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Abstract

Recently, methods based on local image features have
shown promise for texture and object recognition tasks.
This paper presents a large-scale evaluation of an approach
that represents images as distributions (signatures or his-
tograms) of features extracted from a sparse set of keypoint
locations and learns a Support Vector Machine classifier
with kernels based on two effective measures for comparing
distributions, the Earth Mover’s Distance and the χ2 dis-
tance. We first evaluate the performance of our approach
with different keypoint detectors and descriptors, as well as
different kernels and classifiers. We then conduct a com-
parative evaluation with several state-of-the-art recognition
methods on 4 texture and 5 object databases. On most of
these databases, our implementation exceeds the best re-
ported results and achieves comparable performance on the
rest. Finally, we investigate the influence of background
correlations on recognition performance.

1. Introduction
The recognition of texture and object categories is one

of the most challenging problems in computer vision, es-
pecially in the presence of intra-class variation, clutter, oc-
clusion, and pose changes. Recent achievements in both
texture and object recognition have demonstrated that us-
ing local features, or descriptors computed at a sparse set of
scale- or affine-invariant keypoints, tends to be an effective
approach [7, 11, 20]. At the same time, Support Vector Ma-
chine (SVM) classifiers [18] have shown their promise for
visual classification tasks, and the development of special-
ized kernels suitable for use with local features has emerged
as a fruitful line of research [8]. To date, most evaluations
of methods combining kernels and local features have been
small-scale and limited to one or two datasets. This moti-
vates us to build an effective image classification approach
combining a bag-of-keypoints representation with a kernel-
based learning method and to test the limits of its perfor-
mance on the most challenging databases available today.

Our study consists of three components:
Evaluation of implementation choices. We assess many
alternative implementation choices, including keypoint de-
tector type, level of geometric invariance, feature descrip-
tor, and classifier kernel. This evaluation yields several in-
sights of practical importance. For example, a combina-
tion of multiple detectors and descriptors usually achieves
better results than even the most discriminative individual
detector/descriptor channel. Also, for most datasets in our
evaluation, local features with the highest possible level of
invariance do not yield the best performance.
Comparison with existing methods. We conduct a com-
parative evaluation with several state-of-the-art methods for
texture and object classification on 4 texture and 5 object
databases. For texture classification, our approach outper-
forms existing methods on Brodatz [2], KTH-TIPS [9] and
UIUCTex [11] datasets and obtains comparable results on
the CUReT dataset [3]. For object category classification,
our approach outperforms existing methods on Xerox7 [20],
Graz [16], CalTech6 [7], CalTech101 [6] and the more diffi-
cult test set of the Pascal challenge [5]. It obtains compara-
ble results on the easier Pascal test set. The power of order-
less bag-of-keypoints representations may be not surprising
in the case of texture images, which lack clutter and have
uniform statistical properties. However, it is not a priori ob-
vious that such representations are sufficient for object cat-
egory classification, since they ignore spatial relations and
do not separate foreground from background features.
Influence of background features. In many existing
datasets, background features tend to be correlated with the
foreground (e.g., cars are often pictured on a road, while
faces appear in office environments). Since our bag-of-
keypoints method uses both foreground and background
features to classify the image, it is important to investi-
gate whether background features provide any “hints” for
recognition. Using a novel methodology, we study the in-
fluence of background features on the diverse and challeng-
ing Pascal benchmark. Our experiments reveal that while
background does contain some discriminative information
for the foreground category, using foreground and back-
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ground features together does not improve the performance
of our method. Thus, even in the presence of background
correlations, the features on the objects themselves are the
key to recognition. Moreover, our experiments also show
the danger of using monotonous or highly correlated back-
grounds for training, since this leads to poor recognition
performance on test sets with more complex backgrounds.

We have deliberately limited our evaluations to the
image-level classification task, i.e., classifying an entire test
image as containing an instance of one of a fixed number of
given object classes. This task must be clearly distinguished
from localization, i.e., reporting a location hypothesis for an
object. We demonstrate that, given the right implementation
choices, simple orderless image representations can be sur-
prisingly effective on a wide variety of imagery. Thus, they
can serve as good baselines for measuring the difficulty of
newly acquired datasets and for evaluating more sophisti-
cated recognition approaches that incorporate structural in-
formation about the object.

