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We perform a comparison between the local fractional Adomian decomposition and local fractional function decomposition
methods applied to the Laplace equation. 	e operators are taken in the local sense. 	e results illustrate the signi
cant features
of the two methods which are both very e�ective and straightforward for solving the di�erential equations with local fractional
derivative.

1. Introduction

Many problems of physics and engineering are expressed by
ordinary and partial di�erential equations, which are termed
boundary value problems. We can mention, for example,
the wave, the Laplace, the Klein-Gordon, the Schrodinger,
the Advection, the Burgers, the Boussinesq, and the Fisher
equations, and others [1].

Several analytical and numerical techniques were suc-
cessfully applied to deal with di�erential equations, fractional
di�erential equations, and local fractional di�erential equa-
tions [1–10].	e techniques include the heat-balance integral
[11], the fractional Fourier [12], the fractional Laplace trans-
form [12], the harmonic wavelet [13, 14], the local fractional
Fourier and Laplace transform [15], local fractional varia-
tional iteration [16–18], the local fractional decomposition
[19], and the generalized local fractional Fourier transform
[20] methods.

In this paper, we investigate the application of local
fractional Adomian decomposition method and local frac-
tional function decomposition method for solving the local
fractional Laplace equation [21, 22] with the di�erent fractal
conditions.

	is paper is organized as follows. In Section 2, the basic
mathematical tools are reviewed. Section 3 presents brie�y
the local fractional Adomian decomposition method and the
local fractional function decomposition method. Section 4
presents solutions to the local fractional Laplace equation
with di�erential fractal conditions.

2. Mathematical Fundamentals

We recall in this section the notations and some properties of
the local fractional operators [15–20, 23, 24].

De	nition 1 (see [15–20, 23, 24]). 	e function �(�) is local
fractional continuous at � = �0, if it is valid for

����� (�) − � (�0)���� < ��, 0 < � ≤ 1 (1)

with |� − �0| < 
, for � > 0 and � ∈ �. For � ∈ (
, �), it
is so called local fractional continuous on the interval (
, �),
denoted by �(�) ∈ ��(
, �).

We notice that there are existence conditions of local frac-
tional continuities that operating functions are right-hand
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and le�-hand local fractional continuities. Meanwhile, the
right-hand local fractional continuity is equal to its le�-hand
local fractional continuity. For more details, see [20].

De	nition 2 (see [15–20, 23, 24]). 	e local fractional deriva-
tive of �(�) at � = �0 is de
ned as

���� (�0) = ��
���� (�)

���������=�0
= �(�) (�) = lim�→�0

Δ� (� (�) − � (�0))
(� − �0)� ,

(2)

where Δ�(�(�) − �(�0)) ≅ Γ(� + 1)Δ(�(�) − �(�0)).
Local fractional derivative of high order is written in the

form

�(��) (�) =
� times⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞��� ��� ⋅ ⋅ ⋅ ��� � (�) . (3)

And local fractional partial derivative of high order is written
in the form

���� (�, �)
��� =

� times⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞��
���

��
��� ⋅ ⋅ ⋅

��
��� � (�, �) .

(4)

De	nition 3 (see [15–20, 23, 24]). A partition of the interval[
, �] is denoted by (��, ��+1), � = 0, . . . , � − 1, �0 = 
 and�� = � with Δ�� = ��+1 − �� and Δ� = max{Δ�0, Δ�1, . . .}. Local
fractional integral of �(�) in the interval [
, �] is given by

��(�)	 � (�) = 1
Γ (1 + �) ∫

	

�
� (�) (��)�

= 1
Γ (1 + �) limΔ�→0

�−1∑
�=0

� (��) (Δ��)�.
(5)

If the functions are local fractional continuous, then
the local fractional derivatives and integrals exist. Some
properties of local fractional derivative and integrals are given
in [20].

