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Abstract

In this paper, we present a semi-analytic method called the local fractional homotopy
analysis method (LFHAM) for solving differential equations involving local fractional
derivatives based on the local fractional calculus and the homotopy analysis method.
The suggested analytical technique always provides a simple way of constructing a
series of solutions from the higher-order deformation equation. The LFHAM
guarantees the convergence of the series solutions using the nonzero
convergence-control parameter. Three examples are provided to illustrate the
efficiency and high accuracy of the method.
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1 Introduction

Many real-life problems are modeled to linear and nonlinear partial differential equations

in most cases. However, solving these equations in closed form is very difficult, more es-

pecially the nonlinear models. In recent years, many mathematicians and engineers have

devoted considerable time to develop efficient and stable techniques for solving nonlinear

models including the non-differentiable problems which arise naturally in mathematical

physics and engineering [1–37]. Inmathematical literature, themost commonly used frac-

tional derivative operators are the Caputo and Riemann–Liouville fractional derivatives

[38, 39]. However, these derivatives have a kernel with singularity which limits their appli-

cability to many real-world problems [40]. To overcome the problem of the singularity of

the kernel, a new fractional derivative with exponential kernel was introduced by Caputo

and Fabrizio in 2015 [41]. Unfortunately, the kernel of Caputo–Fabrizio fractional deriva-

tive was not non-local and the associated integral was not a fractional operator [42]. To

solve the problem of the Caputo–Fabrizio fractional derivative, Atangana and Baleanu in-

troduced an efficient fractional derivative operatorwith non-local and non-singular kernel

called the Atangana–Baleanu fractional derivative (AB) in Caputo and Riemann–Liouville

sense in 2016 (see [43]). Due to the non-local behavior of the AB fractional derivative, it

has been used to develop some powerful mathematical methods for solving real-world
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problems such as the fractional Laplace decomposition method [44], the fractional ho-

motopy perturbation transformmethod [45, 46], the fractional Adams-Bashforth method

[47], and the fractional homotopy analysis transform method [48–51] to mention a few.

Besides, all the recently proposed techniques have nothing to do with the existence of

any small/large physical parameter. So, in real-world problems, these methods can be ap-

plied much more widely than the well-known analytical method called the perturbation

technique which entirely relies on the existence of small/large parameter [52] (perturba-

tion quantity), since not all mathematical models contain the so-called perturbation quan-

tity. Other semi-analytical methods, such as the local fractional Adomian decomposition

method [53, 54], the local fractional homotopy perturbation method [55, 56], the local

fractional variational iteration method [57–60], the local fractional Sumudu decomposi-

tion method [61], the local fractional natural homotopy perturbation method [62], and

many more, have been proposed and successfully applied to various linear and nonlinear

models. However, most of these existing techniques cannot guarantee the convergence

of the series solutions, hence are not suitable for solving highly nonlinear problems. To

overcome the limitations of the currentmethods, a Chinesemathematician Liao proposed

a semi-analytic method called the homotopy analysis method (HAM) for solving highly

nonlinear models [63]. The homotopy analysis method is a combination of the classical

perturbation technique [64–67] and the homotopy, a concept in topology, and does not

rely on the small/large parameter. The advantage of the homotopy analysis method over

the existing techniques is the excellent freedom of choosing the initial guess and the ex-

istence of the so-called nonzero convergence-control parameter. Based on the basic idea

of the homotopy analysis method, many numerical and analytical techniques have been

proposed. Marinca and Herisa suggested the optimal homotopy analysis method [68] in

2008. In 2009, Niu and Wang introduced a one-step optimal homotopy analysis method

[69], and the spectral homotopy analysis method based on the Chebyshev pseudospec-

tral method [70] was proposed by Motsa et al. in 2010. The predictor homotopy analysis

method [71] was also suggested in 2010, and recently in 2018 Singh et al. successfully

applied the homotopy analysis method and the Sumudu transform method to fractional

Drinfeld–Sokolov–Wilson equation [72]. Besides, many authors have discovered that the

Adomian decomposition method (ADM), the homotopy perturbation method (HPM),

and the variational iteration method (VIM) are all special cases of the homotopy analysis

method (HAM) when the nonzero convergence-control parameter ℏ = –1 (see [73–77]).

Motivated by the ongoing research in the literature, in this paper we introduce an iter-

ative method called the local fractional homotopy analysis method (LFHAM) for solving

non-differentiable problems arising in fractal media. The LFHAM gives a series of solu-

tions which converge rapidly within a few termswith the help of the nonzero convergence-

control parameter. Some applications are given to verify the efficiency and stability of the

method. In Table 1, some useful results in fractal space are presented.

