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ABSTRACT The learning-based hashing has recently made encouraging progress in face recognition.

However, most existing hashing methods disregard the discrete constraint during optimization, inducing the

accumulated quantization errors. In this work, we develop an effective learning-based hashingmodel, namely

local feature hashing with binary auto-encoder (LFH-BAE), to directly learn local binary descriptors in the

Hamming space. It attempts to exploit structure factors to well reconstruct the face image from binary codes.

Specifically, we first introduce a binary auto-encoder to learn a hashing function to project each face region

into high-quality binary codes. Since the original problem is a tricky combinational function, we then present

a softened version to decompose it into separate tractable sub-problems. Next, we propose an effective

alternating algorithm based on the augmented Lagrange method (ALM) to solve these sub-problems, which

helps to generate strong discriminative and excellent robust binary codes. Moreover, we utilize the discrete

cyclic coordinate descent (DCC) method to optimize binary codes to reduce the loss of useful information.

Lastly, we cluster and pool the obtained binary codes, and construct a histogram feature as the final face

representation for each image. Extensive experimental results on four public datasets including FERET,

CAS-PEAL-R1, LFW and PaSC show that our LFH-BAE is superior to most state-of-the-art face recognition

algorithms.

INDEX TERMS Binary auto-encoder, binary feature, discrete optimization, face recognition, feature

hashing.

I. INTRODUCTION

Face recognition has been a popular research topic in com-

puter vision due to its potential applications in various

real-world scenarios. Over the past thirty decades, a variety of

face recognition algorithms have been proposed in the litera-

tures [1]–[11]. These algorithms have achieved encoura-ging

recognition performance but often only in the controlled

scenarios. With the development of the social network tech-

nology and image capturing devices, there has been grown

interest in face recognition under the uncontrolled scenarios.

However, face recognition under those conditions is even

more difficult due to the unpredictability of numerous varia-

tions such as pose, occlusion, aging, illumination, expression

and resolution. According to the existing works, face repre-

sentation is the most important component of a face recog-

nition system. Therefore, the key challenge for practical face

recognition system is to obtain robust face representa-tions

that are invariant to the real-world variations.

The associate editor coordinating the review of this manuscript and

approving it for publication was Juan Wang .

In recent years, local features have been studied exten-

sively due to their stableness and robustness to local changes.

Numerous local feature algorithms have sprung up in the

field of face recognition. Based on the designing methodol-

ogy, existing local features can be classified into two cate-

gories: hand-crafted features [1], [2], [4] and learning-based

features [3], [5], [7]. Typical hand-crafted features are

local binary pattern (LBP) [1], scale-invariant feature trans-

form (SIFT) [2] and Gabor wavelets [4]. The hand-crafted

features are data-independent and usually require strong

prior knowledge to elaborately engineer them, which only

work well against the variations of the controlled scenarios.

Unlike the hand-crafted features, the learning-based features

are extracted from the raw face data in a data-driven way

and they can obtain satisfying performance in the uncon-

strained scenarios. Various learning-based features have been

proposed such as local quantized pattern (LQP) [12], dis-

criminant face descriptor (DFD) [3], compact binary fea-

ture descriptor (CBFD) [5] and context-aware local binary

feature learning (CA-LBFL) [7]. Among them, the binary

codes obtained by the learning-based hashing methods
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FIGURE 1. The framework of our proposed LFH-BAE model for face
recognition. In the training procedure, we first extract patch-wise pixel
difference vectors (PDVs) from each face image and learn an encoding
matrix R1 and an encoding bias δ1 to project the PDVs into high-quality
binary codes, which are produced in the Hamming space in a closed form.
Then, an unsupervised clustering is performed on the binary codes to
obtain a codebook D for feature pooling. In the testing procedure, we first
extract the PDVs for the testing image and then utilize the learned
encoding matrix and bias to project the PDVs into discriminative binary
codes. Finally, we use the learned codebook to pool the binary codes into
histogram feature representations.

(i.e., CBFD and CA-LBFL) show stronger discriminative

power due to their compact nature, energy saving and even

distribution.

Due to the binary constraint imposed on the binary codes,

the discrete hashing optimization is a NP-hard problem.

To simplify the solving process, the above learning-based

hashing methods follow the two-step ‘‘relaxing+threshold-

ing’’ optimization procedure to learn binary codes.

Specifical-ly, they first relax the binary constraint to obtain

continuous solutions, and then binarize the resulting values

to binary codes by thresholding. However, such traditional

two-step optimization disregards the binary nature of the

hashing codes, inducing the accumulated quantization errors

and leading to the loss of useful information. Therefore, how

to learn high-quality binary codes to eliminate the accumu-

lated quantization errors remains a central problem in face

recognition.

In this paper, we introduce a simple unsupervised binary

hashing model, dubbed local feature hashing with binary

auto-encoder (LFH-BAE), to directly learn binary codes in

the Hamming space for face representation. The proposed

LFH-BAE differs from previous binary hashing methods for

face recognition in two aspects. For one thing, the proposed

LFH-BAE combines the binary encoder with decoder, so the

encoder can receive the feedback of the decoder in the feature

learning stage. Thus, the binary auto-encoder can exploit

more salient information for subsequent feature pooling. For

another, it respects the binary nature of the problem when

implementing the discrete hashing optimization, so that the

accumulated quantization errors can be somehow eliminated.

Fig. 1 illustrates the framework of our proposed LFH-BAE

model. Firstly, we extract the patch-wise pixel difference

vectors (PDVs) from each face image and cascade them into

a large pixel difference matrix (PDM). Inspired by the fact

that local binary codes are robust to intra-class variations

and auto-encoder can capture the manifold structure, we then

introduce the binary auto-encoder to learn a hashing function

to project PDM into high-quality binary codes. It is tricky

to solve the original objective function of the auto-encoder

due to the three hard constraints imposed on the output of the

encoder. To address this, we propose a softened version of

the binary auto-encoder by introducing an auxiliary variable

to minimize the binary quantization loss. By doing so, we can

break the combinational complexity of the original problem

and convert it into separate feasible sub-problems. We put

forward an effective alternating optimization algorithm based

on the augmented Lagrange method (ALM) [13] to solve

these sub-problems, which not only can explicitly cope with

the discrete constraint, but also consider the bit-independent

constraint and bit-balanced constraint together. To deal with

the most pivotal sub-problem, i.e., discrete optimization

for binary codes, we utilize the discrete cyclic coordinate

descent (DCC) method to directly learn binary codes in the

Hamming space. The ALM-based alternating optimization

algorithm enables LFH-BAE to generate strong discrimina-

tive and excellent robust binary codes, which are very favor-

able for face recognition. Finally, we construct a codebook by

clustering on the obtained binary codes and pool them into a

high-dimensional histogram feature as the final representa-

tion for each face image. We perform extensive experiments

on FERET, CAS-PEAL-R1, LFW and PaSC datasets and

experimental results show that our proposed model outper-

forms most existing state-of-the-art methods.