The rest of this paper is organized as follows. Relevant
previous work on texture and object recognition is discussed
in Section 1.1. The components of our approach (keypoint
detectors, descriptors, and classifier kernels) are described
in Section 2. Section 3.1 describes our experimental setup
and the nine databases included in the current study. Section
3.2 evaluates the implementation choices relevant to our
approach. Sections 3.3 and 3.4 present comparisons with
existing texture and object category classification methods,
and Section 4 evaluates the effect of background correla-
tions on recognition performance. Finally, Section 5 con-
cludes the paper with a summary of our findings and future
extensions.

1.1. Related Work
Texture recognition. Recently, there has been a great deal
of interest in recognizing images of textured surfaces sub-
jected to lighting and viewpoint changes [3, 11, 19]. The
basic idea of these methods is to represent texture images
as distributions or texton histograms over a universal tex-
ton dictionary. Several texton-based representations using
features derived from filter bank outputs and raw pixel val-
ues were developed [19], and further improvements were
achieved by using SVM classifier with a kernel based on
χ2 histogram distance [9]. However, a major shortcom-
ing of these methods is that the underlying representa-
tion is not geometrically invariant. No adaptation is per-
formed to compensate for changes in scale or surface orien-
tation with respect to the camera. By contrast, Lazebnik
et al. [11] have proposed an intrinsically invariant repre-
sentation based on distributions of appearance descriptors
computed at a sparse set of affine-invariant keypoints (as
opposed to earlier dense approaches that compute descrip-
tors at every pixel). We take this approach as a starting point

and further improve its discriminative power with the help
of a kernel-based learning method.
Object recognition. The earliest work on appearance-
based object recognition has utilized global descriptions
such as color or texture histograms. The main drawback of
such methods is their sensitivity to clutter and occlusions.
For this reason, global methods were gradually supplanted
by part-based methods, e.g. [7], that combine appearance
descriptors of local features with a representation of their
spatial relations. While part-based models offer an intel-
lectually satisfying way of representing objects, learning
and inference problems for spatial relations are complex
and computationally intensive, especially in a weakly su-
pervised setting where the location of the object in a train-
ing image has not been marked. On the other hand, or-
derless bag-of-keypoints methods [20] have the advantage
of simplicity and computational efficiency, though they fail
to represent the geometric structure of the object or to dis-
tinguish between foreground and background features. For
these reasons, bag-of-keypoints methods can be adversely
affected by clutter, just as earlier global methods. To over-
come this problem, novel SVM kernels that can yield high
discriminative power despite noise and clutter have been
proposed recently [8]. While these methods have obtained
promising results, they have not been extensively tested on
databases with heavily cluttered, uncorrelated backgrounds,
so the true extent of their robustness has not been conclu-
sively determined. Our own approach is related to that of
Grauman and Darrell [8], who have developed a kernel that
approximates the optimal partial matching between two fea-
ture sets. Specifically, we use a kernel based on the Earth
Mover’s Distance [17], i.e. the exact partial matching cost.

2. Components of the representation
2.1. Image representation

We use two complementary local region detector types to
extract salient image structures: The Harris-Laplace detec-
tor [15] responds to corner-like regions, while the Lapla-
cian detector [12] extracts blob-like regions. These two
detectors are invariant to scale transformations only – they
output circular regions at a certain characteristic scale. We
obtain rotation invariance by rotating the regions in the di-
rection of the dominant gradient orientation [15] and affine
invariance through the use of an affine adaptation proce-
dure [15]. Affinely adapted detectors output ellipse-shaped
regions which are then normalized, i.e., transformed into
circles. In summary, our detectors offer different levels of
invariance: scale invariance only (S), scale with rotation in-
variance (SR), and affine invariance (A). We denote the Har-
ris detector with different levels of invariance as HS, HSR
and HA and the Laplacian detector as LS, LSR and LA.

