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1 Introduction

M-theory compactified on compact G2-manifolds gives rise to 4d N = 1 gauge theories
coupled to gravity [1–8]. Favourably, these constructions involve purely geometric back-
grounds which, unlike other known construction of minimally supersymmetric 4d vacua,
need not be supplemented with additional data. The challenges in these constructions lie in
understanding the complicated geometry of G2-manifolds and their metric moduli spaces.
Further the list of smooth compact G2-manifolds [9–14] is short and contains no exam-
ples of singular compact G2-manifolds with the required codimension 4 and 7 singularities
necessary to engineer non-abelian gauge symmetries and chiral matter in 4d respectively.

The class of G2-manifolds referred to as twisted connected sum G2-manifolds gives a
landscape of roughly 106 compact geometries and have recently been studied, together with
their singular limits, in the physics literature [15–23]. The gauge theory sector of these
compactifications can be isolated and studied in local models of the geometry [21, 24, 25]
using techniques involving Higgs bundles and spectral covers previously fruitful in F-theory
model building [26–37]. Independently, local G2-manifolds have given key insights into the
physics at conical codimenion 7 singularities [4, 6, 38], dualities between 4d theories [5, 39–
41], confinement and domain wall theories in 4d [42–44] and more.

Semi-realistic field theories are engineered by local G2-manifolds X7 realizing an ADE
gauge group in 4d. These necessarily have a description in terms of an ALE fibration over
a supersymmetric 3-cycle M3

˜C2/ΓADE −֒→ X7 → M3 , (1.1)

and have been studied in [5, 6, 21, 24]. The 4d N = 1 gauge theory engineered by M-

theory on X7 can be derived in two steps. A reduction along the ALE fibers ˜C2/ΓADE

produces an effective 7d partially twisted supersymmetric Yang Mills theory on M3 ×R1,3

and subsequently compactifying this theory on M3 the 4d N = 1 gauge theory follows.
Amongst the 4d data the superpotential proves most challenging to derive. It only receives
contributions from Euclidean M2-branes instantons wrapped on supersymmetric 3-cycles
in X7. Contributions of single M2-brane instantons to the superpotential are computed
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in [45] but it is hard to gain insight into the global structure of these instantons directly
in M-theory. The effective 7d SYM remedies this situation by translating the data of the
ALE geometry (1.1) into a Higgs bundle with 3d base M3 and associated spectral cover.
This gives shape to the global structure of the ALE geometry at the cost of obscuring the
effects of the M2-brane instantons, which simply descend to non-perturbative physics of
the 7d SYM.

In [21, 24] these non-perturbative effects in 7d SYM were studied in the context of
a Higgs bundle with split spectral cover. Here it was found that the non-perturbative
effects, due to M2-brane instantons, which generate the quadratic terms of the superpoten-
tial can be understood and computed using Witten’s supersymmetric quantum mechanics
(SQM) [46]. More precisely, the gradient flow line instantons of the SQM were in corre-
spondence with some of the supersymmetric cycles in the ALE geometry X7. This proved
sufficient for computing the 4d spectrum and demonstrate its chirality. However, it re-
mained unclear how to interpret the supersymmetric cycles generating higher terms of the
superpotential in this SQM frame work and compute their non-perturbative contributions
in the effective 7d SYM. Similarly, the analysis did not apply to more general ALE fibra-
tions with non-split spectral covers. The reason for these limitations lies in the SQM only
ever encoding the information of a single sheet of the spectral cover. Both non-split spectral
covers, where the sheets are mixed by monodromy effects, and the non-perturbative effects
generating Yukawa couplings simultaneously involve multiple sheets of the spectral cover.

In this paper we present a colored N = (1, 1) SQM whose instantons are in one
to one correspondence with all non-perturbative effects of the 7d SYM, which in turn
originate from M2-brane instantons in M-theory on X7. We compute the non-perturbative
contributions to the superpotential of individual M2-brane instantons in the effective 7d
SYM and comment on the global structure of all such contributions. Further, we discuss
Higgs bundles over the 3d base M3 with non-split spectral covers, give explicit examples
and analyze the problem of zero-mode counting for these configurations.

