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ABSTRACT View synthesis is an effective method to generate the contents of multiple views based on a 
limited number of reference views, which can be used in 2D to 3D conversion, free viewpoint video and 
multiview video rendering. Depth-image-based rendering (DIBR) is a practical technique to generate virtual 
view by using a 2D reference view and its depth image. However, a critical problem in DIBR process is that 
disocclusions might be produced in the synthesized image because the background occluded by the 
foreground objects in the reference view may be exposed in the virtual view. In this paper, a local 
foreground removal method is proposed for disocclusion filling. Morphology-based depth image 
preprocessing is performed before DIBR, aiming to correct the depth value of the ghosts and remove ghost 
artifacts. In the synthesized virtual image, pixels on the disocclusion edge are identified and classified. 
Then they are positioned in the reference image by inverse 3D warping. Local foreground regions that 
occlude the corresponding background are removed from both the reference image and its depth image 
based on the disocclusion edge pixels. Removed region is filled with surrounding background contents, and 
depth information is used in this process to prevent foreground penetration. The predicted background 
contents are warped to the disocclusion region, thereby achieving the hole filling. Experimental results 
show that the proposed method performs better than the other methods in disocclusion filling, and improves 
the subjective and objective quality of the synthesized view. In the evaluation results of PSNR, SSIM, 
FSIMc and VSI, our method improves by 0.32-2.43dB, 0.0036-0.0155, 0.0041-0.0198 and 0.0012-0.0057 
respectively compared with competitive methods. 

INDEX TERMS Free viewpoint video, depth-image-based rendering, disocclusion filling, local foreground 
removal, view synthesis 

I. INTRODUCTION 
With the development of computer science and multimedia 
technology, 3D video and free viewpoint video (FVV) have 
drawn more attention. Compared to 2D video, 3D video 
introduces depth information, which can provide more 
immersive viewing experience to viewers [1], [2]. As the 
ultimate of 3D video, FVV allows the viewer to freely 
choose the viewpoint within a certain range [3]. Accordingly, 
it requires the data of multiple viewpoints. However, it is not 
practical to use a series of cameras to capture video from 
multiple viewpoints, and transmitting the multiple videos 
requires a lot of bandwidth [4]. Moreover, for 2D to 3D 
conversion, only a single viewpoint can be obtained [5]. In 
this case, a practical way is to use a depth-image-based 
rendering (DIBR) method to generate multiple virtual views, 

which only requires a single reference view and its associated 
depth image [6]. The core technology of DIBR is called 3D 
warping [7]. In this process, all pixels in the reference image 
are projected to the world coordinate based on the depth 
information, and then the resulting points are reprojected 
onto the imaging plane of the target view. 

When using DIBR to synthesize the virtual view, a critical 
problem is that artifacts may appear in the virtual image [8]. 
The most serious one is disocclusion. It arises because the 
background occluded by the foreground objects in the 
reference view becomes visible in the virtual view. Since no 
pixels are warped to these regions, they appear as large holes, 
which seriously affect the visual quality of virtual view, as 
shown in Fig. 1. The disocclusion area is related to the 
baseline and depth discontinuity. As the baseline increases, 
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the area of disocclusion gradually increases until the entire 
foreground object is projected onto the new background. In 
addition, artifacts in the virtual image include other types, 
such as cracks, ghosts, and out-of-field area (OOFA). Cracks 
are caused by rounding errors in 3D warping. Ghosts usually 
mean that the edges of foreground objects in the reference 
image are mismatched with those in the depth image. Some 
foreground edge pixels are given the depth values of 
background and projected to the background region in the 
virtual image. Since the virtual view exceeds the capture 
range of reference view, OOFA with no information appears 
on the edge of synthesized image. Therefore, reasonable 
handling of artifacts, especially disocclusion filling, is 
essential to improve the visual quality of virtual view. 

 

 

FIGURE 1.  Artifacts in the virtual image. 
 
To remove ghosts and fill the disocclusions with reliable 

contents, in this paper, a disocclusion filling method based on 
local foreground removal is proposed. Foreground edge is 
detected by the morphological approach in the depth image 
preprocessing. The depth value of ghost pixel is corrected so 
that the ghosts are projected to the correct position in 3D 
warping. Based on the disocclusion edge pixels, local 
foreground regions associated with the disocclusions are 
removed from the reference image and its depth image. The 
removed regions are filled with the texture and depth 
information of the surrounding background, which are then 
used to fill the disocclusions in the virtual image. In addition, 
a postprocessing approach is applied to deal with the 
remaining artifacts, including OOFAs and small holes 
introduced by depth errors. Our main contributions are as 
follows: 1) We introduce a morphology-based depth image 
preprocessing method to quickly detect foreground edges and 
correct ghost pixels. 2) We use the classification results of 
disocclusion edge to remove the local foreground, and then 
predict the content of the occlusion layer. 3) Disocclusion 
filling is performed in the reference image based on the 
modified inpainting method, which can prevent the artifacts 
generated in 3D warping. 

The rest of the paper is organized as follows. Section 2 
reviews the related work. The detailed description of the 

proposed method is given in Section 3. The experimental 
results and discussion are provided in Section 4. Finally, 
Section 5 concludes the paper and outlines the future work. 

II. RELATED WORK 
In General, disocclusion filling methods can be divided into 
two categories. The first one is to introduce a preprocessing 
process before 3D warping. Depth information is important 
for the calculation of coordinate position in 3D warping. 
Some depth image preprocessing methods are applied to 
prevent the generation of disocclusion. Due to the depth 
discontinuity between the foreground and background, 
symmetric or asymmetric low-pass filter is used to smooth 
the depth image, so that the area of disocclusion is reduced 
[9], [10]. However, the global filtering smoothes the regions 
that do not generate disocclusions, resulting in geometric 
distortion in the virtual image and reducing the 3D visual 
effect. To overcome this problem, Chen et al. [11] proposed 
an edge-based smoothing filter, focusing on the 
preprocessing of foreground edges. Zhu et al. [12] used 
morphological operators to detect foreground edges, and 
applied an asymmetric Gaussian filter to smooth the 
transition regions to avoid depth distortion. The above depth 
preprocessing methods are suitable for small baseline 
conditions. For the large baseline, due to the increase of 
disocclusion area, single smoothing is no longer competent. 
Therefore, additional postprocessing approaches are 
necessary. In addition, some other preprocessing methods are 
proposed to achieve ghost removal and hole decomposition. 
Lei et al. [13] proposed a divide-and-conquer hole filling 
method to decompose the disocclusion into several holes in 
the virtual image. In [14], depth image preprocessing is used 
to detect and remove ghosts. However, ghosts are caused by 
depth errors. The corresponding foreground content is 
effective, and should be projected to the correct position of 
the foreground edge. 