The remaining sections of this work are organized as follows. In Sect. 2, some back-

ground notations of local fractional calculus are presented. In Sect. 3, the local analysis

and convergence of local fractional homotopy analysismethod are discussed. Applications

of LFHAM are shown in Sect. 4. The conclusion of this paper is given in Sect. 5.
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Table 1 Some useful identities of the local fractional calculus are give below

Basic identities

1 cosα (tα ) =
∑+∞

n=0(–1)
n t

(2n+1)α

Γ (1+(2n+1)α) , 0 < α ≤ 1

2 sinα (tα ) =
∑+∞

n=0(–1)
n t

2nα

Γ (1+(2n+1)α) , 0 < α ≤ 1

3 Eα (tα ) =
∑+∞

n=0
t
nα

Γ (1+nα) , 0 < α ≤ 1

4 d
α

dtα
t
nα

Γ (1+nα) =
t
(n–1)α

Γ (1+(n–1)α)

5 0 I
(α)
t

t
nα

Γ (1+nα) =
t
(n+1)α

Γ (1+(n+1)α)

6 d
α

dtα
cosα (tα ) = – sinα (tα )

7 d
α

dtα
sinα (tα ) = cosα (tα )

8 d
α

dtα
Eα (tα ) = Eα (tα )

2 Preliminaries and notations of local fractional calculus

Definition 1 Let ℘ : ℑ → ℵ be a function defined on a fractal set ℑ of fractal dimension α

say (0 < α < 1). Then a real-valued function ℘(t) on the fractal set ℑ is defined as [14, 15]

℘(t) = tα , (1)

where tα ∈ ℑ and 0 < α < 1.

Lemma 1 Let F be a fractal and a subset of the real line. If v : (F ,d) → (Ω ′,d′) is a bi-

Lipschitz mapping, then there are constants ρ, τ > 0, and F ⊂R,

ρsHs(F)≤ Hs
(

v(F)
)

≤ τ sHs(F), (2)

such that for all t1, t2 ∈ F ,

ρα|t1 – t2|
α ≤

∣
∣v(t1) – v(t2)

∣
∣ ≤ τ α|t1 – t2|

α . (3)

As a direct consequence of Lemma 2.1 [15, 19], we deduce

∣
∣v(t1) – v(t2)

∣
∣ ≤ τ α|t1 – t2|

α (4)

such that

∣
∣v(t1) – v(t2)

∣
∣ < εα , (5)

where α denotes the fractal dimension of the set F . Besides, in fractal geometry the result

is related to the fractal coarse-grained mass function γ α[F ,β1,β2] as

γ α[F ,β1,β2] =
Hα(F ∩ (β1,β2)

Γ (α + 1)
, (6)

with

Hα
(

F ∩ (β1,β2)
)

= (β2 – β1), (7)

where Hα denotes the α-dimensional Hausdorff measure.
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Definition 2 Suppose that there exists [14, 15]

∣
∣v(t) – v(t0)

∣
∣ < εα , (8)

with |t – t0| < δ, for δ, ε > 0 and δ, ε ∈ R. Then the function v(t) is called local fractional

continuous at t = t0 and is denoted by limt→t0 v(t0). Equivalently, the function v(t) is called

local fractional continuous function on the interval (β1,β2) and is denoted by

v(t) ∈ Cα(β1,β2), (9)

provided Eq. (8) is valid for t ∈ (β1,β2).

Definition 3 The local fractional derivative of the function v(t) of order α at t = t0 is

defined as follows [14, 15]:

v(α)(t) =
dαv

dtα

∣
∣
∣
∣
t=t0

= lim
t→t0

�α(v(t) – v(t0))

(t – t0)α
, (10)

where

�α
(

v(t) – v(t0)
)
∼= Γ (1 + α)

[

v(t) – v(t0)
]

. (11)

For any t ∈ (β1,β2), there exists [14, 15]

v(α)(t) =D
(α)
t v(t), (12)

which is denoted by

v(t) ∈D
(α)
t (β1,β2). (13)

Moreover, the local fractional derivatives of higher order are defined as follows [14, 15]:

D
(nα)
t (t) = v(nα)(t) =

n times
︷ ︸︸ ︷

D
(α)
t · · ·D

(α)
t v(t), (14)

and the local fractional partial derivative of higher order is defined as follows [14, 15]:

∂nαv(t,x)

∂tnα
=

n times
︷ ︸︸ ︷

∂α

∂tα
· · ·

∂α

∂tα
v(t,x) . (15)

Property 1 Suppose that v(k+1)α ∈ Cα(β1,β2) for k = 0, 1, . . . ,n and 0 < α ≤ 1, then

v(t) =

n
∑

k=0

v(kα)(t0)

Γ (kα + 1)
(t – t0) +

v((k+1)α)(ξ )

Γ ((k + 1)α + 1)
(t – t0)

(k+1)α , (16)

with β1 < t0 < ξ < t < β2, ∀t ∈ (β1,β2), where v
kα(t) =

n+1 times
︷ ︸︸ ︷

dα

dtα
· · · dα

dtα
v(t).
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Proof See [14, 15]. �

Remark 1 Property 1 does not hold if the function is only Holder continuous. See [9].

Definition 4 The local fractional integral of the function v(t) of order α in the interval

[γ ,β] is defined as follows [14, 15]:

β I
(α)
η =

1

Γ (1 + α)

∫ β

η

v(τ )(dτ )α =
1

Γ (1 + α)
lim
�→0

N–1
∑

i=0

v(τi)(�τ i)
α , (17)

where �τ i = τi+1 – τi, �τ = max�τ0,�τ1,�τ2, . . . ,[τi, τi+1], τ0 = η, τN = β is a partition of

the interval [η,β].