The main contributions of this work are summarized as

follows:

1) We propose an unsupervised binary auto-encoder

to capture the salient structure inherent in the raw

data and learn high-quality binary features for face

representa-tion. With the well-trained binary auto-

encoder, the learned binary codes can best approxi-

mate the global data space and deliver more identity

information.

2) To reduce the combinational complexity of the orig-

inal problem, we transform the binary auto-encoder

with three constraints to a softened version by mini-

mizing the binary quantization loss, and then decom-

pose the original problem into separate tractable

sub-problems.

3) Moreover, we propose an efficient alternating

optimiza-tion algorithm based on the ALM to directly

compute the discrete solution in the Hamming space.

Our method can not only address the binary constraint,

but also take the bit-balanced and bit-independent

constraints into consideration. Thus, the accumulated

quantization errors caused by the ‘‘relaxing+threshold-

ing’’ optimizationmethod can be effectively eliminated

and high-quality binary codes can be obtained.
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4) We conduct extensive face recognition experi-

ments on four public datasets consisting of FERET,

CAS-PEAL-R1, LFW and PaSC to evaluate the effec-

tiveness and generalization ability of our LFH-BAE.

The results on these datasets demonstrate that our

model is superior to most of state-of-the-art face recog-

nition algorithms.

II. BACKGROUND AND RELATED WORKS

Since our proposed hashing model is a learning-based

binary auto-encoder for face recognition, in this section,

we concen-trate on the following three related topics: 1) face

feature learning, 2) feature representation based on auto-

encoders, and 3) binary hashing.

A. FACE FEATURE LEARNING

Recently, feature learning has made abundant achievements

in the field of face recognition [3], [14]–[19]. Lei et al. [3]

combine the image filter with the optimal soft sampling

to obtain LBP-like features. Chang et al. [14] incorporate

the sparse constraints into the low-rank regression optimiza-

tion to analysis the importance of each feature under the

PCA criteria. Aslan et al. [15] propose a multi-channel

multi-model method that uses various techniques to extract

features from multiple regions. Yi et al. [16] utilize the

Restricted Boltzmann Machines (RBMs) to learn the shared

representations from the extracted Gabor features to elim-

inate the heterogeneity locally. He et al. [17] propose

a dynamic feature matching (DFM) method, which deals

with partial face images by combining the fully convolu-

tional network (FCN) with sparse representation classifi-

cation (SRC). Liu et al. [18] propose a deep hypersphere

embedding method to learn face features with angular mar-

gin. Liu et al. [19] present a graph-based manifold learning

method to extract sparse feature representations for face

recognition.

Since the learning-based algorithms can exploit discrimi-

native information from the face data in a data-driven

way, these methods, especially the convolutional neural net-

works (CNNs), perform better than the hand-crafted meth-

ods in various face recognition tasks. However, there are

two drawbacks of CNNs in practical applications. Firstly,

the CNNs are required to estimate extensive parameters from

a large amount of labeled samples, which leads to time

consuming in the training process. Secondly, due to privacy

protection, it is very difficult to collect the labeled data in

real applications. Therefore, we propose an unsupervised

low-level feature learning algorithm for face recognition.

B. FEATURE REPRESENTATION BASED

ON AUTO-ENCODES

As a typical learning method, auto-encoder can extract struc-

ture factors inherent in the input data automatically. It has

shown its effectiveness and efficiency in various compu-ter

vision tasks [20]–[24]. Kan et al. [20] use the stacked pro-

gressive auto-encoder to extract the pose-robust features for

face recognition. Cheng et al. [21] propose a double channel

stacked sparse denoising auto-encoder (DC-SSDA) to elimi-

nate or reduce the influence of the occlusions. Gao et al. [22]

first associate the label information with the auto-encoder

to form a deep supervised auto-encoder. Then, they intro-

duce the similarity preservation term into the supervised

auto-encoder to extract robust representations for single sam-

ple per person face recognition. The work [23] employs the

stacked auto-encoder to pre-train the weights of the deep

CNN and improves the performance of the facial emotion

recognition. Xu et al. [24] use two shallow neural networks

to connect two auto-encoders to deal with the age-invariant

face recognition and retrieval problems.

The objective functions of these auto-encoder methods

are similar to that of ours. Different from these methods,

on the one hand, we only employ one layer auto-encoder

to learn projections effectively and efficiently. The reason

for choosing this strategy is that binary codes show strong

robustness to local intra-class variants. On the other hand,

there are three challenging constraints imposed on the output

of the binary encoder, so it is more difficult to optimize the

objective function than those of existing auto-encoders.

C. BINARY HASHING

Binary codes has gained increasing attention due to their high

storage efficiency, fast matching speed and strong robust-

ness in computer vision. In recent years, a lot of works

on binary hashing have emerged in the area of computer

vision [25]–[34]. Locality Sensitive Hashing (LSH) [25] is

a classic hashing method in existing hashing strategies,

which obtains hashing functions according to random pro-

jections. As an extension of the LSH, density sensitive hash-

ing (DSH) [26] exploits the geometric information of the

data to generate hashing codes consistent with the distribu-

tion of data points. The work [27] introduces an effective

sparse regularizer in the objective function to improve the

computational efficiency and solve the overfitting problem.

Zhu et al. [28] propose a discrete semantic transfer hash-

ing (DSTH) method to exploit the auxiliary contextual pat-

terns to enhance the semantics of hashing codes for image

retrieval. He et al. [29] present a bidirectional discrete matrix

factorization hashing (BDMFH) model to force the hash-

ing codes to inherit the latent structure of the raw data.

Supervised discrete multi-view hashing (SDHM) [30] applies

the integrated multi-view feature mapping and latent binary

coding to the image data to learn discriminative hashing

codes. Robust discrete code modeling (RDCM) [31] uses

the ℓ2,p norm to restrain the impact of the unreliable dis-

crete codes and noise labels. The collective reconstructive

embeddings (CRE) [32] method employs specific hashing

modalities for varying modes to reduce the loss of detailed

information. Xu et al. [33] develop a discrete cross-modal

hashing (DCH) method to exploit the discriminative infor-

mation of the class labels to learn unified hashing codes for

cross-modal retrieval. Han et al. [34] employ the residual net

architecture into the hashing model to address the uneven
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TABLE 1. Notations and their descriptions in this paper.

distribution problem. However, these available hashingmeth-

ods are proposed for visual search.