This paper is structured as follows. In section 2 we establish notation and cover
background material on local G2-manifolds, partially twisted 7d SYM and the effective 4d
field theories these engineer. Extended discussions on the reviewed topics can be found
in [2, 7, 21, 24]. Section 3 concentrates on 3d Higgs bundles with non-split spectral covers.
Here we note their general structure and how a large class of such configurations follow
(implicitly) from TCS G2-manifolds. We also give an explicit class of examples and discuss
the topology of the sheets of such covers which function as the target space of the colored
SQM. In section 4 we introduce the colored SQM in all generality. In the presented form it
is applicable to the study of all BPS vacua of the 7d SYM, in particular vacua with flux, and
we discuss the perturbative ground states and flow tree instantons of the SQM. Section 5
then studies the colored SQM for split Higgs bundles which were the focus of [21, 24]. We
demonstrate how to understand the colored SQM as multiple interacting copies of Witten’s
SQM. Further we present the localization computation determining the contributions of
the Euclidean M2-brane instantons to the Yukawa couplings in 4d. In section 6 we rerun
the arguments from section 5 for non-split Higgs bundles focussing on the 4d spectrum.
We explain the consequence of the non-split cover in the 7d SYM, consider an explicit
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examples and determine their spectrum. Finally, in section 7 we give a brief summary
before ending with some concluding remarks in section 8.

2 M-theory on ALE-fibered G2-manifolds

At low energies M-theory on the non-compact G2-manifolds of (1.1) is well approximated
by a partially twisted 7d supersymmetric Yang-Mills theory on R1,3 ×M3. The geometry
of each ALE fiber is encoded in the background value of the Higgs field of the SYM theory
and the metric equations ensuring the G2-holonomy of the ALE fibration generalize to the
BPS equations of the gauge theory. These BPS equations read

iFA + [φ, φ] = 0 , dAφ = 0 , dA ∗ φ = 0 , (2.1)

where the connection A and the Higgs field φ are Lie algebra valued 1-forms on M3. These
equations are a 3d generalisation of Hitchin’s equations [21, 24, 47] and solved by complex
flat connections on M3 satisfying a gauge fixing constraint. Solutions to (2.1) are the
supersymmetric vacua of the partially twisted 7d SYM which fully determine 4d N = 1

gauge theory when compactified on M3.
Here we introduce ALE-fibered G2-manifolds and discuss their geometry. We expand

on the partially twisted 7d SYM they engineer in M-theory and the minimally supersym-
metric gauge theories these give rise to in 4d. Of particular interest to us are the 3-cycles
of the geometry which wrapped by M2-branes generate the 4d superpotential. These are
most favourably discussed in a spectral cover picture of the set-up which we introduce for
abelian solutions to the BPS system (2.1).

2.1 ALE-fibered G2-manifolds

We begin with a non-compact G2-manifold with ADE singularities supported along an
associative submanifold M3. Partial, minimal resolutions of the singularities lead to ALE-
fibered manifolds

˜C2/ΓADE −֒→ X7 → M3 . (2.2)

Each ALE fiber ˜C2/ΓADE is Hyperkähler with a triplet of Kähler forms ωi which vary
across the base M3. Whenever the space X7 admits a metric gij of special holonomy
Hol (X7, gij) = G2 there exists an induced 3-form Φ3 satisfying

dΦ3 = 0 , d ∗Φ3 Φ3 = 0 . (2.3)

For the ALE-fibered geometries (2.2) it can be constructed from the Hyperkähler triplet [2]
and given with respect to a locally flat frame on M3 by

Φ3 = dx1 ∧ dx2 ∧ dx3 + dxi ∧ ωi . (2.4)

For further discussion on G2 geometry we refer to [7, 48, 49].
The second homology group of a fully resolved ALE fiber is generated by a basis of

