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Abstract We develop a local flux mimetic finite difference method for second order
elliptic equations with full tensor coefficients on polyhedral meshes. To approximate
the velocity (vector variable), the method uses two degrees of freedom per element edge
in two dimensions and n degrees of freedom per n-gonal mesh face in three dimensions.
To approximate the pressure (scalar variable), the method uses one degree of freedom
per element. A specially chosen quadrature rule for the L2-product of vector-functions
allows for a local flux elimination and reduction of the method to a cell-centered finite
difference scheme for the pressure unknowns. Under certain assumptions, first-order
convergence is proved for both variables and second-order convergence is proved
for the pressure. The assumptions are verified on simplicial meshes for a particular
quadrature rule that leads to a symmetric method. For general polyhedral meshes,
non-symmetric methods are constructed based on quadrature rules that are shown to
satisfy some of the assumptions. Numerical results confirm the theory.
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116 K. Lipnikov et al.

1 Introduction

The mimetic finite difference (MFD) method has been successfully employed for
solving problems of continuum mechanics [37], electromagnetics [27], gas dynamics
[18], and linear diffusion on polygonal and polyhedral meshes in both the Cartesian
and polar coordinates [28,36,41]. The MFD method mimics essential properties of the
continuum equations, such as conservation laws, solution symmetries, and the funda-
mental identities and theorems of vector and tensor calculus. For second-order elliptic
problems, which are considered in this paper, the MFD method mimics the Gauss
divergence theorem, preserves the null space of the gradient operator, and keeps the
adjoint relationship between the gradient and the divergence operators. This leads to
a symmetric and locally conservative finite difference scheme. However, the resulting
algebraic system is of saddle-point type and couples the velocity (vector variable) and
the pressure (scalar variable) unknowns. The elimination of the velocity unknowns
results in a cell-centered discretization scheme with a non-local stencil. In this paper
we develop a MFD method that can be reduced to a cell-centered scheme with a local
stencil.

A close relationship between the MFD method and the mixed finite element (MFE)
method with the lowest order Raviart–Thomas elements RT0 [42] has been established
in [9]. There, it is shown that the spaces of discrete mimetic degrees of freedom on
triangles and quadrilaterals are isomorphic to the RT0 spaces; moreover, the MFD
method can be viewed as a MFE method with a quadrature rule for calculating the
velocity mass matrix. This relationship is explored in [9–11] to establish convergence
and superconvergence for the MFD approximations on simplicial and quadrilateral
elements. An alternative approach for analyzing the MFD method is developed in
[16,17], where the error in appropriate discrete norms is estimated. The main advan-
tage of this approach is that the analysis applies to more general polyhedral meshes.

The MFE method, like the MFD method, leads to a saddle-point problem. Several
approaches have been proposed to handle this issue, including hybridization [7] and
reduction to cell-centered finite differences (CCFD) [4,5,8,39,43,46]. These meth-
ods, however, either lead to a more expensive face-centered stencil [7], or limited
to diagonal tensor coefficients [8,39,43,46], or exhibit deterioration of convergence
for discontinuous coefficients [4,5]. More recent works [29,30,47] establish rela-
tionships between the MFE method and the multipoint flux approximation (MPFA)
method introduced by the petroleum reservoir simulation community [1,2,21], see
also [12,20,34] for closely related methods. The MPFA method, which is formulated
as a finite volume method, utilizes sub-edge fluxes and reduces to a cell-centered
pressure scheme through local flux elimination. Papers [30] and [47] study the con-
vergence properties of the MPFA method and related MFE methods with broken RT0
and BDM1 [14] spaces, respectively. More recently [31] analyzes the convergence of
a non-symmetric MPFA method on general quadrilateral grids.

In this paper, we employ a MPFA-type construction and analysis inspired by [16]
to develop new cell-centered discretization methods on polyhedral meshes for diffu-
sion problems with full tensor coefficients. To approximate the velocity, we use two
degrees of freedom per mesh edge in two dimensions and n degrees of freedom per
mesh face (which is n-gon) in three dimensions. To approximate the pressure, we
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Local flux mimetic finite difference methods 117

use one degree of freedom per element. This choice of unknowns is similar to that in
the MPFA method. A specially chosen quadrature rule for the L2-product of vector-
functions couples the velocity unknowns into small groups around mesh vertices and
allows for their local elimination, thus reducing the method to a cell-centered finite
difference scheme for the pressure unknowns.

Under a few constructive assumptions, we prove first-order convergence for both
the velocity and the pressure variables, as well as second-order superconvergence for
the pressure variable in discrete L2 norms. For simplicial meshes, we employ a sym-
metric quadrature rule introduced in [40] and similar to the vector inner product used in
[47], and prove that the constructive assumptions hold. These results can be extended
to smooth quadrilateral and hexahedral meshes. For general polyhedral meshes, we
extend techniques from [17] to construct non-symmetric quadrature rules that satisfy
a consistency assumption and discuss sufficient conditions on the mesh and tensor
coefficient under which the optimal convergence rate can be proved.

The proposed new method compares favorably with existing MFD methods, since
it reduces to a cell-centered scheme and is therefore more efficient. On the other hand,
our approach is more general than the one in [30,31,47] for MPFA and related methods,
since the analysis there relies on finite element techniques and is limited to simplicial
and quadrilateral meshes. We estimate the errors directly in the norms of the discrete
mimetic spaces without the use of finite element polynomial extensions, except in
the pressure superconvergence proof. In terms of computational cost, our method is
comparable to finite volume methods [22]. However, the latter are either limited to
diagonal tensor coefficients, or require certain orthogonality properties of the grid
[23], or need to be augmented with face-centered pressures [24], which increases their
cost.

The paper outline is as follows. The new MFD method is developed in Sect. 2. In
Sect. 3, we prove convergence estimates for the pressure and the velocity variables
under certain assumptions. In Sect. 4, we develop symmetric and non-symmetric meth-
ods on simplicial and general grids, respectively. Results of numerical experiments
confirming the theoretical estimates are presented in Sect. 5.

2 Mimetic finite difference method

Let X1 and X2 be Hilbert spaces and let L1 and L2 be two linear operators, Li : Xi →
Yi , i = 1, 2, which satisfy some fundamental identity:

I(L1,L2; f1, f2) = 0 ∀ f1 ∈ X1, f2 ∈ X2.

Suppose that discrete approximation spaces Xih , Yih , i = 1, 2, and the discrete oper-
ator L1h are given. The idea of the mimetic discretization is to find a discrete operator
L2h such that a discrete analog of the fundamental identity holds, i.e

Ih(L1,h,L2,h; f1h, f2h) = 0 ∀ f1h ∈ X1h, f2h ∈ X2h . (2.1)
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118 K. Lipnikov et al.

This implies that operators L1 and L2 cannot be discretized independently from each
other. For a given L1,h , formula (2.1) is the implicit definition of the operator L2,h .

Let � ⊂ �d be a polygonal (d = 2) or polyhedral (d = 3) domain with a Lips-
chitz continuous boundary and let f ∈ L2(�). We consider the second-order elliptic
problem written as a system of two first order equations

�u = −K∇ p in �,

div �u = f in �,
(2.2)

subject to appropriate boundary conditions. For simplicity, we consider the homoge-
neous Dirichlet boundary condition (see [26] for more general boundary conditions)

p = 0 on ∂�. (2.3)

The coefficient K is a symmetric and uniformly positive definite tensor satisfying the
following assumption.

[A1] There exist positive constants k0 and k1 such that for any x ∈ �

k0ξ
T ξ ≤ ξ T K(x)ξ ≤ k1ξ

T ξ ∀ξ ∈ �d . (2.4)

Following the terminology established in porous media applications, we refer to p
as the pressure, to �u as the velocity, and to K as the permeability tensor.

In the problem of interest (2.2), the operators are L1 = div and L2 = K∇, the
spaces are X1 = H(div;�), Y1 = L2(�), X2 = H1

0 (�) and Y2 = (L2(�))d , and I
is the Green’s formula,

I(L1,L2; �u, p) =
∫

�

p div �u dx +
∫

�

�u · K−1(K∇ p) dx = 0. (2.5)

Note that, due to the homogeneous Dirichlet boundary condition (2.3), there is no
boundary integral in the above equation. For other types of boundary conditions,
appropriate boundary integrals need to be added to (2.5).

2.1 The local flux MFD method

The MFD method has four steps. First, we define degrees of freedom for the pressure
and the velocity. Second, we discretize the easiest of the two operators; depending on
the chosen degrees of freedom, it could be either of them. Third, we discretize the
Green’s formula using quadrature rules for each of the integrals in (2.5). Some mini-
mal approximation properties for these quadratures are required to prove the optimal
convergence rates. Fourth, we derive a discrete formula for the other operator.

Let �h be a conforming shape-regular partition [19] of the computational domain
into polygonal or polyhedral elements. Let

h = max
E∈�h

hE ,
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Local flux mimetic finite difference methods 119

where hE is the diameter of element E . In two dimensions, we split each edge into
two sub-edges using the mid-point. In three dimensions, we split each face into several
quadrilateral facets, for instance, by connecting the face center of mass with the edge
midpoints. To simplify the presentation, we shall refer to the sub-edges as facets. The
boundaries of facets are marked by thin lines in Fig. 1.

We denote the area (volume in 3D) of an element E by |E |. Similarly, for each facet
e, we denote by |e| its length (area in 3D). Let �ne be a unit normal vector assigned to
a facet e. To distinguish between faces (edges in 2D) and facets, we shall write ẽ(e),
or simply ẽ for the mesh face (edge in 2D) containing facet e. Let �nẽ be a unit normal
vector assigned to ẽ. Finally, let |�| denote the length of edge �.

