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Local field potentials indicate network state
and account for neuronal response variability
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Abstract Multineuronal recordings have revealed that
neurons in primary visual cortex (V1) exhibit coordi-
nated fluctuations of spiking activity in the absence and
in the presence of visual stimulation. From the pers-
pective of understanding a single cell’s spiking activity
relative to a behavior or stimulus, these network fluc-
tuations are typically considered to be noise. We show
that these events are highly correlated with another
commonly recorded signal, the local field potential
(LFP), and are also likely related to global network
state phenomena which have been observed in a num-
ber of neural systems. Moreover, we show that at-
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tributing a component of cell firing to these network
fluctuations via explicit modeling of the LFP improves
the recovery of cell properties. This suggests that the
impact of network fluctuations may be estimated using
the LFP, and that a portion of this network activity is
unrelated to the stimulus and instead reflects ongoing
cortical activity. Thus, the LFP acts as an easily acces-
sible bridge between the network state and the spiking
activity.
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1 Introduction

One of the most striking features of spike trains is their
variability—that is, the same visual stimulus does not
elicit the same spike pattern for repeated trials. This
variability is often considered “noise,” the connotation
being that it is due to unknown factors. Identifying
these factors should improve understanding and enable
better characterization of neural response. One as-
pect of trial-to-trial fluctuation that has been examined
is correlation between neurons. From neuroanatomy,
we know that the visual cortex contains a rich pat-
tern of connections. Because of these connections, the
spiking activity of groups of cortical neurons is not
independent—instead it is correlated on a range of time
scales (Smith and Kohn 2008). The correlation among
neurons has most often been measured by simultaneous
recording of nearby pairs. In the retina, it has recently
become possible to record from a nearly complete pop-
ulation of certain types of ganglion cells in a region
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and identify the correlation structure of this popula-
tion (Shlens et al. 2009). However, in cerebral cortex
recording a full population of individual neurons in a
region has been impossible, and large scale recordings
in vivo have been rare. Correlated variability has a
strong influence on population coding—it can enhance
or diminish the information encoded within that popu-
lation depending on a number of factors (Zohary et al.
1994; Shadlen and Newsome 1998; Abbott and Dayan
1999; Averbeck et al. 2006). Although it is possible
for a signal to be encoded in the correlation strength
itself (Kohn and Smith 2005; Samonds and Bonds 2005;
Smith and Kohn 2008; Huang and Lisberger 2009),
correlated variability is more often thought of as noise
which is to be removed in order to better reveal the
signal. Experimenters typically deal with this problem
through multiple trial repetitions and simply averaging
the neuronal responses, assuming that any noise is
thereby diminished or removed.

An understanding of neuronal population activity is
incomplete when measured only with spiking activity
from a small subset of the total neurons in a region.
Intracellular measurements of subthreshold activity
have revealed that membrane potentials are continu-
ously correlated between nearby cells in primary visual
cortex (V1) (Lampl et al. 1999). In addition, the firing
of neurons has been strongly linked to ongoing popu-
lation activity measured with optical imaging (Tsodyks
et al. 1999) and LFP (Nauhaus et al. 2009). This link to
the state of the local population is an influential force
affecting the variability in a cell’s spiking behavior.
Indeed, groups of neurons transition between “Up”
(depolarized) and “Down” (hyperpolarized) states,
which leads to cycles of higher and lower than normal
firing rates (for review, see Destexhe and Contreras
2006). Though they are often referred to as discrete
states, this is somewhat deceptive—neuronal popula-
tions transition smoothly between epochs of high and
low responsivity. These state transitions occur in sleep-
ing and anesthetized animals, as well as in cortical slices
(Johnson and Buonomano 2007). Similar fluctuations
in responsivity have also been reported in awake animal
subjects (Leopold et al. 2003; Luczak et al. 2007) as
well as awake human patients (He et al. 2008; Nir et al.
2008). Thus, a signal which reflects these states, and in
turn helps account for some variability, would be an
important tool for decoding a neuron’s response.