The other type of method is to fill the disocclusion by 
using the texture correlation of surrounding pixels [15], [16]. 
Inpainting-based method is an alternative measure for hole 
filling [17], [18]. In Criminisi’s method [17], the filling order 
is firstly calculated for pixels on the hole boundary. The 
priority consists of confidence term and data term. Then the 
beat matching patch is searched in the source region and 
copied to the hole. However, as disocclusions are originated 
from background region, they should be filled by background 
texture. The original inpainting algorithm gives foreground 
and background pixels the same weight, which allows the 
foreground texture to be sampled into the disocclusion region. 
Foreground blending is produced, which reduces the visual 
quality. To overcome this problem, some improved methods 
introduce depth information to fill the disocclusions. In 
Daribo’s method [19], depth term is added to the priority 
calculation, so that the region with smaller depth variance is 
filled preferentially. But this method is performed under the 
assumption that the depth image of virtual view is known. 
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Ahn et al. [14] generated the depth image of virtual view in 
3D warping, and simultaneously filled disocclusions in the 
virtual image and its depth image. Kao et al. [20] changed 
the priority calculation approach, and used the depth-based 
gray-level distance to calculate the matching cost of two 
patches. However, when the depth value of the foreground 
edge is incorrect, ghosts may appear and interfere with the 
extension of the background texture. Zhu et al. [12] 
introduced the mean square error when updating the priority 
to prevent the propagation of the wrong inpainted texture. To 
avoid the interference of foreground in disocclusion filling, 
some methods based on foreground-background 
segmentation are proposed. In Luo’s method [21], edge 
detection algorithm is used to extract the foreground edge, 
and then the foreground object is extracted based on the 
depth information. Han et al. [22] used the multi-threshold 
Otsu method to segment the depth image into multiple layers 
and performed layered 3D warping. In [23], threshold 
segmentation is used to extract foreground object and the 
background layer is compensated. In [24], disocclusion edge 
pixels are divided into foreground and background based on 
the depth value. The confidence term and data term in the 
filling priority calculation are replaced by the depth term and 
background term. However, these methods are very 
dependent on the accuracy of foreground segmentation, 
which is a difficult task when there are several depth layers. 
Moreover, ghosts should also be considered in the 
segmentation process to avoid misclassification of 
foreground pixels. 

For view synthesis of video sequences, the correlation of 
time information can be used to deal with artifacts. In video 
content analysis, some shot boundary detection algorithms 
are used to segment a video into clips [25]-[27]. They can 
detect changes in the scene and are used to update the 
background model. In the time domain, for moving 
foreground objects, the occluded region in the current frame 
may be exposed in other frames. In this case, some methods 
have been proposed to build background models, such as 
Gaussian Mixture Model-based methods [28]-[30]. However, 
these methods cannot obtain the background content 
occluded by the still foreground object or the background 
model of a still image. Therefore, disocclusion handling in 
the spatial domain is still worth studying. In this paper, we 
propose a spatial domain disocclusion filling method. The 
occlusion layer is predicted based on the local foreground 
removal approach, which is used to fill the disocclusions in 
the virtual image. 

III. PROPOSED METHOD 
The flowchart of the proposed method is shown in Fig. 2. 
Our framework mainly contains five parts: morphology-
based preprocessing, classification of disocclusion edge, 
local foreground removal, removed region filling, and 
disocclusion filling and postprocessing. In the following, 
these steps will be described in detail. 

 

 

FIGURE 2.  Flowchart of the proposed method. 
 

A. MORPHOLOGY-BASED PREPROCESSING 

Depth value reflects the distance between the object and the 
camera, which plays an important role in 3D warping. It can 
be obtained by depth camera, structured light, and stereo 
matching. Due to the limitation of algorithm and equipment 
accuracy, the depth value of foreground edge might be coarse. 
The foreground edge pixels with wrong depth values are 
projected to the background region and mixed with 
background texture, which are called ghosts. As the 
disocclusion is caused by depth discontinuity, ghosts are 
located at the edge of disocclusion, which disturb the 
disocclusion filling, resulting in the propagation of 
foreground texture and reducing the visual quality of virtual 
view. Some methods detect and remove ghosts in the 
horizontal direction [8], [13]. But the same problem exists in 
the vertical direction. In addition, the contents of ghosts in 
the reference image are reliable, thus a more reasonable way 
is to modify their depth values and project them to the correct 
position. In this paper, a morphology-based preprocessing 
method is proposed to detect foreground edges that may 
produce ghosts, and correct their depth values instead of 
smoothing. The preprocessing is performed in the region 
around the foreground edge, which would not introduce blur 
results and geometric distortion. 