For each element E , we denote by m E the number of its vertices and by kE the
number of its facets. In the following, ∂ E denotes either the union of all edges (faces
in 3D) or the union of all facets of E , depending on the context. Let �nE be a unit
external normal vector to ∂ E and χe

E = �ne · �nE . Note that χe
E is either 1 or −1.

With each vertex of an element E we associate a corner that is formed by all facets
sharing the vertex. Let c denote a mesh corner. The angle between facets e and e′
forming the corner c is denoted by γ c

e,e′ . The angle between edges � and �′ with one
common point at the corner c is denoted by γ c

�,�′
Let ρE be the radius of the largest sphere that can be inscribed in E . Similarly, let

ρẽ be the radius of the largest disk contained in face ẽ. We make the following mesh
regularity assumption.

[A2] Partition �h consists of non-degenerate elements and it is shape-regular in the
sense that there exist positive constants ρ∗ and γ∗ < π independent of h and
such that for every E ∈ �h , every face ẽ, corner c and edge � of E ,

ρE , ρẽ, |�| ≥ ρ∗hE and π − γ∗ ≥ γ c
e,e′, γ c

�,�′ ≥ γ∗. (2.6)

Remark 2.1 For simplicial elements in can be shown that the angle conditions follow
from the conditions on ρE and ρẽ.

The discrete pressure space Qh consists of one degree of freedom per element
approximating the pressure value at the center of mass. The dimension of Qh equals

Fig. 1 Velocity degrees of freedom marked by solid circles for a triangle (m E = 3, kE = 6) and a
tetrahedron (m E = 4, kE = 12). The boundaries of the facets are marked by thin lines
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the number of elements, NQ . For q ∈ Qh , we shall denote by qE (or (q)E ) its constant
value on element E .

The discrete velocity space Xh is similar to the one used in the MPFA methods
[1,2,20,21] and consists of one degree of freedom per facet approximating the aver-
age normal flux 1

|e|
∫

e �u · �ne. Location of velocity degrees of freedom is shown in
Fig. 1. The dimension of Xh equals the total number of facets, NX . For v ∈ Xh , we
shall denote by vE the restriction of v to element E , and by ve

E (or (v)e
E ) its (constant)

value on facet e. We shall write vE ∈ X E,h where X E,h is the restriction of Xh to E .
Similarly, vc will be the restriction of v to corner c, and ve

c (or (v)e
c) will be its value

on facet e.
The choice of velocity degrees of freedom as normal fluxes allows for a sim-

ple discretization of the divergence operator DIV : Xh → Qh . Integrating div �u
over element E , applying the divergence theorem, and using that ue

E approximates
1
|e|
∫

e �u · �ne, we let

(DIV u)E = 1

|E |
∑

e∈∂ E

χe
E |e| ue

E . (2.7)

A similar formula appears in other locally conservative methods, like the finite vol-
ume, MPFA, and MFE methods. The essential difference in the proposed method will
be in the discretization of the first equation in (2.2).

The following interpolants will be used in the analysis. For any q ∈ L1(�), we
define q I ∈ Qh such that

(q I )E = 1

|E |
∫

E

q(x) dx ∀E ∈ �h . (2.8)

For any bounded domain D, we define the following space:

V(D) =
{
�v : �v ∈ (Ls(D))d , s > 2, div �v ∈ L2(D)

}
(2.9)

and set V = V(�). To define the interpolant in V we need the following trace result,
where W k,p denotes the usual Sobolev space.

Lemma 2.1 Let D ⊂ �d be a bounded domain with a Lipschitz continuous boundary
and V(D) be the space defined in (2.9). Furthermore, let

s̃ =
{

s, d = 2,

min(s, 6), d = 3,

and 1/s̃ + 1/s̃′ = 1. Then, there exists a unique continuous map

γn : V(D) →
(

W 1/s̃,s̃′
(∂ D)

)∗
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Local flux mimetic finite difference methods 121

such that for smooth vector functions γn �v = �v · �n. Moreover, the Green’s formula

∫

∂ D

γn �v w ds =
∫

D

div�v w dx +
∫

D

�v · ∇w dx

holds for all �v ∈ V(D) and w ∈ W 1,s̃′
(D).

Proof The proof is a generalization of the classical normal trace theorem [45]. For
�v ∈ V(D), define γn �v by

〈γn �v, φ〉∂ D :=
∫

D

div�v w dx +
∫

D

�v · ∇w dx ∀φ ∈ W 1/s̃,s̃′
(∂ D),

where w ∈ W 1,s̃′
(D) is a continuous extension of φ in D. By the Sobolev imbedding

theorem [3], w ∈ L2(D), therefore

|〈γn �v, φ〉∂ D| ≤ C
(
‖div�v‖L2(D) + ‖�v‖(Ls̃ (D))d

)
‖w‖W 1,s̃′ (D)

≤ C
(
‖div�v‖L2(D) + ‖�v‖(Ls̃ (D))d

)
‖φ‖W 1/s̃,s̃′ (∂ D)

,

hence the map γn : V(D) → (W 1/s̃,s̃′
(∂ D))∗ is continuous. The use of the Green’s

formula for smooth functions implies that for such functions γn �v = �v · �n. Since the
space of smooth vector functions is dense in V(D) [45], the map γn �v is uniquely
defined. ��

In the following, for a vector �v ∈ V we will use the notation �v · �n, understanding
this in the sense of distributions.

We are now ready to define the interpolant in V . For any �v ∈ V , we define �v I ∈ Xh

such that

(�v I )e
E = 1

|e|
∫

e

�v · �ne ds ∀E ∈ �h, ∀e ⊂ ∂ E . (2.10)

Note that the edge integral in (2.10) is well defined for any �v ∈ V , due to Lemma 2.1,
since the functions in W 1/s̃,s̃′

(∂ E) can be discontinuous and one can take φ = 1 on e
and φ = 0 on ∂ E \e.

Let us now discretize each integral in the Green’s identity (2.5). Introducing p = pI

and q = q I from Qh , the first integral is approximated with the central-point quadra-
ture rule:

∫

�

p(x) q(x) dx ≈
∑

E∈�h

[p, q]Q,E ≡ [p, q]Q, [p, q]Q,E = |E | pE qE .

(2.11)
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122 K. Lipnikov et al.

To discretize the second term in (2.5), we introduce u = �uI and v = �v I in Xh and
write formally a quadrature rule:

∫

�

K−1 �u(x) · �v(x) dx ≈
∑

E∈�h

[u, v]X,E ≡ [u, v]X , (2.12)

where

[u, v]X,E =
∑
c∈E

[u, v]X,E,c, [u, v]X,E,c =
∑

e,e′∈c

(Mc)e,e′ ue
Eve′

E . (2.13)

Let Mc be the matrix with entries (Mc)e,e′ . The size of Mc equals the number of facets
that form the corner c. Letting 〈· , ·〉 be the usual dot product, we have

[u, v]X,E,c = 〈Mcuc, vc〉.

Similarly,

[u, v]X,E = 〈ME uE , vE 〉,

where ME is a matrix of size kE . It is clear from (2.13) that ME is block-diagonal
with as many blocks as there are corners in E , having a block Mc for each corner c.
We assume the following.

[A3] For each element E , ME is positive definite and there exist two positive con-
stants α0 and α1 independent of h such that

α0|E | ξ T ξ ≤ ξ T ME ξ ≤ α1|E | ξ T ξ ∀ξ ∈ �kE (2.14)

and

ξ T MT
E ME ξ ≤ α2

1 |E |2 ξ T ξ ∀ξ ∈ �kE . (2.15)

Note that (2.14) is equivalent to stating that the symmetric part of ME , ME,s =
1
2 (ME + MT

E ), is positive definite and satisfies the same inequalities. Consequently,

‖M1/2
E,sξ‖ ≤ √

α1|E |‖ξ‖, which implies ‖ME,sξ‖ ≤ α1|E |‖ξ‖, where ‖·‖ denotes the

Euclidean norm in �kE . Condition (2.15) gives a similar bound on ME , and therefore
also bounds the non-symmetric part, ME,n , of matrix ME :

‖ME,n ξ‖ = ‖ME ξ − ME,s ξ‖ ≤ ‖ME ξ‖ + ‖ME,s ξ‖ ≤ 2α1|E |‖ξ‖.

We approximate K by a positive definite piecewise constant tensor K that is equal
to the mean value KE of K on E . Now, we restrict the admissible set of quadrature
rules (2.14)–(2.15) by the following assumption.
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[A4] For every E in �h , every linear function q1, and every v ∈ Xh the following
discrete Green’s formula holds:
[
(KE∇q1)I , v

]
X,E

= −
[
(DIV v)E , (q1)I

]
Q,E

+
∑

e∈∂ E

χe
E |e| ve

E q1(xe),

(2.16)

where xe is the center of mass of eo, a subset of edge (face in 3D) ẽ(e) satisfying

|eo| ≥ σ∗|e|, (2.17)

where σ∗ is a positive constant independent of h.

If the matrix ME is symmetric, assumption (2.15) follows from (2.14). In gen-
eral, we do not assume symmetry of matrix ME . This allows us to formulate and
analyze new MPFA-type MFD methods. It also allows to consider problems with
non-symmetric tensor K. A symmetric matrix ME satisfying assumptions A3 and A4
can be built for simplicial meshes (Sect. 4.1). The analysis there can be extended to
uniformly refined quadrilateral and hexahedral meshes. The construction of non-sym-
metric matrices ME satisfying assumptions A3 and A4 on general polyhedral grids is
discussed in Sect. 4.2.