De	nition 4. Let �(�) be 2$-periodic. For % ∈ & and �(�) ∈��(
, �), the local fraction Fourier series of �(�) is de
ned as
(see [15, 25])

� (�) = 
02 + ∞∑
�=1
(
�cos�*

�(%�)�
$� + ��sin�*

�(%�)�
$� ) ,

(6)

where 
� = (1/$�) ∫1−1 �(�)cos�(*�(%�)�/$�)(��)�

�� = 1
$� ∫
1

−1
� (�) sin�*

�(%�)�
$� (��)� (7)

are local fractional Fourier coe�cients.

De	nition 5. Let (1/Γ(1 + �)) ∫∞0 |�(�)|(��)� < % < ∞. 	e

Yang-Laplace transforms of �(�) are given by [15, 22]

5� {� (�)} = �
,�� (8) = 1
Γ (1 + �) ∫

∞

0
9� (−8���) � (�) (��)�,

0 < � ≤ 1,
(8)

where the latter integral converges and 8� ∈ ��.
De	nition 6. 	e inverse formula of the Yang-Laplace trans-
forms of �(�) is given by [15, 22]

5−1� {�
,�� (8)}
= � (�) = 1

(2*)� ∫
�+��

�−��
9� (8���) �
,�� (8) (�8)�,

0 < � ≤ 1,
(9)

where 8� = ?� + @�A�; fractal imaginary unit @�and Re(8) =? > 0.

3. Analytical Methods

In order to illustrate two analytical methods, we investigate
the nonlinear local fractional equation of order 2� as follows:

�2�B (�, �)
��2� + %1 �

�B (�, �)
��� + %2 �

2�B (�, �)
��2� + %3 �

�B (�, �)
���

= � (�, �)
(10)

with constants %1, %2, %3, 0 < � ≤ 1 and with boundary and
initial conditions

B (0, �) = B ($, �) = 0
B (�, 0) = C (�)

��B (�, 0)
��� = D (�) .

(11)

3.1. Local Fractional Adomian Decomposition Method. We
rewrite (10) in the following form:

5(2�)�� B (�, �) + %15(�)� B (�, �) + %25(2�)�� B (�, �) + %35(�)� B (�, �)
= � (�, �) .

(12)
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Applying the inverse operator 5(−2�)�� to both sides of (12)
yields

5(−2�)�� 5(2�)�� B (�, �)
= 5(−2�)�� (−%15(�)� B (�, 8) − %25(2�)�� B (�, 8)

− %35(�)� B (�, 8) + � (�, 8))
B (�, �) = E (�, �) + 5(−2�)�� (� (�, 8))

+ 5(−2�)�� (−%15(�)� B (�, 8) − %25(2�)�� B (�, 8)
− %35(�)� B (�, 8)) ,

(13)

where the term E(�, �) is to be determined from the fractal
initial conditions.

Now, we decompose the unknown function B(�, �) as a
sum of components de
ned by the series:

B (�, �) = ∞∑
�=0
B� (�, �) . (14)

	e components B�(�, �) are obtained by the recursive for-
mula:

B0 (�, �) = E (�, �) + 5(−2�)�� (� (�, 8))
B�+1 (�, �) = 5(−2�)�� (−%15(�)� B� (�, 8) − %25(2�)�� B� (�, 8)

− %35(�)� B� (�, 8)) , F ≥ 0.
(15)

3.2. Local Fractional Function Decomposition Method.
According to the decomposition of the local fractional
function, with respect to the system {sin�F�(*�/$)�}, the
following functions coe�cients can be given by

B (�, �) = ∞∑
�=1

V� (�) sin� F�(*�$ )
�

� (�, �) = ∞∑
�=1
�� (�) sin� F�(*�$ )

�

C (�) = ∞∑
�=1
�� sin� F�(*�$ )

�

D (�) = ∞∑
�=1
�� sin� F�(*�$ )

�,

(16)

where

�� (�) = 2
$� ∫
1

0
� (�, �) sin� F�(*�$ )

�(��)�

�� = 2
$� ∫
1

0
C (�) sin� F�(*�$ )

�(��)�

�� = 2
$�∫
1

0
C (�) sin� F� (*�$ )

�(��)�.