Depth image preprocessing contains two steps: foreground 
edge detection and depth correction. Since the depth image 
may contain multiple depth layers, single threshold edge 
detection algorithm cannot extract accurate foreground edge. 
In this section, morphology-based edge detection is 
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introduced. The foreground edge pixels that may contain 
ghosts are defined as: 

     1, , ,
,

0,otherwiser

d u v L d u v th
E u v

    


, (1) 

where d denotes the value of pixel  ,u v  in the depth image 
or disparity image. As shown in Fig. 3(a), the depth value of 
the foreground is higher than the background it occluded [21].  
 represents the morphological dilation operation, and L is 
the structural element, which is defined as: 

0 1 0
1 1 1
0 1 0

L

 
   
  

, (2) 

The extracted foreground edge is shown in Fig. 3(b). 
These pixels with background depth values contain the 
foreground texture. Therefore, the depth correction process is 
to replace the depth value of the marked pixel with the four-
neighborhood foreground depth value. Since only the depth 
values of some pixels are modified, the 3D visual effect of 
the synthesized result would not be reduced. Considering that 
the ghosts are usually 1-2 pixels wide [31], the above process 
is performed twice to ensure that all the ghost pixels are 
corrected. We use four-neighborhood operator instead of 
eight-neighborhood operator in preprocessing. This is 
because eight-neighborhood operator cannot remove all the 
ghost pixels in one execution process, and executing twice 
would cause too many background pixels to be included. It is 
noted that some background pixels may be given the 
foreground depth value in this process and still be adjacent to 
the foreground edge in the virtual image. In this case, the 
pixels on both sides of the disocclusion in virtual image 
belong to the background, that is, FG-BG-disocclusion-BG. 
Since the disocclusion also belongs to the background, these 
background pixels would not affect the disocclusion handling, 
and after the disocclusion filling, the texture distribution can 
be expressed as FG-BG, which is consistent with the real 
scene. 

 

FIGURE 3.  Foreground edge extraction for ghost removal. (a) Depth 
image. (b) Extracted foreground edge.  

 

B. CLASSIFICATION OF DISOCCLUSION EDGE 

Reference image and the preprocessed depth image are used 
as the input of modified 3D warping [32] to synthesize the 
virtual image. All pixels in the reference image are projected 
to the world coordinate based on their depth values. In the 
process of reprojecting these pixels onto the virtual view 
imaging plane, cracks are filled by the surrounding valid 
pixels, and the pixel overlap is resolved based on the depth 
value to correctly maintain the occlusion relationship. In the 
synthesized result, ghosts are warped to the correct 
foreground edge. Therefore, disocclusion filling becomes the 
main task. Traditional methods perform the inpainting 
process in the virtual image. The error introduced by 3D 
warping would affect the filling accuracy. Therefore, in this 
paper, we extract the foreground covering the disocclusion in 
the reference image and use the background content to fill the 
removed region. Since the content in the reference image is 
reliable, the filling result is used to fill the disocclusion in the 
virtual image. 

Local foreground removal in the reference image is 
achieved based on the information of the disocclusion edge. 
The generation of disocclusion is related to depth 
discontinuity between the foreground and background. 
Different depth values make adjacent pixels separate in the 
virtual image. In generally, for the right synthesized virtual 
view, disocclusion appears on the right side of foreground 
[12]. Therefore, the pixels on the right side usually belong to 
the background, while the pixels on the left side may belong 
to the foreground or background as shown in Fig. 4(a), which 
is related to the width of the foreground and the baseline. 
There is a vice versa for the left synthesized virtual view, as 
shown in Fig. 4(b). To identify disocclusion edge pixels, we 
apply the Laplacian operator to depth image because of its 
sensitivity and direction invariance to depth discontinuity 
[33]. The foreground pixels on the disocclusion edge are 
marked as follows: 

 
   
   

 
1, , 0

, , for ,
0, , 0

w

d

w

d u v
F u v u v

d u v
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where d represents the Laplacian of the depth image 
and ( )wd is the warped Laplacian image. d represents the 
contour of disocclusion. After the foreground pixels are 
marked, the remaining pixels on the disocclusion edge 
belong to the local background. It is noted that Laplacian 
value equal to zero means that there is no depth discontinuity. 
Since there must be a depth discontinuity when the 
disocclusion is generated, this situation is not discussed in (3). 
The result of disocclusion edge classification is shown in Fig. 
5. Based on their depth values, the marked pixels are 
projected to the reference image by inverse 3D warping. 
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Then the corresponding pixels are located for the local 
foreground removal. 

 

FIGURE 4.  Synthesized result of modified 3D warping. (a) Right 
synthesized virtual image. (b) Left synthesized virtual image.  

 

 

FIGURE 5.  Classification result of disocclusion edge (foreground is 
marked in red and background is marked in green). 

C. LOCAL FOREGROUND REMOVAL 

In this section, local foreground covering the disocclusion is 
removed from the reference image and its depth image based 
on the obtained disocclusion edge pixels and the hole width. 
After inverse 3D warping, the relative position of the left and 
right edge pixels is still maintained. Therefore, the 
foreground removal starts from the background side. Taking 
the right synthesized view as an example, the foreground 
extraction process is performed from the right edge to the left 
because disocclusion appears on the right side of the 
foreground. 

Since the left edge of the disocclusion may contain 
foreground and background pixels, local foreground 
extraction includes two cases. If the left edge pixel belongs to 
the foreground, it means that only part of the foreground 
region is projected on the new background in the virtual view, 
while the remaining part still occludes the original 
background. Therefore, the local foreground region is 
removed based on the width of disocclusion. In the case 
where the left edge pixel belongs to background, the entire 
foreground region is warped to the new background in the 
virtual view, so that the entire background that is occluded in 
the reference view is exposed. Therefore, all foreground 
pixels between the two sides are removed. In addition, the 
extracted foreground mask is processed by morphological 

dilation to accommodate to some possible depth changes and 
slight view rotation, which may affect the location of edge 
pixels in inverse 3D warping. The extraction result of the 
local foreground is shown in Fig. 6. It can be seen that the 
occluded regions visible in the virtual view are exposed. 
Since they belong to the background, the depth value and 
texture information of background should be used for 
removed region filling. 

 

FIGURE 6.  Local foreground removal result. (a) Local foreground is 
removed from the reference image. (b) Local foreground is removed 
from the depth image. (c) Local foreground regions in the reference 
image. (d) Local foreground regions in the depth image. 