The local field potential (LFP) is one such candidate
signal. It is thought to reflect the average synaptic
input to a region near the electrode (Mitzdorf 1987,
Buzsaki 2004), and is known to be correlated with
the subthreshold membrane potential fluctuations in
nearby neurons (Eggermont and Smith 1995; Petersen
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et al. 2003). Furthermore, slow dynamics of spiking
activity can be inferred from the LFP (Rasch et al.
2008), and the phase of the LFP is predictive of multi-
unit activity (Haslinger et al. 2006). However, there
are a number of reasons why the LFP might not be a
suitable signal for this purpose. Estimates of the spatial
spread of LFP range from a few hundred microns to
a few millimeters (Mitzdorf 1987; Kruse and Eckhorn
1996; Kreiman et al. 2006; Liu and Newsome 2006;
Berens et al. 2008; Katzner et al. 2009; Xing et al. 2009),
and depend on laminae (Xing et al. 2009) and fre-
quency (Frien et al. 2000; Henrie and Shapley 2005; Liu
and Newsome 2006; Siegel and Koenig 2003). Further-
more, the feature selectivity of the LFP is broader than
that of spiking activity (Kreiman et al. 2006; Liu and
Newsome 2006; Berens et al. 2008; Katzner et al. 2009).
Though it is clear there is a relationship between LFP,
neuronal states, and spiking activity, it is not known
to what extent these factors can be disentangled to
better decode spike-stimulus relationships. We there-
fore recorded spiking activity and LFP simultaneously
from a population of cells with a multielectrode array,
and we used the LFP to decompose neuronal firing
into stimulus-dependent and network-state dependent
components. We used a generalized linear model to
examine the correlation of network fluctuations with
LFP and to correct the neural response to the stimulus
for the effects of LFP. Generalized linear models have
become a standard framework for spike train analysis
(Paninski et al. 2007, 2009; Pillow 2007; Pillow et al.
2008). We found that the stimulus-dependent firing rate
function reveals greater signal to noise in orientation
tuning than the same measure computed via the usual
mean firing rate function. An improvement in signal
to noise was also present for stimulation with nat-
ural movies, demonstrating the generality of the effect.
These results show that each spike’s relationship to the
stimulus can be estimated using merely the LFP from
the same electrode—a new connection between the
LFP, the ongoing network state, and spiking activity.

2 Recording methods

This experiment involved extracellular recording from
microelectrode arrays implanted in V1 of three adult
male cynomolgus (Macaca fascicularis) macaque mon-
keys. The techniques we use to record from the vi-
sual cortex of anesthetized, paralyzed macaques have
been described in detail elsewhere (Cavanaugh et al.
2002; Smith and Kohn 2008). Briefly, we maintained
anesthesia throughout the experiment by a continu-
ous intravenous infusion of sufentanil citrate (typically



J Comput Neurosci

6-18 pg/kg, adjusted as needed for each animal). To
minimize eye movements, the animal was paralyzed
with a continuous intravenous infusion of vecuronium
bromide (0.1 mg/kg/h). We monitor vital signs continu-
ously (EEG, ECG, blood pressure, end-tidal Pco,, tem-
perature and lung pressure). The pupils were dilated
with topical atropine and the corneas protected with
gas-permeable hard contact lenses. We used supple-
mentary lenses to bring the retinal image into focus
by direct ophthalmoscopy, and then adjusted the re-
fraction further to optimize the response of recorded
units. Experiments typically lasted 4-5 days. All exper-
imental procedures complied with guidelines approved
by the Albert Einstein College of Medicine of Yeshiva
University Animal Welfare Committee.

We recorded neural activity with the “Utah” Array
(Blackrock Microsystems, Salt Lake City, Utah) using
techniques reported previously (Kelly et al. 2007). This
device is a 10 x 10 grid of silicon microelectrodes (1 mm
in length) spaced 400 pum apart, covering 12.96 mm?.
The details of the array insertion have been described
in detail elsewhere (Smith and Kohn 2008). Briefly, we
inserted the array 0.6 mm into cortex using a pneu-
matic insertion device (Rousche and Normann 1992),
which led to recordings confined mostly to layers 2-3 of
parafoveal V1 (receptive fields within 5° of the fovea).
Signals from each microelectrode were amplified and
bandpass filtered (250 Hz to 7.5 kHz) to acquire spiking
data. Waveform segments that exceeded a threshold
(set as a multiple of the rms noise on each channel)
were digitized (30 kHz) and sorted off-line. We first
performed a principal components analysis by wave-
form shape (Shoham et al. 2003) and then refined the
output by hand with custom time-amplitude window
discrimination software (written in MATLAB; Math-
Works). This yielded 105-129 candidate neural units
from the three array implants, with roughly one half
estimated to be well isolated single units similar in
quality to those recorded with single microelectrodes
(Kelly et al. 2007). LFPs were acquired from the same
electrodes simultaneously by low pass filtering the raw
signal (0.3 to 250 Hz) and sampling at 1 kHz. The LFP
signal was then smoothed with a 100 ms boxcar filter for
all subsequent analysis (50 and 200 ms filters produced
the same results).