R 2-cycles σI ∈ H2( ˜C2/ΓADE) introduced by resolutions. Here the number R is the rank
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&I = 0
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,I,J,K

S3

&K = 0

Figure 1. The pictures show two supersymmetric 3-spheres S3 in the local G2-manifold X7 of (2.2).
In M-theory these are wrapped by Euclidean M2-brane instantons which contribute to the 4d
superpotential. The picture on the left shows a 3-sphere traced out by the 2-sphere σI along a path
in M3 connecting two fibers in which the cycle collapses. The picture on the right shows a 3-sphere
traced out in similar fashion by three linearly dependent 2-spheres σI,J,K .

of the corresponding Lie group GADE. The 2-cycles σI ∼= S2 are 2-spheres. Integrating
the G2 3-form Φ3 against the cycles σI in each fiber gives rise to R local 1-forms φI which
collect the Hyperkähler periods of the 2-cycle as its component functions

φI =

(∫

σI

ωi

)
dxi , I = 1, . . . , R . (2.5)

The vanishing locus of φI therefore correspond to fibers in which the cycle σI collapses. If
the initial ADE singularity is only partially resolved then the 1-forms φI associated to the
collapsed vanishing cycles vanish globally on M3. The vanishing locus of non-zero local
1-forms φI is cut out by 3 equations on M3 and thus generically consists of points. These
correspond to isolated singularity enhancements in the ALE-fibered G2-manifold X7

Singularity Enhancement in X7 : φI(x) = 0 . (2.6)

Paths in M3 connecting points above which the 2-cycle σI collapses lift to 3-spheres in the
ALE fibration X7. More generally, tree-like graphs connecting points above which one of
a linearly dependent collection of 2-cycles collapses also lift to 3-spheres. These 3-spheres
constitute supersymmetric cycles whenever their associated graphs are piecewise solutions
to flow equations set by the Cartan components (2.5) of the Higgs field [6, 21, 24]. In
figure 1 we have sketched two such 3-spheres and their projections to the base M3.

The equations (2.3) integrate to constraints on the local 1-forms φI given in (2.5)

F-term : 0 = dφI ,

D-term : 0 = d ∗ φI ,
(2.7)

and hold on the associative submanifold M3 with respect to the G2 metric gij pulled back
to M3. We refer to the equations of (2.7) as F-term and D-term equations respectively
and to the collection of 1-forms φI as the Cartan components of the Higgs field of the
ALE-fibered G2-manifold X7.

2.2 Gauge theory sector

In M-theory the 3-spheres depicted in figure 1 are wrapped by M2-branes and give rise to
a non-perturbatively generated superpotential for the 4d N = 1 theory. Contributions of
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single such Euclidean M2-brane instantons to the superpotential were computed in [45].
Alternatively, these contributions can be derived from non-perturbative effects in an effec-
tive 7d SYM description. Here they are associated with the tree-like graphs which lift to
the supersymmetric 3-spheres. With this in mind we now briefly discuss this 7d SYM and
refer to [21] for an extended discussion.

The effective description of M-theory on the fibration C2/ΓADE −֒→ X7 → M3 is a
partially twisted 7d supersymmetric Yang-Mills theory on R1,3 × M3 with gauge group
GADE [3, 21]. The global symmetries organizing the spectrum are the 4d Lorentz sym-
metry SO(1, 3)L and an internal SO(3)twist = diag(SO(3)M3 ,SO(3)R) which follows from
topologically twisting the local Lorentz group SO(3)M3 on the supersymmetric submanifold
M3 ⊂ X ′

7 with the R-symmetry group SO(3)R of the 7d N = 1 supersymmetry algebra.
After the twist the single vector multiplet of a 7d SYM decomposes into the gauge field Vµ
and its associated gaugino ηα, which transform as

(Vµ) ≡ (2,2; 1) , (ηα, η̄α̇) ≡ (2,1; 1) ⊕ (1,2; 1) , (2.8)

under SO(1, 3)L × SO(3)twist, and the connection Ai and the twisted scalars φi along M3

together with their superpartners ψiα transform as

(Ai) ≡ (1,1; 3) , (φi) ≡ (1,1; 3) , (ψiα, ψ̄iα̇) ≡ (2,1; 3) ⊕ (1,2; 3) . (2.9)

