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We proposed a local fractional series expansion method to solve the wave and di
usion equations on Cantor sets. Some examples
are given to illustrate the e�ciency and accuracy of the proposed method to obtain analytical solutions to di
erential equations
within the local fractional derivatives.

1. Introduction

Fractional calculus theory [1–3] has been applied to a wide
class of complex problems encompassing physics, biology,
mechanics, and interdisciplinary areas [4–9]. Various meth-
ods, for example, the Adomian decomposition method [10],
the Rach-Adomian-Meyers modi�ed decompositionmethod
[11], the variational iteration method [12, 13], the homotopy
perturbation method [13, 14], the fractal Laplace and Fourier
transforms [15], the homotopy analysismethod [16], the heat-
balance integral method [17–19], the fractional variational
iterationmethod [20–22], the fractional subequationmethod
[23, 24], and the generalized Exp-functionmethod [25], have
been utilized to solve fractional di
erential equations [3, 15].

	e characteristics of fractal materials have local and
fractal behaviors well described by nondi
erential functions.
However, the classic fractional calculus is not valid for
di
erential equation onCantor sets due to its no-local nature.
In contrast, the local fractional calculus is one of the best
candidates for dealing with such problems [26–44].	e local
fractional calculus theory has played crucial applications in
several �elds, such as theoretical physics, transport problems
in fractalmedia described by nondi
erential functions.	ere
are some versions of the local fractional calculus where

di
erent approaches in de�nition of the local fractional
derivative exist, among them the local fractional derivative
of Kolwankar et al. [32–38], the fractal derivative of Chen et
al. [39, 40], the fractal derivative of Parvate et al. [41, 42], the
modi�edRiemann-Liouville of Jumarie [43, 44], and versions
described in [45–52].

In order to deal with local fractional ordinary and partial
di
erential equations, there are somedeveloped technologies,
for example, the local fractional variational iteration method
[45, 46], the local fractional Fourier series method [47,
48], the Cantor-type cylindrical-coordinate method [49],
the Yang-Fourier transform [50, 51], and the Yang-Laplace
transform [52].

	e local fractional derivative is de�ned as follows [26–
31, 45–52]:

�(�) (�0) = ��� (�)���
�������� �=�0 = lim�→�0

Δ� (� (�) − � (�0))(� − �0)� , (1)

where Δ�(�(�)−�(�0)) ≅ Γ(1+�)Δ(�(�)−�(�0)), and �(�)
is satis�ed with the condition [26, 47]

����� (�) − � (�0)���� ≤ ������ − �0����� (2)
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so that [26–31]

����� (�) − � (�0)���� < �� (3)

with � : |� − �0| < �, for �, � > 0 and �, � ∈ �.
	e main idea of this paper is to present the local

fractional series expansion method for e
ective solutions
of wave and di
usion equations on Cantor sets involving
local fractional derivatives. 	e paper has been organized
as follows. Section 2 gives a local fractional series expansion
method. Some illustrative examples are shown in Section 3.
	e conclusions are presented in Section 4.

2. Analysis of the Method

Let us consider the local fractional di
erential equation

���� = ���, (4)

where � is a linear local operator with respect to �, � ∈ {1, 2}.
In accordance with the results in [28, 47], there are

multiterm separated functions of independent variables � and�, namely,

� (�, �) = ∞∑
�=0
�� (�) �� (�) , (5)

where ��(�) and ��(�) are local fractional continuous func-
tions.

Moreover, there is a nondi
erential series term

�� (�) = �� ���Γ (1 + ��) , (6)

where �� is a coe�cient.
In view of (6), we may present the solution in the form

� (�, �) = ∞∑
�=0
�� ���Γ (1 + ��)�� (�) . (7)

	en, following (7), we have

� (�, �) = ∞∑
�=0

���Γ (1 + ��)�� (�) . (8)

Hence,

���� = ∞∑
�=0

1Γ (1 + ��) �����+1 (�) =
∞∑
�=0

1Γ (1 + ��) �����+� (�) ,

��� = �� [∞∑
�=0

���Γ (1 + ��)�� (�)] = ∞∑
�=0

���Γ (1 + ��) (����) (�) .
(9)

In view of (9), we have

∞∑
�=0

1Γ (1 + ��) �����+� (�) =
∞∑
�=0

���Γ (1 + ��) (����) (�) . (10)

Hence, from (10) we can obtain a recursion; namely,

��+� (�) = (����) (�) , (11)

with � = 1; we arrive at the following relation:
��+1 (�) = (����) (�) , (12)

with � = 2; we may rewrite (11) as

��+2 (�) = (����) (�) . (13)

By the recursion formulas, we can obtain the solution of (4)
as

� (�, �) = ∞∑
�=0

���Γ (1 + ��)�� (�) . (14)

	e convergent condition is

lim�→∞[ ���Γ (1 + ��)�� (�)] = 0. (15)

	is approach is termed the local fractional series expansion
method (LFSEM)

3. Applications to Wave and Diffusion
Equations on Cantor Sets

In this section, four examples for wave and di
usion equa-
tions on Cantor sets will demonstrate the e�ciency of
LFSEM.

