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Local fractional derivatives were investigated intensively during the last few years. The coupling method of Sumudu transform and
local fractional calculus (called as the local fractional Sumudu transform) was suggested in this paper. The presented method is
applied to find the nondifferentiable analytical solutions for initial value problems with local fractional derivative. The obtained
results are given to show the advantages.

1. Introduction

Fractals are sets and their topological dimension exceeds
the fractal dimensions. Mathematical techniques on fractal
sets are presented (see, e.g., [1–4]). Nonlocal fractional
derivative has many applications in fractional dynamical
systems having memory properties. Fractional calculus has
been applied to the phenomena with fractal structure [5–
12]. Because of the limit of fractional calculus, the fractal
calculus as a framework for themodel of anomalous diffusion
[13–16] had been constructed. The Newtonian mechanics,
Maxwell’s equations, and Hamiltonian mechanics on fractal
sets [17–19] were generalized. The alternative definitions of
calculus on fractal sets had been suggested in [20, 21] and
the systems of Navier-Stokes equations on Cantor sets had
been studied in [22]. Maxwell’s equations on Cantor sets
with local fractional vector calculus had been considered
[23]. The local fractional Fourier analysis had been adapted

to find Heisenberg uncertainty principle [24]. A family of
local fractional Fredholm andVolterra integral equations was
investigated in [25]. Local fractional variational iteration and
decomposition methods for wave equation on Cantor sets
were reported in [26].The local fractional Laplace transforms
were developed in [27–30].

The Sumudu transforms (ST) had been considered for
application to solve differential equations and to deal with
control engineering [31–37]. The aims of this paper are
to couple the Sumudu transforms and the local fractional
calculus (LFC) and to give some illustrative examples in order
to show the advantages.

The structures of the paper are as follows. In Section 2,
the local fractional derivatives and integrals are presented. In
Section 3, the notions and properties of local fractional
Sumudu transform are proposed. In Section 4, some exam-
ples for initial value problems are shown. Finally, the conclu-
sions are given in Section 5.
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2. Local Fractional Calculus and Polynomial
Functions on Cantor Sets

In this section, we give the concepts of local fractional deriva-
tives and integrals and polynomial functions on Cantor sets.

Definition 1 (see [20, 21, 24–26]). Let the function 𝑓(𝑥) ∈
𝐶
𝛼
(𝑎, 𝑏), if there are

𝑓 (𝑥) − 𝑓 (𝑥
0
)
 < 𝜀𝛼, 0 < 𝛼 ≤ 1, (1)

where |𝑥 − 𝑥
0
| < 𝛿, for 𝜀 > 0 and 𝜀 ∈ 𝑅.

Definition 2 (see [20, 21, 24]). Let 𝑓(𝑥) ∈ 𝐶
𝛼
(𝑎, 𝑏). The local

fractional derivative of 𝑓(𝑥) of order 𝛼 in the interval [𝑎, 𝑏]
is defined as

𝑑𝛼𝑓 (𝑥
0
)

𝑑𝑥𝛼
=
Δ𝛼 (𝑓 (𝑥) − 𝑓 (𝑥

0
))

(𝑥 − 𝑥
0
)
𝛼

, (2)

where

Δ𝛼 (𝑓 (𝑥) − 𝑓 (𝑥
0
)) ≅ Γ (1 + 𝛼) [𝑓 (𝑥) − 𝑓 (𝑥

0
)] . (3)

The local fractional partial differential operator of order 𝛼
(0 < 𝛼 ≤ 1) was given by [20, 21]

𝜕𝛼

𝜕𝑡𝛼
𝑢 (𝑥
0
, 𝑡) =

Δ𝛼 (𝑢 (𝑥
0
, 𝑡) − 𝑢 (𝑥

0
, 𝑡
0
))

(𝑡 − 𝑡
0
)
𝛼

, (4)

where

Δ𝛼 (𝑢 (𝑥
0
, 𝑡) − 𝑢 (𝑥

0
, 𝑡
0
)) ≅ Γ (1 + 𝛼) [𝑢 (𝑥

0
, 𝑡) − 𝑢 (𝑥

0
, 𝑡
0
)] .
(5)

