especially color histograms, for object reidentification (e.g.

[15]). Here, a lot of effort has been put into building color

models that can be used to track people in camera networks

[16, 8, 7]. Besides the drawback of relying on an object

segmentation (which is only obtainable when making re-

striction on the application scenario), these approaches are

obviously not applicable in infrared data. Some of the ap-

proaches proposed for the visible spectrum rely on local im-

age features and thus might be applicable for infrared data

too: Hamdoun et al. [6] proposed a person reidentification

approach based on SURF (Speeded Up Robust Features [3])

like features. Here, person reidentification is carried out by

a KD-tree. This allows for fast matching of person mod-

els and thus efficient database queries. A drawback that we

see in this approach is that no spatial information of fea-

tures, and thus no dependencies between features are used.

In addition, this approach does not seem to be integrated in

a tracking framework as they evaluate their system with (as

it seems) hand selected frames. In their approach, there is

no means to create a distinct model since the feature selec-

tion seems somehow random. Gheissari et al. [5] propose
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a person reidentification approach which uses a combina-

tion of salient edgel and color histograms. Arth et al. [2]

introduce a related reidentification approach for cars. Here,

visual words are used to built an object fingerprint which is

used for comparison with other instances of the same object

class (here cars).

In this work, we propose a local feature based person

reidentification approach that is related to the approach of

Arth et al. [2] in such a way that we use visual words for

person reidentification. Since people are articulated ob-

jects and usually have only little structural differences (un-

like different types of cars) which can be spotted using bag

of features like methods, we introduce an extended model

that suits the needs in person reidentification. In addition,

our reidentification approach is integrated with a local fea-

tures based person detection and tracking approach and thus

completely self contained and most independent of specific

application scenarios (e.g. the overall approach is applica-

ble for moving cameras, too). By using only SIFT [14] for

all three tasks, the approach is most independent of sensor

specifics too - the overall approach can be applied to data

in the visible spectrum without modifications. In contrast to

approaches like [17], where an explicit feature based graph

representation is build for person tracking based on local

features, our approach builds on an Implicit Shape Model

(ISM) based person detection and tracking strategy. The

codebook used for person detection can be used for index-

ing the local features which are collected during tracking for

person reidentification. By using this general appearance

codebook as a basis structure for person instance models,

we gain an integrated approach that allows for fast online

model generation, a compact representation and fast model

matching. Since it allows for a joined representation of ap-

pearance and spatial information, it makes more complex

feature representations like graph structures [17] unneces-

sary in our context. Another major advantage of our ap-

proach is that a reidentification decision can be made at ev-

ery point during tracking and no artificial frame or sequence

selection has to be applied like in other reidentification ap-

proaches. This makes the integrated detection, tracking and

reidentification approach well suited for real world surveil-

lance tasks.

In what follows, section 2 gives an overview of the de-

tection and tracking approach we build on. Section 3 in-

troduces our person reidentification strategy, which is eval-

uated in section 4 for infrared image sequences. Section 5

concludes this paper.

2. Person detection and tracking

2.1. Detection

We build our work on the infrared pedestrian detector

described in [11] (see [12] too). A brief overview of this de-

tection approach is given in Fig. 1. In a training stage, SIFT

features are extracted from training samples. After a clus-

tering stage where feature prototypes are built, an Implicit

Shape Model (ISM) records the spatial occurrence of fea-

tures in terms of object center offsets. This non-parametric

feature distribution together with the appearance prototypes

build the codebook for the trained object class. To de-

tect objects in input images, the codebook prototypes are

matched with SIFT features extracted from the input image.

Matching features cast votes for object center locations (de-

termined by the training ISM) in a three dimensional Hough

voting space comprising two dimensions (x,y) for image

location and one (s) for scale. To find object hypotheses,

a maxima search is conducted in this voting space. For

fast initialization of the search, initial maxima are defined

by maxima in a grid partitioning and afterwards refined by

mean shift. The most important part for the remainders is

that object detection provides us with a set of object hy-

potheses which include disjoint image feature sets which

lead to the hypotheses. Since all features in a hypothesis

passed codebook matching to be included in a hypothesis,

they are annotated with a codebook entry (index) and an

object center offset. This is important for person reiden-

tification because this information is used to build person

instance models.

2.2. Tracking

The tracking approach [10] used in this context builds

on the detection approach described in section 2.1 and con-

ducts tracking based solely on local SIFT features. The

principle approach works by a propagation of hypotheses

on the feature level from one point in time to the next. By

that, tracking – especially identity preservation – is auto-

matically pursued and integrated into the object detection

approach by fusing expectations and new data.