Example 1. Let us consider the di
usion equation on Cantor
set

��� (�, �) − �2�� (�, �) = 0, 0 < � ≤ 1 (16)

with the initial condition

� (�, 0) = ��Γ (1 + �) . (17)

Following (12), we have recursive formula

��+1 (x) =  2��� (�) �2� ,
�0 (�) = ��Γ (1 + �) .

(18)

Hence, we get

�0 (�) = ��Γ (1 + �) ,
�1 (�) = 0,
�2 (�) = 0,

...

(19)

and so on.
	erefore, through (19) we get the solution

� (�, �) = ��Γ (1 + �) . (20)
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Example 2. Let us consider the di
usion equation on Cantor
set

��� (�, �) − �2�Γ (1 + 2�) ⋅ �2�� (�, �) = 0, 0 < � ≤ 1 (21)

with the initial condition

� (�, 0) = �2�Γ (1 + 2�) . (22)

Following (12), we get

��+1 (�) = �2�Γ (1 + 2�)  
2��i (�) �2� ,

�0 (�) = �2�Γ (1 + 2�) .
(23)

By using the recursive formula (23), we get consequently

�0 (�) = �2�Γ (1 + 2�) ,
�1 (�) = �2�Γ (1 + 2�) ,
�2 (�) = �2�Γ (1 + 2�) ,

...

(24)

As a direct result of these recursive calculations, we arrive at

� (�, �) = �2�Γ (1 + 2�)
∞∑
�=0

���Γ (1 + ��) = �2�Γ (1 + 2�)"� (��) .
(25)

Example 3. Let us consider the following wave equation on
Cantor sets:

�2�� (�, �) − �2�Γ (1 + 2�) ⋅ �2�� (�, �) = 0, 0 < � ≤ 1 (26)

with the initial condition

� (�, 0) = ��Γ (1 + �) . (27)

In view of (14), we obtain

�i+2 (�) = �2�Γ (1 + 2�)
 2��� (�) �2� ,

�0 (�) = � (�, 0) = ��Γ (1 + �) ,
��+2 (�) = �2�Γ (1 + 2�)  

2��� (�) x2� ,
�1 (�) = �(�)� (�, 0) = 1.

(28)

Hence, using the relations (29), the recursive calculations
yield

�0 (�) = ��Γ (1 + �) ,
�1 (�) = 1,

(29)

�2 (�) = 0,
�3 (�) = 0,
�4 (�) = 0,

...

(30)

and so on.
Finally, we obtain

� (�, �) = ��Γ (1 + �) + �2�Γ (1 + 2�) . (31)

Example 4. Let us consider the wave equation on Cantor sets
[26, 30]

�2�� (�, �) − cu2�� (�, �) = 0, 0 < � ≤ 1, (32)

where c is a constant.
	e initial condition is

� (�, 0) = "� (��) . (33)

By using (14) we have

��+2 (�) = # 2��� (�) �2� ,
�0 (�) = � (�, 0) = "� (��) ,

��+2 (�) = # 2��� (�) �2� ,
�0 (�) = �(�)� (�, 0) = "� (��) .

(34)

	en, through the iterative relations (35), we have

�0 (�) = "� (��) ,
�1 (�) = "� (��) , (35)

�2 (�) = #"� (��) ,
�3 (�) = #"� (��) ,
�4 (�) = #2"� (��) ,

...

(36)
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	erefore, we obtain

� (�, �) = "� (��) ∞∑
�=0
#� �2��Γ (1 + 2��)

+ "� (��) ∞∑
�=0
#� �(2�+1)�Γ (1 + (2� + 1) �)

= "� (��) [cosh� (#��) + sin� (#��)] ,

(37)

where

cosh� (��) = ∞∑
�=0

�2��Γ (1 + 2��) ,

sinh� (��) = ∞∑
�=0

�(2�+1)�Γ (1 + (2� + 1) �) .
(38)

For more details concerning (38), we refer to [26–28].

4. Conclusions

In this work, the local fractional series expansion method
is demonstrated as an e
ective method for solutions of a
wide class of problems. Analytical solutions of the wave and
di
usion equations on Cantor sets involving local fractional
derivatives are successfully developed by recurrence relations
resulting in convergent series solutions. In this context, the
suggested method is a potential tool for development of
approximate solutions of local fractional di
erential equa-
tions with fractal initial value conditions, which, of course,
draws new problems beyond the scope of the present work.
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