Definition 3 (see [20, 21, 24–26]). Let 𝑓(𝑥) ∈ 𝐶
𝛼
[𝑎, 𝑏]. The

local fractional integral of 𝑓(𝑥) of order 𝛼 in the interval
[𝑎, 𝑏] is defined as

𝑎
𝐼(𝛼)
𝑏

𝑓 (𝑥) =
1

Γ (1 + 𝛼)
∫
𝑏

𝑎

𝑓 (𝑡) (𝑑𝑡)
𝛼

=
1

Γ (1 + 𝛼)
lim
Δ𝑡→0

𝑗=𝑁−1

∑
𝑗=0

𝑓 (𝑡
𝑗
) (Δ𝑡
𝑗
)
𝛼

,

(6)

where the partitions of the interval [𝑎, 𝑏] are denoted
as (𝑡
𝑗
, 𝑡
𝑗+1

), 𝑗 = 0, . . . , 𝑁 − 1, 𝑡
0

= 𝑎, and 𝑡
𝑁

= 𝑏 with
Δ𝑡
𝑗
= 𝑡
𝑗+1

− 𝑡
𝑗
and Δ𝑡 = max{Δ𝑡

0
, Δ𝑡
1
, Δ𝑡
𝑗
, . . .}.

Theorem 4 (local fractional Taylor’ theorem (see [20, 21])).
Suppose that 𝑓((𝑘+1)𝛼)(𝑥) ∈ 𝐶

𝛼
(𝑎, 𝑏), for 𝑘 = 0, 1, . . . , 𝑛 and

0 < 𝛼 ≤ 1. Then, one has

𝑓 (𝑥) =
𝑛

∑
𝑘=0

𝑓(𝑘𝛼) (𝑥
0
)

Γ (1 + 𝑘𝛼)
(𝑥 − 𝑥

0
)
𝑘𝛼

+
𝑓((𝑛+1)𝛼) (𝜉)

Γ (1 + (𝑛 + 1) 𝛼)
(𝑥 − 𝑥

0
)
(𝑛+1)𝛼

(7)

with 𝑎 < 𝑥
0
< 𝜉 < 𝑥 < 𝑏, ∀𝑥 ∈ (𝑎, 𝑏), where

𝑓((𝑘+1)𝛼) (𝑥) =

𝑘+1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝐷
𝑥

(𝛼) . . . 𝐷
𝑥

(𝛼) 𝑓 (𝑥) .
(8)

Proof (see [20, 21]). Local fractional Mc-Laurin’s series of the
Mittag-Leffler functions on Cantor sets is given by [20, 21]

𝐸
𝛼
(𝑥𝛼) =

∞

∑
𝑘=0

𝑥𝛼𝑘

Γ (1 + 𝑘𝛼)
, 𝑥 ∈ 𝑅, 0 < 𝛼 ≤ 1, (9)

and local fractional Mc-Laurin’s series of the Mittag-Leffler
functions on Cantor sets with the parameter 𝜁 reads as
follows:

𝐸
𝛼
(𝜁𝛼𝑥𝛼) =

∞

∑
𝑘=0

𝜁𝑘𝛼𝑥𝛼𝑘

Γ (1 + 𝑘𝛼)
, 𝑥 ∈ 𝑅, 0 < 𝛼 ≤ 1. (10)

As generalizations of (9) and (10), we have

𝑓 (𝑥) =
∞

∑
𝑘=0

𝑎
𝑘
𝑥𝛼𝑘, (11)

where 𝑎
𝑘
(𝑘 = 0, 1, 2, . . . , 𝑛) are coefficients of the generalized

polynomial function on Cantor sets.
Making use of (10), we get

𝐸
𝛼
(𝑖𝛼𝑥𝛼) =

∞

∑
𝑘=0

𝑖𝑘𝛼𝑥𝛼𝑘

Γ (1 + 𝑘𝛼)
, (12)

where 𝑖𝛼 is the imaginary unit with 𝐸
𝛼
(𝑖𝛼(2𝜋)𝛼) = 1.