The normalized circular patches obtained by the detec-
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tors serve as domains of support for computing appearance-
based descriptors. We use the SIFT descriptor [13] which
computes a gradient orientation histogram within the sup-
port region and the SPIN descriptor [11] which is a rotation-
invariant two-dimensional histogram of intensities within
an image region.

We consider each detector/descriptor pair as a separate
“channel.” The combination of multiple detector/descriptor
channels is denoted by (detector + detector) (descriptor +
descriptor), e.g., (HS+LS)(SIFT+SPIN) means the combi-
nation of HS and LS detectors each described with SIFT
and SPIN descriptors.

2.2. Comparing distributions of local features
To compare sets of local features, we represent their

distributions in the training and test images. One method
for doing this is to cluster the set of descriptors found in
each image to form its signature {(p1, u1), . . . , (pm, um)},
where m is the number of clusters, pi is the cen-
ter of the ith cluster, and ui is the proportional size
of the cluster. We extract 40 clusters with k-means
for each image. Earth Mover’s Distance (EMD) [17]
has shown to be very suitable for measuring the sim-
ilarity between image signatures. The EMD between
two signatures S1 = {(p1, u1), . . . , (pm, um)} and
S2 = {(q1, w1), . . . , (qn, wn)} is defined as D(S1, S2) =[∑m

i=1

∑n
j=1 fij d(pi, qj)

]
/
∑m
i=1

∑n
j=1 fij , where fij is

a flow value that can be determined by solving a linear pro-
gramming problem, and d(pi, qj) is the ground distance be-
tween cluster centers pi and qj . We use Euclidean distance
as the ground distance.

An alternative to image signatures is to obtain a global
texton vocabulary (or visual vocabulary) by clustering de-
scriptors from a training set, and then to represent each im-
age as a histogram of texton labels [19, 20]. Given a global
texton vocabulary of size m, the ith entry of a histogram
is the proportion of all descriptors in the image having la-
bel i. To compare two histograms S1 = (u1, . . . , um) and
S2 = (w1, . . . , wm), we use the χ2 distance defined as
D(S1, S2) = 1

2

∑m
i=1

[
(ui − wi)2/(ui + wi)

]
.

2.3. Kernel-based classification
For classification, we use Support Vector Machines

(SVM) [18]. For a two-class problem the decision function
has the form g(x) =

∑
i αiyiK(xi, x)− b, where K(xi, x)

is the value of a kernel function for the training sample xi
and the test sample x. The yi ∈ {−1,+1} and αi are the
class label and the learned weight of the training sample xi.
b is a learned threshold parameter. The training samples
with αi > 0 are usually called support vectors.

We use the two-class setting for binary detection, i.e.,
classifying images as containing or not a given object class.
For multi-class classification, we use the one-against-one

technique, which trains a classifier for each possible pair of
classes. When classifying an image, we evaluate all binary
classifiers, and perform voting [18].

To incorporate EMD or χ2 distance into the SVM frame-
work, we use generalized Gaussian kernels K(Si, Sj) =
exp

(
−D(Si, Sj)/A

)
where D(Si, Sj) is EMD (resp. χ2

distance) if Si and Sj are image signatures (resp. vocab-
ulary histograms). The resulting kernel is the EMD kernel
(or χ2 kernel). The parameter A of the EMD (resp. χ2)
kernel is the mean value of the EMD (resp. χ2) distances
between all training images. To combine channels, we ap-
ply the generalized Gaussian kernel to the summed distance
D =

∑n
i Di, where Di is the distance for channel i.

3. Empirical Evaluation
3.1. Experimental setup and datasets

For our experimental evaluation, we use 4 texture and
5 object category datasets, described below. For texture
classification, we randomly select 100 different training/test
splits and report the average classification accuracy, to-
gether with the standard deviation, over the 100 runs. For
object classification, we use the same training and test sets
as the publications with which we are comparing.