The twisted scalars φi are called the Higgs field. The connection Ai and Higgs field φi
naturally complexify to ϕi = φi + iAi. Compactifying on M3 to R1,3 the fields (2.8)
and (2.9) descend to 4d N = 1 vector and chiral multiplets respectively. The fields (Vµ, ηα)

and (ϕi, ψiα) transform as scalars and 1-forms under the new local Lorentz symmetry
SO(3)twist of the submanifold M3 and are therefore identified as

Vµ, ηα, η̄α̇ ∈ Ω0 (M3, adPADE) , A, φ, ψα, ψ̄α̇ ∈ Ω1 (M3, adPADE) . (2.10)

Here PADE is the principle bundle associated to the gauge group GADE and adPADE the
associated vector bundle via the adjoint representation. Their geometry is determined by
the background value of the connection A. Equivalently, the fields of (2.8) and (2.9) are
Lie-algebra valued functions and 1-forms on M3.

The supersymmetric vacua of the partially twisted 7d SYM are determined by its BPS
equations which formulate a Hitchin system

F-term : 0 = iFA + [φ, φ] , 0 = dAφ

D-term : 0 = dA ∗ φ ,
(2.11)

where FA is the curvature of the connection A and the Hodge star and exterior derivative
are taken on compact manifold M3. Expanded in components the individual equations read

0 = i (∂iAj − ∂jAi + i[Ai, Aj ]) + [φi, φj ] ,

0 = ∂iφj − ∂jφi + i[Ai, φj ] − i[Aj , φi] ,

0 = gij (∂iφj + i[Ai, φj ]) .

(2.12)
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The Higgs field φ and connection A define a complexified connection Q on M3 which by
the F-term equations is flat

Q = d+ [ϕ, · ] , ϕ = φ+ iA , Q ◦ Q = 0 . (2.13)

The D-term can be understood as complex gauge fixing condition. Given a 7d supersym-
metric vacuum in terms a solution to (2.11) the 4d physics follows from a compactification
on the cycle M3. The zero modes of the compactification are determined by both Q and
its complex conjugate as well as their adjoint operators. It is therefore natural to identify
half of the fields with their Hodge dual images

ηα → ∗ ηα ∈ Ω3 (M3, adPADE) , ψ̄α̇ → ∗ ψ̄α̇ ∈ Ω2 (M3, adPADE) . (2.14)

After this identification the massless spectrum in 4d is counted by the zero modes of only
the operator (2.13) and its adjoint on the supersymmetric submanifold M3.

Non-trivial backgrounds for A,φ break the gauge symmetry GADE and its adjoint
representation as

GADE → GGUT ×H ,

AdG → (AdGGUT ⊗ 1) ⊕ (1 ⊗ AdH) ⊕
∑

n

Rn ⊗ Sn ,
(2.15)

where GGUT is the commutant of the backgrounds for A,φ. If the flat complexified connec-
tion Q is not fully reducible the symmetry group H may be further broken by monodromy
effects to the stablizer of ϕ = φ+ iA as explained in [50], we return to this case in section 6.
The decomposition (2.15) lifts to the level of gauge bundles and we denote the bundle as-
sociated to Sn by Sn. Consequentially fermions valued in Rn are sections of Sn. The zero
modes valued in Rn leading to massless 4d fields are therefore counted by

ηα ∈ H3
Q(M3,Sn) , η̄α̇ ∈ H0

Q(M3,Sn) ,

ψα ∈ H1
Q(M3,Sn) , ψ̄α̇ ∈ H2

Q(M3,Sn) .
(2.16)

The 4d chiralities of the zero modes align with the Z2 grading of the exterior algebra
whereby the 4d chiral index of the representation Rn is given by the Euler characteristic
of Q restricted to the subbundle Sn.