(17)

Substituting (16) into (10) implies that

�2�V� (�)��2� + %1 �
�
V� (�)��� + %2(F*$ )

2�
V� (�) + %3(F*$ )

�
V� (�)

= �� (�)
V� (0) = ��, V

�
� (0) = ��.

(18)

Suppose that the Yang-Laplace transforms of functions V�(�)
and ��(�) are J�(8) and K�(8), respectively. 	en, we obtain

82�J� (8) − ��8� − �� + %1 (8�J� (8) − ��) + %2(F*$ )
2�J� (8)

+ %3(F*$ )
�J� (8) = K� (8) .

(19)

	at is,

J� (8) = �� + %1�� + ��8�
82� + %18� + %2(F*/$)2� + %3(F*/$)�

+ K� (8)
82� + %18� + %2(F*/$)2� + %3(F*/$)� .

(20)

Hence, we have

V� (�)
= 5−1� {J� (8)}
= 1
(2*)� ∫

�+��

�−��
9� (8���) J� (8) (�8)�

= 1
(2*)� ∫

�+��

�−��
9� (8���)

× K� (8)
82� + %18� + %2 (F*/$)2� + %3(F*/$)� (�8)

�

+ 1
(2*)� ∫

�+��

�−��
9� (8���)

× �� + %1�� + ��8�
82� + %18� + %2(F*/$)2� + %3(F*/$)� (�8)

�.
(21)
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Let V�(�) = V1,�(�) + V2,�(�)
V1,� (�)
= 1
(2*)� ∫

�+��

�−��
9� (8���)
× K� (8)
82� + %18� + %2(F*/$)2� + %3(F*/$)� (�8)

�

(22)

V2,� (�)
= 1
(2*)� ∫

�+��

�−��
9� (8���)
× �� + %1�� + ��8�
82� + %18� + %2(F*/$)2� + %3(F*/$)� (�8)

�.
(23)

Hence, we get

J1,� (8) = K� (8)
82� + %18� + %2(F*/$)2� + %3(F*/$)�

J2,� (8) = �� + %1�� + ��8�
82� + %18� + %2(F*/$)2� + %3(F*/$)� .

(24)

	en, making use of (8) and (9) and rearranging integration
sequence, we have the following several formulas about V1,�(�)
and V2,�(�).

If −(1/4)%21 + %2(F*/$)2� + %3(F*/$)� > 0, then
82� + %18 + %2(F*$ )

2� + %3(F*$ )
� = (8� + %12 )

2 + ���,
(25)

where��� = √−(1/4)%21 + %2(F*/$)2� + %3(F*/$)�.
	en, we get

V1,� (�) = 1
Γ (1 + �)���
× ∫�
0
9� (−%1N

�

2� ) sin� (���N�) �� (� − N) (�N)�

V2,� (�) = ��9� (−%1�
�

2� ) cos� (�����)
+ (�� + %1�� − %12 )9� (

−%1��2� ) sin� (�����) .
(26)

In case −(1/4)%21 +%2(F*/$)2� +%3(F*/$)� < 0 and −(1/4)%21 +%2(F*/$)2� + %3(F*/$)� = 0, see [26].
4. Solutions of Local Fractional Laplace

Equation in Fractal Time-Space

In this section, two examples for Laplace equation are
presented in order to demonstrate the simplicity and the
e�ciency of the above methods.

	e local fractional Laplace equation (see [21]) is one
of the important di�erential equations with local fractional
derivatives. In the following, we consider solutions to local
fractional Laplace equations in fractal time-space.

