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We perform a comparison between the fractional iteration and decomposition methods applied to the wave equation on Cantor
set. 
e operators are taken in the local sense. 
e results illustrate the signi�cant features of the two methods which are both very
e�ective and straightforward for solving the di�erential equations with local fractional derivative.

1. Introduction

Many problems of physics and engineering are expressed by
ordinary and partial di�erential equations, which are termed
boundary value problems. We can mention, for example,
the wave, the Laplace, the Klein-Gordon, the Schrodinger’s,
the telegraph, the Advection, the Burgers, the KdV, the
Boussinesq, and the Fisher equations and others [1].

Recently, the fractional calculus theory was recognized to
be a good tool for modeling complex problems demonstrat-
ing its applicability in numerical scienti�c disciplines. Bound-
ary value problems for the fractional di�erential equations
have been the focus of several studies due to their frequent
appearance in various areas, such as fractional di�usion

and wave [2], fractional telegraph [3], fractional KdV [4],
fractional Schrödinger [5], fractional evolution [6], fractional
Navier-Stokes [7], fractionalHeisenberg [8], fractional Klein-
Gordon [9], and fractional Fisher equations [10].

Several analytical and numerical techniques were suc-
cessfully applied to deal with di�erential equations, frac-
tional di�erential equations, and local fractional di�erential
equations (see, e.g., [1–36] and the references therein). 
e
techniques include the heat-balance integral [11], the frac-
tional Fourier [12], the fractional Laplace transform [12], the
harmonic wavelet [13, 14], the local fractional Fourier and
Laplace transform [15], local fractional variational iteration
[16, 17], the local fractional decomposition [18], and the
generalized local fractional Fourier transform [19] methods.
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Recently, the wave equation on Cantor sets (local frac-
tional wave equation) was given by [35]

�2�� (�, �)
��2� − �2� �2�� (�, �)

��2� = 0, (1)

where the operators are local fractional ones [16–19, 35, 36].
Following (1), a wave equation on Cantor sets was

proposed as follows [36]:

�2�� (�, �)
��2� − �2�

Γ (1 + 2�)
�2�� (�, �)

��2� = 0, (2)

where �(�, �) is a fractal wave function.
In this paper, our purpose is to compare the local

fractional variational iteration and decomposition methods
for solving the local fractional di�erential equations. For
illustrating the concepts we adopt one example for solving the
wave equation on Cantor sets with local fractional operator.

Bearing these ideas in mind, the paper is organized as
follows. In Section 2, we present basic de�nitions and provide
some properties of local fractional derivative and integration.
In Section 3, we introduce the local fractional variational
iteration and the decomposition methods. In Section 4, we
discuss one application. Finally, in Section 5 we outline the
main conclusions.

2. Mathematical Tools

We recall in this section the notations and some properties of
the local fractional operators [15–19, 35, 36].

Denition 1 (see [15–19, 35, 36]). 
e function 	(�) is local
fractional continuous, if it is valid for





	 (�) − 	 (�0)



 < �, (3)

where |� − �0| < �, for  > 0 and  ∈ �.
We notice that there are existence conditions of local

fractional continuities that operating functions are right-
hand and le�-hand local fractional continuity. Meanwhile,
the right-hand local fractional continuity is equal to its le�-
hand local fractional continuity. For more details, see [35].

Following (4), we have [15–19, 35, 36]

��



� − �0



� ≤ 



	 (�) − 	 (�0)



 ≤ ��



� − �0



� (4)

with |� − �0| < �, for , � > 0 and , �, �, � ∈ �.
For a fractal set �, there is a fractal measure [35]

�� (� ∩ (�, �0)) = (� − �0)�, (5)

where 	(�) presents a bi-Lipschitz mapping with fractal
dimension � and�� denotes a Hausdor� dimension.

We verify that there is a measure

�1 (� ∩ (�, �0)) = � − �0 (6)

in the case of � = 1 and 	(�) is a Lipschitz mapping. If � is

a Cantor set, we have �ln 2/ ln 3(� ∩ (�, �0)) = (� − �0)ln 2/ ln 3
with � = ln 2/ ln 3.

Denition 2 (see [15–19, 35, 36]). 
e local fractional deriva-
tive of 	(�) at � = �0 is de�ned as [16–20]

	(�) (�0) = ��	 (�)
���









�=�0 = lim�→�0

Δ� (	 (�) − 	 (�0))
(� − �0)� , (7)

where

Δ� (	 (�) − 	 (�0)) ≅ Γ (1 + �) Δ (	 (�) − 	 (�0)) . (8)

We �nd that the existence condition for local fractional
derivative of 	(�) is that the right-hand local fractional
derivative is equal to the le�-hand local fractional derivative
(see, e.g., [16, 35] and the references therein).