Alternatively one can characterize the zero mode spectrum in terms of approximate
zero modes and their non-perturbative corrections. Approximate zero modes are Lie alge-
bra valued 1-forms on M3

Approximate Zero Mode : χ ∈ Ω∗(M3,Sn) (2.17)

which are annihilated by the Laplacian H = 1
2

{
Q,Q†

}
to all orders in perturbation theory.

The 7d SYM gives following mass matrix for these modes

Mass Matrix : MAB =

∫

M3

〈χA,QχB〉 , (2.18)

where the bracket is anti-linear in the first argument and contracts the Riemannian and
Lie algebra indices using the metric on M3 and Killing form of the Lie algebra gADE
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respectively. Generators for the cohomologies (2.16) are then determined by the kernel of
the matrix (2.18). The SYM also gives the 4d Yukawa couplings as the overlap integral

Yukawa Couplings : YABC =

∫

M3

〈χC , [χA∧ , χB]〉 , (2.19)

between three approximate zero modes labelled by A,B,C. Zero modes are determined
by (2.18) to linear combinations of approximate zero modes whereby (2.19) also sets the
Yukawa couplings between these.

2.3 Higgs bundles and ALE geometry

The Cartan components of the gauge field A and Higgs field φ in the partially twisted
7d SYM originate from the supergravity 3-form and 11d metric in M-theory. Solutions
to the BPS equations (2.11) with flat abelian connections therefore lift to the local ALE-
fibered G2-manifolds described in section 2.1. This is precisely the setting in which the
BPS equations reduce to equations (2.7) encoding G2 holonomy. Abelian solutions to
the BPS-equations are given by a flat connection A = AIH

I and harmonic Higgs field
φ = φIH

I . Here HI with I = 1, . . . , R denote the Cartan generators of the Lie algebra
gADE and we refer to these solutions as Higgs bundles on M3. With respect to a suitable
basis of the Cartan subalgebra the non-vanishing 1-forms φI can be identified with those
defined geometrically in (2.5). For this class of solutions we sketched how the structures
introduced so far relate in figure 2.

We further restrict to set-ups where the eigenvalue 1-forms ΛK of the Higgs field φ

and integral combinations thereof are Morse, that is the zeros of these 1-forms are isolated
and their graph intersect the zero section of the cotangent bundle T ∗M3 transversely.
The approximate zero modes setting the mass matrix (2.18) and Yukawa couplings (2.19)
of the 4d theory are then in correspondence with the codimension 7 singularities (2.6)
and their profiles sharply localize at the degeneration loci on M3. These modes originate
from M2-branes wrapping vanishing cycles above the marked points in figure 1. As this
locus consists of isolated points in M3 both overlap integrals only receive non-perturbative
contributions. These contributions originate from M2-branes wrapped on the 3-spheres
depicted in figure 1. In the effective 7d gauge theory description the contributions are
associated with the tree-like graphs given by the projection of these 3-spheres.

The Higgs bundles can be further distinguished by their spectral cover. The spectral
cover of a diagonal Higgs field φ is given by

C = {det (s− φ) = 0} = {(x,ΛK(x)) |x ∈ M3} = ∪kCk ⊂ T ∗M3 , (2.20)

which is the union of graphs of the eigenvalues ΛK . The eigenvalues ΛK can be globally
defined across M3 or connected by branch sheets and respectively the spectral cover is
fully reducible or not. We let k run over irreducible components of C. We refer to the first
configuration as split and the second configuration as non-split, the latter are a common
occurrence in F-theory constructions [32–34, 37]. The irreducible components of split and
non-split spectral covers are n : 1 coverings

Ck π−→ M3 (2.21)
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M3

π

x,ψ,λ

A,φ

Rτ

R
1,3

C
2/ΓADE

x

ALE-fibered

G2-Manifold
3d Higgs Bundle

Partially Twisted

7d               SYMN = 1

Λ(M3)⊕ adPADE

Supersymmetric 

Colored QM

N = 2 == 2 = (1, 1)