Example 7. Consider the following local fractional Laplace
equation:

�2�B (�, �)
��2� + �2B (�, �)��2� = 0 (27)

subject to the fractal value conditions

B (�, 0) = −9� (��) , ��B (�, 0)
��� = 0. (28)

According to formula (15), we have

B0 (�, �) = E (�, �) + 5(−2�)�� (� (�, 8)) ,
B�+1 (�, �) = 5(−2�)�� (−%15(�)� B� (�, 8) − %25(2�)�� B� (�, 8)

− %35(�)� B� (�, 8)) ,
(29)

where

B0 (�, �) = −9� (��) . (30)

Hence, from (29) we obtain

B�+1 (�, �) = 5(−2�)�� {−5(2�)�� B� (�, 8)} ,
= 0�(�)� 0�(�)� {−�2�B� (�, 8)��2� } ,

F ≥ 1,
(31)

where

B0 (�, �) = −9� (��) . (32)

Making use of (31), we present

B1 (�, �) = 0�(�)� 0�(�)� {−�2�B0 (�, 8)��2� }
= 0�(�)� 0�(�)� {9� (��)}
= �2�
Γ (1 + 2�)9� (��)
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B2 (�, �) = 0�(�)� 0�(�)� {−�2�B1 (�, 8)��2� }

= 0�(�)� 0�(�)� {− �2�
Γ (1 + 2�)9� (��)}

= − �4�
Γ (1 + 4�)9� (��)

B3 (�, �) = 0�(�)� 0�(�)� {−�2�B2 (�, 8)��2� }

= 0�(�)� 0�(�)� { �4�
Γ (1 + 4�)9� (��)}

= �6�
Γ (1 + 6�)9� (��) .

(33)

Proceeding in this manner, we get

B� (�, �) = 9� (��) (−1)�+1 �2��
Γ (1 + 2F�) . (34)

	us, the 
nal solution reads as follows:

B (�, �) = ∞∑
�=0
B� (�, �) = B0 (�, �) + B1 (�, �) + B2 (�, �) + ⋅ ⋅ ⋅

= 9� (��) [−1 + �2�
Γ (1 + 2�) −

�4�
Γ (1 + 4�)

+ �6�
Γ (1 + 6�) ⋅ ⋅ ⋅ ]

= − 9� (��) [1 − �2�
Γ (1 + 2�) +

�4�
Γ (1 + 4�)

− �6�
Γ (1 + 6�) ⋅ ⋅ ⋅ ]

= − 9� (��) cos� (��) .
(35)

Now, we solve Example 7 by using the local fractional
function decomposition method.

We suppose that

B (�, �) = ∞∑
�=1

V� (�) 9� (F���)

� (�, �) = ∞∑
�=1
�� (�) 9� (F���)

C (�) = ∞∑
�=1
��9� (F���)

D (�) = ∞∑
�=1
��9� (F���)

(36)
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Figure 1: Exact solution for local fractional Laplace equation with
fractal dimension � = ln 2/ ln 3.

which leads to

�� (�) = 0, ∀F ; �� = 0, F ̸= 1 ; �1 = −1;
�� = 0, ∀F. (37)

Contrasting (28) with (36), we directly get %1 = 0, %2 = 1,
and %3 = 0 and

��� = 0, F ̸= 1; ��1 = 1
V� (�) = 0, F ̸= 1 (38)

V1,1 (�) = 1
Γ (1 + �)��1
× ∫�
0
9� (−%1N

�

2� ) sin� (��1N�) �1 (� − N) (�N)� = 0
(39)

V2,1 (�) = �19� (−%1�
�

2� ) cos� (��1��)

+ (�1 + %1�1 − %12 )9� (
−%1��2� ) sin� (��1��)

= − cos� (��) .
(40)

Conclusively, we get

V1 (�) = V1,1 (�) + V2,1 (�) = −cos� (��) . (41)

	us, we obtain

B (�, �) = −9� (��) cos� (��) (42)

and its graph is shown in Figure 1.