Assumption A4 resembles the one used in [17]; however, the point xe is no longer
the center of mass of e and only (2.17) is required to hold. This provides more flexi-
bility in the construction of the matrix ME . In Sect. 3, we show that assuming (2.17)
is enough to prove optimal convergence estimates.

With the discrete divergence and quadrature rules for approximating L2 inner prod-
ucts defined, the discrete gradient operator is derived from the discrete Green’s formula
(cf. (2.5))

[q, DIV v]Q + [GRAD q, v]X = 0 ∀ q ∈ Qh, ∀ v ∈ Xh . (2.18)

Note that the homogeneous Dirichlet boundary condition (2.3) is incorporated into
the definition of operator GRAD . Other types of boundary conditions could lead to
an additional boundary integral in (2.18) [26].

Lemma 2.2 If (2.14) in assumption A3 holds, then formula (2.18) gives a unique
definition for operator GRAD .

Proof Let D and M be the matrices associated with quadrature rules (2.11) and (2.12)
through the usual dot product 〈· , ·〉:

[p, q]Q = 〈D p, q〉 and [u, v]X = 〈M u, v〉. (2.19)

Here D is a diagonal matrix, D = diag{|E1|, . . . , |ENQ |}, and M is a NX × NX matrix
assembled from the element matrices ME . Formula (2.18) is equivalent to

DIV T D + M GRAD = 0,

123



124 K. Lipnikov et al.

where, by abuse of notation, DIV and GRAD denote the matrices associated with
the discrete operators. Since

〈M u, v〉 =
∑

E∈�h

〈ME uE , vE 〉,

the left inequality in (2.14) implies that M is nonsingular. Therefore GRAD is defined
uniquely as

GRAD = −M−1(DIV )T D. (2.20)

��
In Sect. 2.3 we show that the operator GRAD has a local stencil. The local flux

MFD method reads: find uh ∈ Xh and ph ∈ Qh such that

uh = −GRAD ph,

DIV uh = f, (2.21)

where f = f I .

2.2 Well-posedness of the method

The following lemma is an immediate result of the definition of matrix ME .

Lemma 2.3 If (2.14) in assumption A3 holds, then

α0|E |
∑

e∈∂ E

|ve
E |2 ≤ [vE , vE ]X,E ≤ α1|E |

∑
e∈∂ E

|ve
E |2 (2.22)

for any E ∈ �h and any vE ∈ X E,h.

The definitions (2.8) and (2.10) of the interpolants and the divergence theorem
imply the following simple result.

Lemma 2.4 Let �v ∈ V . Then for every element E ∈ �h, we have

(DIV �v I )E = (div �v)I
E . (2.23)

We are now ready to prove the solvability of (2.21).

Lemma 2.5 Let (2.14) in assumption A3 hold. Then, the discrete problem (2.21) has
a unique solution.

Proof It is convenient to rewrite (2.21) in the equivalent variational form

[uh, v]X − [ph,DIV v]Q = 0, ∀ v ∈ Xh,

[DIV uh, q]Q = [f, q]Q, ∀ q ∈ Qh,
(2.24)
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Local flux mimetic finite difference methods 125

where we have used the discrete Green’s formula (2.18). Since (2.24) is a square
system, it suffices to show uniqueness for the homogeneous problem. Letting f = 0,
v = uh , and q = ph , we conclude that [uh, uh]X = 0. Hence, due to (2.22), uh = 0.

Next, we construct v ∈ Xh such that DIV v = ph . Let ph be a piecewise constant
function such that ph |E = (ph)E . Let B be an open ball containing � and let p̃h be
the extension of ph by zero on B. Consider the auxiliary problem

�φ = p̃h in B,

φ = 0 on ∂ B. (2.25)

Since p̃h ∈ L2(B) and ∂ B is smooth, by elliptic regularity [35], φ ∈ H2(B). Therefore
∇φ ∈ (H1(�))d ⊂ V , then (∇φ)I is well defined. Using (2.23), we have that

DIV v = DIV (∇φ)I = (div ∇φ)I = (ph)I = ph .

Therefore taking v = (∇φ)I in (2.24) implies [ph, ph]Q = 0 and ph = 0. ��

2.3 Reduction to a cell-centered scheme

The matrix M introduced in Sect. 2.1 satisfies

〈Mu, v〉 =
∑

E∈�h

∑
c∈E

〈Mcuc, vc〉;

therefore M is a block-diagonal matrix with as many blocks as there are mesh nodes.
Each block of M has nonzero entries that describe the interaction of neighboring veloc-
ity unknowns on all facets sharing a mesh node. In two dimensions, each block is a
tridiagonal cyclic matrix. For instance, the block corresponding to the interior node
shown on the left picture in Fig. 2 is a 5 × 5 matrix.

Recall the formula for GRAD (2.20). Due to the special structure of matrix M,
its inverse is also a block-diagonal matrix and can be easily computed. As the prod-
uct of sparse matrices, the discrete gradient operator is also sparse (contrary to other
MFD methods). Substituting the first equation in (2.21) into the second one, we get a
cell-centered discretization with a local stencil:

− DIV GRAD ph = f . (2.26)

Examples of the stencils for the operators GRAD and DIV GRAD are shown in
Fig. 2a, b, respectively.

The matrix for problem (2.26) appears on the right in the identity

[−DIV GRAD p, q
]

Q =
〈
D DIV M−1(DIV )T D p, q

〉
.

As shown in the proof of Lemma 2.5, DIV T q = 0 implies q = 0. Therefore, the
resulting algebraic system has a positive definite matrix when all ME satisfy (2.14)
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a b

Fig. 2 Stencils for operators GRAD and DIV GRAD on a triangular mesh. On the left, the equation for
the velocity unknown at the position marked by a solid circle involves pressure unknowns at the positions
marked by squares. On the right, the pressure marked by a solid square is coupled with the pressures marked
by squares

in assumption A3. When the matrices ME are symmetric, the coefficient matrix of
problem (2.26) is symmetric and positive definite.

3 Convergence analysis

Throughout the paper, C and Ci denote generic positive constants which are indepen-
dent of h but may depend on various constants appearing in assumptions A1–A7 and
(3.2). To prove optimal convergence estimates we need additional assumptions on the
tensor K.

[A5] We assume that K∈(W 1,∞(E))d×d for all E ∈�h and that maxE∈�h ‖K‖1,∞,E

is uniformly bounded independently of h.

In the above ‖K‖1,∞,E = max
1≤i, j≤d

‖Ki j‖W 1,∞(E). The Taylor’s theorem and assump-

tion A5 imply that

max
x∈E

∣∣Ki j (x) − KE,i j
∣∣ ≤ C hE ‖Ki j‖W 1,∞(E), 1 ≤ i, j ≤ d. (3.1)

Using assumption A1 and (3.1), it can also be shown that there exists a constant CK
depending on k0 and the constant in (3.1) such that

max
x∈E

∣∣∣K−1
i j (x) − K−1

E,i j

∣∣∣ ≤ CK hE‖K‖1,∞,E , 1 ≤ i, j ≤ d. (3.2)

We shall use repeatedly the following approximation result [13, Lemma 4.3.8]. For
every element E , if φ ∈ W m+1,p(E), p ≥ 1, there exists φm , a polynomial of degree
at most m, such that

|φ − φm |W k,p(E) ≤ Chm+1−k
E |φ|W m+1,p(E), k = 0, . . . , m + 1. (3.3)
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In particular, if φ ∈ H1+q(E), 0 ≤ q ≤ 1, then there exists a linear function φ1
E such

that

‖φ − φ1
E‖L2(E) ≤ C h1+q

E |φ|H1+q (E), ‖φ − φ1
E‖H1(E) ≤ C hq

E |φ|H1+q (E).

(3.4)

We will also make use of the trace inequality [6]:

‖χ‖2
L2(ẽ) ≤ C

(
h−1

E ‖χ‖2
L2(E)

+ hE |χ |2H1(E)

)
∀χ ∈ H1(E), (3.5)

where ẽ is any edge (face in 3D) of E . The constant C depends only on the constants
appearing in assumption A2. Applying (3.5) to the difference φ −φ1

E and using (3.4),
we have

∥∥∥φ − φ1
E

∥∥∥2

L2(ẽ)
≤ C h1+2q

E |φ|2H1+q (E)
, 0 ≤ q ≤ 1. (3.6)

The estimate also holds for any facet e of E .
Let

Ṽ(E) =
{
�v : �v ∈ (Hq̃(E))d , 0 < q̃ ≤ 1, div �v ∈ L2(E)

}
.

It was shown in [38] that the map

�v · �n : Ṽ(E) → Hq̃−1/2(ẽ), 0 < q̃ ≤ 1,

is continuous, where Hq̃−1/2(ẽ) = (H1/2−q̃(ẽ))∗. The following result is proved in
Appendix A using a scaling argument.

Lemma 3.1 Let 0 < q̃ ≤ 1 and �v ∈ Ṽ(E). Then, for any face ẽ of E, we have

‖�v · �n‖2
Hq̃−1/2(ẽ)

≤ C
(

h−1
E ‖�v‖2

(L2(E))d + h2q̃−1
E |�v|2

(Hq̃ (E))d + hE‖div�v‖2
L2(E)

)
.