Denition 3 (see [15–19, 35, 36]). A partition of the interval[�, �] is denoted as (��, ��+1), � = 0, . . . , � − 1, �0 = �, and�� = � with Δ�� = ��+1 − �� and Δ� = max{Δ�0, Δ�1, Δ��, . . .}.
Local fractional integral of 	(�) in the interval [�, �] is given
by

���(�) 	 (�) = 1
Γ (1 + �) ∫

�

�
	 (�) (��)�

= 1
Γ (1 + �) lim

Δ
→0

�=�−1∑
�=0

	 (��) (Δ��)�.
(9)

If the functions are local fractional continuous then the
local fractional derivatives and integrals exist. 
at is to
say, operating functions have nondi�erentiable and fractal
properties (see [35] and the references therein).

Some properties of local fractional derivative and inte-
grals are given in [35].

3. Analytical Methods

In order to illustrate two analytical methods, we investigate
the nonlinear local fractional equation as follows:

"(�)� � + ��� = 0, (10)

where "(�)� is linear local fractional operators, respectively,
with # = 1, 2 and �� is linear local fractional operators of
order less than "(�)� .
3.1. Local Fractional Variational Iteration Method. 
e local
fractional variational iteration algorithm is given by [16, 17]
on the line of the formalism suggested in [35]

��+1 (�) = �� (�) + 1
Γ (1 + �)

× ∫

0

$�
Γ (1 + �) {"(�)� �� (&) + ���� (&)} (�&)�.

(11)

Here, we can construct a correction functional as follows [16,
17]:

��+1 (�) = �� (�) + 1
Γ (1 + �)

× ∫

0

$�
Γ (1 + �) {"(�)� �� (&) + ���̃� (&)} (�&)�,

(12)
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where �̃� is considered as a restricted local fractional varia-
tion; that is, ���̃� = 0 (for more details, see [35]).

For # = 2, we have
$� = (& − �)�

Γ (1 + �) , (13)

so that iteration is expressed as

��+1 (�) = �� (�) + 1
Γ (1 + �)

× ∫

0

(& − �)�
Γ (1 + �) {"(�)� �� (&) + ���� (&)} (�&)�.

(14)

Finally, the solution is

� (�) = lim�→∞�� (�) . (15)

3.2. Local Fractional Decomposition Method. When "(�)� in
(10) is a local fractional di�erential operator of order 2�, we
denote it as

"(�)� = "(2�)�� = �2�
��2� ,

��� (�) = ��
��� � (�) + 	 (�) .

(16)

By de�ning the #-fold local fractional integral operator

"(−2)� -(&) = 0��(�) 0��(�)-(&) (17)

we get

"(−2)� "(2)� � (&) = "(−2)� ��� (&) . (18)


us,

� (&) = 4 (�) + "(−2)� ��� (&) , (19)

where the term 4(�) is to be determined from the fractal
initial conditions.


erefore, we get the iterative formula as follows:

� (�) = �0 (�) + "(−2)� ��� (&) , (20)

with �0(�) = 4(�).
Hence, for # ≥ 0, we have the following recurrence

relationship:

��+1 (�) = "(−2)� ���� (&) ,
�0 (�) = 4 (�) . (21)

Finally, the solution can be constructed as

� (�) = lim�→∞6� (�) = lim�→∞

∞∑
�=0

�� (�) . (22)

For more details, see [18].

4. An Illustrative Example

In this section one example for wave equation is presented in
order to demonstrate the simplicity and the e�ciency of the
above methods.

In (2), we consider the following initial and boundary
conditions:

��� (�, 0)
��� = 0, � (�, 0) = �2�

Γ (1 + 2�) . (23)

Using (14) we have the iterative formula

��+1 (�, �)
= �� (�, �) + 1

Γ (1 + �) ∫



0

(& − �)�
Γ (1 + �)

�2��� (�, &)�&2� (�&)�

− 1
Γ (1 + �) ∫




0

(& − �)�
Γ (1 + �)

�2�
Γ (1 + 2�)

�2��� (�, &)��2� (�&)�,
(24)

where the initial value is given by

�0 (�, �) = �2�
Γ (1 + 2�) . (25)


us, a�er computing (23) we obtain

�1 (�, �)
= �0 (�, �) + 1

Γ (1 + �) ∫



0

(& − �)�
Γ (1 + �)

�2��0 (�, &)�&2� (�&)�

− 1
Γ (1 + �) ∫




0

(& − �)�
Γ (1 + �)

�2�
Γ (1 + 2�)

�2��0 (�, &)��2� (�&)�

= �0 (�, �) + 1
Γ (1 + �) ∫




0

(& − �)�
Γ (1 + �) {−

�2�
Γ (1 + 2�)} (�&)�

= �2�
Γ (1 + 2�) (1 + �2�

Γ (1 + 2�)) ,
�2 (�, �)
= �1 (�, �) + 1

Γ (1 + �) ∫



0

(& − �)�
Γ (1 + �)