All stimuli were generated with custom software on
a Silicon Graphics Octane2 Workstation and displayed
at a resolution of 1,024 x 768 pixels and frame rate of
100 Hz on a CRT monitor (stimulus intensities were
linearized in luminance). Three kinds of stimuli were
presented: gratings, natural movies, and a blank screen.
The full-contrast sinusoidal gratings (presented in two
of the three array implants) consisted of a pseudo-

randomly chosen sequence of directions of drift, each
lasting 300 ms and then proceeding to the next direction
with no blank frames between. We used a total of 98 di-
rections, evenly spaced, resulting in a sequence lasting
roughly 30 s. Because we never repeated the same di-
rection in a block, this 30 s stimulus comprised a unique
“movie” of gratings in which no frame was repeated.
This movie, with the same pseudo-random order of
drift direction, was repeated 120 times. The spatial
frequency (1.3 cpd) and temporal frequency (6.25 Hz)
were chosen to fit the preference of parafoveal V1
neurons (DeValois et al. 1982; Foster et al. 1985; Smith
et al. 2002), while the position and size (8° diameter
circular aperture) of the grating were sufficient to
cover the receptive fields of all the neurons. The nat-
ural movie stimulus (presented in one of the three
implants) was a square 5° 30-s movie of a consumer
film, repeated 120 times. The grating and movie stimuli
were surrounded by a gray field of average luminance.
We also recorded spontaneous activity in each of the
three array implants (mean luminance approximately
40 cd/m?), consisting of 30 min of responses measured
in the presence of a blank gray screen of average
luminance.

3 Correlated fluctuations in spiking and the local
field potential

We simultaneously recorded single- and multiple-unit
neuronal activity (sorted offline) and LFPs from 100-
electrode Utah arrays implanted in V1. We measured
responses to sequences of sinusoidal gratings and nat-
ural movies as well as spontaneous activity with a mean
gray screen. By pairing the spiking response on each
electrode with the LFPs recorded from each of 96 active
electrodes, we were able to measure and model the
dependence of spike trains on the LFP.

In the absence of a visual stimulus, neurons in V1
respond at a baseline rate which varies from nearly
no activity to tens of spikes per second. This rate is
of course not constant—neuronal activity changes in a
seemingly random pattern over time. However, some
of that apparent randomness can be explained when
the simultaneous responses of other neurons are ob-
served. In Fig. 1(a), the responses from 129 single and
multi-unit recordings from a single array are shown in
a raster plot for a 15 s period. If the neurons were
responding randomly and independently, there would
be no structure apparent in this plot. However, there
are a number of prominent vertical bands present (for
instance, one at roughly 8 s). These bands are produced
by the temporally coordinated responses of a large
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Fig. 1 The activity of a ( a)
neuronal population recorded

Spontaneous activity

with the array. In the upper
plot, each row depicts the
firing of one cell during
spontaneous activity (the
room is dark). Most cells in
the population exhibit
correlated activity on a slow
time scale. The local field
potential, shown below,
typically contains peaks
during the epochs of high
correlated firing. The local
field potential is averaged
across all electrodes in this
figure, and the y-axis is
flipped for illustrative
purposes
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portion of the neurons in the population. This kind of
correlation in spiking has been reported previously in
spontaneous and evoked activity in both anesthetized
and awake animals (Zohary et al. 1994; Shadlen and
Newsome 1998; Bair et al. 2001; Kohn and Smith 2005;
Smith and Kohn 2008; Huang and Lisberger 2009).

Patterns of network activity such as these, or net-
work “states”, are well characterized in a number of
systems and recording preparations (for review, see
Kohn et al. 2009). One means of measuring the state
of a system is through the field potentials, which are
thought to represent the sum of all synaptic inputs to a
region of cortex (Legatt et al. 1980; Gray et al. 1995).
We compared the LFP (Fig. 1(b) recorded simulta-
neously) with the spontaneous spiking activity in a
population of neurons. We found that the states which
contained a large number of spikes (“Up”, or depo-
larized states) tended to correspond to large negative
fluctuations in the LFP. Similarly, the absence of spikes
(“Down”, or depolarized states) correspond to positive
trends in the LFP.