(3.7)

The error estimates are derived in the mesh dependent norms:

|||q|||Q = [q, q]1/2
Q and |||v|||X = [v, v]1/2

X ≡
〈

1

2
(M + MT )v, v

〉1/2

.

It is easy to see that |||v|||X is indeed a norm, since (2.14) in assumption A3 implies
that Ms = 1

2 (M + MT ) is symmetric and positive definite. Moreover, if both (2.14)
and (2.15) hold, the following Cauchy-Schwarz type inequality is true:

[u, v]X ≤ α1

α0
|||u|||X |||v|||X ∀ u, v ∈ Xh . (3.8)
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3.1 Optimal velocity estimate

In this section, we prove the optimal estimate for the velocity.

Theorem 3.1 Let pairs (p, �u) and (ph, uh) be the solutions to problems (2.2)–(2.3),
and (2.21), respectively. Assume that p ∈ H1+q(�), 0 ≤ q ≤ 1, and �u ∈ (Hq̃(�))d ,
0 < q̃ ≤ 1. Under assumptions A1–A5, there exists a constant C independent of h
such that

|||�uI − uh |||X ≤ C
(

hq |p|H1+q (�) + hq̃ |�u|(Hq̃ (�))d + h‖ f ‖L2(�)

)
.

Proof Let v = �uI − uh . Lemma 2.4 implies that

DIV v = DIV (�uI − uh) = f I − f I = 0.

Then, using (2.24), we get

|||�uI − uh |||2X =
[
�uI − uh, v

]
X

=
[
�uI , v

]
X

− [ph,DIV v]Q =
[
�uI , v

]
X

.

Let p1 be a discontinuous piecewise linear function satisfying (3.4) on every ele-
ment E . Adding and subtracting (K∇ p1)I , we have

[�uI − uh, v
]

X = [�uI + (K∇ p1)I , v
]

X − [
(K∇ p1)I , v

]
X ≡ I1 + I2.

Using the Cauchy–Schwarz inequality (3.8), (2.22), (3.7), and assumptions A1 and
A2, we bound I1 as follows:

|I1| ≤ α1

α0
|||(�u + K∇ p1)I |||X |||v|||X

≤ α1

α0

⎛
⎝α1

∑
E∈�h

∑
e∈∂ E

[
((�u + K∇ p1)I )e

E

]2 |E |
⎞
⎠

1/2

|||v|||X

= α1

α0

⎛
⎜⎝α1

∑
E∈�h

∑
e∈∂ E

⎡
⎣ 1

|e|
∫

e

(
�u + K∇ p1

)
· �ne ds

⎤
⎦

2

|E |
⎞
⎟⎠

1/2

|||v|||X

≤ C

⎛
⎝∑

E∈�h

[
h−1

E ‖�u + K∇ p1‖2
(L2(E))d + h2q̃−1

E |�u|2
(Hq̃ (E))d

+ hE‖div�u‖2
L2(E)

]
hE

⎞
⎠

1/2

|||v|||X , 0 < q̃ ≤ 1. (3.9)
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For the first term on the right above we have, using assumption A1, (3.4) and (3.1),

∥∥∥�u + K∇ p1
E

∥∥∥
(L2(E))d

≤
∥∥∥K∇(p − p1

E )

∥∥∥
(L2(E))d

+
∥∥∥(K − K)∇ p1

E

∥∥∥
(L2(E))d

≤ C
(

hq
E |p|H1+q (E) + hE‖∇ p1

E‖(L2(E))d

)

≤ C
(
hq

E |p|H1+q (E) + hE |p|H1(E)

)
, 0 ≤ q ≤ 1, (3.10)

where in the last inequality we used that (3.4) implies

‖∇ p1
E‖(L2(E))d ≤ ‖∇ p‖(L2(E))d + ‖∇(p − p1

E )‖(L2(E))d ≤ C |p|H1(E).

Inequality (3.10), combined with (3.9), implies

|I1|≤C
(
hq |p|H1+q (�)+hq̃ |�u|(Hq̃ (�))d +h‖ f ‖L2(�)

)
|||v|||X , 0≤q ≤1, 0< q̃ ≤1.

(3.11)

To estimate I2, we use assumption A4 and DIV v = 0 to obtain

I2 = −
∑

E∈�h

∑
e∈∂ E

χe
E |e| p1

E (xe) ve
E .

Recall that the point xe is the mid-point of eo, a subset of edge (face in 3D) ẽ(e), such
that (2.17) holds. For the linear function p1

E , we get

p1
E (xe) = 1

|eo|
∫

eo

p1
E (s) ds.

Using the continuity of p, (2.17), the approximation result (3.6), and (2.22), we have

|I2| =
∣∣∣∣∣∣
∑

E∈�h

∑
e∈∂ E

χe
E ve

E
|e|
|eo|

∫

eo

(p1
E − p) ds

∣∣∣∣∣∣
≤ σ−1∗

∑
E∈�h

∑
e∈∂ E

|e|1/2|ve
E | ‖p1

E − p‖L2(eo)

≤ C
∑

E∈�h

hq
E

(
|E |

∑
e∈∂ E

|ve
E |2
)1/2

|p|H1+q (E)

≤ C hq |p|H1+q (�) |||v|||X , 0 ≤ q ≤ 1. (3.12)

Combining the estimates for I1 and I2, we prove the assertion of the theorem. ��
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3.2 Optimal pressure estimate

To prove optimal convergence for the pressure variable, we first show that an inf–sup
condition holds. Let us define the mesh dependent Hdiv norm:

|||v|||2div = |||v|||2X + |||DIV v|||2Q .

Lemma 3.2 If assumption A2 and (2.14) in assumption A3 hold, then there exists a
positive constant β independent of h such that for any q ∈ Qh

sup
v∈Xh , v �=0

[DIV v, q]Q

|||v|||div
≥ β|||q|||Q . (3.13)

Proof Let q ∈ Qh and let qh be the piecewise-constant function which is equal to
(q)E on E . We shall construct �v ∈ (H1(�))d such that div �v = qh and

‖�v‖(H1(�))d ≤ C1‖qh‖L2(�), (3.14)

where C1 is a positive constant independent of h. Let φ ∈ H2(B) be the solution
to the auxiliary problem (2.25) from Lemma 2.5, but with a right hand side q̃h , the
extension of qh by zero on B. Let �v = ∇φ. By construction div�v = qh in � and by
elliptic regularity [35]

‖�v‖(H1(�))d ≤ ‖�v‖(H1(B))d ≤ C1‖q̃h‖L2(B) = C1‖qh‖L2(�),

implying (3.14).
Let v = �v I . Using (2.22), (3.5), and assumption A2, we get

[v, v]X,E ≤ α1 |E |
∑

e∈∂ E

∣∣ve
E

∣∣2

≤ C
∑

e∈∂ E

|E |
|e|

((
h−1

E ‖�v‖2
(L2(E))d + hE |�v|2

(H1(E))d

))

≤ C
∑

e∈∂ E

(
‖�v‖2

(L2(E))d + h2
E |�v|2

(H1(E))d

)

≤ C2‖�v‖2
(H1(E))d . (3.15)

Therefore, using (3.14),

|||v|||2X ≤ C2‖�v‖2
(H1(�))d ≤ C2

1C2|||q|||2Q .

Further, Lemma 2.4 implies

DIV v = (div �v)I = q I
h = q.
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The last two estimates imply that

|||v|||div ≤
√

1 + C2
1C2 |||q|||Q,

thus the assertion of the lemma follows with β = 1/

√
1 + C2

1C2. ��
We will need the following result.

Lemma 3.3 Let assumption A2 hold. For any element E and any �v ∈ (H1(E))d , let
�v0 be its L2 projection on the space of constant vector functions on E. Then there
exists a constant C independent of h such that

|||�v I − �v I
0 |||X,E ≤ C hE |�v|(H1(E))d . (3.16)

Proof The proof follows from the argument used in the derivation of (3.15) and the
L2 projection bound

‖�v − �v0‖(L2(E))d ≤ ChE |�v|(H1(E))d , (3.17)

which follows from (3.3). ��
Theorem 3.2 Let (p, �u) and (ph, uh) be the solutions to problems (2.2)–(2.3) and
(2.21), respectively. Assume that p ∈ H1+q(�), 0 ≤ q ≤ 1, and �u ∈ (Hq̃(�))d ,
0 < q̃ ≤ 1. Under assumptions A1–A5, there exists a constant C independent of h
such that

|||pI − ph |||Q ≤ C
(

hq |p|H1+q (�) + hq̃ |�u|(Hq̃ (�))d + h‖ f ‖L2(�)

)
.

Proof Using Lemma 3.2, we have

|||pI − ph |||Q ≤ 1

β
sup

v∈Xh ,v �=0

[DIV v, pI − ph]Q

|||v|||div
. (3.18)

To estimate the nominator, we first add and subtract (p1)I where p1 is the discontin-
uous piecewise linear approximation to p satisfying (3.4), and then apply assumption
A4:
[
DIV v, pI − ph

]
Q

=
[
DIV v, (p − p1)I

]
Q

+
[
DIV v, (p1)I

]
Q

− [uh, v]X

=
[
DIV v, (p − p1)I

]
Q

+
∑

E∈�h

∑
e∈∂ E

χe
E |e| p1

E (xe)v
e
E

−
∑

E∈�h

[
(KE∇ p1

E )I , v
]

X,E
− [uh, v]X

≡ I3 + I4 − I5 − I6.
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The term I3 is estimated using (3.4):

|I3| ≤ Ch1+q |||v|||div |p|H1+q (�), 0 ≤ q ≤ 1. (3.19)

The second term is estimated as the similar term in the proof of Theorem 3.1:

|I4| ≤ C hq |||v|||X |p|H1+q (�), 0 ≤ q ≤ 1. (3.20)

The last two terms are treated by adding and subtracting �uI :

I5 + I6 =
[
(K∇ p1)I + �uI , v

]
X

−
[
�uI − uh, v

]
X

≡ I a
56 + I b

56.