Example 8. We consider the following local fractional
Laplace equation:

�2�B (�, �)
��2� + �2�B (�, �)��2� = 0 (43)
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subject to the fractal value conditions

B (�, 0) = 0, ��B (�, 0)
��� = −9� (��) . (44)

Now we can structure the same local fractional iteration
procedure (15). Hence, we have

B0 (�, �) = − ��
Γ (1 + �)9� (��)

B1 (�, �) = 0�(�)� 0�(�)� {−�2�B0 (�, 8)��2� }

= 0�(�)� 0�(�)� { ��
Γ (1 + �)9� (��)}

= �3�
Γ (1 + 3�)9� (��)

B2 (�, �) = 0�(�)� 0�(�)� {−�2�B1 (�, 8)��2� }

= 0�(�)� 0�(�)� {− �3�
Γ (1 + 3�)9� (��)}

= − �5�
Γ (1 + 5�)9� (��)

B3 (�, �) = 0�(�)� 0�(�)� {−�2�B2 (�, 8)��2� }

= 0�(�)� 0�(�)� { �5�
Γ (1 + 5�)9� (��)}

= �7�
Γ (1 + 7�)9� (��) .

(45)

Finally, we can obtain the local fractional series solution as
follows:

B� (�, �) = (−1)�+1 �(2�+1)�
Γ (1 + (2F + 1) �)9� (��) . (46)

	us, the 
nal solution reads as follows:

B (�, �)
= ∞∑
�=0
B� (�, �) = B0 (�, �) + B1 (�, �) + B2 (�, �) + ⋅ ⋅ ⋅

= 9� (��) [− ��
Γ (1 + �) +

�3�
Γ (1 + 3�) −

�5�
Γ (1 + 5�) ⋅ ⋅ ⋅ ]

= −9� (��) [ ��
Γ (1 + �) −

�3�
Γ (1 + 3�) +

�5�
Γ (1 + 5�) ⋅ ⋅ ⋅ ]

= − 9� (��) sin� (��) .
(47)

Now, we solve Example 8 by using the local fractional
function decomposition method.

We suppose that

B (�, �) = ∞∑
�=1

V� (�) 9� (F���)

� (�, �) = 0 = ∞∑
�=1
�� (�) 9� (F���)

C (�) = 0 = ∞∑
�=1
��9� (F���)

D (�) = −9� (��) =
∞∑
�=1
��9� (F���)

(48)

which leads to

�� (�) = 0, ∀F ; �� = 0, F ̸= 1; �1 = −1;
�� = 0, ∀F. (49)

Contrasting (28) with (36), we directly get %1 = 0, %2 = 1, and%3 = 0 and
��� = 0, F ̸= 1; ��1 = 1

V� (�) = 0, F ̸= 1
V1,1 (�) = 1

Γ (1 + �)��1
× ∫�
0
9� (−%1N

�

2� ) sin� (��1N�) �1 (� − N) (�N)�
= 0

V2,1 (�) = �19� (−%1�
�

2� ) cos� (��1��)

+ (�1 + %1�1 − %12 )9� (
−%1��2� ) sin�(��)

= − sin� (��) .
(50)

Conclusively, we get

V1 (�) = V1,1 (�) + V2,1 (�) = −sin� (��) . (51)

	us, we obtain

B (�, �) = −9� (��) sin� (��) (52)

and its graph is given in Figure 2.

5. Conclusions

In this work solving the Laplace equations using the local
fractional function decomposition method with local frac-
tional operators is discussed in detail. Two examples of
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Figure 2: 	e plot of solution to local fractional Laplace equation
with fractal dimension � = ln 2/ ln 3.

applications of the local fractional Adomian decomposition
method and local fractional function decomposition method
to the local fractional Laplace equations are investigated in
detail. 	e reliable obtained results are complementary with
the ones presented in the literature.
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