Although Fig. 1 only displayed correlated fluctua-
tions in spontaneous activity, they were also present
during the presentation of a visual stimulus. Figure 2
shows two sets of 5 raster plots, each created in the
same way as Fig. 1(a), for five repeated presentations
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Time (s)

of a sequence of gratings (Fig. 2(a)) or a natural movie
(Fig. 2(b)). In panel (a), the sequence of gratings is
identical in trials 1-5. Thus, the presence of a period of
high activity on one of the trials that does not occur at
the same time on all of the trials represents an “Up”
state. Because the neurons prefer different orienta-
tions, there is no period in the grating sequence during
which all of the neurons tended to fire in response to
the visual stimulus. For this reason, the “Up” states
were easy to identify. For the five identical natural
movie repeats (Fig. 2(b)), stimulus-dependent and in-
dependent correlated activity were more difficult to
separate. Although correlated “Up” states are present,
there were also periods of high activity in the entire
population corresponding to stimulus events, presum-
ably abrupt scene transitions, that altered the response
of a large group of the recorded neurons. This mingling
of stimulus-driven and state-driven activity makes it
difficult to decode the signals sent by the spikes from
a single neuron. However, with information about the
population activity, it is possible to separate these two
factors. Such a separation is certain to be imperfect—it
is difficult or impossible to assess the “true” meaning of
an individual spike. Nonetheless, we use a quantitative
measurement (orientation tuning, Section 6) which al-
lows us to infer that the signal due to the stimulus has
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Fig. 2 Network fluctuations ( a)

differ across repeated Gratings

(b)

Natural movie

identical visual stimulation.

(a) The stimulus is a movie of

dr¥ft1ng gratings of different 5
orientations, 300 ms per

orientation. For each trial, the

stimulus is identical. Stimulus
independent correlated

activity occurs differently on 4
each trial. (b) The stimulus is

10 s of a single natural movie,

for a different population
than the one shown in (a).
Stimulus independent
correlated activity is apparent
and also some

Trial
w

Trial

stimulus-dependent activity is

visible. For example, at 9 s

into the stimulus a feature of 2
the movie that drives most of

the population elevates

activity on every trial

Time (s)

been increased relative to the network “noise”, utilizing
the assumption that the stimulus and network com-
ponents are independent components which together
comprise the neural response.

4 A generalized linear model for the effects
of network state

Each spike train is a sequence of spike times and the
natural statistical framework for spike train analysis
is that of point processes, which may take a rather
general form (Paninski et al. 2009). It is simplest to
assume the spike trains follow inhomogeneous Poisson
processes, and for our analyses it is unlikely that more
complicated models would change our conclusions. We
used time bins of duration 1 ms, ensuring that each bin
has at most one spike. A spike train may thereby be
considered a binary sequence Y = Y ... Y7, each value
Y, indicating whether or not the cell fired at time ¢.
According to the Poisson assumption the probability of
observing y; spikes at time ¢ is given by

P(Yz = y:) = (rA)" exp(—rA) 1)

where r, is a rate parameter for the process at time ¢
and A = 1 ms. The likelihood of observing the entire

Time (s)

spike train Y = y;...yr is the product of the likeli-
hoods for each time bin, where these observations are
independent:

P(Y = yi...yp) = [ [2)” exp(—r.A) )

t

In our context, the rate parameter r is an unobserv-
able property of the neuron, and we proceed by fitting »
so that this likelihood value is maximized. Equivalently,
and for computational convenience, we can maximize
the log-likelihood

T
L= Z (y, logr; — r,) (3)

We make the assumption that the relationship be-
tween the rate r and the observables for any given
cell is a linear relationship, followed by a nonlinearity,
the exponential function. Paninski (2004) gives the
rationale for using this kind of model as a trade-off
between neural system faithfulness and computational
tractability. The observed components are a network
state component and a stimulus component.

log rt(i) — SEl') + ,B(i)xii) (4)
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where r,(i) is the expected number of spikes at time ¢
from cell i, s?) is the stimulus-dependent component of
cell i’s firing rate, xfi) is an independent variable corre-
sponding to the LFP value (taken to be an indication
of the local network activity) at time ¢, and 8% is a
constant which controls the extent to which the network
state affects the firing of cell i.

Thus, the values s\ and 8 which maximize the log-

likelihood function

T
Lo — Z [ygw (s,(i) Iy x;i))

t
o (s 4 0) o] )

make up the best model of r,(i) given the data. This is a
convex function of @ and s, and we can easily fit it
with iteratively reweighted least squares (IRLS), which
is equivalent to the Newton—-Raphson method (Hardin
and Hilbe 2007) in this context.