The first term is the same as term I1 in the proof of Theorem 3.1; therefore

|I a
56| ≤ C

(
hq |p|H1+q (�) + hq̃ |�u|(Hq̃ (�))d + h‖ f ‖L2(�)

)
|||v|||X . (3.21)

The term I b
56 is estimated using (3.8) and Theorem 3.1:

|I b
56| ≤ α1

α0
|||�uI − uh |||X |||v|||X

≤ C
(

hq |p|H1+q (�) + hq̃ |�u|(Hq̃ (�))d + h‖ f ‖L2(�)

)
|||v|||X . (3.22)

The proof is completed by combining (3.18)–(3.22). ��

3.3 Superconvergence of the pressure

In this section we restrict our attention to symmetric quadrature rules and prove a
second-order convergence estimate for the pressure variable. We make two additional
assumptions.

[A6] We assume that for every E in �h , there exist a lifting operator RE from Xh,E

to H(div; E) such that

div (RE (vE )) = DIV vE ∀vE ∈ Xh,E , (3.23)

‖RE (vE )‖(L2(E))d ≤ C |||vE |||X,E ∀vE ∈ Xh,E , (3.24)

and

RE ((�v I
0 )E ) = �v0 (3.25)

for every constant vector �v0. Moreover, for any edge (face in 3D) ẽ shared by
elements E1 and E2, we assume that

RE1(vE1) · �nẽ = RE2(vE2) · �nẽ ∀v ∈ Xh . (3.26)
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Note that the lifting operator never appears in the implementation of the method.
It is a useful tool to prove convergence estimates; therefore, we only need to prove its
existence.

[A7] Let RE be a lifting operator satisfying assumption A6. Define σE (K−1; uE ,

vE ) as follows:

σE

(
K−1; uE , vE

)
= [uE , vE ]X,E −

∫

E

K−1RE (uE ) · RE (vE ) dx .

We assume that

∣∣∣σE (K−1; (�u)I
E , (�v)I

E )

∣∣∣ ≤ Ch2
E ‖�u‖(H1(E))d ‖�v‖(H1(E))d (3.27)

for all �u, �v ∈ (H1(E))d .

For a given K, σE (K−1; uE , vE ) is a bilinear form with respect to uE and vE . The
following lemma illustrates some of the properties of the lifting operator RE . For each
edge (face in 3D) ẽ, we define the space Pl(ẽ) of polynomials of degree ≤ l.

Lemma 3.4 Let assumption A4 hold and let the lifting operator RE satisfy assump-
tions A6–A7. For any element E, let vE ∈ Xh,E and assume that for each edge (face
in 3D) ẽ there exist an integer l such that

rẽ ≡ RE (vE ) · �nẽ ∈ Pl(ẽ),

rẽ(xe) = χe
E ve

E ∀e ∈ ẽ.

Furthermore, let xe, e ⊂ ẽ, be the quadrature points for exact integration of polyno-
mials in Pl+1(ẽ) with corresponding weights |e|, i.e.,

∫

ẽ

pl+1(s)ds =
∑
e∈ẽ

|e|pl+1(xe) ∀pl+1 ∈ Pl+1(ẽ).

Let �u0 be a constant vector and u0 = �uI
0 . Then,

∫

E

K−1
E RE (u0,E ) · RE (vE ) dx = [u0,E , vE ]X,E ∀vE ∈ Xh,E . (3.28)
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Proof Note that �u0 = KE∇ϕ1 for some linear function ϕ1. Then, assumption A6,
integration by parts, and assumption A4 give

∫

E

K−1
E RE (u0,E ) · RE (vE ) dx = −

∫

E

ϕ1 div(RE (vE )) dx +
∑

ẽ∈∂ E

∫

ẽ

ϕ1 rẽ ds

= −DIV vE

∫

E

ϕ1 dx +
∑

e∈∂ E

χe
E |e| ϕ1(xe)v

e
E

=
[
(KE∇ϕ1)I , vE

]
X,E

.

This proves the assertion of the lemma. ��

An example of the above lemma is when l = 0 and xe is the center of mass of facet
e. Another technique for proving (3.28) for simplicial meshes and a particular inner
product on Xh,E is shown in the next section.

In the theorem below we employ a duality argument to derive a superconvergence
estimate for |||pI − ph |||Q .

Theorem 3.3 Assume that problem (2.2)–(2.3) is H2-regular and f ∈ H1(�). Let
the pairs (p, �u) and (ph, uh) be the solutions of problems (2.2)–(2.3) and (2.21),
respectively. Assume also that the quadrature rule [·, ·]X defined in (2.12) is sym-
metric. Under assumptions A1–A7, there exists a constant C independent of h such
that

|||pI − ph |||Q ≤ C h2 (‖�u‖(H1(�))d + |p|H2(�) + ‖ f ‖H1(�)).

Proof Sufficient conditions for H2-regularity can be found in [25]. For example, it
holds if K ∈ (W 1,∞(�))d×d and � is a convex domain.

Let R(v) be such that R(v)|E = RE (vE ). Let qh be the piecewise constant function
such that qh |E = pI

E − (ph)E . We consider the following auxiliary problem:

−div K∇ϕ = qh in �,

ϕ = 0 on ∂�.

The H2-regularity assumption implies that

‖ϕ‖H2(�) ≤ C‖qh‖L2(�) = C |||pI − ph |||Q . (3.29)
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Let �v = −K∇ϕ and v = �v I . Using Lemma 2.4, the first equation in (2.24),
assumption A6, and integration by parts, we get

|||pI − ph |||2Q =
[
ph − pI , DIV v

]
Q

= [uh, v]X −
∫

�

p div (R(v)) dx

= [uh, v]X +
∫

�

K−1K∇ p · R(v) dx

= [uh − �uI , v]X +
∑

E∈�h

σE

(
K−1; (�u)I

E , (�v)I
E

)

+
∫

�

K−1
(
R(�uI ) − �u

)
R(v) dx = J1 + J2 + J3. (3.30)

To estimate J1, we first define w = uh − �uI . Then, using the definition of v and
adding and subtracting the term (K∇ϕ1)I , we have

J1 =
[
w, �v I + (K∇ϕ1)I

]
X

−
[
w, (K∇ϕ1)I

]
X

≡ J11 + J12,

where ϕ1 is the piecewise linear approximation to ϕ satisfying (3.4) on every element
E , and K is the piecewise constant approximation to K defined in Sect. 2. The terms
J11 is estimated similarly to term I1 that appeared in the proof of Theorem 3.1. We
have

|J11| ≤ C h
(‖ϕ‖H2(�) + ‖qh‖L2(�)

) |||w|||X .

Since the quadrature rule is symmetric, the term J12 can be bounded similarly to the
term I2 from the proof of Theorem 3.1:

|J12| ≤ C h |ϕ|H2(�)|||w|||X .

With the above two bounds, applying Theorem 3.1 and regularity result (3.29), we get

|J1| ≤ C h2 (|p|H2(�) + |�u|(H1(�))d + ‖ f ‖L2(�)

) |||pI − ph |||Q . (3.31)

To estimate J2, we use assumption A7 and (3.29):

|J2| ≤ Ch2‖�u‖(H1(�))d ‖�v‖(H1(�))d ≤ Ch2‖�u‖(H1(�))d |||pI − ph |||Q . (3.32)
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To estimate J3, we add and subtract �v, then integrate by parts and use assumption A6:

J3 =
∫

�

K−1
(
R(�uI ) − �u

) (
R(�v I ) − �v

)
dx +

∫

�

K−1
(
R(�uI ) − �u

)
�v dx

= J31 −
∫

�

(
R(�uI ) − �u

)
∇ϕ dx = J31 +

∫

�

ϕ div
(
R(�uI ) − �u

)
dx

= J31 +
∫

�

(
f I − f

)
ϕ dx

= J31 +
∫

�

(
f I − f

) (
ϕ − ϕ I

)
dx = J31 + J32. (3.33)

Let �u0 be the L2 projection of �u on the space of piecewise constant vector functions.
The triangle inequality, (3.25), (3.24), (3.16), and (3.17) imply that

‖R(�uI ) − �u‖(L2(�))d ≤ ‖R(�uI ) − �u0‖(L2(�))d + ‖�u − �u0‖(L2(�))d

≤ C |||�uI − �uI
0|||X + ‖�u − �u0‖(L2(�))d

≤ C h |�u|(H1(�))d .