D. REMOVED REGION FILLING 

In this section, the removed region in the depth image is 
predicted first. The depth image will then be used to assist 
the removed region filling in the reference image. Using 
depth information to guide the inpainting process helps to 
select more reasonable background contents to fill the 
removed region and prevent the incorrect propagation of 
foreground texture. 
1) DEPTH PREDICTION FOR REMOVED REGION 
For the depth prediction of the removed region, it is assumed 
that the removed region and its surrounding background 
content belong to the same physical surface, so they should 
have similar depth values [21]. The classification of pixels on 
both sides of the removed region includes two cases: 
foreground-background and background-background. For the 
former, the depth value of the background edge pixel is used 
to predict the depth value of the removed region on the 
horizontal line. For the latter, we apply a fast linear 
interpolation approach to achieve smooth transition of depth 
values. Therefore, the depth value of the removed region can 
be expressed as follows: 
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where  ,
l

u v and  ,
r

u v  are the coordinates of the left and 
right edge pixels of the removed region, respectively. s  
represents the slope of the depth value and is defined as: 

   , ,



r l

r l
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u u
, (5) 

The filling result of the removed region in the depth image 
is shown in Fig. 7(a). The filled depth image is used to 
predict the texture of the removed region in the reference 
image. 

 

FIGURE 7.  Depth prediction result for removed region. (a) Predicted 
result of depth image. (b) Foreground detection result of the removed 
region edge.  

 
2) TEXTURE PREDICTION FOR REMOVED REGION 
In the reference image, since the local foreground region is 
removed, the removed region should be filled with 
reasonable background textures. Criminisi’s method [17] is 
an effective method for hole filling, which can 
simultaneously transmit texture and structural information. 
However, for removed region filling, since the foreground 
may still exist around the hole, directly applying the 
Criminisi’s method would cause foreground texture to be 
sampled into the hole, reducing the visual quality of the 
filling result. Therefore, we propose a modified inpainting 
method based on the depth image to recover the texture of 
the removed region. Our contributions mainly include the 
optimization of priority calculation and patch matching cost. 

For the input image I ,  is the removed region in I .The 
remaining valid region is the source region . In order to 
determine the filling order, the priority of each pixel on the 
edge of the removed region   is calculated first. For 
pixel  p , p denotes the square template centered at p . 
The priority of pixel p is defined as: 

         P p C p D p Z p B p     , (6) 

where  C p and  D p are the confidence term and data term 
as defined in [17]. Confidence term represents the percentage 
of valid pixels in the patch, which tends to fill the patch with 
more valid pixels. Data term reflects the intensity of the 

isophote, which encourages linear structures to be 
preferentially synthesized and propagated to the hole. These 
two terms do not consider that the removed region belongs to 
the background and should be filled by background texture. 
Therefore, we add depth term and background term to the 
priority calculation to improve the filling order. The newly 
added terms are defined as follows: 
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where maxd and mind are the highest and lowest nonzero depth 
values in the depth image. The depth term considers the 
weight of the depth information and gives higher priority to 
the background pixel with lower depth value. The 
background term is introduced to identify the foreground 
pixels on the edge of the removed region. It ensures that the 
hole filling starts from the background side and keeps distinct 
foreground boundary. In our method, as the depth value of 
the removed region is predicted, the Laplacian operator is 
applied to achieve the classification of the pixels on . This 
method is practical for images with multiple depth layers, 
and has better robustness than the threshold-based method. 
The foreground detection result of the removed region edge 
is shown in Fig. 7(b), and the priority of the relevant 
foreground pixel is set to 0 to prevent the propagation of the 
foreground. 

After all priorities on are computed, the patch
p̂

 with 
the highest priority would be filled first. The search for the 
best matching patch is performed in the source region to find 
the most similar patch 

q̂
 to fill the hole in

p̂
 . In 

Criminisi’s algorithm, the matching cost is defined as the 
sum of the squared differences (SSD) of the valid pixels in 
the two patches. It is noted that directly applying this 
principle may cause some foreground textures to be sampled 
into hole, resulting some artifacts. Therefore, it is necessary 
to select candidate patches located in the same depth layer as 
the patch to be inpainted. To solve this problem, in our 
modified method, depth information is introduced to limit the 
search range of candidate patches. The best matching 
patch q̂  is searched by: 

   ˆ ˆ ˆ ˆcolorarg min SSD , DD , 0.2
 

       
 


q

q q p q p q
Z Z ,

 (9) 

where SSD between two patches is calculated in RGB color 
space. 

p̂
Z  and

q
Z  represent the average depth value of valid 

pixels in 
p̂

  and 
q

respectively. DD represents the depth 
difference between the two patches, which is defined as: 
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For the candidate patch in the source region, the matching 
cost is calculated only if it is at the same depth level as 

p̂
 . 

The improved matching equation ensures the depth 
consistency between the candidate patch and the target patch. 
Since the depth value of the hole edge pixel is dynamic, the 
depth limit for the candidate patch also changes dynamically. 
This can guide the best matching patch to be selected in 
source region with similar depth value. The combination of 
SSD and DD makes the filling result have similar properties 
with the surrounding background in both texture and depth 
information. In addition, the search process is changed from 
global search to local search, which reduces the 
computational complexity and allows the spatial locality of 
textures to be explored. After the best matching patch 
searching, the content in

q̂
 is copied to the hole region 

in
p̂

  . Then the terms in the priority are updated and the 
next iteration is performed until the entire removal region is 
filled. The filling result of the removed region is shown in 
Fig. 8. The predicted occlusion layer is used to fill the 
disocclusions in the virtual image. 

 

FIGURE 8.  Texture prediction result for removed region. 

E. DISOCCLUSION FILLING AND POSTPROCESSING 

After the texture and depth value of the removed region are 
predicted, the occlusion layer is warped to the virtual view, 
as shown in Fig. 9(b). The corresponding region in the virtual 
image belongs to the disocclusion. In this case, the 
disocclusion in the virtual image is filled by the warped 
occlusion layer, as shown in Fig. 9(c). In addition, small 
holes caused by the error of depth value and OOFAs still 
exist. We introduce a postprocessing approach to deal with 
these artifacts. Since they are not caused by occlusion, the 
inpainting process uses the method mentioned above with 
minor adjustment. The restriction of background term is 
redundant. In the postprocessing process, we also use depth 
information as an auxiliary to keep the consistency of texture 
and depth information. The result of postprocessing is shown 
in Fig. 9(d). 