The UIUCTex dataset [11] (Fig. 1) contains 25 texture

wood stone brick fabric 1 fabric 2
Figure 1. Image examples of the UIUCTex dataset.

classes with 40 images per class. Textures are viewed un-
der significant scale and viewpoint changes. Non-rigid de-
formations, illumination changes and viewpoint-dependent
appearance variations are also present. The KTH-TIPS
dataset [9] (Fig. 4) contains 10 texture classes with 81 im-

Sponge Cotton
Figure 4. Image examples of the KTH-TIPS database.

ages per class. Images are captured at nine scales spanning
two octaves, viewed under different illumination directions
and different poses. The Brodatz texture album [2] contains
112 different texture classes where each class is represented
by one image divided into nine sub-images. Note that this
dataset is somewhat limited, as it does not model view-
point, scale, or illumination changes. For the CUReT tex-
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accordion (93%) carside (92%) pagoda (89%) scorpion (15%) ibis (8%) anchor (7%)
Figure 2. Categories of CalTech101 with the best classification rates (left) and with the lowest rates (right).

training test set 1 test set 2
Figure 3. Image examples with ground truth object annotation of the bike categories of the Pascal challenge.

ture database [3] we use the same subset of images as [19].
This subset contains 61 texture classes with 92 images for
each class. These images are captured under different il-
luminations with seven different viewing directions. The
changes of viewpoint, and, to a greater extent, of the illumi-
nation direction, significantly affect the texture appearance.

The Xerox7 dataset [20] (Fig. 5) consists of of seven

books buildings cars

books buildings cars
(as faces) (as trees) (as buildings)

Figure 5. Correctly recognized (first row) and misclassified (sec-
ond row) Xerox7 images.

classes. It includes images with highly variable pose and
background clutter, and the intra-class variability is large.
We perform multi-class classification with the same setup
as in [20]. The CalTech6 database [7] contains six classes
and a background set. We use the same training and test set
for two-class classification (object vs. background) as [7].
The Graz dataset [16] (Fig. 6) contains persons, bikes and a

bi
ke

s
pe

op
le

recognized missed
Figure 6. Recognized and missed images of the Graz dataset.

background class. We use the same training and test set for
two-class classification as [16]. The CalTech101 dataset [6]
(Fig. 2) contains 101 object categories. Most of the im-
ages in the database contain little or no clutter. Furthermore,
the objects tend to lie in the center of the image and to be
present in similar poses. Some images have a partially black
background due to artificial image rotations. We follow the
experimental setup of Grauman et al. [8], i.e., we randomly
select 30 training images per class and test on the remaining
images, reporting the average accuracy for all the classes.
The Pascal dataset [5] (Fig. 3) includes bicycles, cars, mo-
torbikes and people. It has one training dataset and two test
sets. In the “easier” test set 1, images are taken from the
same distribution as the training images. In the “harder”
test set 2, images are collected by Google search. An addi-
tional complication is that many images in test set 2 contain
instances of several classes.

3.2. Evaluation of parameters
Evaluation of different levels of invariance. First, we
show the results of evaluating different levels of invariance
(S, SR, A) of our two keypoint detectors on several datasets.
The number of training images per class are 20 for UIUC-
Tex, 3 for Brodatz, 100 for Graz bikes. For Xerox7, we use
tenfold cross-validation. These settings are kept for all ex-
periments reported in this section. In this test, all regions
are described with the SIFT descriptor and the EMD kernel
is used for classification. Table 1 shows that pure scale in-
variance (S) performs best for the Brodatz, Graz bikes and