The bound on ‖R(�v I ) − �v‖(L2(�))d is similar. Therefore

|J31| ≤ Ch2|�u|(H1(�))d |�v|(H1(�))d ≤ Ch2|�u|(H1(�))d |||pI − ph |||Q, (3.34)

where we have used assumption A5 and (3.29) for the last inequality.
The scalar version of the approximation property (3.17) gives the estimates

‖ f I − f ‖L2(�) ≤ C h| f |H1(�) (3.35)

and

‖ϕ − ϕ I ‖L2(�) ≤ C h|ϕ|H1(�) ≤ C h |||pI − ph |||Q . (3.36)

Inserting estimates (3.34)–(3.36) into (3.33) and combining the resulting estimate
with (3.30)–(3.32), we complete the proof of the theorem. ��
Remark 3.1 Using techniques from the proofs of Theorem 3.1 and Theorem 3.2,
assuming that p ∈ H1+q(�), 0 ≤ q ≤ 1, and �u ∈ (Hq̃(�))d , 0 < q̃ ≤ 1, we
can obtain the following reduced regularity superconvergence bound:

|||pI − ph |||Q ≤ C (hq + hq̃)2
(
‖�u‖(Hq̃ (�))d + |p|H1+q (�) + ‖ f ‖Hq (�)

)
.
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4 Analysis of particular quadrature rules

In this section we consider symmetric and non-symmetric quadrature rules (2.13).
We show that on simplicial meshes a symmetric quadrature exists that satisfies the
assumptions made above. For general polyhedral meshes, a convergent non-symmetric
method can be build whenever assumption A3 holds.

4.1 Symmetric methods

Throughout this section, we assume that the meshes satisfy the following condition:

each corner c of �h is formed by exactly d facets.

Note that in 2D all meshes satisfy this condition. We give an explicit symmetric
formula for matrices Mc in (2.13) which defines elemental matrices ME , and verify
assumptions A3i for polyhedral meshes and assumptions A4, A6, and A7 for simplicial
meshes.

Given vE ∈ X E,h , let �vE (c) ∈ �d be a vector associated with corner c of E such
that its normal component on any facet e that forms the corner is equal to ve

E . Since
each corner is formed by exactly d non-planar facets, the vector �vE (c) is uniquely
determined. If the corner c is formed by facets e1, . . . , ed with normals �ne, then

�vE (c) = N−T
c

(
v

e1
E , . . . , v

ed
E

)T
, Nc = [�ne1; . . . ; �ned

]
. (4.1)

We refer to �vE (c) as the recovered vector.
For every corner c of E , using the recovered vectors, we define

[u, v]X,E,c = γEwcK−1
E �uE (c) · �vE (c), γ −1

E = 1

|E |
∑
c∈E

wc, (4.2)

wherewc are positive weights. In this section, we choose equal weights,wc = |E |/m E ,
m E is the number of vertices of E , implying γE = 1. With the above definition, the
corner quadrature rule matrix Mc in (2.13) can be written as

Mc = |E |
m E

N−1
c K−1

E N−T
c . (4.3)

The next lemma shows that [·, ·]X build from (4.2) satisfies assumption A3.

Lemma 4.1 Let assumptions A1 and A2 hold. Then, assumption A3 is satisfied for
the matrix ME defined through (2.13) and (4.2).

Proof According to (2.13), it is sufficient to show (2.14) for every corner of E . Note
that

‖NT
c �v‖2 =

d∑
i=1

(�nei · �v)2 ≤
d∑

i=1

‖�v‖2 = d‖�v‖2 ∀�v ∈ �d ,
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which implies that

‖N−T
c �v‖2 ≥ 1

d
‖�v‖2 ∀�v ∈ �d .

Using (4.3), assumption A1, and the above inequality, it is easy to see that the left
inequality in (2.14) holds with

α0 = 1

m E k1
min
c∈E

min
�v∈�d

‖N−T
c �v‖2

‖�v‖2 ≥ 1

d m E k1
.

Similarly, to estimate α1, we need an upper bound for ‖N−T
c �v‖. Note that all entries

in matrix N−T
c are bounded by |det (Nc)|−1. Thus,

‖N−T
c �v‖2 ≤

d∑
i=1

d‖�v‖2

|det (Nc)|2 ≤ d2 ‖�v‖2

|det (Nc)|2 ∀�v ∈ �d .

In 2D, |det (Nc)| = |�ne1 × �ne2 | ≥ sin γ∗, using A2. In 3D, let �2 be the edge between
faces ẽ1 and ẽ3. Similarly, let �3 be the edge between faces ẽ1 and ẽ2. The vector
product �ne1 × �ne2 is aligned with the direction of �3 and the vector product �ne1 × �ne3

is aligned with the direction of �2. Using a formula for the volume of the tetrahedron
formed by the three normals and assumption A2, we get

|det (Nc)| = 6
2

3

|�ne1 × �ne2 | |�ne1 × �ne3 |
4 |�ne1 |

| sin γ c
�3,�2

| ≥ sin3 γ∗.

Using (4.3), assumption A1, and the above inequalities, we have that the upper bound
in (2.14) holds with

α1 = 1

m E k0
max
c∈E

max
�v∈�d

‖N−T
c �v‖2

‖�v‖2 ≤ d2

m E k0 sin4d−6(γ∗)
.

Bound (2.15) is trivially satisfied, since ME is symmetric. This proves the assertion
of the lemma. ��

Remark 4.1 Since ME is symmetric, it can be shown easily, using Lemma 4.1, that
[·, ·]X is an inner product in Xh .

We proceed with verifying assumption A4 for (4.2) and simplicial meshes. In two
dimensions, for each edge with end points a1 and a2, we define two new points

a12 = 1

3
(2a1 + a2) and a21 = 1

3
(a1 + 2a2) (4.4)
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a b

Fig. 3 Auxiliary edge and face points

which are interior points of the two facets, see Fig. 3a. In three dimensions, for each
face (which is a triangle) with vertices a1, a2 and a3, we define three new points

a123 = 1

4
(2a1 + a2 + a3), a231 = 1

4
(a1 + 2a2 + a3), a312 = 1

4
(a1 + a2 + 2a3),

(4.5)

which are interior points of three facets, see Fig. 3b. Note that the d new points are
the projections of the center of mass, xE , onto the edge (face in 3D) along directions
parallel to the other d edges. We use notation xe for the new point inside facet e.

Lemma 4.2 Let �h be a simplicial partition. Then assumption A4 holds with points
xe defined by (4.4) in 2D and (4.5) in 3D.

Proof According to (2.13), the matrix ME corresponding to [·, ·]X,E is block diagonal
with d + 1 blocks. Thus, to prove (2.16), it is sufficient to show it for every corner c
of E . Recall that corner c is formed by facets e1, . . . , ed . Assume for simplicity that
the normal vectors �nei are outward to E , which gives χ

ei
E = 1. Let �vE (c) be the vector

recovered at corner c. Note that on simplicial meshes wc = |E |
d+1 . Since the constant

vector ∇q1 is recovered exactly, (2.16) reduces to

|E |
d + 1

(
K−1

E �vE (c)
)

·
(
KE∇q1

)
=

d∑
i=1

|ei |
(

q1(xei ) − q1(xE )
)

v
ei
E . (4.6)

Using formula (4.1) for the recovered vector �vE (c), (4.6) is equivalent to

|E |
d + 1

∇q1 =
d∑

i=1

|ei | �nei q1(xei − xE ). (4.7)

To prove (4.7), recall that points xe are defined by (4.4) in 2D and (4.5) in 3D. For illus-
tration, let us consider the triangle E shown in Fig. 4, although the proof is valid in 3D

as well. The shaded triangle Ê is similar to E with ratio d
d+1 and |Ê | =

(
d

d+1

)d |E |.
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Fig. 4 The similar triangles E
and Ê (shaded)

The points xe1 , xe2 and xE are the mid-points of the edges of Ê . Using that the
midpoint quadrature rule is exact for linear functions and applying the Green’s for-
mula to the right hand side of (4.7), we get

d∑
i=1

|ei | �nei q1(xei − xE ) = β(d)

∫

∂ Ê

�nÊ q1(s − xE ) ds = β(d)

∫

Ê

∇q1 dx

= |E |
d + 1

∇q1,

where β(d) = 1
d

(
d

d+1

)1−d
. We conclude the proof by noting that (2.17) holds with

σ∗ = 1
β(d)

. ��

Now we verify assumptions A6 and A7 on simplicial grids. Consider the lowest
order Brezzi–Douglas–Marini mixed finite element space BDM1 consisting of piece-
wise linear vector functions with continuous normal components [14]. A BDM1 vector
is uniquely defined by the values of its normal component at d points on each edge
(face in 3D). Let RE (vE ) be the BDM1 interpolant satisfying for each facet e

RE (vE )(c) · �ne = ve
E ,

where c is the corner associated with e. This lifting operator preserves constant vector
functions and has a continuous normal component across mesh interfaces [14]. Note
that

DIV vE = 1

|E |
∑

e∈∂ E

|e| ve
E = 1

|E |
∑

ẽ∈∂ E

|ẽ|
d

∑
c of ẽ

�vE (c) · �nẽ,

where �vE (c) is the vector recovered at corner c and the last sum includes only corners
associated with ẽ. By construction, �vE (c) = RE (vE )(c). Since, the last sum is the
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quadrature rule for exact integration of linear functions, we get

DIV vE = 1

|E |
∑

ẽ∈∂ E

∫

ẽ

RE (vE ) · �nE ds = div(RE (vE )).

Thus RE (vE ) satisfies (3.23). The definition of RE (vE ) easily implies (3.24). There-
fore assumption A6 holds on simplicial grids.

The following lemma verifies assumption A7.

Lemma 4.3 Let �h be a simplicial partition. Let the tensor K satisfy assumption A5
and let the lifting operator RE be the BDM1 interpolation operator defined above.
Then, assumption A7 holds.