 

FIGURE 9.  Results of disocclusion filling and postprocessing. (a) 
Warped virtual image. (b) Rendered image with local foreground 
removal. (c) Disocclusion filling result. (d) Postprocessing result. 
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IV. EXPERIMENTAL RESULTS AND DISCUSSION  

A. EXPERIMENTAL SETUP 

The proposed algorithm is implemented in MATLAB 
R2014a. In our experiment, Five public multiview video-
plus-depth (MVD) sequences (Ballet, Breakdancers [34], 
PoznanHall2, PoznanStreet and UndoDancer [35]) and seven 
public image-plus-depth sequences from the Middlebury 
Stereo Data Sets [36] are used to evaluate the performance of 
the proposed method. Video sequence provided by Microsoft 
Research contains 8 viewpoints, which have a resolution of 
1024 768  pixels and 100 frames long. The depth image is 
generated using stereo vision algorithm. The Ballet sequence 
contains two moving foregrounds which have large depth 
discontinuity with the background. The Breakdancers 
sequence contains multiple moving foregrounds with similar 
depth values, and the foreground overlaps in some frames. 
The resolution of the remaining three sequences is 
1920 1088 . They include complex backgrounds, camera 
motion, and changed illumination. The image sequences 
contain high-quality multiview images in parallel camera 
configuration, representing different types of natural scenes. 
Full-size images are used in our experiments. The ground 
truth of depth image is calculated using high-precision 
structured light. The camera parameters of the test sequences 
are known, including internal and external parameters. The 
experiments are performed in five scenarios, including the 
performance of ghost removal, ablation study on FG-BG 
detection, subjective visual quality evaluation, quantitative 
objective quality evaluation and computational cost analysis. 
The parameters used in the proposed method are set as 
follows. The threshold th is set to 20 to accurately obtain 
ghost pixels with smaller depth discontinuity. In the removed 
region filling, according to [17], the patch size is expected to 
be larger than the largest texel or the thickest structure. 
Therefore, the patch size is set to 9 9 . The search window is 
experimentally set to160 120 based on [14] and the aspect 
ratio of the data set. If the search window is too large, the 
search time for the best matching patch will increase. 
Conversely, a smaller window makes the algorithm 
propagate repeated content successively because it cannot 
explore the spatial locality of the texture.   

B. RESULT OF GHOST REMOVAL 

In the sampling and quantization of depth image, some errors 
may occur due to the limitations of equipment and algorithm 
accuracy. In the original DIBR, foreground pixels with 
incorrect depth values are warped to the background in the 
virtual view, and ghosts are generated. The proposed method 
detects pixels that may produce ghosts based on morphology 
and corrects their depth values. Fig. 10 shows the comparison 
results of ghost removal. It can be seen that the proposed 
method can effectively handle the ghost pixels and warp 
them to the correct position instead of directly deleting the 

relevant content. The blending of foreground and background 
textures can be avoided in the virtual image, thereby 
improving the visual quality, and preventing the propagation 
of foreground texture during the disocclusion filling. 

 

FIGURE 10.  Comparison results of ghost removal. (a) Virtual image 
without ghost removal. (b) Virtual image with ghost removal.  

C. ABLATION STUDY ON FG-BG DETECTION 

To evaluate the performance of the proposed inpainting 
method with FG-BG detection. The ablation study is 
performed in this section. The comparison result for removed 
region filling is shown in Fig. 11. Fig. 11(a) shows the filling 
result without FG-BG detection. In this case, the filling 
process starts at the same time from the foreground and 
background sides. Even with the guidance of depth 
information, the best matching patch is still selected from the 
foreground region, leading to the propagation of foreground 
texture. After adding FG-BG detection, the filling result is 
shown in Fig. 11(b). The proposed method effectively 
maintains the foreground edge and ensure that the prediction 
of the occlusion layer starts from the background side. 

 

FIGURE 11.  Ablation study on FG-BG detection. (a) Filling result 
without FG-BG detection. (b) Filling result with FG-BG detection.  

D. VISUAL QUALITY EVALUATION OF SYNTHESIZED 

VIEW 

In our experiment, six competitive schemes are selected for 
comparison, including Criminisi’s exemplar-based inpainting 
method [17], Daribo’s inpainting method [19] , Ahn’s depth-
based inpainting method [14], Kao’s synthesis method [20], 
Zhu’s approach [12] and Oliveira’s method [24]. Among 
them, Criminisi’s inpainting method and Ahn’s inpainting 
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method are implemented based on the codes provided by the 
authors, and the other methods are implemented based on 
published papers. For the parameters not indicated in the 
papers, we used the same default parameters as the proposed 
method. In the evaluation of subjective visual quality, for 
video sequence rendering, the comparison results of the 
synthesized view are shown in Fig. 12 and 13. It is noted that 
the synthesized view is named after the sequence name and 
rendering information. For example, BA54 represents the 
synthesized view of Ballet sequence from view 5 to view 4. 
BA54 and BR41 represent the view synthesis in the small 
baseline and the large baseline configuration, respectively. 
The comparison results in Fig. 12 show that the proposed 
method outperforms others in disocclusion filling, and 
provides plausible results, while other methods contain some 
artifacts and unrealistic textures. In Criminisi’s method [17], 
depth information is not considered in hole filling. The 
inpainting process is performed simultaneously from the 
foreground and background edges, and some foreground 
textures are sampled into the disocclusion region, as shown 
in Fig. 12(b). In Daribo’s method [19], depth variance is 
introduced into the computation of priority and patch 
distance, but the presence of ghosts makes some artifacts 
appear in the disocclusion region, as shown in Fig. 12(c). In 
Ahn’s method [14], due to the mismatch of the foreground 
edge in reference image and depth image, ghosts disturb the 
hole filling process. Some artifacts appear at the edges of 
foreground objects, including the penetration of foreground 
texture and incorrect inpainting results, as shown in Fig. 
12(d). In Kao’s method [20], the depth image preprocessing 
is introduced before 3D warping, but the depth expansion 