Databases Scale Inv. Scale and Rotation Affine Inv.
HS+LS HSR+LSR HA+LA

UIUCTex 92.2±1.4 98.0±0.5 98.0±0.6

Brodatz 94.4±0.7 94.0±0.9 91.3±1.1

Graz bikes 91.9±2.6 91.3±2.6 90.5±3.0

Xerox7 94.7±1.2 92.2±2.3 91.4±1.8
Table 1. Evaluation of different levels of invariance.
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Xerox7 datasets, while for UIUCTex, rotation invariance
(SR) is important. The reason is that Brodatz, Graz and Xe-
rox7 have no rotation or affine changes, while UIUCTex has
significant viewpoint changes and arbitrary rotations. Even
in this case, affine-invariant features fail to outperform the
scale- and rotation-invariant ones. The apparent superiority
of scale-invariant detectors for recognition could be due to
their greater robustness, as the affine adaptation process can
often be unstable in the presence of large affine or perspec-
tive distortions.
Evaluation of different channels. Next, we compare the
performance of different detector/descriptor channels and
their combinations. We use the EMD kernel for classifi-
cation. Table 2 shows results obtained for the UIUCTex
dataset. We can see that the Laplacian detector tends to per-
form better than the Harris detector. The most likely rea-
son for this difference is that the Laplacian detector usu-
ally extracts four to five times more regions per image than
Harris-Laplace, thus producing a richer representation. Us-
ing the two detectors together tends to further raise perfor-
mance. SIFT performs slightly better than SPIN. Combin-
ing SIFT with SPIN boosts the overall performance because
the two descriptors capture different kinds of information
(gradients vs. intensity values). These observations are con-
firmed by results on other datasets [21] (omitted here for
lack of space). Overall, the combination of Harris-Laplace
and Laplacian detectors with SIFT and SPIN is the prefer-
able choice in terms of classification accuracy, and this is
the setup used in Sections 3.3 and 3.4.

Channels SIFT SPIN SIFT+SPIN
HSR 97.1 ± 0.6 93.9 ± 1.1 97.4 ± 0.6

LSR 97.7 ± 0.6 93.9 ± 1.0 98.2 ± 0.6

HSR+LSR 98.0 ± 0.5 96.2 ± 0.8 98.3 ± 0.5
Table 2. Detector and descriptor evaluation on UIUCTex.

Evaluation of different kernels. The learning ability of a
kernel classifier depends on the type of kernel used. Here
we compare SVM with three different kernels: linear, χ2,
and EMD. As a baseline, we also evaluate EMD with near-
est neighbor (NN) classification – the same setup as in
Lazebnik et al. [11]. For the signature-based classifiers
(EMD-NN and EMD kernel), we use 40 clusters per im-
age as before. For the other SVM kernels, which work
on histogram representations, we create a global vocabu-
lary by concatenating 10 clusters per class. For UIUCTex,
Brodatz, Graz bikes and Xerox7, the vocabulary sizes are
250, 1120, 20 and 70, respectively. Table 3 shows classi-
fication results for the LSR+SIFT channel, which are rep-
resentative of all other channels. We can see that EMD-
NN always performs worse than the EMD kernel, i.e., that
a discriminative approach gives a significant improvement.
The difference is particularly large for the Xerox7 database,
which has wide intra-class variability. Among the vocabu-

lary/histogram representations, the χ2 kernel performs bet-
ter than linear. The performance levels of EMD kernel and
the χ2 kernel are comparable and either of them is a good
choice in our framework provided that a suitable vocabulary
can be built efficiently. To avoid the computational expense
of building global vocabularies for each dataset, we use the
EMD kernel in the following experiments.

Databases Vocabulary-Histogram Signature
Linear χ2 EMD-NN EMD

UIUCTex 97.0 ± 0.6 98.1 ± 0.6 95.0 ± 0.8 97.7 ± 0.6
Brodatz 96.1 ± 0.8 96.0 ± 0.7 86.5 ± 1.2 94.1 ± 0.8

Graz bikes 83.9 ± 3.6 83.8 ± 2.0 84.6 ± 3.4 89.8 ± 2.6
Xerox7 79.8 ± 3.0 89.2 ± 2.1 59.4 ± 4.1 92.4 ± 1.7

Table 3. Classification accuracy of different kernels.