Most important for person reidentification is, that track-

ing provides person identities for temporally connected ap-

pearances of a person in the scene. Additionally, it provides

SIFT features which were collected during tracking (and by

that tracking was conducted). As was shown in [10], this

tracking approach is perfectly suited to track person through

short term occlusions. Even more important for person rei-

dentification, tracking automatically builds and updates per-

son models during tracking by feature propagation. These

models are volatile in such way, that they are adapted con-

tinuously to integrate appearance changes of the modeled

person. This means, that new features are integrated into

the model and other features are removed from the model to

provide the best estimate of current person state. In contrast

to this short term tracking model, that integrates only the re-

cent history, for person reidentification, a long term model

that integrates the whole appearance history of a person is

necessary. This model must integrate as much appearance
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Figure 1. Overview of the object detection approach. Local features found on training samples are clustered in descriptor space to build a

general person codebook. Cluster centers are prototypes for descriptors representation, object center offsets build the spatial distribution.

To detect persons in an input image, local features extracted from the input image are matched with the codebook prototypes. Codebook

offsets cast votes for object center locations in a 3D voting space. Maxima found in this voting space by mean shift define object hypotheses.

information as possible, since, due to viewpoint and artic-

ulation changes, the appearance of a person changes over

time. To be able to reidentify a person, this versatile in-

formation has to be integrated into a single model. This is

challenging due to the information amount that is collected

during tracking. The goal is to store this information in an

efficient representation form without loosing too much in-

formation or generalizing to much. Additionally, this rep-

resentation form should be capable of serving as a basis for

matching the model with other models.

3. Person reidentification

The main idea for person reidentification is to use the

codebook structure as a basis to build and match person

models. For that, local features which are collected dur-

ing tracking are indexed using the codebook entries. This

indexing serves two purposes. First, the codebook indexes

serve as structural component for the model in such a way

that features which have the same codebook index must

have a similar visual appearance (since they have been ac-

tivated by the same codebook entry in detection, the simi-

larity of visual appearance is thus defined by the matching

radius in object detection. See [11] for details.). Second,

the codebook indexing of models can be used for efficient

matching of feature models.

3.1. Identity model generation

During tracking, we collect features that are found in a

specific person hypothesis. These features are then inte-

grated into our person model for reidentification. For a time

T we have a set of currently perceived (image) features Φζ
T

of a hypothesis ζ. Since all these features passed the person

detection to be included in the hypothesis feature set, the

involvement of every image feature resulted from a match

with a specific codebook prototype. Since we only use a

single vote of each image feature (see [11]), the connection

between an image feature that was involved in a person hy-

pothesis and codebook prototype is decisive. This decisive

connection between image feature and codebook entry is

used to build a model based on codebook indexing. For that,

all features in the hypothesis feature set are assigned to the

according codebook entry at every tracking step. Although

the codebook can serve as structure to organize features, it

does not reduce the amount of data that is collected during

tracking in form of local feature descriptors. To generate a

compact model representation, we build descriptor clusters

in each model entry during tracking. For that, every new

image feature that is added to the model is matched with all

existing feature descriptor clusters in the according model

entry. If the similarity to one of the clusters (represented by

the cluster mean) is high enough, the feature is added to this

cluster and the cluster prototype is updated (weighted mean)

with the new feature, otherwise a new cluster is generated.

This approach is visualized in Figure 2. The left side shows

an excerpt of the person codebook. The middle part visu-

alizes tracking and features (visualized by image patches)

which are collected during tracking and their codebook en-

try affiliation. Note that this affiliation is a result of person

detection and no additional matching step is necessary here.

On the right side, we see a visualization of the model which

was built in tracking after these 5 steps (in fact the model

is updated continuously in every tracking iteration). This

model can afterwards be used for person reidentification by

matching it with other models. As we see, the number of

clusters depends on the visual similarity of feature descrip-

tors. In addition to the cluster prototypes and the number of

cluster entries, the object center offsets are stored to allow

for spatial consistency checking in person reidentification.

3.2. Model matching

By structuring person models with the general appear-

ance codebook, we have a compact representation structure

which can be used for fast matching as well. Using the
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Figure 2. Person model generation during single camera tracking.