process is only performed in the horizontal direction. The 
priority based on inverse variance of depth is not ideal in 
distinguishing foreground and background, especially for 
scenes with multiple depth layers. Some unexpected results 
are produced in the hole region as shown in Fig. 12(e), which 
reduce the visual quality. In Zhu’s method [12], 
preprocessing approach based on asymmetric filter can 
reduce the area of holes to some extent and prevent depth 
distortion. But smoothing without ghost removal may cause 
foreground contents to propagate to disocclusions and 
produce some unrealistic results, as shown in Fig. 12(f). In 
Oliveira’s method [24], depth information dominates the 
disocclusion filling process. The confidence and data terms 
in the priority calculation are replaced by depth and 
background terms. This method encourages the filling to be 
performed from the background side, but the texture and 
structure information is ignored. During the filling process, 
regions with high confidence and linear structures cannot be 
propagated preferentially, resulting in some artifacts and 
distorted textures, as shown in Fig. 12(g). The proposed 
method applies morphology-based preprocessing to eliminate 
the interference of ghosts and warps them to the correct place 
in 3D warping. The contents for disocclusion filling come 
from the reliable texture of the reference image. From the 
experimental results in Fig. 12(h), the proposed method can 
keep the sharp foreground edge and use the background 
texture to fill the disocclusions. The overall synthesized 
results look the most likely the ground truth. Fig. 13 shows 
the global synthesized results. Our method performs better 
than the other methods in artifact handling and provides a 
realistic virtual view.    
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FIGURE 12.  Visual quality comparison results of disocclusion filling for MVD sequences. (a) Hole regions. (b) Criminisi’s method. (c) Daribo’s method. 
(d) Ahn’s method. (e) Kao’s method. (f) Zhu’s method. (g) Oliveira’s method. (h) Proposed method. (i) Ground truth. 

 

FIGURE 13.  Visual quality comparison results of view synthesis for MVD sequences. (a) Warped virtual image. (b) Criminisi’s method. (c) Daribo’s 
method. (d) Ahn’s method. (e) Kao’s method. (f) Zhu’s method. (g) Oliveira’s method. (h) Proposed method. (i) Ground truth. 

 
For still image sequence rendering, the comparison results 

of the synthesized image are shown in Fig. 14. As the depth 
image of the virtual view in the Middlebury data sets is not 
provided, the performance of Daribo’s method [19] is not 

evaluated. Compared with the stereo matching algorithm, the 
per-pixel depth image generated by structured light is more 
accurate. However, there are still some depth errors in the 
foreground edge because the texture in the color image is 
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gradual, but depth discontinuity occurs at the foreground 
edge in the depth image. Therefore, the ghost correction is 
still necessary. From the visual quality comparison results, 
the proposed algorithm performs better than other methods, 

although the data sets contain multiple simple and complex 
scenes, while other methods contain some defects, including 
the penetration of foreground texture and the unrealistic 
filling results. 

 

FIGURE 14.  Visual quality comparison results of disocclusion filling for still image sequences. (a) Hole regions. (b) Criminisi’s method. (c) Ahn’s 
method. (d) Kao’s method. (e) Zhu’s method. (f) Oliveira’s method. (g) Proposed method. (h) Ground truth. 

E. OBJECTIVE QUALITY EVALUATION OF 

SYNTHESIZED VIRTUAL VIEW 

In order to quantitatively evaluate the performance of the 
proposed method, in our experiment, peak signal to noise 
ratio (PSNR), structural similarity (SSIM) [37], feature 
similarity index (color) (FSIMc) [38], and visual saliency-
induced index (VSI) [39] are used to evaluate the objective 
quality of the synthesized view. The calculation formulas for 
these metrics are as follows:  
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Where 

vI  and 
gI  represent the virtual image and the ground 

truth respectively. w  and h  represent the width and height 
of the image. Other parameters are defined in [37]-[39] and 
we use the default parameter values recommended by the 
authors. PSNR measures the difference in pixels between two 
images. SSIM compares the structural similarity between the 
synthesized image and the ground truth. FSIMc and VSI 
consider the similarity of the two images in terms of gradient 
and color features. The evaluation results of SSIM, FSIMc, 
and VSI are normalized to 0-1. A higher metric value 
indicates that the synthesized result is closer to the ground 
truth. The average objective evaluation results for video 
sequence rendering are shown in Table 1 and 2. The 
proposed method achieves the best overall results and shows 
the highest metric value in most scenarios. For the scenario 
BA54, the proposed method surpasses the previous methods 
by 0.62-5.62dB in terms of PSNR. It also shows higher 
metric value in SSIM, FSIMc and VSI. Likewise, there is 
evident promotion in terms of other scenarios. It is noted that 
the objective evaluation metrics of BA56 are lower than 
those of BA54. This is because the disocclusion region 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3036053, IEEE

Access

  Author Name: Preparation of Papers for IEEE Access (February 2017) 

2 VOLUME XX, 2017 

exposed in the view 6 contains texture that does not exist in 
view 5. Our method cannot create new textures to fill the 
disocclusion. For the image sequence rendering, the objective 
comparison results are shown in Table 3 and 4. Under the 
parallel camera configuration and high-precision per-pixel 
depth image, the result of disocclusion filling is improved. 
The comparison of the evaluation results shows that the 

proposed method has better performance than the 
competitive methods and shows the most realistic filling 
results. Overall, the virtual view generated by the proposed 
method has better objective quality and shows robustness for 
scenes containing moving objects and complex textures to 
some extent. 

 
 

TABLE 1 
PSNR AND SSIM COMPARISON RESULTS FOR MVD SEQUENCES. 

Test 
seq. 