Based on the local fractional integral defined in Eq. (17), the following properties hold

(see [14, 15]):

β I
(α)
η

[

v(t)±w(t)
]

= β I
(α)
η

[

v(t)
]

±η I
(α)
β

[

w(t)
]

. (18)

β I
(α)
η v(t)w(α)(t) =

[

v(t)w(t)
]β

η
– β I

(α)
η v(α)(t)w(t). (19)

β I
(α)
η

[

v(t)
]

= β I
(α)
ζ

[

v(t)
]

+ζ I
(α)
η

[

v(t)
]

. (20)

β I
(α)
η

[

ζv(t)
]

= ζβ I
(α)
η

[

v(t)
]

. (21)

β I
(α)
η

[

v(t)
]

=
(β – η)α

Γ (α + 1)
, (22)

where β < ζ < η, v(t),w(t) ∈ Cα(η,β).

Definition 5 The Riemann–Liouville fractional integral operator of order α > 0 of a func-

tion f (t) ∈ Cm
τ and τ ≥ –1 is defined as follows [39]:

Iαf (t) =

⎧

⎨

⎩

1
Γ (α)

∫ t

0
(t – η)α–1f (η)dη, α > 0, t > 0,

f (t), α = 0.
(23)

Below we list some important properties of Iα (see [1–3]).

(i) If f ∈ Cτ , τ ≥ –1, α,β ≥ 0, and γ > –1, then

Iαtx =
Γ (x + 1)

Γ (x + α + 1)
tα+x, (24)

IαIβ f (t) = Iα+β , IαIβ f (t) = Iβ Iαf (t). (25)

(ii) For m – 1 < α ≤ m,m ∈N and f ∈ Cm
τ , τ ≥ –1, then

DαIαf (t) = f (t), IαDαf (t) = f (t) –

m–1
∑

i=0

f i
(

0+
) ti

i!
, t > 0. (26)
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Definition 6 The function f (t) in the Caputo fractional derivative is defined as follows

[39, 41]:

Dαf (t) =

⎧

⎨

⎩

1
Γ (m–α)

∫ t

0
(t – η)m–α–1f (m)(η)dη,

Im–αDmf (t),
(27)

wherem – 1 < α <m,m ∈N, t > 0.

3 Local fractional homotopy analysis method

In this section, we illustrate the basic idea of the local fractional homotopy analysis

method. Consider the following nonlinear local fractional partial differential equation:

N
[

u(x, t)
]

= 0, (28)

whereN is the nonlinear operator, x and t denote the independent variables, and u(x, t) de-

notes the local fractional unknown function. Using the fundamentals of the traditional ho-

motopy analysis method proposed by Liao [63], we construct a convex non-differentiable

homotopy called the zero order deformation equation

(1 – p)£α

[

ψ(x, t;p) – u0(x, t)
]

= pℏH(x, t)N
[

ψ(x, t;p)
]

, (29)

where p ∈ [0, 1] is an embedding parameter, ℏ �= 0 is the nonzero convergence-control

parameter, and H(x, t) �= 0 is the local fractional nonzero auxiliary function, ψ(x, t;p) is

the local fractional unknown function, u0(x, t) is an initial guess of u(x, t), and £α = ∂α

∂tα
is

the linear local fractional operator with the property that

£α

[

ψ(x, t)
]

= 0, when ψ(x, t) = 0. (30)

Based on the concept of homotopy analysis method, one has great freedom to choose the

auxiliary linear operator and the initial guess. Obviously, when p = 1 and p = 0, it holds

ψ(x, t; 0) = u0(x, t) and ψ(x, t; 1) = u(x, t), (31)

respectively. Thus, as p increases from 0 to 1, the solution ψ(x, t;p) varies from the initial

guess u0(x, t) to the solution u(x, t). Expanding ψ(x, t;p) using the local fractional Taylor

series [14, 15] with respect to p, we deduce

ψ(x, t;p) = u0(x, t) +

+∞
∑

m=1

um(x, t)p
m, (32)

where

um(x, t) =

[
1

m!

∂mψ(x, t;p)

∂pm

]

p=0

. (33)
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If the auxiliary linear operator, the initial guess, the auxiliary function, and the

convergence-control parameter are chosen properly, then Eq. (32) converges at p = 1, and

u(x, t) = u0(x, t) +

+∞
∑

m=1

um(x, t) (34)

is the solution of the original problem Eq. (28). According to Eq. (32), the governing equa-

tion can be deduced from the zero deformation Eq. (29).

Define a local fractional vector

um =
{

u0(x, t),u1(x, t),u2(x, t), . . . ,um(x, t)
}

. (35)

Differentiating Eq. (29) m-times with respect to the embedding parameter p and then

setting p = 0 and finally dividing by m!, we obtain the so-called Mth-order deformation

equation

£α

[

um(x, t) – χmum–1(x, t)
]

= pH(x, t)Rm(um–1,x, t), (36)

where

Rm(um–1,x, t) =

[
1

(m – 1)!