Let us consider the polynomial function on Cantor sets in
the form

𝑓 (𝑥) =
∞

∑
𝑘=0

𝑖𝛼𝑘𝑥𝛼𝑘, (13)

where |𝑥| < 1.
Hence, we have the closed form of (13) as follows:

𝑓 (𝑥) =
1

1 − 𝑖𝛼𝑥𝛼
. (14)

Definition 5. The local fractional Laplace transform of 𝑓(𝑥)
of order 𝛼 is defined as [27–30]

𝐿
𝛼
{𝑓 (𝑥)} = 𝑓𝐿,𝛼

𝑠
(𝑠)

=
1

Γ (1 + 𝛼)
∫
∞

0

𝐸
𝛼
(−𝑠𝛼𝑥𝛼) 𝑓 (𝑥) (𝑑𝑥)

𝛼.
(15)

If 𝐹
𝛼
{𝑓(𝑥)} ≡ 𝑓𝐹,𝛼

𝜔
(𝜔), the inverse formula of (42) is defined

as [27–30]

𝑓 (𝑥) = 𝐿−1
𝛼
{𝑓𝐿,𝛼
𝑠

(𝑠)}

=
1

(2𝜋)𝛼
∫
𝛽+𝑖∞

𝛽−𝑖∞

𝐸
𝛼
(𝑠𝛼𝑥𝛼) 𝑓𝐿,𝛼

𝑠
(𝑠) (𝑑𝑠)

𝛼,
(16)

where 𝑓(𝑥) is local fractional continuous, 𝑠𝛼 = 𝛽𝛼 + 𝑖𝛼∞𝛼,
and Re(𝑠) = 𝛽 > 0.
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Theorem 6 (see [21]). If 𝐿
𝛼
{𝑓(𝑥)} = 𝑓𝐿,𝛼

𝑠
(𝑠), then one has

𝐿
𝛼
{𝑓(𝛼) (𝑥)} = 𝑠𝛼𝐿

𝛼
{𝑓 (𝑥)} − 𝑓 (0) . (17)

Proof. See [21].

Theorem 7 (see [21]). If 𝐿
𝛼
{𝑓(𝑥)} = 𝑓𝐿,𝛼

𝑠
(𝑠), then one has

𝐿
𝛼
{
0
𝐼
(𝛼)

𝑥
𝑓 (𝑥)} =

1

𝑠𝛼
𝐿
𝛼
{𝑓 (𝑥)} . (18)

Proof. See [21].

Theorem 8 (see [21]). If 𝐿
𝛼
{𝑓
1
(𝑥)} = 𝑓𝐿,𝛼

𝑠,1
(𝑠) and

𝐿
𝛼
{𝑓
2
(𝑥)} = 𝑓𝐿,𝛼

𝑠,2
(𝑠), then one has

𝐿
𝛼
{𝑓
1
(𝑥) ∗ 𝑓

2
(𝑥)} = 𝑓𝐿,𝛼

𝑠,1
(𝑠) 𝑓
𝐿,𝛼

𝑠,2
(𝑠) , (19)

where

𝑓
1
(𝑥) ∗ 𝑓

2
(𝑥) =

1

Γ (1 + 𝛼)
∫
∞

0

𝑓
1
(𝑡) 𝑓
2
(𝑥 − 𝑡) (𝑑𝑡)

𝛼. (20)

Proof. See [21].

3. Local Fractional Sumudu Transform

In this section, we derive the local fractional Sumudu trans-
form (LFST) and some properties are discussed.

If there is a new transform operator LFS
𝛼
: 𝑓(𝑥) → 𝐹(𝑢),

namely,

LFS
𝛼
{𝑓 (𝑥)} = LFS

𝛼
{
∞

∑
𝑘=0

𝑎
𝑘
𝑥𝛼𝑘} =

∞

∑
𝑘=0

Γ (1 + 𝑘𝛼) 𝑎
𝑘
𝑧𝛼𝑘.

(21)

As typical examples, we have

LFS
𝛼
{𝐸
𝛼
(𝑖𝛼𝑥𝛼)} =

∞

∑
𝑘=0

𝑖𝛼𝑘𝑧𝛼𝑘,

LFS
𝛼
{

𝑥𝛼

Γ (1 + 𝛼)
} = 𝑧𝛼.