PSNR (dB) SSIM 
[17] [19] [14] [20] [12] [24] Ours [17] [19] [14] [20] [12] [24] Ours 

BA54 26.16 29.13 29.57 28.56 30.37 31.16 31.78 0.7850 0.7937 0.8081 0.7912 0.8117 0.8159 0.8290
BA52 23.95 24.82 24.89 23.97 25.64 25.71 26.39 0.7306 0.7415 0.7448 0.7341 0.7422 0.7410 0.7587
BA56 25.85 27.54 27.69 27.79 28.13 28.19 28.81 0.7855 0.7913 0.7930 0.7894 0.8031 0.8043 0.8082
BR43 28.27 28.81 29.63 29.68 30.16 30.58 30.62 0.7828 0.7840 0.7884 0.7864 0.7923 0.7946 0.7955
BR41 25.67 26.40 26.59 26.43 27.41 27.47 27.71 0.7424 0.7455 0.7487 0.7499 0.7541 0.7546 0.7589
BR45 28.19 29.55 29.57 29.74 30.11 30.36 30.88 0.7831 0.7857 0.7899 0.7892 0.7904 0.7922 0.7968
PH67 32.73 32.78 32.80 32.71 32.85 32.94 33.11 0.8716 0.8725 0.8728 0.8713 0.8741 0.8749 0.8756
PS34 29.79 29.91 29.88 29.83 30.15 30.24 30.29 0.8538 0.8565 0.8559 0.8543 0.8582 0.8618 0.8632
UD15 26.70 27.43 27.61 27.18 27.75 28.23 28.36 0.9243 0.9269 0.9284 0.9254 0.9299 0.9306 0.9328

 
TABLE 2 

FSIMC AND VSI COMPARISON RESULTS FOR MVD SEQUENCES. 
Test 
seq. 

FSIMc VSI 
[17] [19] [14] [20] [12] [24] Ours [17] [19] [14] [20] [12] [24] Ours 

BA54 0.9269 0.9338 0.9409 0.9292 0.9504 0.9516 0.9565 0.9775 0.9842 0.9879 0.9833 0.9886 0.9908 0.9925
BA52 0.8238 0.8317 0.8345 0.8235 0.8354 0.8359 0.8530 0.9577 0.9607 0.9611 0.9604 0.9625 0.9640 0.9685
BA56 0.9206 0.9273 0.9367 0.9337 0.9402 0.9395 0.9456 0.9791 0.9823 0.9851 0.9855 0.9871 0.9870 0.9893
BR43 0.9492 0.9535 0.9528 0.9530 0.9551 0.9567 0.9572 0.9913 0.9918 0.9916 0.9915 0.9922 0.9926 0.9929
BR41 0.9011 0.9092 0.9123 0.9009 0.9045 0.9096 0.9205 0.9819 0.9839 0.9840 0.9825 0.9836 0.9839 0.9871
BR45 0.9576 0.9618 0.9612 0.9607 0.9615 0.9623 0.9638 0.9924 0.9933 0.9935 0.9934 0.9938 0.9939 0.9943
PH67 0.9651 0.9678 0.9713 0.9684 0.9741 0.9748 0.9754 0.9950 0.9955 0.9962 0.9957 0.9965 0.9967 0.9968
PS34 0.9711 0.9723 0.9736 0.9729 0.9744 0.9746 0.9752 0.9919 0.9927 0.9931 0.9929 0.9933 0.9937 0.9943
UD15 0.9636 0.9659 0.9697 0.9691 0.9718 0.9748 0.9775 0.9931 0.9938 0.9946 0.9943 0.9947 0.9951 0.9956

 
TABLE 3 

PSNR AND SSIM COMPARISON RESULTS FOR STILL IMAGE DATA SETS. 
Test seq. PSNR (dB) SSIM 

[17] [14] [20] [12] [24] Ours [17] [14] [20] [12] [24] Ours
Aloe 28.13 27.91 29.28 29.37 29.41 29.76 0.9007 0.8943 0.9069 0.9065 0.9063 0.9083 
Art 26.81 27.41 27.78 29.65 29.77 30.25 0.8979 0.9049 0.9094 0.9137 0.9160 0.9169 

Baby1 32.65 33.07 33.42 33.51 33.70 33.87 0.9306 0.9289 0.9322 0.9325 0.9336 0.9347 
Bowling2 27.11 26.35 27.92 28.29 30.43 30.51 0.9098 0.8991 0.9161 0.9278 0.9286 0.9293 

Lampshade2 31.36 33.78 35.49 35.99 36.42 36.85 0.9426 0.9456 0.9563 0.9564 0.9578 0.9583 
Midd2 29.03 28.34 29.97 30.15 30.08 30.41 0.9204 0.9185 0.9302 0.9311 0.9337 0.9345 

Reindeer 32.17 33.06 32.93 33.28 33.57 33.76 0.9230 0.9251 0.9256 0.9274 0.9294 0.9322 
 

TABLE 4 
FSIMC AND VSI COMPARISON RESULTS FOR STILL IMAGE DATA SETS. 

Test seq. FSIMc VSI 
[17] [14] [20] [12] [24] Ours [17] [14] [20] [12] [24] Ours

Aloe 0.9554 0.9596 0.9736 0.9734 0.9742 0.9768 0.9887 0.9891 0.9933 0.9916 0.9924 0.9931 
Art 0.9394 0.9567 0.9671 0.9711 0.9738 0.9742 0.9809 0.9901 0.9907 0.9914 0.9930 0.9938 

Baby1 0.9716 0.9723 0.9793 0.9771 0.9787 0.9805 0.9955 0.9953 0.9963 0.9962 0.9966 0.9972 
Bowling2 0.9369 0.9316 0.9509 0.9694 0.9696 0.9726 0.9881 0.9857 0.9889 0.9912 0.9942 0.9947 

Lampshade2 0.9534 0.9726 0.9799 0.9809 0.9826 0.9867 0.9914 0.9932 0.9975 0.9956 0.9977 0.9984 
Midd2 0.9616 0.9606 0.9752 0.9806 0.9779 0.9827 0.9939 0.9926 0.9966 0.9964 0.9952 0.9968 

Reindeer 0.9747 0.9819 0.9780 0.9838 0.9863 0.9909 0.9941 0.9966 0.9957 0.9966 0.9972 0.9979 
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F. COMPUTATIONAL COST ANALYSIS 