Proof Let �v, �u ∈ (H1(E))d . Let �v0,E be the L2 projection of �v on the space of con-
stant vector functions on E , v0,E = (�v I

0 )E , and uE = (�uI )E . Similarly, we define
�u0,E and u0,E . Then, definition on the inner product (4.2) on Xh,E and the quadrature
rule for exact integration of linear functions give

[v0,E , uE ]X,E = |E |
d + 1

∑
c∈E

K−1
E RE (v0,E )(c) · RE (uE )(c)

=
∫

E

K−1
E RE (v0,E ) · RE (uE ) dx .

The above identity implies that

σE

(
K−1

E ; v0,E , uE

)
= 0. (4.8)

Using the definition of σE (K−1; vE , uE ), we write

σE

(
K−1; vE , uE

)
= σE

(
K−1

E ; vE , uE

)
+
∫

E

(
K−1

E − K−1
)

RE (vE ) · RE (uE ) dx

= I1 + I2.

Using (4.8), then (3.16) and (3.17), we bound I1 as follows:

|I1| =
∣∣∣σE (K−1

E ; vE − v0,E , uE − u0,E )

∣∣∣ ≤ h2
E ‖�u‖(H1(E))d ‖�v‖(H1(E))d . (4.9)
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The integral I2 can be broken into three integrals

I2 =
∫

E

(
K−1

E − K−1
)

RE (vE − v0,E ) · RE (uE ) dx

+
∫

E

(
K−1

E − K−1
)

RE (v0,E ) · RE (uE − u0,E ) dx

+
∫

E

(
K−1

E − K−1
)

RE (v0,E ) · RE (u0,E ) dx = I21 + I22 + I23.

Using (3.2), (3.24), and (3.16), we bound the first two integrals:

|I21 + I22| ≤ Ch2
E‖�v‖(H1(E))d ‖�u‖(H1(E))d . (4.10)

To bound the third integral, we use property (3.25), the fact that the constant tensor
KE is the mean value of K on E , then estimates (3.1) and (3.2):

|I23| =
∣∣∣∣∣∣
∫

E

(K − KE )K−1
E �v0,E · K−1 �u0,E dx

∣∣∣∣∣∣

=
∣∣∣∣∣∣
∫

E

(K − KE )K−1
E �v0,E ·

(
K−1 − K−1

E

)
�u0,E dx

∣∣∣∣∣∣
≤ Ch2

E‖�v‖(L2(E))d ‖�u‖(L2(E))d . (4.11)

A combination of (4.8)–(4.11) completes the proof of the lemma. ��
Remark 4.2 The analysis developed in this section can be extended to uniformly
refined quadrilateral and hexahedral meshes via a mapping to a reference element,
using techniques developed in [30,47].

4.2 Non-symmetric methods

In this section, we consider unstructured polygonal and polyhedral meshes. We give
explicit formula for matrices Mc in (2.13) such that assumption A4 is automatically
satisfied. Analysis of sufficient conditions for assumptions A3, A6 and A7 will be the
topic of future research.

The derivation of matrix Mc follows essentially the path developed in [17]. It is
sufficient to verify assumption A4 for d + 1 linearly independent basis functions in
P1(E), for example, 1 and xi , i = 1, . . . , d, where (x1, . . . , xd) denote the Cartesian
coordinate system in �d . Note that both sides of (2.16) are zero when q1 = 1. For
q1 = xi , the right-hand side of (2.16) is a linear functional of v and therefore it can
be represented as rT

i v, where ri ∈ Xh,E . The entries of ri are the i-th coordinates of
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the kE vectors xe1 − xE , . . . , xekE
− xE , where e1, . . . , ekE are the facets of E . Thus,

we get d linear equations for the unknown matrix ME :

ME ni = ri , i = 1, . . . , d, (4.12)

where ni = (KE∇xi )
I
E . If we define kE × d matrices ÑE and RE as

ÑE = [n1; . . . ; nd ] and RE = [r1; . . . ; rd ],

then (4.12) can be written in the compact form

ME ÑE = RE . (4.13)

We refer to [17] for more details.
The matrix ME is block diagonal with as many blocks as there are corners in E .

Let us consider a particular corner c of E . Without loss of generality, we assume that
e1, . . . , ekc are the facets that form this corner. It follows from (4.13) that

McÑc = Rc, (4.14)

where Ñc and Rc are kc × d matrices formed by kc rows of matrices ÑE and RE ,
respectively. When the corner c is formed by exactly d facets, kc = d,

Ñc = NT
c KE ,

where Nc = [�ne1; . . . ; �nekc

]
. In this case, the solution to (4.14) is

Mc = RcÑ−1
c . (4.15)

If kc > d, matrix ÑT
c has a non-empty null space. Let Dc be a matrix with columns

that span this null space, i.e. ÑT
c Dc = 0. Then,

Mc = Rc

(
ÑT

c Ñc

)−1
ÑT

c + DcUcDT
c , (4.16)

where Uc is an arbitrary symmetric positive definite matrix of size kc −d. This implies
that there exists a family of solutions to (4.14) which is described by (kc − d)(kc −
d + 1)/2 parameters.

Finding sufficient conditions for assumption A3 is a non-trivial task (see, e.g., [31]
where MPFA methods on quadrilateral meshes are analyzed) since the geometry of E
is coupled with the tensor properties of the permeability coefficient KE . The proposed
methodology is reduced to analysis of only kc × kc matrices.

We consider in more detail the two-dimensional case, where kc = d = 2. We
introduce some additional notation as shown in Fig. 5. Let �ai , i = 1, 2, be the vector
pointing from point xE to point xei . Let �ti , i = 1, 2, be the unit vectors tangential to
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Fig. 5 Geometric interpretation
of rows of the matrices Rc , Nc
and columns of the matrix N−1

c
in two dimensions

facets ei and pointing to the corner c. Then, the 2 × 2 matrices Rc and Nc have the
following structure:

RT
c = [�a1; �a2], Nc = [�ne1; �ne2 ], and N−1

c = 1

sin γ c
e1,e2

[�t2; �t1].

Now, formula (4.15) implies that

Mc = 1

sin γ c
e1,e2

⎡
⎣ �aT

1 K−1
E

�t2 �aT
1 K−1

E
�t1

�aT
2 K−1

E
�t2 �aT

2 K−1
E

�t1

⎤
⎦ . (4.17)

For a mesh consisting of parallelograms, formula (4.17) resembles the K-orthogo-
nality result from [1] derived for a transmissibility matrix. When �ai is collinear with
�t3−i , i = 1, 2, �aT

i K−1
E

�ti = 0 describes a mesh orthogonal in a metric.

Lemma 4.4 Let d = 2, K be a scalar tensor, and �h be a centroidal Voronoi polygo-
nal mesh. If the points xe are defined as the intersection of a dual Delaunay mesh with
the edges of the Voronoi mesh, then the matrices Mc defined by (4.15) are diagonal
and assumption A3 holds.

Proof The diagonality of Mc follows from the definition of the centroidal Voronoi
mesh—the vectors �ai , i = 1, 2, are orthogonal to facets ei . Assumption A3 then
follows from the non-degeneracy of the Voronoi mesh. ��

We also note that, for general meshes, the flexibility in the locations of points xe can
be exploited in the construction of a matrix ME satisfying assumption A3. We con-
clude this discussion with the following result, which is a corollary of Theorems 3.1
and 3.2.
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Theorem 4.1 Let the matrix Mc in (2.13) be given by (4.15) or (4.16). Let assumption
A3 hold for that matrix. Let pairs (p, �u) and (ph, uh) be solutions of problems (2.2)
and (2.21), respectively. Assume that p ∈ H1+q(�), 0 ≤ q ≤ 1, and �u ∈ (Hq̃(�))d ,
0 < q̃ ≤ 1. Under assumptions A1, A2 and A5, there exists a constant C independent
of h such that

|||�uI − uh |||X ≤ C
(

hq |p|H1+q (�) + hq̃ |�u|(Hq̃ (�))d + h‖ f ‖L2(�)

)

and

|||pI − ph |||Q ≤ C
(

hq |p|H1+q (�) + hq̃ |�u|(Hq̃ (�))d + h‖ f ‖L2(�)

)
.

Remark 4.3 Extension of the pressure superconvergence result from Theorem 3.3 to
polygonal and polyhedral elements requires verifying assumptions A6 and A7. One
could construct appropriate interpolation operators on such elements by extending the
results from [32,33] on piecewise Raviart–Thomas spaces to piecewise BDM1 spaces.

5 Numerical experiments

In this section, we present results of numerical experiments using quadrature rules
defined in (4.2). As we mentioned in Sect. 2, the velocity unknown can be eliminated
from the discrete system resulting in a cell-centered discretization with a symmetric
positive definite matrix. This problem is solved with the preconditioned conjugate
gradient (PCG) method. In the numerical experiments, we used one V-cycle of the
algebraic multigrid method [44] as a preconditioner. The stopping criterion for the
PCG method is the relative decrease in the residual norm by a factor of 10−12.

Let us consider the 2D problem (2.2) in the unit square with the known analytical
solution

p(x, y) = x3 y2 + x sin(2πxy) sin(2πy)

and the tensor coefficient

K =
(

(x + 1)2 + y2 −xy

−xy (x + 1)2

)
.