∂ (m–1)!N[ψ(x, t;p)]

∂p(m–1)

]

p=0

(37)

and

χm =

⎧

⎨

⎩

0 m ≤ 1,

1 m > 1.
(38)

Applying the local fractional integral operator on both sides of Eq. (36), we deduce

um(x, t) = χmum–1(x, t) – χm

m–1
∑

k=0

u
(k)
m–1

(

x, 0+
) tkα

Γ (kα + 1)

+ ℏH(x, t)βI
(α)
η

[

Rm(um–1,x, t)
]

. (39)

Using computer algebra software such asMathematica orMatlab, we can easily obtain the

series solutions of um(x, t) form ≥ 1 at Mth-order deformation equation as follows:

u(x, t) =

+∞
∑

m=0

um(x, t). (40)

The cornerstone of the local fractional homotopy analysis method is the nonzero

convergence-control parameter ℏ which provides us with a convenient way to guaran-

tee the convergence of the series solutions of Eq. (40).

In the next subsection, we prove the convergence analysis of Eq. (40).
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3.1 Convergence analysis of the LFHAM

Lemma 2 Suppose that the series solution of Eq. (40) is convergent, and let X be any set

of local fractional continuous functions which satisfies Eq. (8) and un ∈ X. Then B(X) is a

Banach space.

Proof Let un ∈ B(X). Then we need to show that the local fractional continuous function

un converges uniformly in B(X). Let x ∈ X. Then, for all n,m ∈N, we have

∣
∣un(x) – um(x)

∣
∣ ≤ ‖un – um‖ < εα , (41)

which implies (un(x)) is a Cauchy sequence, hence converges. Let the limit of (un(x)) be

(u(x)). Then we want show that un(x)→ u(x) in B(X).

For any given εα > 0, there is a positive integer N such that, for every n,m >N ,

∣
∣un(x) – um(x)

∣
∣ =

∥
∥un(x) – u(x) + u(x) – um(x)

∥
∥

≤
∥
∥un(x) – u(x)

∥
∥ +

∥
∥u(x) – um(x)

∥
∥

<
1

2εα
+

1

2εα

= εα .

Thus, for every x,

∣
∣un(x) – u(x)

∣
∣ ≤ εα . (42)

This implies that un uniformly converges to u. The proof is complete. �

Theorem 1 If the series

v(x, t) = v0(x, t) +

+∞
∑

m=1

vm(x, t)p
m (43)

converges to ξ (x, t), where vm(x, t) is governed by Eq. (36) under the definition of Eq. (37)

and Eq. (38), then ξ (x, t) must be the exact solution of Eq. (28).

Proof Let

lim
M→∞

M
∑

m=1

ξm(x, t) = v0(x, t) + lim
M→∞

M
∑

m=1

vm(x, t) = ξ (x, t). (44)

Then we deduce that limM→∞

∑M
m=1 vm(x, t) = 0. Besides, using Eq. (36), we get

lim
M→+∞

[

ℏH(x, t)

M
∑

m=1

Rm(vm–1,x, t)

]

= lim
M→+∞

[
M

∑

m=1

£α

[

vm(x, t) – χmvm–1(x, t)
]

]
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= £α

[

lim
M→∞

M
∑

m=1

vm(x, t) – lim
M→+∞

M
∑

m=1

χmvm–1(x, t)

]

= £α

[

lim
M→+∞

M
∑

m=1

vm(x, t)

]

= 0.

On the other hand, since H(x, t) �= 0, ℏ �= 0 and by the linearity property of Eq. (30), we

obtain

lim
M→∞

M
∑

m=1

Rm(vm–1,x, t) = 0. (45)

Similarly, based on Eq. (37), we get

lim
M→+∞

[
M

∑

m=1

Rm(vm–1,x, t)

]

= lim
M→+∞

M
∑

m=1

[
1

(m – 1)!

∂ (m–1)N[ψ(x, t;p)]

∂p(m–1)

]

p=0

= 0. (46)

Generally, since ψ(x, t;p) �= N[u(x, t)] in Eq. (28), let the residual error ǫ(x, t;p) =

N[u(x, t)]. This implies

ǫ(x, t;p) = 0, (47)

which satisfies the solution of Eq. (28). Hence, the residual error of the local fractional

Taylor series on the embedding parameter p yields

lim
M→+∞

M
∑

m=1

[
1

m!

∂mN[ǫ(x, t;p)]

∂pm

]

p=0

= lim
M→+∞

M
∑

m=1

[
1

m!

∂mN[ψ(x, t;p)]

∂pm

]

p=0

. (48)

Then using Eq. (45) and the assumption that p = 1, we deduce

ǫ(x, t;p) = lim
M→+∞

[
M

∑

m=1

Rm(vm–1,x, t)

]

= lim
M→+∞

M
∑

m=1

[
1

m!

∂mN[ψ(x, t;p)]

∂pm

]

p=0

= 0. (49)

Thus, Eq. (49) proved that ξ (x, t) satisfies the exact solution of the original problem

Eq. (28). �

4 Applications of the LFHAM

In this section, we demonstrate the applicability of the LFHAM to linear and nonlinear

partial differential equations involving local fractional derivatives.
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Example 1 Consider the following non-homogeneous local fractional heat conduction

equation:

∂αv(x, t)

∂tα
–

∂2αv(x, t)

∂x2α
= Eα

(

xα
)

, t > 0,x ∈R (50)

subject to the initial condition

v(x, 0) = Eα

(

xα
)

. (51)

Based on Eq. (50) and Eq. (51) and the procedure of the LFHAM, it is natural to choose

v0(x, t) = Eα(x
α) to be the initial guess.