Compared to directly applying image inpainting algorithm to 
fill the disocclusions. the computational cost of our method 
increases because we add the morphology-based 
preprocessing and local foreground removal process. Table 5 
shows the comparison of running time among our method 
and competitive methods on two MVD sequences. 
Criminisi’s method [17] has the lowest running time because 
it only requires color images as input. Daribo’s method [19] 
introduces depth information, thus increasing the 
computational cost. In Ahn’s method [14], Kao’s method 
[20], and Zhu’s method [12], the depth image of virtual view 
is filled synchronously without using the ground truth. 
Oliveira’s method [24] adds the reverse warping process and 
searches for the best matching patch in the reference image. 
The computational cost of our method is the greatest because 
the corresponding foreground is removed to predict the 
occlusion layer. In addition, searching in the reference image 
can obtain more effective background contents and prevent 
foreground interference. Our work mainly focuses on the 
improvement of the virtual view quality and achieves higher 
evaluation metrics than the other methods. By using parallel 
computing, the running time can be effectively reduced. 

TABLE 5 
COMPARISON OF RUNNING TIME (UNIT: S). 

Test 
seq. 

Running time 
[17] [19] [14] [20] [12] [24] Ours

BA54 13.5 16.1 18.3 18.9 19.1 20.3 21.9
UD15 26.2 32.5 33.8 33.2 33.5 35.4 37.1

 

G. DISCUSSION 

Experiments on public video and image sequences show that 
the proposed method can effectively fill the disocclusion and 
generate high-quality virtual view. Morphology-based depth 
image preprocessing detects foreground edge pixels in all 
directions and corrects ghosts. These pixels are still located at 
the foreground edge in the virtual image, thus maintaining 
the boundary of the foreground object without deleting the 
valid pixels. For disocclusion filling, we remove the 
corresponding local foreground in the reference image and 
use the surrounding background contents to predict the 
occlusion layer, instead of directly applying the inpainting 
method in the virtual image. This operation can prevent the 
errors generated in 3D warping from being sampled into the 
disocclusion. Compared to entire foreground removal, 
removing the local foreground region can decrease 
computational cost. In addition, if edge detection is directly 
applied to extract foreground contours in the reference 
image , such as the cross-bilateral filtering combined with the 
canny operator proposed by Luo et al. [21], some foreground 
pixels are also ignored because the depth discontinuity is too 
small. In our method, based on the disocclusion edge pixels, 
it can be ensured that the associated foreground pixels are 
removed in the reference image. The inpainting process uses 
depth information to encourage the background texture to be 

preferentially propagated and search for target patch that has 
similar depth and texture information to fill the removed 
region. The subjective and objective evaluation results show 
that the proposed method has an improvement in the 
disocclusion handling compared with the other methods. For 
video sequence rendering, some methods use background 
modeling to prevent the flicker between adjacent frames. The 
background model obtained in the current frame can be used 
to fill the disocclusions in other frames [4], [40], [41]. This is 
effective for still background scene. For scenes where 
background texture changes or still foreground objects, the 
currently established background model is no longer 
applicable in subsequent frames. In this case, frame-by-frame 
disocclusion filling is more advantageous. The proposed 
method performs occlusion layer prediction in the reference 
image. For common disocclusions in adjacent frames, the 
prediction result of the occlusion layer is similar because the 
removed regions are the same. This helps maintain the 
temporal consistency of synthesized image. In terms of 
computational complexity, the proposed method adds a series 
of approaches to deal with artifacts based on 3D warping. 
While improving the subjective and objective quality, the 
computational complexity is increased. The proposed method 
includes depth image preprocessing, forward and inverse 3D 
warping, and the most time-consuming inpainting process. 
To improve rendering efficiency, GPU-based parallel 
computing is a measure that can be considered. In some steps 
of our method, such as the classification of disocclusion edge 
and the priority calculation, each pixel is processed 
independently. Therefore, the use of parallel computing in 
these processes can greatly reduce the computation cost. 

Recently, deep learning has been widely used in the field 
of image processing, such as depth prediction [42], moving 
object detection [43], and image inpainting [44]. This can 
provide some help for DIBR-based methods. Traditional 
image inpainting algorithms predict texture based on existing 
information. But deep learning technology can generate new 
textures from large amounts of data. In addition, some end-
to-end view synthesis techniques based on deep learning 
have been proposed [45], [46]. They allow for the generation 
of new views of a scene given a single input image. In our 
follow-up work, combining the proposed method with deep 
learning is a feasible measure that can effectively improve 
the visual quality of the virtual view. 

V. CONCLUSION 
This paper presents an effective disocclusion handling 
method for virtual view synthesis. We perform 
morphological-based ghost removal before 3D warping, 
therefore the ghosts can be warped to the correct place. 
Disocclusion filling is achieved based on the local 
foreground removal approach. By locating and classifying 
the disocclusion edge pixels, we remove the corresponding 
local foreground in the reference image. The predicted 
occlusion layer is projected to the virtual view and completes 
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the disocclusion filling. Experimental results demonstrate 
that the proposed method can effectively remove ghosts, and 
keep sharp foreground boundaries with reasonable texture in 
disocclusion filling. Compared with the other methods, the 
proposed method has better performance in visual quality 
and objective evaluation. Our current work focuses on 
improving the quality of virtual view and the computational 
complexity is increased correspondingly. In the future, we 
will investigate to improve the rendering efficiency while 
maintaining the visual quality. Moreover, the temporal 
correlation of adjacent frames will also be considered [47]. 
As the foreground object moves, the removed foreground 
region also changes, so the background content visible in 
different frames can be used to build a background model in 
the time domain. Since the content of the background model 
is reliable instead of predicted, the combination of local 
foreground removal and background modeling helps to 
further improve the quality of the virtual view and minimize 
the flicker between frames. In addition to the general quality 
assessment metrics, some assessment metrics for view 
synthesis have been proposed [48], [49]. In the future, we 
will study these methods to better evaluate the quality of the 
synthesized image. 
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