We further made the assumption that 8 is not
dependent on the stimulus. Since s was just a constant
¢® when the stimulus is constant (a mean gray screen),

Fig. 3 Description of the (a)
model. (a) For each cell, 8

Cell 1, Spikes and LFP

we fit B with spontaneous activity data, which is the
simpler formula

T
Lo=%" [ygn (cm LB xﬁi)>
t
—exp (c(i) + ,B(i)xﬁi)> —log yﬁi)!] (6)

involving finding the values of only two parameters, ¢
and B for each cell i. Larger || indicates a greater
dependence of firing on the value of the LFP.

In Fig. 3(a), the model fits are shown schematically
for two example neurons. On the left, spikes are shown
along with the corresponding LFP from the same elec-
trode. The predicted firing rate function after the fitting
procedure is shown on the right along with the actual
spike train. The value of § varied across neurons in the
population—some cells tended to be more influenced
by network state than others. To give context for the
values of 8, a value 8 = —0.017 means that an LFP
change of —100 mV predicts a 5.5 fold increase in
firing rate. A value B8 = 0.014 predicts for the same
LFP change, a 4 fold increase in firing rate. The raster
plot in Fig. 3(b), sorted by 8, demonstrates this trend.

is fit using the generalized H [
linear model and spontaneous
spiking data, with
simultaneous LFP data. (b)
Cells with low |8®| are at the

Il
Y N

Predicted firing rate of cell 1

top and generally are not

Cell 2, Spikes and LFP

Predicted firing rate of cell 2

driven by the large correlated
events. Cells with high |8?|
are at the bottom and are
highly susceptible to the

Fit® = -0.014
—

W

network state

(b) -

Population raster, sorted by

0.000

“ -0.014

-0.053-f
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Neurons in the upper rows of this plot tended to not
be very influenced by network state, and thus had low
B values. They also tended to have higher tonic firing
rates (r = 0.48, p <0.0001). Neurons in the lower rows
of the plot had a strong tendency to fire during negative
inflections of the LFP, and thus had highly negative g
values. In the extreme, those neurons tended to fire
only during “Up” states.

5 Spatial distribution of state dependence

Correlation is known to decrease as the distance be-
tween recorded neurons grows (Smith and Kohn 2008).
While LFPs reflect signal from a larger region of tissue,
they also tend to cohere more for nearby electrodes
than distant ones (Leopold et al. 2003). If the network-
driven activity we describe here is one source of cor-

(a)

2 4 6 8 10

(C) B histogram for nearby %Igftrodes
300 1
4
©
o
S 2001
9]
Ke)
£
= 100
0 i
-0.06 -0.04 -0.02 0
B

Fig. 4 Distribution of 8. (a), (b) Examples of g; for two examples
cells. B; was fit using spontaneous data. These plots depict the
10x10 grid of electrodes on the array. The two cells are recorded
from the electrodes labeled with white asterisks. 8; was fit using
the LFP from each electrode by itself, and the values are plotted
here in the color maps. When p; is highly negative, negative LFP
values from that electrode indicate a higher firing rate of the
cell. When g is positive, positive LFP values indicate a higher
firing rate. The electrodes closer to the electrode recording the
cell’s activity tend to carry more information about the cell’s

relation between spiking neurons, it is likely to also
show a distance dependence. In Fig. 3, 8 was computed
using the LFP recorded from the same electrode as the
spiking activity. We tested the spatial dependence of
spiking on the LFP by using LFPs recorded from each
electrode in the array to compute S.

Figure 4(a) and (b) show the spatial distribution of
B for two example neurons. The asterisks indicate the
electrode from which spiking activity was recorded for
each example. The largest negative values of g, indi-
cated by deep blue colors, were achieved when nearby
electrodes supplied the LFP. Stated another way, the
spiking activity on a given electrode tends to be most
influenced by the LFP of nearby electrodes. The precise
spatial distribution of 8 values varied between cells—
in some cases there was a smaller region of high beta
values than others. In addition, the overwhelming trend
was for g values to be negative around the recording

(b) x107

2 4 6 8 10

(d) Dependence of 3 on distance
0.5

0 1 2 3 4
Distance (mm)

firing rates. (¢) The distribution of B values across the entire
population of cells. The data shown in this plot are all possible
pairings of cells and LFPs from the same or adjacent electrode. So
each cell may be represented up to nine times in this histogram,
depending on its location in the array. For almost all cells, 8 is
negative for nearby electrodes. (d) For each cell, 8 was computed
independently using data from each LFP electrode, and grouped
into bins based on the distance between the two electrodes. The
bar values are the mean values across the cells. There is a smooth
falloff of g with increasing distance between the electrodes
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electrode (Fig. 4(c)). This reflects the fact that spiking
activity tended to occur when the LFP voltages were
negative (as seen in the figures above).