(22)

As the generalized result, we give the following definition.

Definition 9. The local fractional Sumudu transform of 𝑓(𝑥)
of order 𝛼 is defined as

LFS
𝛼
{𝑓 (𝑥)}

= 𝐹
𝛼
(𝑧) =:

1

Γ (1 + 𝛼)

× ∫
∞

0

𝐸
𝛼
(−𝑧−𝛼𝑥𝛼)

𝑓 (𝑥)

𝑧𝛼
(𝑑𝑥)
𝛼, 0 < 𝛼 ≤ 1.

(23)

Following (23), its inverse formula is defined as

LFS−1
𝛼
{𝐹
𝛼
(𝑧)} = 𝑓 (𝑥) , 0 < 𝛼 ≤ 1. (24)

Theorem 10 (linearity). If LFS
𝛼
{𝑓(𝑥)} = 𝐹

𝛼
(𝑧) and

LFS
𝛼
{𝑔(𝑥)} = 𝐺

𝛼
(𝑧), then one has

LFS
𝛼
{𝑓 (𝑥) + 𝑔 (𝑥)} = 𝐹

𝛼
(𝑧) + 𝐺

𝛼
(𝑧) . (25)

Proof. As a direct result of the definition of local fractional
Sumudu transform, we get the following result.

Theorem 11 (local fractional Laplace-Sumudu duality). If
𝐿
𝛼
{𝑓(𝑥)} = 𝑓𝐿,𝛼

𝑠
(𝑠) and LFS

𝛼
{𝑓(𝑥)} = 𝐹

𝛼
(𝑧), then one has

LFS
𝛼
{𝑓 (𝑥)} =

1

𝑧𝛼
𝐿
𝛼
{𝑓(

1

𝑥
)} , (26)

𝐿
𝛼
{𝑓 (𝑥)} =

LFS
𝛼
[𝑓 (1/𝑠)]

𝑠𝛼
. (27)

Proof. Definitions of the local fractional Sumudu and Laplace
transforms directly give the results.

Theorem 12 (local fractional Sumudu transform of local
fractional derivative). If LFS

𝛼
{𝑓(𝑥)} = 𝐹

𝛼
(𝑧), then one has

LFS
𝛼
{
𝑑𝛼𝑓 (𝑥)

𝑑𝑥𝛼
} =

𝐹
𝛼
(𝑧) − 𝑓 (0)

𝑧𝛼
. (28)

Proof. From (17) and (26), the local fractional Sumudu
transform of the local fractional derivative of 𝑓(𝑥) read as

LFS
𝛼
{𝐻 (𝑥)} =

𝐿
𝛼
{𝐻 (1/𝑥)}

𝑧𝛼

=
𝐿
𝛼
{𝑓 (1/𝑥)} /𝑧𝛼 − 𝑓 (0)

𝑧𝛼
=
𝐹
𝛼
(𝑧) − 𝑓 (0)

𝑧𝛼
,

(29)

where

𝐻(𝑥) =
𝑑𝛼𝑓 (𝑥)

𝑑𝑥𝛼
. (30)

This completes the proof.

As the direct result of (28), we have the following results.
If LFS

𝛼
{𝑓(𝑥)} = 𝐹

𝛼
(𝑧), then we have

LFS
𝛼
{
𝑑𝑛𝛼𝑓 (𝑥)

𝑑𝑥𝑛𝛼
} =

1

𝑧𝑛𝛼
[𝐹
𝛼
(𝑧) −
𝑛−1

∑
𝑘=0

𝑧𝑘𝛼𝑓(𝑘𝛼) (0)] . (31)

When 𝑛 = 2, from (31), we get

LFS
𝛼
{
𝑑2𝛼𝑓 (𝑥)

𝑑𝑥2𝛼
} =

1

𝑧2𝛼
[𝐹
𝛼
(𝑧) − 𝑓 (0) − 𝑧𝛼𝑓(𝛼) (0)] .