Some learning-based hashingmethods are also put forward

for face recognition. For example, Lu et al. [5] propose a

compact binary feature descriptor (CBFD) method to learn

compact binary features for face representation in an unsuper-

vised way. They then develop a simultaneous local binary fea-

ture learning and encoding (SLBFLE) [6] approach to jointly

learn the projection matrix and the codebook (also known as

dictionary) for each face patch to obtain discriminative face

representations. The work [7] presents a context-aware local

binary feature learning (CA-LBFL) method, an improvement

of CBFD, which exploits the contextual information within

each binary feature to extract more robust information. How-

ever, these algorithms ignore the discrete constraint in the

binary hashing optimization, causing the loss of useful infor-

mation and obtaining inferior hashing functions. In contrast,

our proposed LFH-BAE respects the discrete nature of the

binary codes and constrains the hashing optimization in the

Hamming space to obtain high-quality hashing functions.

III. LOCAL FEATURE HASHING WITH

BINARY AUTO-ENCODER

In this section, we first describe how to extract the PDM

from a face image patch. Then, we present the formu-

lation and optimization process of LFH-BAE in details.

Finally, we show the face representation process based on the

LFH-BAE. The notifications of this work are summarized in

table 1.

A. THE EXTRACTION PROCESS OF PDM

Since PDV measures the difference between the central pixel

and the neighboring ones of the same patch, it can encode

important visual patters [5], and we utilize the PDVs to learn

the face feature representation. Let � = {�1, �2, · · · , �n}
be the training set including n original face samples, where�i

is the ith face image and 1 ≤ i ≤ n. We extract the patch-wise

PDVs from each face image and cascade them into a PDM.

AllN PDV samples of the training set are grouped into a large

PDM X = {x1, x2, · · · , xN }, where xj ∈ R
d is the j− thPDV

and 1 ≤ j ≤ N . Fig. 2 illustrates the extraction approach

of the PDM from an original face image. The neighbors of

each pixel of the original image are considered within a range

FIGURE 2. An illustration of extracting a PDM from an original face
image. Given a face patch with the size of (2R + 1)(2R + 1), where R is the
radius of the neighborhood size. We first compute the differences
between the central patch with that of the neighboring patches, and then
cascade all the obtained vectors into a PDM. The column vector of the
PDM is denoted as the PDV. In order to make the figure concise, R is set
to be 1 and there are 8 neighboring patches selected, so the PDM is
cascaded by eight 8-dimensinal PDVs.

of (2R+ 1)(2R+ 1), so the dimensionality of each PDV can

be computed as d = (2R+ 1)(2R+ 1) − 1.

B. FORMULATION

The binary hashing codes can well reflect the visual

informa-tion of local image region, and encode important

visual patterns (such as edges and lines) of the face image,

thereby effectively alleviating the influence of noise fac-

tors. In order to obtain binary codes with three properties

of effective reconstruction ability, excellent robustness and

strong discriminative power, our proposed model should fol-

low the following three restrictions. 1) The objective func-

tion should comply with a whole reconstruction criterion to

exploit structure information to best approximate the entire

face data space. 2) The binary bits should be independent and

balanced to reduce redundancy factors while delivering more

discrimi-native information. 3) The binary constraint of the

problem should be taken into consideration in the hashing

optimiza-tion to avoid the accumulated quantization errors to

obtain high-quality binary codes.

By integrating the above first two restrictions, we formu-

late the following objective function

min
{Ri,δi}2i=1

(1
/

2)

∥

∥

∥
X − (R2(R1X + δ11

T) + δ21
T)

∥

∥

∥

2

F

+ (β
/

2)(‖R1‖2F + ‖R2‖2F )

s.t. (R1X + δ11
T) ∈ {−1, 1}K×N ,

(R1X + δ11
T)1 = 0,

(R1X + δ11
T)(R1X + δ11

T)T = N IK . (1)

where β is a turning parameter to adjust the balance of

different terms. The encoding matrix R1 ∈ R
K×d and bias
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δ1 ∈ R
K×1 map each PDV xj ∈ R

d into a low-dimensional

binary vector (R1xi + δ1) ∈ {−1, 1}K×1, while R2 ∈ R
d×K

and δ2 ∈ R
d×1 in turn map the binary code back to R

d in

an attempt to reconstruct the PDV. Note that the weight-tying

constraint (R1 = (R2)
T) is not involved in our binary auto-

encoder.

The first term of problem (1) ensures that the reconstruct-

tion loss between the input and the output of the binary

auto-encoder is minimized, which enables (dis)similar input

data to map to (dis)similar binary codes. The second term is

added as the regularization on R1 and R2 to prevent overfit-

ting. The discrete constraint of (1) is to ensure that the output

of the encoder are binary codes. The second bit-balanced

constraint guarantees that each binary bit has equal chance

to occur (almost half of them are encoded to −1, and others

are 1), so that the information entropy is maximized. The last

bit-independent constraint is to make sure that the learned bits

are orthogonal to remove the redundant information.

The three constraints imposed on the hashing codes, which

have not been involved in existing auto-encoders, bring

new challenges to the optimization of the objective func-

tion. In this work, we propose a softened version of the

binary auto-encoder to overcome the barriers of combi-

national complexi-ty of the original problem. Specifically,

we introduce a new auxiliary variable B and reformulate (1)

as

min
B,{Ri,δi}2i=1

(1
/

2)

∥

∥

∥
X − (R2B + δ21

T)

∥

∥

∥

2

F

+ (α
/

2)

∥

∥

∥
B − (R1X + δ11

T)

∥

∥

∥

2

F

+ (β
/

2)(‖R1‖2F + ‖R2‖2F )
s.t. B ∈ {−1, 1}K×N , B1 = 0, BBT = N IK . (2)

where α(α > 0) adjusts the balance between terms. Such

a softened version is encouraging due to the absence of

the sgn(·) function in the encoder. The second term of (2)

minimizes the quantization loss by compelling the output of

encoder close to binary hashing values, and meanwhile the

first term still guarantees a good reconstruction of the global

input space. The solution of (2) will be closer to that of the

original problem (1) by setting the parameter α reasonably

large enough.

By introducing the auxiliary variable B, the awkward orig-

inal problem can be decomposed into separate tractable sub-

problems. We solve them via alternating optimization, which

will be discussed in details in the next section.

C. OPTIMIZATION

The objective function (2) is a NP-hard problem due to the

three constraints imposed on the binary codes. To address

this, we utilize the alternating approach based on the

ALM [13] to optimize (2), i.e., optimizing the objective func-

tion for one variable each time while the others are fixed.