We choose the linear operator as

£α

[

ϕ(x, t;p)
]

=
∂α

∂xα

[

ϕ(x, t;p)
]

, (52)

with the property £α[C] = 0, where C is an integral constant.

We define the nonlinear operator as follows:

N
[

ϕ(x, t;p)
]

=
∂αϕ(x, t;p)

∂tα
–

∂2αϕ(x, t;p)

∂x2α
– Eα

(

xα
)

. (53)

We construct the zero-order deformation equation:

(1 – p)£α

[

ϕ(x, t;p) – v0(x, t)
]

= pℏH(x, t)N
[

ϕ(x, t;p)
]

. (54)

Obviously, when p = 0 and p = 1,

ϕ(x, t; 0) = v0(x, t) and ϕ(x, t; 1) = v(x, t). (55)

Then the Mth-order deformation equation is defined as follows:

£α

[

vm(x, t) – χmvm–1(x, t)
]

= ℏH(x, t)Rm(vm–1,x, t), (56)

where

Rm(vm–1,x, t) =
∂αvm–1(x, t)

∂tα
–

∂2αvm–1(x, t)

∂x2α
– (1 – χm)Eα

(

xα
)

. (57)

SettingH(x, t) = 1 and applying the local fractional integral on theMth-order deformation

Eq. (56), we get

vm(x, t) = (χm + ℏ)vm–1(x, t) – (χm + ℏ)vm–1(x, 0)

– ℏβ I
(α)
η

[
∂2αvm–1(x, t)

∂x2α
+ (1 – χm)Eα

(

xα
)
]

. (58)

Then Eq. (58) yields

⎧

⎨

⎩

vm(x, t) = –ℏβ I
(α)
η [ ∂2αvm–1(x,t)

∂x2α
+ (1 – χm)Eα(x

α)], m = 1

vm(x, t) = (χm + ℏ)vm–1(x, t) – ℏβ I
(α)
η [ ∂2αvm–1(x,t)

∂x2α
+ (1 – χm)Eα(x

α)], m > 1.
(59)
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Hence

v0(x, t) = Eα

(

xα
)

,

v1(x, t) = –2ℏEα

(

xα
) tα

Γ (α + 1)
,

v2(x, t) = –2ℏ(ℏ + 1)Eα

(

xα
) tα

Γ (α + 1)
+ 2ℏ2Eα

(

xα
) t2α

Γ (2α + 1)
,

...

and so on.

Setting the convergence-control parameter ℏ = –1, the series solutions of Eq. (50) are

given by

v(x, t) = v0(x, t) +

+∞
∑

m=1

vm(x, t)

= 2Eα

(

xα
)
(

tα

Γ (α + 1)
+

t2α

Γ (2α + 1)
+

t3α

Γ (3α + 1)
+ · · ·

)

+ Eα

(

xα
)

= Eα

(

xα
)(

2Eα

(

tα
)

– 1
)

. (60)

The results obtained in Eq. (60) were entirely in agreement with the local fractional ho-

motopy analysis method [56].

Figures 1: The 3D surface solution of Eq. (50) for α = 1 is presented in Fig. 1(a). The sur-

face solution of Eq. (40) for (α = 1
2
) is depicted in Fig. 1(b). The non-differentiable surface

solution is depicted in Fig. 1(c). The surface solution behavior of v(x, t) for different values

of α = 1, 1
2
, ln(2)

ln(3)
is given in Fig. 1(d). The absolute error analysis for α = 1 of 10th and 20th-

order approximations of the LFHAM is presented in Fig. 1(e) and Fig. 1(f ), respectively. In

Fig. 1(g) and Fig. 1(h), the absolute error analysis of 10th and 20th-order approximations

of the non-differentiable problem for α = ln(2)
ln(3)

is illustrated.

Example 2 Consider the following non-homogeneous local fractional heat conduction

equation:

∂αv(x, t)

∂tα
–

∂2αv(x, t)

∂x2α
= – cosα

(

xα
)

, t > 0,x ∈R (61)

subject to the initial condition

v(x, 0) = sinα

(

xα
)

. (62)

According to the procedure of the LFHAM and based on Eq. (61) and Eq. (62), it is natural

to choose v0(x, t) = sinα(x
α).