Figure 2. We sketch the relation between the ALE-fibered G2-manifold, the partially twised
7d SYM, the Higgs bundle defined via its BPS system (2.11) and the colored SQM probing the
Higgs bundle.

of M3. We have n = 1 for all components of split spectral covers and n ≥ 2 for at least one
component in the case of non-split spectral covers. The geometry of the adjoint bundle is
determined by the flat connection A to

adPADE = M3 × hADE ⊕
⊕

α

Lα , (2.22)

where the sum runs over all roots α of the Lie algebra gADE and Lα are line bundles on
M3 with connection αIAI ∈ Ω1(M3). When the connection A vanishes the adjoint bundle
reduces to the direct product adPADE = M3 × gADE.

We enlarge the space of solutions of the BPS equations (2.7) by allowing for source
terms. The motivation for particular source terms is taken from the corresponding IIA
string theory set-up for gauge algebras gADE = su(n) which is given by space-time filling
D6-branes on R1,3 × T ∗M3 wrapping a special Lagrangian submanifold in T ∗M3. In the
M-theory reduction to IIA string theory KK-monopoles reduce to D6-branes and the spec-
tral cover is expected to flow to a special Lagrangian submanifold [24, 51]. Here sources of
codimension 2 and 3 lead to singularities in the Higgs field and D6-branes associated with
the corresponding eigenvalues are non-compact. Embedding the local model into a com-
pact geometry these would simply describe D6-branes extending beyond the approximated
region. Concretely the BPS equations are altered by sources jI and ρI of co-dimension two
or three

dφI = ∗jI , ∗ d ∗ φI = ρI . (2.23)

When these sources are supported on knots this represents the world volume perspective of
D6-branes intersecting along the knot which have recombined due to a condensation of the
bifundamental chiral superfields localized at their intersection [52]. In [21, 24] sources with
jI = 0 supported on graphs Γ ⊂ M3 ⊂ T ∗M3 were considered and leveraged to engineer
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chiral 4d gauge theories. In both set-ups the spectral covers associated to the set-up are
split due to the absence of co-dimension one sources.

Given a Higgs bundle and a Hermitian Lie-algebra valued function f ∈ Ω0 (M3,adPADE)

a one-parameter family of Higgs bundles is obtained via the deformation

φ → φt = φ+ tdAf , t ∈ R . (2.24)

This deforms the operator Q of (2.13) to Qt = dA + [φt∧ , · ] but leaves the cohomolo-
gies (2.16) and therefore the particle content of the 4d physics unaltered. Indeed we have

exp (− [tf, · ]) Q exp ([tf, · ]) = d+ [(φ+ tdAf + iA) ∧ , · ] = Qt , (2.25)

which gives rise to the isomorphism

H∗
Q(M3,S) ∼= H∗

Qt
(M3,S) . (2.26)

A second kind of deformation is simply given by rescaling the Higgs field

φ → tφ , t ∈ R . (2.27)

In the sourced set-ups of (2.23) this is equivalent to an overall scaling of the source terms.
For exact Higgs fields φ = dAf these two kinds of deformations agree. In the limit t → ∞
the perturbative modes localize to the zeros of the Higgs field and the overlap integral (2.18)
and (2.19) receive their dominant contributions from M2-brane instantons.

3 Higgs bundles with non-split spectral covers

Higgs fields with non-split spectral covers form the most general class of solutions to the
equations (2.23). Their key feature are the branch cut loci of the Higgs field eigenvalues
which are given by a collection of knots with a specified monodromy action interchanging
the eigenvalues whenever a component of the branch cut locus is circled. A choice of Seifert
surfaces for each knot determines a decomposition of the cover into simply connected sheets.
The physics of non-split covers can then be understood as that of each such component
subject to constraints imposed by the monodromy action. Here we expand on the topology
of non-split spectral covers and give simple examples of Higgs fields with such covers for the
base manifold M3 = S3. In lower dimension non-split configurations have been discussed
in [54–58]. The presented analysis extends the approach of [21, 24] where split spectral
covers were considered.