We optimize the variables by iteratively solving the following

sub-problems.

1) FIX δ1, δ2 AND B, OPTIMIZE R1, R2

When δ1, δ2 and B are fixed, the objective functions for R1

and R2 can be rewritten as

min
R1

(α
/

2)

∥

∥

∥
B − (R1X + δ11

T)

∥

∥

∥

2

F
+ (β

/

2) ‖R1‖2F (3)

min
R2

(1
/

2)

∥

∥

∥
X − (R2B + δ21

T)

∥

∥

∥

2

F
+ (β

/

2) ‖R2‖2F (4)

The objective functions (3) and (4) are both regularized

least squares problems. By computing the derivatives of the

functions for R1 and R2, and then set them to 0, respectively,

we get the closed form solutions for R1 and R2 as follows

R1 = α(B − δ11
T)XT(αXXT + βI)−1 (5)

R2 = (X − δ21
T)BT(BBT + βI)−1 (6)

2) FIX R1,R2 AND B, OPTIMIZE δ1, δ2

When R1,R2 and B are fixed, the objective functions for δ1
and δ2 are reformulated as follows

min
δ1

∥

∥

∥
B − (R1X + δ11

T)

∥

∥

∥

2

F
(7)

min
δ2

∥

∥

∥
X − (R2B + δ21

T)

∥

∥

∥

2

F
(8)

The closed solutions for (7) and (8) with respect to δ1 and δ2
can be denoted as

δ1 = (1
/

N )(B − R1X)1 (9)

δ2 = (1
/

N )(X − R2B)1 (10)

3) FIX R1,R2, δ1 AND δ2, OPTIMIZE B

We first fix R1, δ1,R2 and δ2, and then discard the constant

terms, problem (2) for B can be rewritten as

min
B

(1
/

2) ‖R2B‖2F − Tr(BTR2(X − δ21
T))

− αTr(BT(R1X + δ11
T))

s.t. B ∈ {−1, 1}K×N , B1 = 0, BBT = N IK (11)

where Tr(·) denotes the trace norm.

According to the above third restriction (see section III B)

of our LFH-BAE, the discrete optimization should be con-

strained in the Hamming space to reduce the information loss

caused by the traditional two-step optimization procedure.

In this work, we employALM [13] to optimize (11) and adopt

the DCC method to explicitly address the discrete constraint

with one step. Our main idea is to separate the three chal-

lenging constraints by introducing another auxiliary variable

Z and impose the balanced and independent constraints on

it, and meanwhile apply quadratic penalty between B and Z.

Thereby, the objective function (11) is transformed into an

augmented Lagrangian (AL) function

min
B,Z

(1
/

2) ‖R2B‖2F − Tr(BTR2(X − δ21
T))

− αTr(BT(R1X + δ11
T))

+ (γ
/

2)
∥

∥B − Z + δγ

/

γ
∥

∥

2

F
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s.t. B ∈ {−1, 1}K×N , Z1 = 0, ZZT = N IK . (12)

where 1γ is defined as the difference between the target

variable B and auxiliary one Z, and γ is defined as the AL

penalty parameter.

WhenR1, δ1,R2, δ1,Z and1γ are fixed, problem (12) for

B can be rewritten as

min
B

(1
/

2) ‖R2B‖2F − Tr(BTR2(X − δ21
T))

− αTr(BT(R1X + δ11
T))

− γTr(BT(Z + 1γ

/

γ ))

s.t. B ∈ {−1, 1}K×N (13)

We directly optimize B in the Hamming space with

respect-ting the binary constraint B ∈ {−1, 1}K×N . Let X̃ =
X − δ21

T, O = R1X + δ11
T,P = Z − 1γ

/

γ , with a

series of mathema-tical operations, (13) can be equivalently

transformed into the following problem

min
B

‖R2B‖2F − 2Tr(BTRT
2 X̃ + αBTO + γBTP)

s.t. B ∈ {−1, 1}K×N (14)

For convenience, problem (14) can be simply rewritten as

min
B

‖R2B‖2F − 2Tr(BTQ) s.t. B ∈ {−1, 1}K×N (15)

whereQ = RT
2 X̃+αO+γP. Similar to the optimization idea

of [35] and [36], we adopt the DCCmethod to learn the binary

codes B bit-by-bit. Let bT,qT and rT be the ith row of B,Q

and RT
2 respectively, where i = 1, 2, · · · ,K , we utilize B,Q

and R̄ to denote the remaining matrix of B,Q and RT
2 ,

respectively. From the derivation in [37], problem (15) can

be converted into the following form

min
b
(rTR̄

T
B̄− qT)b s.t. b ∈ {−1, 1}N (16)

The optimal solution for b can be denoted as

b = sgn(q − B̄
T
R̄
T
r) (17)

4) FIX R1,R2, δ1, δ2,B AND 1γ , OPTIMIZE Z

WhenR1, δ1,R2, δ2,B and 1γ are fixed, problem (12) for Z

can be reformulated as

min
Z

∥

∥B − Z + 1γ

/

γ
∥

∥

2

F
s.t. Z1 = 0, ZZT = N IK (18)

The above objective function is simplified to the following

maximization problem

max
Z

Tr(ZTS) s.t. Z1 = 0,ZZT = N IK (19)

where S = B+1γ

/

γ . By performing singular value decom-

position (SVD), S can be formulated as S = U3VT =
∑r

k=1 σkukv
T
k , where r(r < K ) is the rank of S, 3 is

a rectangular diagonal matrix and its diagonal elements

σ1, σ2, · · · , σr are non-negative singular values of S. U =
[u1,u2, · · ·,ur ] and V = [v1, v2, · · · , vr ] are left- and

right-singular vectors of S, respectively. Based on the above

an- alyses, it is easy to derive that VTZTUUTZV = N I.

Algorithm 1 Local Feature Hashing with Binary Auto-

encoder

Input: training data: X, binary code length: K , iteration

number: T , parameters: α, β, γ, η.

Output: encoding matrix: R1, encoding bias δ1,

decoding matrix: R2, decoding bias: δ2.

1: Initialization: Initialize B using ITQ, initialize Z

randomly, initialize δ1 = 0, δ2 = 0 and 1r = 0.

2: repeat

3: (R1,R2) − step : Optimize R1 and R2 according

to (5) and (6), respectively.

4: (δ1, δ2) − step : Optimize δ1 and δ2 according

to (9) and (10), respectively.

5: repeat

6: B − step : Optimize B utilizing DCC method

with (17) by iteratively learning {bi}Ki=1
bit-by-bit.

7: Z − step : Optimize Z according to (21).

8: (1r , γ ) − step : Update 1r and γ according

to (22).
9: until convergences

10: until convergences

11: Return: R1, δ1,R2 and δ2.