Let us choose the linear operator as follows:

£α

[

ϕ(x, t;p)
]

=
∂α

∂xα

[

ϕ(x, t;p)
]

, (63)

with the property £α[C] = 0, where C is an integral constant.
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Figure 1 (a) Numerical simulation of Eq. (50) for α = 1, (b) 3D surface solution for α = 1
2 , (c) 3D

non-differentiable surface solution behavior for α = ln(2)
ln(3) , (d) 2D approximate solutions for α = 1, 12 and ln(2)

ln(3) ,
(e) Absolute error E10(v(x, t)) = |vext.(x, t) – vappr.(x, t)| for α = 1, (f) Absolute error
E20(v(x, t)) = |vext.(x, t) – vappr.(x, t)|, α = 1, (g) Absolute error of the LFHAM E10(v(x, t)) = |vext.(x, t) – vappr.(x, t)|
when α = ln(2)

ln(3) , (h) Absolute error of the LFHAM E20(v(x, t)) = |vext.(x, t) – vappr.(x, t)| when α = ln(2)
ln(3)

We define the nonlinear operator:

N
[

ϕ(x, t;p)
]

=
∂αϕ(x, t;p)

∂tα
–

∂2αϕ(x, t;p)

∂x2α
+ cosα

(

xα
)

. (64)
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We construct the zero-order deformation equation as follows:

(1 – p)£α

[

ϕ(x, t;p) – v0(x, t)
]

= pℏH(x, t)N
[

ϕ(x, t;p)
]

. (65)

Obviously, when p = 0 and p = 1,

ϕ(x, t; 0) = v0(x, t) and ϕ(x, t; 1) = v(x, t). (66)

Then the Mth-order deformation equation is defined as follows:

£α

[

vm(x, t) – χmvm–1(x, t)
]

= ℏH(x, t)Rm(vm–1,x, t), (67)

where

Rm(vm–1,x, t) =
∂αvm–1(x, t)

∂tα
–

∂2αvm–1(x, t)

∂x2α
+ cosα

(

xα
)

. (68)

PuttingH(x, t) = 1 and applying the local fractional integral on theMth-order deformation

Eq. (67), we obtain

vm(x, t) = (χm + ℏ)vm–1(x, t) – (χm + ℏ)vm–1(x, 0)

+ ℏβ I
(α)
η

[

cosα

(

xα
)

–
∂2αvm–1(x, t)

∂x2α

]

. (69)

Then Eq. (69) yields

⎧

⎪
⎪
⎨

⎪
⎪
⎩

vm(x, t) = ℏβ I
(α)
η [cosα(x

α) – ∂2αvm–1(x,t)

∂x2α
], m = 1,

vm(x, t) = (χm + ℏ)vm–1(x, t) – ℏβ I
(α)
η [(1 – χm) cosα(x

α) – ∂2αvm–1(x,t)

∂x2α
],

m > 1.

(70)

Hence

v0(x, t) = sinα

(

xα
)

,

v1(x, t) = ℏ
(

sinα

(

xα
)

+ cosα

(

xα
)) tα

Γ (α + 1)
,

v2(x, t) = ℏ(ℏ + 1)
(

sinα

(

xα
)

+ cosα

(

xα
)) tα

Γ (α + 1)
+ ℏ

2
(

sinα

(

xα
)

+ cosα

(

xα
)) t2α

Γ (2α + 1)
,

...

and so on.

Setting the convergence-control parameter ℏ = –1, the series solution of Eq. (61) is given

by

v(x, t) = v0(x, t) +

+∞
∑

m=1

vm(x, t)

= sinα

(

xα
)

+
(

sinα

(

xα
)

+ cosα

(

xα
))
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×

(

–
tα

Γ (α + 1)
+

t2α

Γ (2α + 1)
–

t3α

Γ (3α + 1)
+ · · ·

)

= sinα

(

xα
)

+

∞
∑

i=1

(–1)itiα

Γ (iα + 1)

(

sinα

(

xα
)

+ cosα

(

xα
))

= Eα

(

–tα
)(

sinα

(

xα
)

+ cosα

(

xα
))

– cosα

(

xα
)

. (71)

The results obtained in Eq. (71) were in complete agreement with the local fractional ho-

motopy perturbation method [56].

Figures 2: Surface solution of Eq. (61) for α = 1 is given in Fig. 2(a). Surface solution

behavior of Eq. (61) for (α = 1
2
) is presented in Fig. 2(b). The non-differentiable surface

solution behavior is depicted in Fig. 2(c). The 2D surface solution behavior for different

values of α = 1, 1
2
, ln(2)

ln(3)
is presented in Fig. 2(d). The absolute error analysis for 10th and

20th-order approximations of the LFHAM is given in Fig. 2(e) and Fig. 2(f ), respectively.

The 10th and 20th-order absolute error analysis of the non-differentiable problem for α =
ln(2)
ln(3)

is presented in Fig. 2(g) and Fig. 2(h), respectively.

Example 3 Consider the following nonlinear local fractional convection-diffusion equa-

tion:

∂αv(x, t)

∂tα
=

∂2αv(x, t)

∂x2α
–

∂αv(x, t)

∂xα
+ v(x, t)

∂αv(x, t)

∂xα
– v2(x, t) + v(x, t),

t > 0,x ∈R (72)

subject to the initial condition

v(x, 0) = Eα

(

xα
)

. (73)

Based on Eq. (72) and the initial condition Eq. (73), it is natural to choose v0(x, t) = Eα(x
α)

to be the initial guess.

Let us choose the linear operator as follows:

£α

[

ϕ(x, t;p)
]

=
∂α

∂tα

[

ϕ(x, t;p)
]

, (74)

with the property £α[C] = 0, where C is an integral constant.