(32)

Theorem 13 (local fractional Sumudu transform of local
fractional derivative). If LFS

𝛼
{𝑓(𝑥)} = 𝐹

𝛼
(𝑧), then one has

LFS
𝛼
{
0
𝐼(𝛼)
𝑥

𝑓 (𝑥)} = 𝑧𝛼𝐹
𝛼
(𝑧) . (33)
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Table 1: Local fractional Sumudu transform of special functions.

Mathematical operation in the 𝑡-domain Corresponding operation in the 𝑧-domain Remarks

𝑎 𝑎 𝑎 is a constant
𝑥𝛼

Γ (1 + 𝛼)
𝑧𝛼

∞

∑
𝑘=0

𝑎
𝑘
𝑥𝛼𝑘

∞

∑
𝑘=0

Γ (1 + 𝑘𝛼) 𝑎
𝑘
𝑧𝛼𝑘

𝐸
𝛼
(𝑎𝑥𝛼)

1

1 − 𝑎𝑧𝛼
𝐸
𝛼
(𝑥𝛼) =

∞

∑
𝑘=0

𝑥𝛼𝑘

Γ (1 + 𝑘𝛼)

sin
𝛼
(𝑎𝑥𝛼)

𝑎𝑧𝛼

1 + 𝑎2𝑧2𝛼
sin
𝛼
𝑥𝛼 =

∞

∑
𝑘=0

(−1)
𝑘

𝑥𝛼(2𝑘+1)

Γ [1 + 𝛼 (2𝑘 + 1)]

cos
𝛼
(𝑎𝑥𝛼)

1

1 + 𝑎2𝑧2𝛼
cos
𝛼
𝑥𝛼 =

∞

∑
𝑘=0

(−1)
𝑘

𝑥2𝛼𝑘

Γ (1 + 2𝛼𝑘)

sinh
𝛼
(𝑎𝑥𝛼)

𝑎𝑧𝛼

1 − 𝑎2𝑧2𝛼
sinh
𝛼
𝑥𝛼 =

∞

∑
𝑘=0

𝑥𝛼(2𝑘+1)

Γ [1 + 𝛼 (2𝑘 + 1)]

cosh
𝛼
(𝑎𝑥𝛼)

1

1 − 𝑎2𝑧2𝛼
cosh
𝛼
𝑥𝛼 =

∞

∑
𝑘=0

𝑥2𝛼𝑘

Γ (1 + 2𝛼𝑘)

Proof. From (18) and (26), we have

𝐿
𝛼
{
0
𝐼(𝛼)
𝑥

𝑓 (𝑥)} =
1

𝑠𝛼
𝐿
𝛼
{𝑓 (𝑥)} (34)

so that

LFS
𝛼
{𝐵 (𝑥)} =

𝐿
𝛼
{𝐵 (1/𝑥)}

𝑧𝛼
= 𝐿
𝛼
{𝑓(

1

𝑥
)} = 𝑧𝛼𝐹

𝛼
(𝑧) ,

(35)
where

𝐵 (𝑥) =
0
𝐼(𝛼)
𝑥

𝑓 (𝑥) . (36)
This completes the proof.

Theorem 14 (local fractional convolution). If LFS
𝛼
{𝑓(𝑥)} =

𝐹
𝛼
(𝑧) and LFS

𝛼
{𝑔(𝑥)} = 𝐺

𝛼
(𝑧), then one has

LFS
𝛼
{𝑓 (𝑥) ∗ 𝑔 (𝑥)} = 𝑧𝛼𝐹

𝛼
(𝑧) 𝐺
𝛼
(𝑧) , (37)

where

𝑓 (𝑥) ∗ 𝑔 (𝑥) =
1

Γ (1 + 𝛼)
∫
∞

0

𝑓 (𝑡) 𝑔 (𝑥 − 𝑡) (𝑑𝑡)
𝛼. (38)

Proof. From (19) and (26), we have

LFS
𝛼
{𝑓 (𝑥) ∗ 𝑔 (𝑥)} =

𝐿
𝛼
{𝑓 (𝑥) ∗ 𝑔 (𝑥)}

𝑧𝛼

=
𝐿
𝛼
{𝑓 (1/𝑥)} 𝐿

𝛼
{𝑔 (1/𝑥)}

𝑧𝛼

= 𝑧𝛼𝐹
𝛼
(𝑧) 𝐺
𝛼
(𝑧) ,

(39)

where

𝐹
𝛼
(𝑧) =

𝐿
𝛼
{𝑓 (1/𝑥)}

𝑧𝛼
,

𝐺
𝛼
(𝑧) =

𝐿
𝛼
{𝑔 (1/𝑥)}

𝑧𝛼
.