3.3. Texture classification
In this section, we present a comparative evaluation of

our approach with four state-of-the-art texture classification
methods: Lazebnik [11], VZ-joint [19], Hayman [9] and
global Gabor as in [14]. Table 5 shows the classification ac-
curacy of the five different methods for 4 texture databases.
We use (HS+LS)(SIFT+SPIN) as image description for all
databases except for UIUC, for which we use the rotation
invariant version. For the UIUCTex database we can ob-
serve that both our method and Lazebnik’s method work
much better than Hayman’s method and VZ-joint, while
Hayman’s method works better than VZ-joint. Overall, the
improved performance of our method over Lazebnik’s and
of Hayman over VZ-joint shows that discriminative learn-
ing helps to achieve robustness to intra-class variability. On
this dataset, global Gabor features perform the worst, since
they are not invariant and averaging the features over all pix-
els loses discriminative information. Overall, the three non-
invariant dense methods in our evaluation have relatively
weak performance on this database. For the KTH-TIPS
database we can observe that our method works best, Hay-
man’s comes second, and VZ-joint and Lazebnik’s method
are below them. Global Gabor filters come last, though they
still give good results and their performance is significantly
higher for this database than for UIUCTex. This may be
due to the relative homogeneity of the KTH-TIPS texture
classes. For the Brodatz our method performs best, closely
followed by Hayman’s method. We can see that Hayman’s
method performs better than VZ-joint, and our method bet-
ter than Lazebnik’s method, i.e. that kernel-based learning

Training UIUCTex KTH-TIPS Brodatz CUReT
set size 20 40 3 43

ours 98.3 ± 0.5 95.5 ± 1.3 95.4 ± 0.3 95.3 ± 0.4
Hayman 92.0 ± 1.3 94.8 ± 1.2 95.0 ± 0.8 98.6 ± 0.2
Lazebnik 96.4 ± 0.9 91.3 ± 1.4 89.8 ± 1.0 72.5 ± 0.7
VZ-joint 78.4 ± 2.0 92.4 ± 2.1 92.9 ± 0.8 96.0 ± 0.4
G. Gabor 65.2 ± 2.0 90.0 ± 2.0 87.9 ± 1.0 92.4 ± 0.5

Table 5. Comparison of different methods for texture datasets.
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Methods Xerox7 CalTech6 Graz Pascal test set 1 Pascal test set 2 CalTech101
(HS+LS)(SIFT+SPIN) 94.3 97.9 90.0 92.8 74.3 53.9

other 82.0 [20] 96.6 [20] 83.7 [16] 94.6 [10] 70.5 [4] 43 [8]
Table 4. Comparison with the best reported results on several object datasets.

improves the performance over 1-NN classification. For the
CUReT database Hayman’s method obtains the best results,
followed by VZ-joint, our method, global Gabor filters, and
Lazebnik’s method. On this dataset, local feature methods
are at a disadvantage. Since most of the CUReT textures
are very homogeneous and high-frequency, lacking salient
structures such as blobs and corners, keypoint extraction
does not produce very good image representations. A sim-
ple patch descriptor seems to be more appropriate.

In conclusion, our method achieves the highest accu-
racy on three texture databases and comparable results on
the CUReT dataset. Its robustness to viewpoint and scale
changes has been clearly demonstrated on the UIUCTex
and the KTH-TIPS datasets. Our results show that for
most datasets, combining geometric invariance at the repre-
sentation level with a discriminative classifier at the learn-
ing level results in a very effective system. Note that
even though impressive results are obtained using VZ-joint
(patch descriptors) on the CUReT and Brodatz datasets, this
method does not perform as well on the other datasets, thus
showing its limited applicability. An important factor af-
fecting the performance of local feature methods is image
resolution, since keypoint extraction tends to not work well
on low-resolution images. This concurs with the previous
results showing the advantage of the denser Laplacian de-
tector over the sparser Harris-Laplace.

3.4. Object category classification
In this section we evaluate our approach for object cat-

egory classification and compare it to the best results re-
ported in the literature. Table 4 shows the results for dif-
ferent datasets. The EMD kernel and SVM are used. For
details on the experimental setup see section 3.1.