We define the nonlinear operator:

N
[

ϕ(x, t;p)
]

=
∂αϕ(x, t;p)

∂tα
–

∂2αϕ(x, t;p)

∂x2α
+

∂αϕ(x, t;p)

∂xα

– ϕ(x, t;p)
∂αϕ(x, t;p)

∂xα
+ ϕ2(x, t;p) – ϕ(x, t;p). (75)

We construct the zero-order deformation equation as follows:

(1 – p)£α

[

ϕ(x, t;p) – v0(x, t)
]

= pℏH(x, t)N
[

ϕ(x, t;p)
]

. (76)

Obviously, when p = 0 and p = 1,

ϕ(x, t; 0) = v0(x, t) and ϕ(x, t; 1) = v(x, t). (77)
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Figure 2 (a) Numerical simulation of Eq. (61) for α = 1, (b) 3D surface solution for α = 1
2 , (c) 3D

non-differentiable surface solution behavior for α = ln(2)
ln(3) , (d) 2D approximate solutions for α = 1, 12 and ln(2)

ln(3) ,
(e) Absolute error E10(v(x, t)) = |vext.(x, t) – vappr.(x, t)|, α = 1, (f) Absolute error E20(v(x, t)) = |vext.(x, t) – vappr.(x, t)|
(g) Absolute error of the LFHAM E10(v(x, t)) = |vext.(x, t) – vappr.(x, t)| for α = ln(2)

ln(3) , (h) Absolute error of the

LFHAM E20(v(x, t)) = |vext.(x, t) – vappr.(x, t)| for α = ln(2)
ln(3)

Then the Mth-order deformation equation is defined as follows:

£α

[

vm(x, t) – χmvm–1(x, t)
]

= ℏH(x, t)Rm(vm–1,x, t), (78)



Maitama and Zhao Advances in Difference Equations        ( 2019)  2019:127 Page 16 of 22

where

Rm(vm–1,x, t) =
∂αvm–1(x, t)

∂tα
–

∂2αvm–1(x, t)

∂x2α
+

∂αvm–1(x, t)

∂xα

– vm–1(x, t)
∂αvm–1(x, t)

∂xα
+ v2m–1(x, t) – vm–1(x, t). (79)

PuttingH(x, t) = 1 and applying the local fractional integral on theMth-order deformation

Eq. (78), we deduce

vm(x, t) = (χm + ℏ)vm–1(x, t) – (χm + ℏ)vm–1(x, 0) + ℏ β I
(α)
η

[

∂αvm–1(x, t)

∂xα
–

∂2αvm–1(x, t)

∂x2α

–

m–1
∑

i=0

vi(x, t)
∂2αvm–1–i(x, t)

∂x2α
+

m
∑

i=0

vi(x, t)vm–i(x, t) – vm–1(x, t)

]

. (80)

Form = 1, Eq. (80) yields

vm(x, t) = ℏ β I
(α)
η

[

∂αvm–1(x, t)

∂xα
–

∂2αvm–1(x, t)

∂x2α

–

m–1
∑

i=0

vi(x, t)
∂2αvm–1–i(x, t)

∂x2α
+

m
∑

i=0

vi(x, t)vm–i(x, t) – vm–1(x, t)

]

. (81)

And form ≥ 2, Eq. (80) yields

vm(x, t) = (χm + ℏ)vm–1(x, t) + ℏ β I
(α)
η

[

∂αvm–1(x, t)

∂xα
–

∂2αvm–1(x, t)

∂x2α

–

m–1
∑

i=0

vi(x, t)
∂2αvm–1–i(x, t)

∂x2α
+

m
∑

i=0

vi(x, t)vm–i(x, t) – vm–1(x, t)

]

. (82)

Thus

v0(x, t) = Eα(x
α),

v1(x, t) = ℏ β I
(α)
η

[
∂αv0(x, t)

∂xα
–

∂2αv0(x, t)

∂x2α
– v0(x, t)

∂2αv0(x, t)

∂x2α
+ v20(x, t) – v0(x, t)

]

= –ℏEα(x
α)

tα

Ŵ(α + 1)
,

v2(x, t) = (ℏ + 1)v1(x, t)

– ℏ β I
(α)
η

[
∂αv1(x, t)

∂xα
–

∂2αv1(x, t)

∂x2α
– v0(x, t)

∂2αv1(x, t)

∂x2α
– v1(x, t)

∂2αv0(x, t)

∂x2α

+ 2v0(x, t)v1(x, t) – v1(x, t)

]

= ℏ
2Eα(x

α)
t2α

Ŵ(2α + 1)
,

...

and so on.
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Then, choosing the convergence-control parameter ℏ = –1, the series solutions of

Eq. (72) are given by

v(x, t) = v0(x, t) +

+∞
∑

m=1

vm(x, t)

= Eα

(

xα
)
(

1 +
tα

Γ (α + 1)
+

t2α

Γ (2α + 1)
+

t3α

Γ (3α + 1)
+ · · ·

)

= Eα

(

xα
)

∞
∑

i=0

tiα

Γ (iα + 1)

= Eα

(

xα
)

Eα

(

tα
)

. (83)

The result obtained in Eq. (83) is the same as that of the local fractional homotopy analysis

method [56].