SIFT features collected during training are integrated into the per-

son instance model indexed by the codebook entries which acti-

vated the feature during detection. A model entry specific on-

line descriptor clustering generates a compact model representa-

tion which, together with the spatial distribution of the features,

allows for fast matching of feature models.

codebook entries as indexes, we have a structure for feature

alignment in person model matching. To make the matching

approach even faster, we use a two stage matching strategy

which can discard models with a low similarity in the first

stage, based on the activation signature only, without match-

ing the feature descriptors. The activation signature thereby

is the time normalized activation count of codebook entries

and is built as shown in Figure 3. The use of the activation

signature allows for faster matching since no high dimen-

sional feature descriptors have to be matched, but only one

vector of the codebook dimension N for each person model.

In this matching stage, we can spot rough differences be-

tween two person but are not able to distinguish persons

that activate the same codebook structures. This finer dis-

tinction can be accomplished in the second stage where the

descriptor clusters of the model entries are compared. Here,

differences in the characteristics of certain structures are to

be spotted.

For stage 1 matching, only the activation signatures of

person models are relevant. These signatures can be di-

rectly inferred from the models that were built during per-

son tracking by counting the number of activations per

model index as shown in Figure 3. To be independent of the

time interval that a person is tracked, the feature count is

normalized with the duration of model generation (the time

the person was tracked). To match two person models ζ and

η, the time normalized activation vectors are compared:

δACA(ζ, η) =
1

N

N
∑

n=0

|
|ζn|

ζT
−

|ηn|

ηT
|. (1)

Where ηn is the number of activations of codebook entry n,

Figure 3. Activation signatures are generated by counting the acti-

vations of codebook entries during tracking and normalizing with

hypothesis lifetime. The activation signature (visualized by a strip)

of a tracked person is matched with the activation signatures in a

database of known persons to reject persons that are ineligible.

ηT is the lifetime of hypothesis η (same for ζ), and N is the

codebook dimension.

Models can be discarded in this step by application of a

threshold to the distance δACA. Since the same activation

structure is a prerequisite for a high match between two per-

son models, all models that are discarded in this stage could

not have gained a high match in the next stage. This first

stage can only discard person models which have strong

structural differences to the input model. For instance due

to different clothing (a person wearing a skirt opposed to

a person wearing pants) which leads to local differences in

person shape. With an increasing number of persons in the

database, we cannot expect the structural differences alone

to be sufficient to distinguish people since people might

where the same type of clothes. For that reason, the ca-

pability to distinguish people the appearance of which only

differs little is necessary.

To spot these detail differences between persons, the fea-

ture descriptors themselves have to be compared. For that,

the complete models including the descriptor clusters are

matched, again indexed by the codebook structure which

was used in model generation too. By that indexing, we re-

duce the amount of data that has to be matched because only

the descriptors in the same model entry have to be matched.

Since these activated the same codebook prototype in ob-

ject detection, we can expect them to represent the same

part of a person (e.g. the head) in most cases. But, since the

codebook was built only based on appearance information

and spatial similarity (in terms of object center offset) is not

demanded in a codebook entry, image features activated by

the same codebook entry might in fact refer to different ob-

389451



Figure 4. Matching of person models. Models are aligned based

on codebook entry indexing. Spatial consistency of features is

checked by matching the spatial distributions (object center offsets

= blue dots, object center = red dots). Feature descriptors which

pass the spatial consistency check are matched. For each model

entry, the minimum descriptor distance is picked.

ject parts in some cases. This might happen since different

body parts of person might look very alike (like arm and

leg), specifically when observed at a very low resolution.

To disallow matches between these components, spatial (in

terms of object center offset) match of feature descriptors

is demanded in addition to descriptor match. This ensures

spatial consistency of matching features and additionally re-

duces the amount of data that has to be processed.

The principal matching strategy is depicted in Figure 4.

Models are first aligned by their codebook activation in-

dexes. As we see, feature descriptor matching is conducted

only if their distributions have a spatial match. Green

lines indicate matches between the two models. The match

between two models is the weighted (with the activation

match) sum of all model entry descriptor matches where

each model entry is counted with its best match. The match

sum is further divided by a normalization constant that in-

cludes the length of the time interval during that the model

was built.

In detail, the overall match β between an unknown per-

son model ζ and a model in the database η is determined

by:

β(ζ, η) =

∑N
n=0

(βDS(ζn, ηn) · βAC(ζn, ηn))

φ(ζ, η)
. (2)

With βDS(ζn, ηn) being the descriptor match for model

entry n:

βDS(τ, ξ) = δMAX
DS − min(δDS(τ, ξ), δMAX

DS ). (3)

Here, the minimum of the model entry distance

δDS(τ, ξ) and a model entry distance maximum threshold

δMAX
DS is picked and subtracted from the maximum model

distance. By using this measure, we are able to trans-

form distance into similarity and additionally account for

the quality of a match. Since all distances above the thresh-

old are zeroed in the match measure, they do not have any

influence on the overall match. Here, the model entry dis-

tance δDS is the minimum distance when considering all

combinations of descriptors in a model entry (all descrip-

tors in ζn are matched with all descriptors in ηn):

δDS(ζn, ηn) = min
k,i

(δS(ζn,i, ηn,k) · δD(ζn,i, ηn,k)). (4)

Whereat δD is the descriptor match - we use the Sum of

Squared Differences (SSD) for SIFT matching - and δS is

the spatial match of the feature distributions:

δS(τ, ξ) =

{

1, if mini,k(disteukl(τi, ξk)) < δMAX
S

∞, else
.