�2��1 (�, &)�&2� (�&)�

− 1
Γ (1 + �) ∫




0

(& − �)�
Γ (1 + �)

�2�
Γ (1 + 2�)

�2��1 (�, &)��2� (�&)�

= �1 (�, �) + 1
Γ (1 + �)

× ∫

0

(& − �)�
Γ (1 + �) {−

�2�
Γ (1 + 2�)

&2�
Γ (1 + 2�)} (�&)�

= �2�
Γ (1 + 2�) (1 + �2�

Γ (1 + 2�) + �4�
Γ (1 + 4�)) ,
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�3 (�, �)
= �2 (�, �) + 1

Γ (1 + �) ∫



0

(& − �)�
Γ (1 + �)

�2��2 (�, &)�&2� (�&)�

− 1
Γ (1 + �) ∫




0

(& − �)�
Γ (1 + �)

�2�
Γ (1 + 2�)

�2��2 (�, &)��2� (�&)�

= �2 (�, �) + 1
Γ (1 + �)

× ∫

0

(& − �)�
Γ (1 + �) {−

�2�
Γ (1 + 2�)

�4�
Γ (1 + 4�)} (�&)�

= �2�
Γ (1 + 2�)

3∑
=0

�2�
Γ (1 + 2?�) ,

�4 (�, �)
= �3 (�, �) + 1

Γ (1 + �) ∫



0

(& − �)�
Γ (1 + �)

�2��3 (�, &)�&2� (�&)�

− 1
Γ (1 + �) ∫




0

�2�
Γ (1 + 2�)

�2��3 (�, &)��2� (�&)�

= �3 (�, �) + 1
Γ (1 + �)

× ∫

0

(& − �)�
Γ (1 + �) {−

�2�
Γ (1 + 2�)

�6�
Γ (1 + 6�)} (�&)�

= �2�
Γ (1 + 2�)

4∑
=0

�2�
Γ (1 + 2?�) ,

...

(26)

�� (�, �)
= ��−1 (�, �) + 1

Γ (1 + �) ∫



0

(& − �)�
Γ (1 + �)

�2���−1 (�, &)�&2� (�&)�

− 1
Γ (1 + �)

× ∫

0

(& − �)�
Γ (1 + �)

�2�
Γ (1 + 2�)

�2���−1 (�, &)��2� (�&)�

= �2�
Γ (1 + 2�)

�∑
=0

�2�
Γ (1 + 2?�) .

(27)

Hence, from (27) we obtain the solution of (3) as

� (�) = lim�→∞�� (�) = �2�
Γ (1 + 2�)cosh� (��) . (28)

Here, from (21) we get

��+1 (�, �) = 0�
(�) 0�
(�) �2�
Γ (1 + 2�)

�2��� (�, &)��2� ,

�0 (�, �) = �2�
Γ (1 + 2�) .

(29)


erefore, from (29) we give the components as follows:

�0 (�, �) = �2�
Γ (1 + 2�) ,

�1 (�, �) = �2�
Γ (1 + 2�)

�2�
Γ (1 + 2�) ,

�2 (�, �) = �2�
Γ (1 + 2�)

�4�
Γ (1 + 4�) ,

�3 (�, �) = �2�
Γ (1 + 2�)

�3�
Γ (1 + 6�) ,

�4 (�, �) = �2�
Γ (1 + 2�)

�8�
Γ (1 + 8�) ,

...

�� (�, �) = �2�
Γ (1 + 2�)

�2��
Γ (1 + 2#�) .

(30)

Consequently, the exact solution is given by

� (�, �) = lim�→∞

∞∑
�=0

�� (�, �)

= lim�→∞

∞∑
�=0

�2�
Γ (1 + 2�)

�2��
Γ (1 + 2#�)

= �2�
Γ (1 + 2�)cosh� (��) ,

(31)

where

cosh� (��) =
∞∑
�=0

�2��
Γ (1 + 2#�) . (32)


e solution of (2) for � = ln 2/ ln 3 is depicted in Figure 1.

5. Conclusions

In this work, we developed a comparison between the
variational iteration method and the decomposition method
within local fractional operators. 
e two approaches con-
stitute e�cient tools to handle the approximation solutions
for di�erential equations on Cantor sets with local fractional
derivative. We notice that the fractional variational iteration
method gives the several successive approximate formulas
using the iteration of the correction local fractional func-
tional. However, the local fractional decomposition method
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Figure 1: Graph of �(�, �) for � = ln 2/ ln 3.

provides the components of the exact solution, which is local
fractional continuous function, where these components
are also local fractional continuous functions. Both the
variational iteration method and the decomposition method
within local fractional operators provide the solution in
successive components.
emethods are structured to get the
local fractional series solution, which is a nondi�erentiable
function.
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