Figures 3: The surface solution behavior of Eq. (72) for α = 1 is presented in Fig. 3(a).

Surface solution behavior of Eq. (72) for (α = 1
2
) is illustrated in Fig. 3(b). The non-

differentiable surface solution behavior for α = ln(2)
ln(3)

is depicted in Fig. 3(c). 2D surface

solutions for different values of α = 1, 1
2
, ln(2)

ln(3)
are presented in Fig. 3(d). The absolute er-

ror analysis for 10th and 20th-order approximations of the LFHAM is given in Fig. 3(e)

and Fig. 3(f ), respectively. The 10th and 20th-order absolute error analysis of the non-

differentiable problem for α = ln(2)
ln(3)

is depicted in Fig. 3(g) and Fig. 3(h), respectively.

5 Conclusion

In this paper, we introduced a modified version of the well-known homotopy analysis

method (HAM) called the local fractional homotopy analysis method (LFHAM) for solv-

ing non-differential models arising on Cantor sets. The suggested method was success-

fully applied to some non-differentiable problems, and the results obtained were entirely

in agreement with the results of the existing methods. It is further shown that when the

nonzero convergence-control parameter ℏ = –1, the results of the local fractional homo-

topy perturbation method (LFHPM) are recovered as a particular case of the proposed

technique. The most significant advantage of this technique over the existing methods is

not only the highest degree of freedom to adjust and control the convergence of the series

solutions, but also the great privilege to choose the initial approximation, the deformation-

functions, and the auxiliary linear operator. Thus, we conclude that the LFHAM is a pow-

erful semi-analytical technique for solving non-differentiable partial differential equations

and can be regarded as a modification of the homotopy analysis method.

Appendix

Here, we present some important results.

Definition 7 Let ϕ be a function of the homotopy-parameter p, then

Θm(ϕ) =
1

m!

dmϕ

dpm

∣
∣
∣
∣
p=0

(84)

is called the Mth-order homotopy-derivative of ϕ, where m ≥ 0 is an integer, and Θm is

called the operator of the mth-order homotopy-derivative [67].
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Figure 3 (a) Numerical solution of Eq. (72) for α = 1, (b) 3D surface solution for α = 1
2 , (c) Non-differentiable

surface solution behavior for α = ln(2)
ln(3) , (d) Approximate solutions for α = 1, 12 and ln(2)

ln(3) , (e) Absolute error
E10(v(x, t)) = |vext.(x, t) – vappr.(x, t)|, α = 1, (f) Absolute error E20(v(x, t)) = |vext.(x, t) – vappr.(x, t)|, α = 1,
(g) Absolute error of the LFHAM E10(v(x, t)) = |vext.(x, t) – vappr.(x, t)| for α = ln(2)

ln(3) , (h) Absolute error of the

LFHAM E20(v(x, t)) = |vext.(x, t) – vappr.(x, t)| for α = ln(2)
ln(3)

Theorem 2 For three arbitrary Maclaurin series

ϕ =

+∞
∑

i=0

vip
i, ϕ2 =

+∞
∑

i=0

v2i p
i,

∂2αϕ

∂x2α
=

+∞
∑

i=0

∂2αvi

∂x2α
pi, (85)
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it holds

Θm(ϕ) = vm, (86)

Θm

(

ϕ2
)

=

m
∑

i=0

vivm–i, (87)

Θm

(

ϕ
∂2αϕ

∂x2α

)

=

m
∑

i=0

vi
∂2αvm–i

∂x2α
. (88)

Proof For the proof of Eq. (86) and Eq. (87), the reader should refer to Liao [67]. According

to Leibnitz’s rule for derivative of product, it holds

∂m(v ∂2αv
∂x2α

)

∂pm
=

m
∑

n=0

m!

n!(m – n)!

∂n(v)

∂pn

∂m–n( ∂2αv
∂x2α

)

∂pm–n

=

m
∑

n=0

m!

n!(m – n)!

∂n( ∂2α (v)

∂x2α
)

∂pn
∂m–n(v)

∂pm–n
.

Then, according to Eq. (84) and Eq. (88), we deduce

Θm

(

v
∂2αv

∂x2α

)

=
1

m!

[
∂m

∂pm

[

v
∂2αv

∂x2α

]∣
∣
∣
∣
p=0

]

=
1

m!

[(
n

x

)
∂n(v)

∂pn

∂m–n( ∂2α (v)

∂x2α
)

∂pm–n

]∣
∣
∣
∣
p=0

=

{[
n

∑

n=0

1

m!

∂n(v)

∂pn

]
[

1

(m – n)!

∂m–n( ∂2α (v)

∂x2α
)

∂pm–n

]∣
∣
∣
∣
p=0

}

=

{[
n

∑

n=0

1

m!

∂n(v)

∂pn

]∣
∣
∣
∣
p=0

∂2α

∂x2α

[
1

(m – n)!

∂m–n(v)

∂pm–n

]∣
∣
∣
∣
p=0

}

=

m
∑

n=0

vn
∂2αvm–n

∂x2α
.
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