To summarize its spatial dependence, we computed
the average g for all pairs of spiking electrode and LFP
electrode across the entire array. The results of this
analysis are shown in Fig. 4(d), which plots average 8 as
a function of the distance between the spiking and LFP
electrodes. The largest negative values of g were for
the same electrode. 8 was reduced in magnitude with
increasing distance throughout the range in which we
could make reliable measurements (4 mm).

6 Improvement in orientation selectivity after
accounting for state dependence

The observed spiking activity of a neuron in response
to a stimulus such as a grating, as we demonstrated
above in Fig. 2(a), includes effects of both the stimulus
and the network state. Our model factor Sx, is an
attempt to assess the influence of the network state on
each neuron. Once we determined the value of g for
each neuron i during spontaneous activity, we assumed
that the relationship between spiking and the network
state (LFP value xﬁi)) remained the same during visual
stimulation. We thus fit s,@ using the LFP and spiking
data from repeated trials of drifting grating recordings,
now holding B fixed. The expression is

logri), = s, + Bxp) ()

where r;,, and x;, are with respect to time and the trial
number n, while the stimulus-dependent component
s@ only varies with time, since it is the same on each
trial.

One caveat is that during visual stimulation across
trials of the same stimulus, the LFP has a significant
component of activity which is related to the stimulus.
We therefore subtracted the mean LFP across repeated
trials from each trial’s data before computing the fixed
offset term B@x".

N

PO :
x) = N > X (8)

n
togry = st + B0 [+, — %] 9)

Figure 5(a) shows some trial data for an example cell.
We solved for s\, and exp(s\”) is the firing rate
function with the LFP effect taken into account, in
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spikes/ms. Figure 5(b) shows the raw peri-stimulus time
histogram (PSTH), or 7 in our model, and the LFP-
adjusted firing rate function (aPSTH). The aPSTH can
be thought of as the stimulus-dependent component
of firing, since the component of firing that can be
attributed to the LFP, or network effect, has been
removed. For points in time which happened to have
more network state influence, the aPSTH estimate was
very different than the PSTH value, and conversely
some time points had a small amount of influence.
Even with a large number of trials (N = 120), network
fluctuations were not evenly distributed in time, a fact
that can bias any computed estimate of orientation
tuning. Figure 5(c) shows the orientation tuning for
this cell, computed both from the PSTH and from
the aPSTH. The aPSTH estimate of orientation tuning
has a more pronounced difference between preferred
and non-preferred orientations, possibly reflecting the
removal of action potential contributions that are un-
related to the stimulus. The orientation tuning curves
are normalized by their mean firing rate for illustrative
purposes.

We characterized the variability of the raw and LFP-
adjusted firing by computing Fano factors for each.
Specifically, for each neuron we computed the Fano
factor (ratio of variance to mean) for each orienta-
tion with respect to the spike counts obtained from
each repetition of that orientation. Because we found
no dependence of the Fano factor on orientation, we
averaged across these conditions to produce a single
Fano factor for each cell. We then similarly computed
the Fano factor among the LFP-adjusted firing rates.
Examining the Fano factors across neurons in the two
populations shows a substantial and highly significant
reduction in variability (p < 1079, paired t-test) in the
LFP-adjusted data. Figure 5(d) and (e) are histograms
of the differences between the two variability measures
for the two neural populations. For both populations,
the LFP-adjusted component tended to have a smaller
Fano factor, or more reliability, than the raw spike
train. This reduction was not specific to responses
evoked with grating stimuli. We performed the same
analysis on the natural movie data shown in Fig. 2
and determined there is also a significant reduction in
Fano factor for spikes evoked by this stimulus (mean =
—0.32, p < 1079, paired t-test).