Results for multi-class classification on Xerox7 show
that our method outperforms the Xerox bag-of-keypoints
method [20] in the same experimental setting. This is due to
the fact that we use a combination of detectors and descrip-
tors, a more robust kernel (see table 3) and scale invariance
as opposed to affine invariance (see table 1). Fig. 5 shows a
few results on Xerox7. Two-class classification (object vs.
background) accuracy on the CalTech6 and Graz databases
is reported with the ROC equal error rate. Our approach
outperforms existing methods on both datasets. Note that
results for CalTech6 are high, indicating the relatively low
level of difficulty of this dataset. Fig. 6 shows some re-
sults for the Graz datasets. Misclassified bikes are either
observed from the front, very small, or only partially visi-
ble. Misclassified people are either observed from the back,

occluded, or very small. We also evaluate our approach for
the object category classification task of the Pascal chal-
lenge [5]. Table 4 shows ROC equal error rates of our
method for detecting each class vs. the other best method
reported in the Pascal challenge. For test set 1 the best re-
sults, slightly better than ours, were obtained by Jurie and
Triggs [10]. This approach uses a dense set of multi-scale
patches instead of a sparse set of descriptors computed at
interest points. For test set 2 best results, below ours, were
obtained by Deselaers et al. [4]. They use a combination of
patches around interest points and patches on a fixed grid.
Results for multi-class classification on Caltech101 show
that our approach outperforms Grauman et al. [8] for the
same setup. The best results on this dataset (48%) are cur-
rently reported by Berg et al. [1]. However, these results are
not comparable to ours, since they were obtained in a su-
pervised setting with manually segmented training images.
Fig. 2 presents the categories with the best and worst classi-
fication rates. We can observe that some of the lowest rates
are obtained for categories that are characterized by their
shape as opposed to texture, such as anchors.

To conclude, our method achieves the best results on Xe-
rox7, CalTech6, Graz, Pascal test set 2 and CalTech101 and
is comparable for Pascal test set 1.

4. Object categories – influence of background
Our method recognizes object categories taking both

foreground and background features as input. In most
databases included in our evaluation, object categories have
fairly characteristic backgrounds, e.g., most car images con-
tain a street or a parking lot. In this section, our goal is
to determine whether background correlations provide our
method with additional cues for classification. In the fol-
lowing experiments, we use the (HS+LS)(SIFT) channels
– SPIN is dropped for computational efficiency – and the
EMD kernel. The signature size is set to 40 per image. Our
test bed is the Pascal database, which comes with complete
ground truth annotations (see Fig. 3). Using the annotations,
we extract two sets of features from each image: foreground
features (FF) that are within the ground truth object region,
and background features (BF) that are outside. Through-
out our experiments, we systematically replace the original
background features from an image by two specially con-
structed alternative sets: random and constant natural scene
backgrounds (referred to as BF-RAND and BF-CONST, re-
spectively). BF-RAND are obtained by randomly shuffling
background features among all of the images in the dataset.
For example, the background of a face image may be re-
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Figure 7. ROC curves for training and testing with four combinations of the foreground features with different types of background.

placed by the background of a car image. BF-CONST are
background features extracted from images captured by a
fixed camera observing a natural scene over an extended
period of time, so they include continuous lighting changes
and the movement of trees and clouds.

Fig. 8 shows ROC curves obtained by training and test-
ing on only the background features (BF). Judging by the
shape of the ROC curves, the background features contain
a lot of discriminative information for test set 1, and signif-
icantly less for test set 2 (e.g., the performance of back-
ground features for test set 2 bicycles is close to chance
level). The performance curves of the BF-RAND and
BF-CONST feature sets (not shown in the figure) are at
chance level as one would expect, since BF-RAND and
BF-CONST do not contain any information about the fore-
ground object by construction.

Fig. 7 evaluates combinations of foreground features
with different types of background features. Due to space
limitations only results for the people test set 1 are pre-
sented. Results for the other test sets are similar [21]. AF
denotes all the features extracted from the original image,
AF-RAND denotes the combination of FF and BF-RAND
and AF-CONST denotes the combination of FF and BF-
CONST. Fig. 7 (left) shows ROC curves for a situation
where training and testing are performed on the same fea-
ture combination. FF always gives the highest results, in-
dicating that object features play the key role for recogni-
tion, and recognition with segmented images achieves bet-
ter performance than without segmentation. Mixing back-
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Figure 8. ROC curves of object classification obtained by training
and testing on background features only.