On the basis of the Theorem 3 in [38] and [39], the opti-

mal value of Z can be obtained if and only if VTZTU =
diag(

√
N ). The solution of Z can be written as

Z =
√
NUVT (20)

In addition, in order to meet the balanced constraint Z1 = 0,

the Gram-Schmidt process is used to construct the matrices

Ū ∈ R
K×(K−r) and V̄ ∈ R

N×(K−r), which satisfy the follow-
ing four conditions: Ū

T
Ū = IK−r , [U, 1]TŪ = 0, V̄

T
V̄ =

IK−r ,VV̄
T = 0. So the ultimate optimal solution for Z is

Z =
√
N [U, Ū][V, V̄ ]T (21)

5) FIX R1,R2, δ1, δ2,B AND Z, OPTIMIZE 1γ

When B and Z are fixed, 1γ and γ are updated according to

the following rules

1γ = 1γ + γ (B − Z), γ = ηγ (22)

The learning rate η(η > 0) controls the convergence of the

objective function.

We repeat the above steps until the objective func-

tion converges. The detailed procedure of our proposed

method is summarized in Algorithm 1. After obtain-

ing (R1, δ1), the hash function can be denoted as

H(X) = sgn(R1X + δ11
T).

D. FACE REPRESENTATION BASED ON LFH-BAE

Having obtained the hashing function equipped with the

encoding matrix R1 and the encoding bias δ1, each PDV

is first projected into a low-dimensional hashing vector.

Since the traditional K-means is an effective and simple
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FIGURE 3. The process of face representation based on the LFH-BAE.
Firstly, each training face image is divided into several non-overlapping
regions, which are used to learn the encoding matrix R1, the encoding
bias δ1 and the codebook D. Then, they are applied on corresponding
regions to extract histogram features, which are cascaded into a longer
feature vector for face representation. Finally, the classifier with cosine
similarity is used for face matching.

FIGURE 4. The aligned and cropped face samples with 128 × 128 pixels
from the FERET.

unsupervised clustering method, we apply it to the training

set to construct the codebook D. Then, we pool each hashing

code as a bin with the codebook, and use histogram feature to

represent the hashing codes of the same face region. At last,

the histogram features of all the regions are cascaded into

a high-dimensional feature, which is considered as the final

representation for the whole face image. Fig. 3 illustrates the

approach of face representation based on LFH-BAE.

IV. EXPERIMENTS

We conduct extensive experiments on four public face

datasets to evaluate the performance of our LFH-BAEmodel.

To be more specific, we first use two constrained datasets

(FERET andCAS-PEAL-R1) to show the effectiveness of our

LFH-BAE model. Then, we employ two other unconstrained

datasets (LFW and PaSC) to demonstrate the robustness and

discriminative power of the LFH-BAEmodel. At last, we per-

form cross-dataset evaluation to estimate the generalization

ability of our proposed model.

A. PERFORMANCE ON FERET

The FERET is a widely used large-scale public database,

which contains 13539 human faces of 1565 subjects, vary-

ing in age, gender and race. Following the standard FERET

evolution protocol [40], we conduct experiments on six dis-

joint sets: one training set, one gallery set (fa), and four probe

sets (fb, fc, dup1 and dup2). All images are aligned according

to the provided eye coordinates and cropped into 128 × 128

pixels. Some cropped images from the FERET are shown

in Fig. 4.

TABLE 2. The rank-one and average (avr) recognition rates (%) of
LFH-BAE on FERET versus various values of α, β and γ .

In our experiments, we divide each face image into 8 × 8

non-overlapping regions, and evaluate our model with two

different neighborhood radius sizes (R = 3 and R = 5),

yielding 48- and 120-dimensional PDV for each pixel, respec-

tively. The training set is utilized for feature learning, and the

learned hashing function and codebook are performed on the

other five sets for feature extraction.Whitened PCA (WPCA)

is applied on the high-dimensional histogram representation

to generate a compressed 1195-dimentional feature vector to

reduce redundancy. The compressed feature vector is fed to

the nearest neighbor classifier for face recognition.

1) PARAMETER ANALYSIS

In this section, we test the impact of different parameters in

our LFH-BAEmodel on the FERET.We first study the effects

of one parameter while the others are fixed. Then, we apply

the determined parameters to the subsequent experiments.

We fix R = 5 to explore the influence of the coefficients

α, β, γ on recognition rates. The learning rate η, code length

K and codebook size are set to 1.5, 25 and 600, respectively,

and the impact of them will be studied in the following

experiments. Table 2 shows the recognitions rates on the

FERET for different empirical values. It can be observed that

the best performance is obtained when α, β, γ are chosen to

be 0.01, 0.1 and 100, respectively.

Then, the influence of the code length is examined when

the codebook size is fixed at 600. The code length should

be set at 25 for the highest recognition rate, as depicted

in Fig. 5(a). With the fixed parameters in the above experi-

ments, varying dictionary sizes are also studied and Fig. 5(b)

shows that the best results are obtained when the codebook

size is 600.

Next, we study the effects of the learning rate η in our

LFH-BAEmodel. The other parameters are the same as those

determined in the above experiments. The values of learning

rate are empirically varied from 1 to 9. Fig. 6 shows the

encoding-decoding time and the average recognition rates of

our LFH-BAE versus different values of η. We can obseve

that the encoding-decoding time decreases non-linearly as

the learning rate increases, and the average recognition rate

reaches a maximum at η = 1.5. This demenstrates that a

small learning rate may result in a poor convergence of the

multiplier iteration, while a large learning rate may force
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FIGURE 5. The rank-one and average recognition rates (%) of LFH-BAE on FERET versus different values of (a) code length and (b) dictionary size.

FIGURE 6. Encoding-decoding time and average rates of LFH-BAE on four
probe sets of FERET versus different values of learning rate.

much ill-conditioning upon the objective function too early.

The key is to find a right balance point where the LFH-BAE

not only ensures fast encoding and decoding but also achieves

high recognition rate. Thus, η is set to 1.5 as a moderate rate

in the following experiments.

Lastly, we investigate the impact of iterations T on

LFH-BAE. The property of the proposed alternating opti-

mization process and ALM optimization theory make

Algorithm 1 converge, and enable that the objective function

value non-incremental and bounded. Fig. 7 shows the conver-

gence of the objective function of our LFH-BAE.We observe

that the objective function converges in 3 iterations.