(40)

This completes the proof.

In the following, we present some of the basic formulas
which are in Table 1.

The above results are easily obtained by using local
fractional Mc-Laurin’s series of special functions.

4. Illustrative Examples

In this section,we give applications of the LFST to initial value
problems.

Example 1. Let us consider the following initial value prob-
lems:

𝑑𝛼𝑓 (𝑥)

𝑑𝑥𝛼
= 𝑓 (𝑥) , (41)

subject to the initial value condition

𝑓 (0) = 5. (42)

Taking the local fractional Sumudu transform gives

𝐹
𝛼
(𝑧) − 𝑓 (0)

𝑧𝛼
= 𝐹
𝛼
(𝑧) , (43)

where

LFS
𝛼
{𝑓 (𝑥)} = 𝐹

𝛼
(𝑧) . (44)

Making use of (43), we obtain

𝐹
𝛼
(𝑧) =

5

1 − 𝑧𝛼
. (45)

Hence, from (45), we get

𝑓 (𝑥) = 5𝐸
𝛼
(𝑥𝛼) (46)

and we draw its graphs as shown in Figure 1.
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Figure 1: The plot of nondifferentiable solution of (41) with the
parameter 𝛼 = ln 2/ ln 3.

Example 2. We consider the following initial value problems:

𝑑𝛼𝑓 (𝑥)

𝑑𝑥𝛼
+ 𝑓 (𝑥) =

𝑥𝛼

Γ (1 + 𝛼)
(47)

and the initial boundary value reads as

𝑓 (0) = −1. (48)

Taking the local fractional Sumudu transform, from (47) and
(48), we have

𝐹
𝛼
(𝑧) − 𝑓 (0)

𝑧𝛼
+ 𝐹
𝛼
(𝑧) = 𝑧𝛼 (49)

so that

𝐹
𝛼
(𝑧) = 𝑧𝛼 − 1. (50)

Therefore, the nondifferentiable solution of (47) is

𝑓 (𝑥) =
𝑥𝛼

Γ (1 + 𝛼)
− 1 (51)

and we draw its graphs as shown in Figure 2.

Example 3. We give the following initial value problems:

𝑑2𝛼𝑓 (𝑥)

𝑑𝑥2𝛼
= 𝑓 (𝑥) , (52)

together with the initial value conditions

𝑓(𝛼) (0) = 0,

𝑓 (0) = 2.
(53)

Taking the local fractional Sumudu transform, from (52), we
obtain

1

𝑧2𝛼
[𝐹
𝛼
(𝑧) − 𝑓 (0) − 𝑧𝛼𝑓(𝛼) (0)] = 𝐹

𝛼
(𝑧) , (54)
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Figure 2: The plot of nondifferentiable solution of (47) with the
parameter 𝛼 = ln 2/ ln 3.
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Figure 3: The plot of nondifferentiable solution of (52) with the
parameter 𝛼 = ln 2/ ln 3.

which leads to

𝐹
𝛼
(𝑧) =

𝑓 (0) + 𝑧𝛼𝑓(𝛼) (0)

1 − 𝑧2𝛼
=

2

1 − 𝑧2𝛼
. (55)

Therefore, form (55), we give the nondifferentiable solution
of (52)

𝑓 (𝑥) = 2cosh
𝛼
(𝑥𝛼) , (56)

and we draw its graphs as shown in Figure 3.

5. Conclusions

In this work, we proposed the local fractional Sumudu
transformbased on the local fractional calculus and its results
were discussed. Applications to initial value problems were
presented and the nondifferentiable solutions are obtained. It
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is shown that it is an alternative method of local fractional
Laplace transform to solve a class of local fractional differen-
tiable equations.
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