ground features with foreground features does not give
higher recognition rates than FF alone. For images with
roughly constant backgrounds (AF-CONST), the perfor-
mance is almost the same as for images with foreground
features only. It is intuitively obvious that classifying im-
ages with fixed backgrounds is as easy as classifying im-
ages with no background clutter at all. Finally, the ROC
curves for AF-RAND are the lowest, which shows that ob-
jects with uncorrelated backgrounds are harder to recog-
nize. Fig. 7 (middle) shows ROC curves for a setup where
the training set has different types of backgrounds and the
test set has its original background. We can observe that
training on AF or AF-RAND while testing on AF gives the
highest results. Thus, even under randomly changed train-
ing backgrounds, the SVM can find decision boundaries
that generalize well to the original training set. Training
on FF or AF-CONST and testing on AF gives lower results,
most likely because the lack of clutter in FF set and the
monotonous backgrounds in AF-CONST cause the SVM to
overfit the training set. By contrast, varying the object back-
ground during training, even by random shuffling, seems to
prevent this. Finally, Fig. 7 (right) shows ROC curves for a
situation where the training set has the original backgrounds
and the test set has different types of backgrounds. When
the test set is “easier” than the training one, performance im-
proves, and when it is “harder,” the performance drastically
drops. This is consistent with the results of Fig. 7 (middle),
where training on the “harder” sets AF or AF-RAND gave
much better results than training on the “easier” sets FF and
AF-CONST.

Based on our evaluation of the role of background fea-
tures in bag-of-keypoints classification, we can venture two
general observations. First, while the backgrounds in most
available datasets have non-negligible correlations with the
foreground objects, using both foreground and background
features for learning and recognition does not result in better
performance for our method. In our experimental setting,
the recognition problem is easier in the absence of clutter.
Second, when the statistics of the test set are unknown at
training time, it is usually beneficial to pick the most diffi-
cult training set available.
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5. Discussion

In this paper, we have investigated the performance
of an image classification approach combining a bag-
of-keypoints representation with a kernel-based learning
method. Results on challenging datasets have shown that
surprisingly high levels of performance can be achieved not
only on texture images, which are clutter-free and relatively
statistically homogeneous, but also on object images con-
taining substantial clutter and intra-class variation.

One of the contributions of our paper is a comprehen-
sive evaluation of multiple keypoint detector types, levels of
geometric invariance, feature descriptors and classifier ker-
nels. This evaluation has revealed several general trends.
We show that to achieve the best possible performance, it
is necessary to use a combination of several detectors and
descriptors together with a classifier that can make effective
use of the complementary types of information contained
in them. Also, we show that using local features with the
highest possible level of invariance usually does not yield
the best performance. Thus, a practical recognition system
should seek to incorporate multiple types of complementary
features, as long as their local invariance properties do not
exceed the level absolutely required for a given application.

In testing our method on 4 texture and 5 object databases,
we have followed an evaluation regime far more rigorous
than that of most other comparable works. In fact, our eval-
uation of multiple texture recognition methods highlights
the danger of the currently widespread practice of devel-
oping and testing a recognition method with only one or
two databases in mind. For example, methods tuned to
achieve high performance on the CUReT database (e.g.,
the VZ method) have weaker performance on other texture
databases, such as UIUCTex, and vice versa, methods tuned
to UIUCTex and Brodatz (e.g., the Lazebnik method) per-
form poorly on CUReT.

Another contribution of our paper is our evaluation of
the influence of background features. It shows the pitfalls
of training on datasets with uncluttered or highly correlated
backgrounds, since this yields disappointing results on test
sets with more complex backgrounds.

Future research should focus on designing more effec-
tive feature detectors and descriptors, for example for repre-
senting shape, as well as designing kernels that incorporate
geometrical relations between local features. In the longer
term, successful category-level object recognition and lo-
calization is likely to require more sophisticated models
that capture the 3D shape of real-world object categories
as well as their appearance. In the development of such
models and in the collection of new datasets, simpler bag-
of-keypoints methods can serve as effective baselines and
calibration tools.
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0-7695-2646-2/06 $20.00 (c) 2006 IEEE


	Select a link below
	Return to Proceedings