Figure 6(a) and (b) show the orientation tuning
curves measured from two other neurons. In both of
these examples, again it is apparent that the orientation
selectivity improved after we accounted for network
state—the peaks are higher and the troughs are lower.
Note that the values on the y axis are relative to the
mean firing rate across all conditions, where a value of
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(a) Spikes [ri(t)] and LFP [xi(t)] during drifting gratings (cell i)

| using estimate Bi =-0.014221, find the

component of firing due the stimulus, e

Trial 1 Trial 2
M 1w (R T
Trial 3 Trial 4

| Y = 1 (1)/B, X,(1)

fedrran iy
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Adjusted PSTH (aPSTH): e%®
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Fig. 5 Using the model to find orientation tuning with the net-
work state removed. (a) Data recorded during four trials of a
single grating movie. The stimulus consisted of drifting gratings
of different orientations, ordered randomly. Each orientation was
presented for 300 ms. Shown in the plots are the spike trains for
each trial and the LFP from the same electrode. The data is used
to compute exp(s;()), the component of firing due to the stimulus.
It is essentially a LFP-weighted version of the PSTH. (b) The
firing rate function was calculated by fitting the model for the
component of firing due to the stimulus, given a fixed g;, which

1 is exactly the mean firing rate and a value of v is v
times the mean firing rate. We evaluated this selectivity
change quantitatively using vector averaging:

| 2_; pjexp(2i8))]
Z;Pj

Selectivity = (10)

6 is a specific orientation presented, and p; is the firing
rate corresponding to that orientation. i = 4/—1. Selec-
tivity is 1 when the neural firing is concentrated at one
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were calculated from the spontaneous data as in Fig. 3. There
were 120 trials in total. (¢) The orientation tuning was calculated
by averaging the firing rate function over bins corresponding to
the 300 ms grating orientation stimuli epochs. (d), (e) In the two
cell populations for which the grating stimulus was shown, the
Fano factors were calculated for the raw spike train and also
the model adjusted spike train. Most cells show a Fano factor
decrease after the network state is accounted for, indicating a
reduction in variability

or opposite orientations (e.g. 90° and 270°). We found
an average improvement of 0.04 (Fig. 6(c)), which
was statistically significant (p < 107, paired t-test).
This improvement in selectivity was strongest when
we used the LFP from the same or nearby electrodes
(Fig. 6(d)).

We have used the LFP as a signal to reflect network
state and account for neuronal variability, and through
our model aid in decoding neuronal responses. It is also
the case that the spikes themselves could serve as such
a signal. Because the LFP has significant differences
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Fig. 6 Increased orientation
selectivity. (a), (b) Examples
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from spiking activity in terms of spatial extent and
tuning selectivity, it was not known whether it would
produce better results in our model. We therefore made
a direct comparison between the orientation selectivity
improvement using the LFP and spike trains in the
GLM. We treated each spike train as a time series, and
performed smoothing in exactly the same manner as for
the LFP time series data. The rest of the analysis was
identical, with the smoothed spike train used instead
of the LFP as the measure of network state (x;). In
order to be sure that the distances were equal and that
sorting errors did not contribute to the shared variabil-
ity, we used the spike trains from only the neighboring
electrodes. We found that at this distance (equivalent
to the second bin in Fig. 6(d)), the average improve-
ment in selectivity when using spike trains was half
the magnitude), significantly lower than what we ob-
served using the LFP (0.013 vs. 0.026, p < 10~#, paired
t-test).
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7 Discussion

We recorded spiking activity and the LFP simultane-
ously from a group of neurons with a microelectrode
array implanted in primary visual cortex. We found
that large negative fluctuations in the LFP tended to
coincide with times of heightened spiking activity, or
“Up” states, in neuronal firing. By using the value of the
LFP as the indicator of network state, we attempted to
separate neuronal responses into stimulus-dependent
and state-dependent components. After adjustment for
LFP effects the variability of individual neuronal re-
sponses was reduced, leading to increased SNR in ori-
entation tuning. This finding demonstrates the value of
adjusting firing rates for LFP effects, which are likely
due to ongoing network activity rather than a visual
stimulus.

Slow, correlated fluctuations in the firing rate of
neurons were present in both spontaneous and evoked



J Comput Neurosci

activity. This type of correlated variability, often mea-
sured by the Pearson’s correlation between the spike
counts of pairs of neurons over many repeats of the
same stimulus (7,), has been previously reported in a
number of experiments in both awake and anesthetized
animals (Zohary et al. 1994; Shadlen and Newsome
1998; Bair et al. 2001; Kohn and Smith 2005; Smith and
Kohn 2008; Huang and Lisberger 2009). Nonetheless,
the visual effect of such correlation on the pattern of
spikes in a large neuronal population is quite striking
(Fig 1(a)) and has been rarely visualized before.