In the first set of experiments, we consider the sequence of smooth triangular meshes
generated from uniform square meshes by splitting each square cell into four equal
triangles; see Fig. 6. The convergence rates are shown in Table 1 for the discrete L2

norms defined earlier, as well as for the discrete L∞ norms defined as the maximum
component absolute values of the algebraic vectors. We use a linear regression algo-
rithm to estimate the convergence rates. We observe second-order convergence rate
(superconvergence) of the pressure variable and first-order convergence rate of the
flux variable in the discrete L2 norms.
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Fig. 6 Examples of meshes used in first (top left), second (top right), third (bottom left), and fourth (bot-
tom-right) experiments. The meshes in the top row correspond to h = 1/8. The meshes in the bottom row
correspond to h = 1/16

Table 1 Convergence rates in
the first set of experiments 1/h |||pI − ph |||Q |||pI − ph |||∞ |||�uI − uh |||X |||�uI − uh |||∞

8 2.22e–3 3.82e–3 2.08e–2 2.17e–1

16 5.50e–4 1.04e–3 9.96e–3 1.11e–1

32 1.37e–4 2.73e–4 4.91e–3 5.62e–2

64 3.43e–5 7.12e–5 2.45e–3 2.82e–2

128 8.59e–6 1.83e–5 1.22e–3 1.42e–2

Rate 2.00 1.93 1.02 0.98

In the second set of experiments, we take the meshes generated above and
perturb randomly the positions of the mesh nodes. More precisely, we move each
of the mesh nodes into a random position inside a square of size h/2 centered at the
node; see Fig. 6. The convergence rates are shown in Table 2. As in the first exam-
ple, we observe second-order convergence of the pressure and first-order convergence
of the flux. Both experiments confirm the theoretical results proved in the previous
sections.
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Table 2 Convergence rates in
the second set of experiments 1/h |||pI − ph |||Q |||pI − ph |||∞ |||�uI − uh |||X |||�uI − uh |||∞

8 2.25e–3 4.21e–3 2.89e–2 2.17e–1

16 5.65e–4 1.05e–3 1.42e–2 1.11e–1

32 1.42e–4 3.26e–4 7.70e–3 5.65e–2

64 3.54e–5 9.25e–5 3.83e–3 3.44e–2

128 8.85e–6 2.49e–5 1.94e–3 1.70e–2

Rate 2.00 1.83 0.97 0.90

Table 3 Convergence rates in
the third set of experiments 1/h |||pI − ph |||Q |||pI − ph |||∞ |||�uI − uh |||X |||�uI − uh |||∞

8 5.24e–3 1.81e–2 4.54e–1 3.81e–0

16 1.25e–3 6.80e–3 2.48e–1 2.61e–0

32 3.95e–4 1.87e–3 1.27e–1 1.44e–0

64 9.99e–5 4.84e–4 6.37e–2 7.47e–1

128 2.50e–5 1.23e–4 3.19e–2 3.80e–1

Rate 1.91 1.82 0.96 0.85

In the third set of experiments we consider a sequence of smooth quadrilateral
meshes. On each refinement level the mesh is obtained from a square mesh via the
mapping

x := x + 0.1 sin(2πx) sin(2πy), (5.1)

see the bottom picture in Fig. 6. The discrete L∞ and L2 norms of the errors are
shown in Table 3. The convergence rates are close to those for triangular meshes.
The slight reduction in convergence rates is due to slower convergence on coarse
meshes.

In the fourth set of experiments, we consider a sequence of polygonal median
meshes. A polygonal median mesh (see the bottom-right picture in Fig. 6) is built in
two steps. First, we generate the Voronoi tessellation for the set of points given by
(5.1) applied to nodes of a square mesh. Second, we move each interior mesh node to
the center of mass of a triangle formed by the centers of three Voronoi cells sharing
the node. The results are shown in Table 4. We observe the second-order convergence
of the pressure and the first-order convergence of the flux.

Tables 3 and 4 provide a qualitative comparison of symmetric and non-symmetric
methods, since meshes in both sequences have roughly the same number of elements
and these elements are distributed with the same mapping (5.1). The non-symmetric
method provides more accurate fluxes which is due to the fact that assumption A4
does not hold exactly for quadrilateral meshes.

123



148 K. Lipnikov et al.

Table 4 Convergence rates in
the fourth set of experiments 1/h |||pI − ph |||Q |||pI − ph |||∞ |||�uI − uh |||X |||�uI − uh |||∞

8 1.40e–2 2.71e–2 1.73e–1 8.18e–1

16 2.67e–3 6.17e–3 5.88e–2 3.77e–1

32 5.74e–4 1.33e–3 2.92e–2 2.09e–1

64 1.33e–4 3.12e–4 1.53e–2 1.39e–1

128 3.19e–5 7.88e–5 7.90e-3 8.44e–2

Rate 2.19 2.12 1.08 0.80

6 Conclusions

We have developed a local flux mimetic finite difference method, which reduces to
cell-centered finite differences for the pressure. The method uses facet fluxes, which
are eliminated from the algebraic system by solving small local systems for each
mesh vertex. The method is defined on general polyhedral meshes. We present anal-
ysis showing optimal convergence for both variables and superconvergence for the
pressure variable under certain constructive assumptions on the L2 quadrature rule.
Our analysis is based on discrete space arguments and does not rely on finite element
polynomial extensions, with the exception of the pressure superconvergence proof.
A symmetric method that satisfies these assumptions is developed for simplicial
meshes. The analysis is extendable to uniformly refined quadrilateral and hexahe-
dral meshes. A non-symmetric method is developed for general polyhedral grids.
Both methods satisfy the consistency assumption A4 by construction. The symmetric
method satisfies the coercivity assumption A3. The validity of this assumption for the
non-symmetric method depends on the shape regularity of the grid and the anisotropy
of the tensor permeability coefficient.

Appendix

Proof of Lemma 3.1

Proof Without loss of generality we assume that e is either a segment in 2D or a
triangle in 3D. Note that in 3D any facet can be represented as a finite union of shape-
regular triangles. If (3.7) is shown for each of these triangles, it is easy to see that it
holds for the whole facet. We can also assume that E is a simplex that has e as one of its
edges (faces in 3D). In the general polyhedral case, such simplex that is contained in E
and satisfies the shape-regularity conditions from assumption A2 can be constructed
easily. Let Ê be the reference simplex. There exists a bijection mapping FE : Ê → E .
Denote the Jacobian matrix by DFE and let JE = |det(DFE )|. It is easy to see that the
shape-regularity of E implies that

‖DFE‖ ∼ hE and JE ∼ hd
E , (A.1)
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where ‖ · ‖ denotes the matrix norm associated with the Euclidean norm in �d and
the notation a ∼ b means that there exist positive constants C0 and C1 independent
of hE such that C0b ≤ a ≤ C1b.

We will make use of the transformations

�v ↔ �̂v : �v = 1

JE
DFE �̂v ◦ F−1

E , w ↔ ŵ : w = ŵ ◦ F−1
E .

The vector transformation is known as the Piola transformation. It is designed to
preserve the normal components of the velocity vectors on the edges (faces) and sat-
isfies the important properties [15]

∫

E

div�v w dx =
∫

Ê

div �̂v ŵ dx̂ and
∫

e

�v · �ne w ds =
∫

ê

�̂v · �̂nê ŵ dŝ. (A.2)

For the standard change of variables, we have

∫

e

w ds =
∫

ê

ŵ Je dŝ, Je = JE‖DF−T
E �̂nê‖. (A.3)

The above relationships imply that for r ≥ 0 and all sufficiently regular functions

|�̂v|
(Hr (Ê))d ≤ C‖DF−1

E ‖‖DFE‖r J 1/2
E |�v|(Hr (E))d ≤ Chr−1+d/2

E |�v|(Hr (E))d ,

(A.4)

|div �̂v|Hr (Ê)
≤ C‖DFE‖r J 1/2

E |div�v|Hr (E) ≤ Chr+d/2
E |div�v|Hr (E), (A.5)

|ŵ|Hr (ê) ≤ C‖DFE‖r J−1/2
e |w|Hr (e) ≤ Chr+1/2−d/2

E |w|Hr (e). (A.6)

It was shown in [38] that for all �̂v ∈ Ṽ(Ê), �̂v · �̂nê ∈ Hq̃−1/2(ê), 0 < q̃ ≤ 1, and

‖�̂v · �̂nê‖Hq̃−1/2(ê) ≤ C
(
‖�̂v‖

(Hq̃ (Ê))d + ‖div �̂v‖L2(Ê)

)
. (A.7)

We will give the argument for 0 < q̃ < 1/2, in which case �̂v · �̂nê is defined in the sense
of distributions. The argument in the case 1/2 ≤ q̃ ≤ 1 is similar. Let w ∈ H1/2−q̃(e).
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Using (A.2) and (A.4)–(A.7), we have

∫

e

�v · �ne w ds =
∫

ê

�̂v · �̂nê ŵ dŝ

≤ ‖�̂v · �̂nê‖Hq̃−1/2(ê)‖ŵ‖H1/2−q̃ (ê)

≤ C
(
‖�̂v‖

(L2(Ê))d + |�̂v|
(Hq̃ (Ê))d + ‖div �̂v‖L2(Ê)

)

×
(
‖ŵ‖L2(ê) + |ŵ|H1/2−q̃ (ê)

)

≤ C
(

h−1+d/2
E ‖�v‖(L2(E))d + hq̃−1+d/2

E |�v|(Hq̃ (E))d + hd/2
E ‖div�v‖L2(E)

)

×
(

h1/2−d/2
E ‖w‖L2(e) + h1−q̃−d/2

E |w|H1/2−q̃ (e)

)

≤ C
(

h−1/2
E ‖�v‖(L2(E))d + hq̃−1/2

E |�v|(Hq̃ (E))d + h1/2
E ‖div�v‖L2(E)

)

×
(
‖w‖L2(e) + h1/2−q̃

E |w|H1/2−q̃ (e)

)
,

which implies the assertion of the lemma. ��
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