2) COMPARISON WITH EXISTING HASHING ALGRITHMS

Although most existing hashing algorithms are presented

for visual retrieval [25], [26], [41]–[44], they can still

be implemented and remain effective in face recognition

tasks. In this section, we compare our LFH-BAE with the

following seven representative hashing methods: One Layer

Anchor Graphs Hashing (AGH1) [41], Two Layer Anchor

FIGURE 7. Objective function value of LFH-BAE versus different iteration
numbers on FERET.

Graphs Hashing (AGH2) [41], Locality-Sensitive Hashing

(LSH) [25], Spherical Hashing (SPH) [42], PCA-iterative

Quantization (PCA-ITQ) [43], Density Sensitive Hash-

ing (DSH) [26], and Hashing with Angular Reconstructive

Embeddings (ARE) [44]. The first six algorithms are all

conducted using the source codes and determined parameters

of the original authors, except that ARE is implemented

by ourselves. To ensure a fair comparison, we only replace

the objective function of LFH-BAE (i.e., problem (1)) with

those of other hashing methods, while the other steps remain

the same. In this experiment, the neighborhood radius size

is 5 and other parameters of those hashing algorithms are

consistent with LFH-BAE. WPCA is employed to project the

high-dimensional feature into a 1195-dimensional represen-

tation vector. Table 3 shows the rank-one recognition rates of

different algorithms on the FERET.

It can be obviously seen that our LFH-BAE model out-

performs those existing hashing algorithms. On one hand,

the above first six hashing methods ignore the discrete
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TABLE 3. The rank-one and average recognition rates (%) of our LFH-BAE
and other existing binary hashing methods on the FERET.

constraint in the optimization process, thereby inducing the

accumulated quantization errors. On the other hand, ARE

is dedicated to preserving cosine similarity, it may lack the

ability of extracting structure information from the input face

data. The reconstruction term in LFH-BAE helps to exploit

the inter-class structure factors that can approximate the

entire image data space, and the direct discrete optimization

can reduce the loss of useful information. Therefore, our

proposed hashingmodel achieves the best performance on the

face recognition task.

3) COMPARISON WITH STATE-OF-THE-ART

FACE ALGORITHMS

In this section, we evaluate the performance of our LFH-BAE

model on the FERET with the standard evaluation pro-

tocol. We compare our proposed LFH-BAE model with

the hand-crafted local descriptors (such as LGBP, DT-LBP,

LGFV//LN//SNP, FCPRF, LDENP) and learning-based

descriptors (such as shallow descriptors: DFD, CBFD,

SLBFLE, SPMBD, and deep descriptors: 2-FFCGabor−PCA,

BISF+K-DAN, PCANet+SF). Table 4 lists the rank-one

recognition rates of our LFH-BAE and other approaches on

the FERET.

We can observe that our LFH-BAE model obtains much

competitive performance on the four probe sets of the FERET.

As a tangible description, our LFH-BAEmodel obtains much

higher accuracies on all probe sets than the hand-crafted

descriptors, because it doesn’t require prior knowledge and

can adaptively extract more discriminative information from

the original data. Compared with the learning-based hash-

ing descriptors, LFH-BAE achieves the highest average rate,

which further proves the direct discrete optimization can

facilitate binary features retaining more useful informa-

tion. Moreover, the recognition performance of LFH-BAE

is also better than the real-valued descriptors (such as shal-

low descriptors LGFV//LN//SNP, FCPRF and deep descrip-

tors 2-FFCGabor−PCA, PCANet+SF), which indicates that the

quantized binary features are more robust to intra-class varia-

tions in face images. It is worth noting that LFH-BAE obtains

excellent performance when two-scale PDVs with different

radii are cascaded.

4) RECONSTRUCTION ERROR

In this section, we compare the reconstruction ability of

the learning-based hashing methods, including PCA-ITQ,

TABLE 4. The rank-one and average recognition rates (%) of our LFH-BAE
and state-of-the-art algorithms on the FERET.

TABLE 5. The mean reconstruction error and average recognition rates
(%) of our LFH-BAE and other binary learning algorithms on four probe
sets of FERET.

CBFD, CA-LBFL and our LFH-BAE. Each face image of the

FERET is divided into 8 × 8 = 64 non-overlapping regions,

and the neighborhood radius is set to 5. The parameters of

the other three hashing methods are consistent with those of

our LFH-BAE, so that all methods can be compared fairly.

We compute the mean reconstruction errors on the FERET.

For PCA-ITQ, CBFD and CA-LBFL, the decoder is

unavailable in their implementation, but it is taken into

account in the design of LFH-BAE and can be obtained in the

learning process. Therefore, following [35], we compute the

optimal linear decoders for the other three methods. Specif-

ically, we use the learned binary codes of the training data

to compute the optimal linear decoder (R2, δ2). Let Y be the

binary codes of the testing data, the reconstructed testing data

can be calculated as X̂ = R2Y + δ21
T.

Table 5 tabulates the mean reconstruction errors and aver-

age recognition rates of different hashing methods. It indi-

cates that the reconstruction abilities of PCA-ITQ and

CA-LBFL are comparable, and our LFH-BAE is optimum in

terms of reconstruction ability and recognition performance.

This experimental configuration confirms that our

LFH-BAE can extract the structure information inherent in

the input face data, which can improve the discriminative

power of the feature representations.
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TABLE 6. The rank-one and average recognition rates (%) of various
learning strategies on the FERET.

5) VARIOUS LEARNING STRATEGIES

In order to explore the contributions of discrete optimization

and binary auto-encoder of the proposed LFH-BAE model,

we develop three learning strategies to study the importance

of these components:

1) TLFH-BAE: Traditional local feature hashing with

binary auto-encoder.

2) LFH-BE: Local feature hashing with only binary

encoder.

3) LFL-RAE: Local feature learning with real-valued

auto-encoder.

The parameter settings in this part are consistent with

those in Part 4). TLFH-BAE uses the traditional two-step

‘‘relaxing+thresholding’’ procedure to learn binary codes.

LFH-BE conduct the iterative optimization without consider-

ing the reconstruction term in problem (2) (i.e., disregarding

the first term). LFL-RAE learns real-valued features by dis-

carding the discrete constraint. The remaining stages of these

three learning strategies are the same as those of LFH-BAE,

and each face sample is projected into a 1195-dimensinal

representation vector with WPCA. The rank-one recognition

rates of the three strategies and our LFH-BAE on the FERET

are shown in Table 6. We can summarize the following four

conclusions:

1) Discrete optimization can eliminate the accumulated

quantization errors, thereby reducing the loss of useful

information.

2) Binary auto-encoder can exploit structure factors from

the face image and extract excellent discriminative fea-

tures.

3) Compared with the real-valued codes, binary codes

show stronger robustness to intra-class changes of the

face image.

4) When these three components are combined together,

significantly high recognition performance can be

obtained.