3.1 Branch cuts, Seifert surfaces and sources

An irreducible, non-split spectral cover C defined in (2.20) traced out by a diagonal Higgs
field φ ∈ Ω1(S3, gADE) constitutes an n-fold covering (2.20) of S3 away from singularities
of the Higgs field. The n eigenvalues ΛK ∈ Ω1(S3) of the Higgs field are not globally
defined, but exhibit a one-dimensional branch locus. These branch loci lie along closed
submanifolds of the base S3 and therefore realize a collection of interlinked circles Kik
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which are embedded into S3 as knots. We collect all linked knots Kik, labelled by i, k, into
a total of l links Li and the branch locus becomes

Branch Locus : Li =
⋃

k

Kik , Kik
∼= S1 ⊂ S3 , i = 1, . . . , l . (3.1)

The eigenvalues ΛK of the Higgs field φ = diag(ΛK) are only well-defined on a simply con-
nected neighbourhood of the link complement S3 \ ∪iLi and are acted on by a monodromy
action when encircling any component of the branch locus. Equivalently, when encircling
the branch locus the Higgs field φ returns to its original value up to a gauge transformation
implementing the action the Weyl group

Monodromy action : φ → giφg
−1
i , gi ∈ GADE . (3.2)

We denote by si ∈ Weyl(gADE) the monodromy element associated to components of the
links Li. For gADE = su(n) we have for example Weyl(gADE) = Sn where Sn is the
symmetric group on n letters.

To every link Li there exists and orientable two-dimensional surface Fi, called the
Seifert surface of the link Li [59], bounded by the link

∂Fi = Li . (3.3)

We refer to the two sides of the Seifert surface Fi as its positive F+
i and negative F−

i side.
Any circle linking the collection of knots Li intersect its associated Seifert surface Fi. The
eigenvalues ΛK of the Higgs field are therefore well-defined on S3 \ ∪iFi above which the
sheets of the spectral cover can be distinguished.

The Higgs field φ is constrained by the BPS equations and consequently its eigenvalues
ΛK ∈ Ω1(S3) are closed and coclosed on S3 \ ∪iFi. The graphs of these 1-forms in the
cotangent space T ∗S3 join above the Seifert surfaces Fi to form the spectral cover C ⊂ T ∗S3.
We refer to the graphs of ΛK as the K-th sheet of this cover with respect to a choice of
Seifert surfaces ∪iFi. The BPS-equations descend to each sheet up to surface sources given
by a one-form current jK and a zero-form density ρK support on the Seifert surfaces ∪iFi

dΛK = ∗jK , ∗ d ∗ ΛK = ρK , supp jK = supp ρK =
⋃

i

Fi ⊂ S3 . (3.4)

These are subject to two sets of consistency conditions, the first set of which are between
sheets of the cover and read

n∑

K=1

ρK =
n∑

K=1

jK = 0 , ΛK
∣∣
F+

i

= ΛL
∣∣
F−

i

. (3.5)

These require all sources to cancel between sheets and further constrain these to have
profiles compatible with gluing the K-th sheet to L-th sheet along the two sides F±

i of the
Seifert surface. In the gluing condition K,L run over pairs such that both indices exhaust
all sheets. The second set of conditions are between sources for the same sheet and follow
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from the compactness of S3. The equations (3.4) can only be solved when the integrated
sources ρK vanish on each sheet

∫

S3
∗ρK =

∑

i

∫

S3
∗ρK

∣∣
Fi

= 0 . (3.6)

In this way the sources (3.4), which are subject to (3.5) and (3.6), determine the
boundary conditions for the eigenvalues ΛK when decomposing the cover C into sheets.
The cancellation of sources between sheets ensures that the Higgs field φ is harmonic
across the Seifert surfaces Fi and traceless. The gluing condition encodes the monodromy
action si around the Links Li as each sheet is glued along the two sides F±

i to two other
sheets. Equation (3.6) is a tadpole cancellation constraint.