(5)

βAC(ζn, ηn) (in 2) is the activation signature match for

model entry n:

βAC(ζn, ηn) = 1.0 − |
|ζn|

ζT
−

|ηn|

ηT
|, (6)

and φ(ζ, η) is the normalization constant that accounts

for the model generation duration ζT , the normalized sum

of activation weights
∑N

n=0

|ηn|
ηT (or ζ respectively) and the

codebook length N :

φ(ζ, η) =
ζT

( 1

N

∑N
n=0

|ζn|
ζT )( 1

N

∑N
n=0

|ηn|
ηT ))

. (7)

This normalization constant has the main effect, that match-

ing is most independent of the duration persons are tracked

for model building and the number of features which are

acquired during tracking.
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Note that this model matching approach is applicable not

only for models built during tracking but also for snapshots

(single detection) of persons. The problem in that case cer-

tainly is, that the articulation of a person has a great deal of

influence on the matching result.

4. Evaluation

We evaluate our person reidentification approach on a

subset of the infrared dataset (dataset C) of the CASIA Gait

Database [1]. This dataset was originally generated for gait

recognition purposes but it is perfectly suited for person

reidentification evaluation because is consists of annotated

short sequences of different persons. Multiple sequences

exists for each person which suits it for reidentification pur-

poses because we need at least two sequences of the same

person for evaluation. For this evaluation, we pick 15 dif-

ferent persons to build a database as basis for reidentifica-

tion. For person detection, a detector trained for infrared

persons is applied. Person models are built during tracking

with the approach described in section 2 without any artifi-

cially generated training sets. Due to possible imperfections

in tracking, the tracking, and thus the model generation du-

ration might vary for different persons. This offset is typ-

ical for real application scenarios where people stay in the

observed scene for different durations. As we depicted in

section 3, our matching model deals with these real world

problems by using normalization factors. For reidentifica-

tion evaluation, we pick a second sequence for each of the

15 persons in the database and a single sequence for 5 ad-

ditional persons which are not in the database. As we see

in Figure 5 (a) and (b), these people all look very alike and

are, even for a human being, difficult to distinguish. Using

these 20 sequences, we perform an open-set classification.

Open-set in this context means, that not all person that en-

ter the scene are in the database. For reidentification, this

means that it is to decide if a person has been seen before

(is in the database) and, if true, which person in the database

is our current person. This simulates a usual reidentification

task in surveillance scenarios where an unknown number of

people enter, leave and reenter the scene.

From that task definition, three corresponding error rates

can be derived. The false rejection rate (FRR) is the rate of

persons which could not be reidentified but actually are in

the database (so falsely classified as unknown):

FFR =
#false rejections

#known samples
. (8)

The false acceptance rate (FAR) is the rate of persons

which are accepted as known persons (the system has rei-

dentified the currently tracked person as a person inside the

database), but actually have not been seen before:

FAR =
#false acceptances

#unknown samples
, (9)

(a) Persons in the database.

(b) Persons that are not in the database and thus are to be classified as

unknown.

Figure 5. Example images of the dataset used for testing.

and the misclassification rate (MCR) is the rate of per-

sons which are identified as the wrong person:

MCR =
#misclassifications

#known samples
. (10)

A correctness measure that joins FAR and MCR is the

correct classification rate:

CCR = 1.0 − MCR − FRR (11)

=
#correct classifications

#known samples
. (12)

The distance measure used for matching a tracked per-

son with models in the database was introduced in section

3.2. Although this distance measure is most independent

of the time a person is tracked and the number of features

a model includes, it is difficult to classify people based on

an absolute match value since different people have differ-

ent characteristics which lead to differences in the number

of features which are found on a person in principle. This

principal offset for certain persons is (due to our distance

measure) uncritical regarding the relative distances to other
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Figure 6. Single frame classification rates.

persons, but it makes the choice of a global threshold diffi-

cult, specifically in an open-set classification task where this

threshold is used for rejecting persons and picking the cor-

rect person. For that reason, we base classification on the

ratio ρ of best match and second best match of the model

that has to be identified to models in the database. By that,

classification is independent of the absolute match and thus

of possible offsets induced by person characteristics or sig-

nal level issues.