6) COMPUTATIONAL TIME

At last, we conduct experiment on the FERET to estimate

the computational cost of the real-valued descriptors and

LBP-like features. The parameter settings in this experiment

are also the same as those in above Part 4), and they are

applied to other methods to ensure a fair comparison. For

the CBFD, CA-LBFL and our LFH-BAE, a 600-dimentional

feature vector is extracted from each region, so the dimension

of the cascaded feature vector for each image is 38400 (600×
64 = 38400). Note that all methods are implemented with

the matlab software and carried out on a PC with a 2.70 GHz

TABLE 7. The average recognition rates (%), feature dimension and
computational time (ms) comparison of the proposed LFH-BAE and other
LBP-like feature extraction methods.

FIGURE 8. The aligned and cropped face samples with 150 × 130 pixels
from the CAS-PEAL-R1.

and a 24G RAM configurations. Table 7 shows the feature

dimensions and computational time of different methods.

We can observe that feature descriptors with high

dimensions can improve the recognition performance to a

certain extent, but the computational cost increases accord-

ingly. Compared with the real-valued 2-FFCGabor−PCA, our

LFH-BAE is slightly inferior in the computational cost, but

it is excellent in terms of storage efficiency and recognition

performance. Moreover, although there are encoding biases

in our LFH-BAE, it’s computational cost is almost the same

as CBFD and CA-LBFL, but lower than that of DFD. This

is because only one scale PDV for each pixel is extracted

in LFH-BAE, while multiple scale PDVs for each pixel are

extracted in DFD. Therefore, the computational cost of our

LFH-BAE is less than that of DFD.

B. PERFORMANCE ON CAS-PEAL-R1

The CAS-PEAL-R1 dataset contains more than 9000 face

images from 1040 individuals with various variabilities, such

as accessory, pose, lighting and expression. Following the

standard evaluation protocol [57], we conduct the experiment

on five subsets for face recognition, i.e., training, gallery,

accessory, lighting and expression. The training set contains

1200 face images of 300 individuals (4 images per subject).

The gallery set consists of 1040 subjects with 1040 face

images, which are captured under normal conditions. The

probe sets are collections of accessory, expression and light-

ing, consisting of 2285, 2243, 1570 images, respectively.

All face images of the above five sets are aligned and cropped

into 150 × 130 pixels according to the provided eye coordi-

nates. Fig. 8 shows the aligned and cropped examples of the

CAS-PEAL-R1.
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TABLE 8. The rank-one recognition rates (%) of our LFH-BAE and
state-of-the-art algorithms on the CAS-PEAL-R1.

Firstly, we learn the LFH-BAE on the training set and then

use the learned projections to extract features from the gallery

and the other three probe sets. Parameters of the LFH-BAE

model are kept the same as those used on the FERET

dataset. Finally, WPCA is used to reduce the high dimen-

sion to 1039 and the cosine metric1 is applied for face

matching. Table 8 tabulates the rank-one recognition rates

of our LFH-BAE and other different face descriptors on

the CAS-PEAL-R1. Compared with state-of-the-art methods,

our proposed LFH-BAE model obtains the best recognition

rates on all probe sets. In particular, the proposed LFH-BAE

obtains higher accuracy than the previous best SPMBD with

the gain of 5.3% on the lighting set. It is demonstrated that our

LFH-BAE shows strong robustness to expression, occlusion,

especially in the face of lighting.

C. PERFORMANCE ON LFW

The LFW dataset [60] contains more than 13,000 face images

of 5,749 subjects and it is designed to study face recognition

of unconstrained scenarios. As all face images are collected

in the wild conditions, they suffer from large intra-class

variations, such as varying poses, expressions, illuminations

and backgrounds. In this experiment, we use the unsuper-

vised setting [61] to evaluate the verification performance

of LFH-BAE on LFW. According to the standard evolution

protocol [61], there are 3000 matched pairs and 3000 mis-

matched pairs in the ‘‘View 2’’ dataset. It is divided into

10 folds, and each fold consists of 300 matched image pairs

and 300 mismatched pairs, which are randomly selected from

the original dataset. We use a conventional 2D affine transfor-

mation to align each face image and crop it into a region with

the size of 128 × 128 pixels. The aligned and cropped face

samples are shown in Fig. 9.

1As described in section III D, the statistical histogram feature is used to
represent the learned hashing codes, the cosine similarity of two faces can be

denoted as sim(i, j) = yTi · yj
/

∥

∥yi
∥

∥

2
·
∥

∥

∥
yj

∥

∥

∥

2
, where yi and yj are the feature

representations of the i− th and j− th face images, respectively.

FIGURE 9. The aligned and cropped face samples wit 128 × 128 pixels
from the LFW.

TABLE 9. The AUC (%) comparisons with other approaches on LFW under
the unsupervised setting.

In this experiment, parameters of the proposed LFH-BAE

are consistent with those used on the above FERET dataset.

We perform feature learning on the training set, and

apply WPCA to the high-dimensional feature to obtain a

700-dimensional representation vector. The nearest neighbor

classifier with cosine similarity is used for face verification.

Table 9 and Fig. 10 show the excellent average AUC and

ROC curves of the proposed LFH-BAE and state-of-the-art

strategies for the unsupervised setting, respectively. Note that

we only plot the ROC curves for the algorithms that are

released on the LFW website.2

It can be observed that our LFH-BAE model achieves

competitive performance with the existing learning-based

hashing methods such as CA-LBFL, SLBFLE and SPMBD,

and outperforms hand-crafted feature descriptors such as

LHS, LARK and MRF-MLB. This again demonstrated that

LFH-BAE can not only exploit structure factors from face

images data-adaptively, but also eliminate the accumulated

quantization errors, therefore more discriminative features

are extracted for face verification.

Although the deep LBPNet [52] show better performance

than our LFH-BAE, it requires prior knowledge to design a

deep funneled network containing multiple types LBP fil-

ters and PCA filters. The deep network PCANet+SF [56]

utilizes various filters to extract various PCA-based features,

increasing the computational cost. The methods in [63], [66]

and the deep real-values descriptor 2-FFCGabor−PCA achieve

excellent results on the LFW dataset with the unsupervised

setting, they all use the high-fidelity pose and expression

2The results of the other algorithms are available at http://vis-
www.cs.umass.edu/lfw/results.html#Unsupervised
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FIGURE 10. The ROC curves of different approaches on LFW under the
unsupervised setting.

normalization (HPEN) [68] to process the face images and

extract features at multiple scales, which is time or storage

consuming in the recognition stage. On the contrary, we only

use a simple 2D affine transformation to process the face

images, and use a simple learning-based hashing strategy

to extract only two-scale features to achieve encouraging

performance.