The epochs of correlated activity, lasting typically
200 to 800 ms, were highly correlated with large nega-
tive peaks in the LFP (Fig 1(b)). This pattern is similar
to “Up” and “Down” states, which occur with roughly
the same frequency (0.3-1 Hz) and have been reported
in a number of different species, cortical areas, and
experimental conditions (for review, see Destexhe and
Contreras 2006). While it is not clear that a common
mechanism underlies all of these fluctuations in cortical
responsivity, it is known that global network states are
intimately related to anatomical connectivity, such as
among orientation columns (Areili et al. 1996; Tsodyks
et al. 1999). However, while spontaneous activity might
reveal the underlying cortical network in which the
neurons are embedded, it poses a problem for charac-
terizing cell tuning properties, and for decoding stim-
ulus information based on the spiking activity of the
neurons.

The activity of neurons is affected by both the dy-
namical changes in these cortical states and the tuning-
based response to input stimuli. Here, we proposed a
simple generalized linear model technique as a first
attempt to estimate the contribution of the global cor-
tical state during responses to a visual stimulus. The
resulting weighting of the spikes allows a more efficient
estimate of the response properties of the neurons, and
it demonstrates the relative shortage of stimulus infor-
mation in the spikes which occur during “Up” states.
We used the LFP as an indicator of the network state,
a signal which can be obtained simultaneously with
spiking activity from the same electrode. We found that
variability decreased after accounting for the LFP in
both stimulus conditions, gratings and natural movies,
demonstrating that this result generalizes. In addition,
the LFP is a better indicator of the network state than
the spike trains of other neurons, and produces larger
decreases in variability using our model. Fluctuations in
field potentials have long been known to be related to
spiking activity (Eggermont and Smith 1995; Petersen
et al. 2003; Rasch et al. 2008). However, the full re-
lationship between the LFP and spiking activity has
been the subject of much recent interest and some con-

troversy (Liu and Newsome 2006; Berens et al. 2008;
Katzner et al. 2009; Xing et al. 2009), and it was not cer-
tain that a simple model such as the one presented here
could successfully improve the reliability of a stimulus
dependent activity measure.

The model makes a number of simplifying assump-
tions about the relationship between spiking behavior
and the LFP, and is limited in its ability to model precise
spike timing due to its having only a single parameter j
derived from spontaneous activity. It is also likely that
this parameter § is somewhat different during stimula-
tion, and fitting 8 with data acquired during visual stim-
ulation would improve the model. Moreover, it does
not allow for modeling the way a visual stimulus could
be interacting with the network state—the components
of the model are independent. It is known that neuronal
response properties, such as receptive field structure
(Ringach et al. 2002; David et al. 2004; Kording et al.
2004), can change depending on the visual stimulus with
which they are measured. In our case, we can’t be sure
that the state-dependence measured from spontaneous
activity is the best predictor of state-dependence to
gratings, or to other visual stimuli.

Nevertheless, this simple model shows that the LFP
can indicate the state of the network, and it takes a sig-
nificant step toward a true factorization of a spike train
into stimulus-dependent and independent components.
Our results demonstrate that it is possible to harness
the information in the LFP to explicitly decouple these
components to a significant extent. The model may be
enhanced by incorporating additional effects, including
supplementary indicators of the network state such
as the full grid of LFP electrode responses, variables
identifying high-frequency components of LFP, history
effects, effects of other cells, or nonlinear interactions.
All such effects could be incorporated as in other appli-
cations of generalized linear models (Kass and Ventura
2001; Pillow 2007; Pillow and Latham 2008; Pillow et al.
2008; Paninski et al. 2009).

In this paper, we have laid out a procedure that is
generally applicable to neural data which is subject to
network state effects on action potential generation.
While it was necessary for us to record many neurons
and field potentials simultaneously in order to directly
observe the population activity fluctuations, our basic
finding is a general one that is relevant to single unit
recording data. It can be implemented with spikes and
LFP from even a single electrode, and does not require
a large array. Despite the simplicity of the model,
we have shown that using this procedure essentially
boosts the signal to noise ratio of the orientation tuning
provided by individual neurons. Thus, our findings are
a powerful demonstration of the way in which field
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potential measurements relate to spiking activity. This
kind of modeling can be used to compute a stimulus-
dependent firing rate estimate in preparation for other
computations as well, from receptive field estimation to
latency calculations. It is especially appropriate for data
with a limited number of trials, which is subject to large
trial by trial variations in the effect of the network state.
Providing a better model of these spontaneous states
and their transitions, as well as further elucidating their
origin and the connection with the underlying network,
is an important goal of future experimental and theo-
retical research.
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