The decision, whether a tracked person is classified as

a certain database entry or rejected as “not seen before”

(in surveillance tasks, a new model would be stored in the

database for this person) is based on ρ. If ρ is above a

threshold we can classify the tracked person as the best

matching database entry. Since our approach is able to pro-

vide classification results at any time during a person is

tracked, we do not have to know the whole sequence be-

fore we are able to provide a result. Our approach can thus

provide a classification result for the first frame, based only

on a single perception of the person and for the last frame

of the sequence based on the information of the whole se-

quence. To regard these two aspect of our system, we first

evaluate per frame classification and then provide classifi-

cation results per sequence.

Per frame classification results are shown in Figure 6.

The plot was generated by applying different thresholds for

classification. It shows CCR and FRR as a function of FAR.

As we see, good results are accomplished even when con-

sidering each track result separately. Another details is, that

FRR is the mirrored (at the shifted x axis) CCR. This is be-

cause MCR is infinitesimal small (and thus not plotted here)

because we have only 4 misclassifications in total for all 15

sequences, which each has about 100 frames. This means,

the correct person in the database nearly always (except 4

times for a single person) has the best match. The goal thus

mainly is to find a good threshold that separates people in

the database from those not in the database.

Single frame classification is an uncommon evaluation

method in this context since tracking provides us with a time

series of results and the decision only has to be made for the

whole track of a person once. We thus evaluate classifica-

tion when considering the whole time series. For that, we

analyze different combinations of ρ thresholds and temporal

consistency demands. The maximum classification correct-

ness is reached at a threshold of 2.2 for ρ and a temporal

consistency demand of 20%. This means, that a tracked

person is classified as a certain person in the database if

ρ exceeds a threshold of 2.2 20% of the tracked time for

this certain database entry. (In addition, this database entry

should be the best database match a minimum of 51% of the

track duration. This is always met in our experiments, since

we have only 4 frames misclassification on the total set).

Using this classification criterion, our reidentification sys-

tem has a correct classification rate of 95% which means 14

out of 15 known people are correctly reidentified and 5 of 5

unknown people are correctly classified as unknown. This

is shown in detail in Figure 7, which shows the per frame

correct classification rates for every ID separately. We see,

that the temporal cosistency demand of 20% is exceeded by

far by most persons.

The results for single frame classification (threshold

picked for Equal Error Rate (EER)) and sequence classi-

fication are summarized in Table 1.

5. Conclusion

In this paper, we presented a person reidentification ap-

proach for infrared image sequences. For that, we intro-

duced a local feature based combined person detection,

tracking and reidentification strategy that is, as a whole,

completely self contained and thus applicable indepen-

dently of specific application scenarios. For person reiden-

tification, we introduced a novel model that uses the gen-

eral appearance codebook applied for person detection as

indexing structure for reidentification and thus is able to ef-

ficiently acquire and match models. For matching models

we developed a two staged strategy, that allows for fast dis-

covery of promising models based on matching of person

signatures in the first stage and detailed analysis of models

in the second stage based on feature descriptors. We evalu-

ated the reidentification approach in a subset of the CASIA

infrared dataset. The results show good performance when

FAR FRR MCR CCR

Single frame classification 0.18 0.18 0 0.81

Sequence classification 0 0.05 0 0.95

Table 1. Reidentification results.
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Figure 7. Correct classification rates for each person separately

using a threshold of 2.2 for ρ. X-axis shows the different persons,

y-axis shows the time slice (e.g. 0.5 means 50% of the hypothesis

lifetime) the person is correctly classified (accepted as the correct

person or rejected as unknown) when demanding a minimum ρ of

2.2. We can see, that with a temporal consistency demand of 20%

(0.2), 19 out of 20 persons are classified correctly.

classifying on single frame basis and nearly perfect perfor-

mance in image sequence classification. This good perfor-

mance is remarkable since people look very alike in infrared

and are difficult to reidentify even for a lifelong trained hu-

man being. However, the sequences used for evaluation

have the major advantage that people are visible only in side

view and multiple articulation are observed in an image se-

quence. In real world scenarios this might not always be the

case. Consequently, our future work will include the anal-

ysis of articulation influence in person reidentification and

thereby mainly how to identify local features that are best

suited for person reidentification. Here, our plans include

the use of part semantics to identify promising features.
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