D. PERFORMANCE ON PASC

The combination of point-and-shoot camera technology and

social network technology increases the difficulty of face

recognition tasks in real scenarios. In this section, we employ

a recently released challenging face dataset, namely PaSC,

to estimate the robustness of our LFH-BAE model. The

still image portion of the PaSC includes 9376 images from

293 subjects. The balance of alternative sensors, distance to

cameras, varying views and different positions are taken into

account in image collection. This results in rare complications

in controlled and less controlled scenarios, including poor

focusing, over and under exposure, blur, and poor light-

ing. As the constraints on imaging conditions are relaxed,

the challenges of face recognition increase dramatically. The

standard evaluation protocol [69] for the still portion of PaSC

is to compare all images of the query set to those of target set.

Both target set and query set are allocated the same number of

images (4688 images).We align each imagewith the provided

eye coordinates3 and crop it into the size of 128×128 pixels.

Fig. 11 shows some aligned and cropped sample images of

the PaSC.

We utilize the target set to train the proposed LFH-BAE

model, and extract feature representations from the target

set and query set. The parameters are kept as the same as

those used on the FERET dataset and each face image sam-

ple is projected into a 500-dimensional representation space

3The eye coordinates of all still images are available at
http://www.cs.colostate.edu/∼ vision/pasc/index.php

TABLE 10. The verification rates (%) at FAR = 1% of different algorithms
on the all and frontal settings of the PaSC.

with WPCA. By matching images in the target set to those

in the query set, we compute the cosine distance for all pairs

and obtain a 4688 × 4688 similarity matrix. The resulting

similarity matrix is the basis for plotting the ROC curves for

the frontal and all (frontal and non-frontal) images. In addi-

tion to comparing with the algorithms published on the PaSC

website (one commercial PittPatt algorithm and two base-

line real-valued descriptors: LRPCA, CohortLDA), we also

compare the LFH-BAE model with other existing popular

methods, such as LBP, LPQ, BSIF, CBFD and CA-LBFL.

Table 10 and Fig. 12 show the verification rates at 1.0%

FAR and ROC curves for the frontal images and all images,

respectively. In order to provide a concise figure, we only plot

the ROC curves of some representative algorithms.

We can see that the proposed LFH-BAE model is signifi-

cantly superior to the existing popular methods and baseline

algorithms, except for the commercial PittPatt. The minimal

gains of verification rates for all images and frontal images

are 2.1% and 3.2%, respectively. Moreover, feature repre-

sentations that learned from two-scale cascaded PDVs can

further improve the verification performance of LFH-BAE.

The results demonstrate that, even for the point-and-shoot

data, our LFH-BAEmodel is capable of extracting robust and

discriminative feature representations. Binary auto-encoder

not only promotes the learned binary features to inherit

salient factors inherent in the raw data, but also make them

show strong robustness to intra-class variations. Moreover,

the ALM-based optimization strategy avoids the accumu-

lated quantization errors and reduces the loss of discrimi-

native information. Therefore, our LFH-BAE model can be

employed in the real-world scenarios to handle the challeng-

ing face recognition tasks.

E. PERFORMANCE ON CROSS-DATASET

In practical applications, the appearances of the training set

and testing set are apparently different due to the varying

scenarios. In this section, we conduct a cross-dataset exper-

iments to further investigate the generalization capability

of our proposed strategy. Firstly, we utilize the constraint
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FIGURE 11. The aligned and cropped face samples with 128 × 128 pixels of the (a) frontal and (b) non-frontal settings from the PaSC.

FIGURE 12. The ROC curves of different algorithms on the (a) all setting and (b) frontal setting of the PaSC.

TABLE 11. Cross-dataset evaluation of our proposed LFE-SBAE on
different training sets.

FERET dataset, the unconstraint LFW4 and PaSC datasets to

train our LFH-BAE model to obtain the encoding matrix R1,

the encoding bias δ1 and the codebook D. Then, we evaluate

the performance of the learned LFH-BAE models on LFW5

and PaSC. In these experiments, we only use the two-scale

PDVs and the other parameters are consistent with the above

sections.

Table 11 shows the AUC of LFW and verification rates

(All and Frontal) at 1.0% FAR of PaSC for the cross- and

same-dataset evaluations. We can observe that our LFH-BAE

4In the cross-dataset evaluation, the ‘‘View 1’’ subset of LFW is utilized
as the training set.

5In the cross-dataset evaluation, the evaluation protocol setting of LFW is
consistent with that of part C in this section.

achieves excellent performance on the same-dataset evalua-

tion, but in the case of cross-dataset evaluation, its perfor-

mance decreases slightly. This is because the images of the

training set and testing set are captured under different envi-

ronments. Nevertheless, the performance of the cross-dataset

evaluation is still comparable with that of state-of-the-art

strategies based on the same-dataset evalu-ation (see the

above sections C and D), which demonstrates the effective-

ness of the LFH-BAE under different conditions. Moreover,

the performance of the unconstrained cross-dataset (uncon-

strained training set and unconstrained testing set) evalua-

tion is slightly better than that of the semi-unconstrained

cross-dataset (constrained training set and unconstrained test-

ing set) evaluation, which can be attributed to more diverse

intra-class variations of the unconstrained training dataset.

In a word, the LFH-BAE has a good generalization ability and

can be competent for face recognition tasks under different

conditions.

V. CONCLUSION

In this work, we propose a simple and effective unsuper-

vised learning-based hashing model for face recognition.
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Unlike previous hashing methods, we respect the binary

nature of the problem and enforce the binary constraint in

the discrete optimization to learn high-quality binary codes.

To exploit the salient semantics inherent in the raw data,

we utilize the binary auto-encoder that seeks to well recon-

struct a face image from the learned robust binary codes.

When optimizing the awkward original objective function,

we simplify it into separate manageable sub-problems by

introducing an auxiliary variable, and then solve them via

the ALM-based alternating optimization. Such an alternating

optimization not only respects the discrete constraint, but

also takes the bit-independent and bit-balanced constraints

into consideration. When solving the critical sub-problem,

i.e., discrete optimization, we adopt the DCCmethod to learn

binary codes in a closed form in the Hamming space. Exper-

iments are conducted on four public face datasets and the

results demonstrate that our proposed method achieves supe-

rior or very competitive performance compared with state-of-

the-art algorithms. Our LFH-BAE concentrates on modeling

the entire data space to extract the salient inter-class factors.

However, the local geometric structure of the face image

is still important and should be taken into consideration in

the future to improve the performance our model. Moreover,

we also intend to apply our model to other computer vision

tasks such as video surveillance and multi-media search.
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