3.2 Example: unknots, disks and surface charge

We give a simple example of sources ρK , jK satisfying the conditions (3.5) and (3.6) with
K = 1, 2 realizing non-compact, branched, double covers of the 3-sphere with a collection
of circles removed. Consider the 3-sphere S3 as a fibration of 2-spheres over an interval
which we parametrize by θ ∈ [0, π]

S2 −֒→ S3 → [0, π] . (3.7)

At θ = 0, π the fibral 2-sphere collapses. The 3-sphere S3 is equipped with the round metric
such that the geometry is symmetric under a reflection θ → π−θ fixing the central 2-sphere
fiber S2

π/2 projecting to θ = π/2. On this 2-sphere we consider a total of l separated unknots
S1
i each bounding a disk Di

Li = S1
i ⊂ S2

π/2 , Fi = Di ⊂ S2
π/2 , i = 1, . . . , l , (3.8)

which function as the links and Seifert surfaces of (3.1) and (3.3) respectively.
We now consider source profiles ρK , jK with K = 1, 2 supported on the surfaces Di

realizing non-compact double covers of S3 away from the unknots S1
i . These are constructed

electrostatically by setting jK = 0 and declaring the disks Di to be perfect conductors for
the electric source ρK . The eigenvalues ΛK of the Higgs field φ = diag(Λ1,Λ2) are then
identified with the electric field of the configurations in each sheet. In the first sheet K = 1

the disk Di is assigned the electric charge qi, while in the second sheet K = 2 it is assigned
the opposing charge −qi. The distributed charge must further sum to vanish on each sheet∑
i qi = 0. This manifestly satisfies two of the conditions in (3.5) and (3.6). The gluing

condition across the surfaces Di is then satisfied as the source distribution in both sheets
is symmetric under reflection about θ = π/2. This realizes an irreducible double cover

C → S3 \ ∪iLi . (3.9)

We have depicted the set-up in the case of l = 2 unknots and disks in figure 3.
The charge distributions ρK diverges to the boundary and consequently so do the

eigenvalues ΛK . In a local normal coordinate system (z, x) ∈ C × R where one of the
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I=1

L1

L2

F1

F2

+q

-q

I=2

L1

L2

F1

F2

-q

+q

S2 S2

Figure 3. The picture shows a pair of unknots Li and their Seifert surfaces Fi ⊂ S2 ⊂ S3 along
with the sources ρI , jI these support with respect to each sheet I = 1, 2. They are supported on
the 2-sphere S2

π/2 which projects onto θ = π/2 in (3.7). The sourced Higgs field (3.4) realizes a
branched double cover of S3.

unknots is centered at z = 0 and its associated disk Di stretches along R− × R, where
R− ⊂ C is the negative real axis, we have

ΛK = cK

(
dz√
z

+
dz̄√
z̄

)
+ . . . , (3.10)

approaching the unknot with some real constant cK . The omitted terms are regular in the
z → 0 limit and the branch cut of the square root stretches along R−. These asymptotics
follow from the closure and co-closure of the Higgs field away from the branch locus and
the discontinuity across the charged Seifert surface.

The homology groups of the constructed double cover C are computed using the Mayer-
Vietoris sequence and read

H0(C,Z) = Z , H1(C,Z) = Z2l−1 , H2(C,Z) = Zl−1 , H3(C,Z) = 0 . (3.11)

The supersymmetric deformations of the cover are given by altering the charges qi assigned
to each disk Di with respect to one of the sheets. The constraints (3.5) determine the
associated opposite deformations on the second sheet. The condition (3.6) removes one
degree of freedom yielding an l − 1 dimensional deformation space.

The zeros of the Higgs field eigenvalues Λ1,Λ2 lie on S2
π/2. They come in pairs as

Λ1 + Λ2 = 0 and there are a total of 2l − 4 zeros. Each eigenvalue derives from an
electrostatic potential f such that df = Λ1 = −Λ2. For generic charge set-ups the potential
f is a Morse function. The zeros of the eigenvalues are critical points of this function and
they can be distinguished according to their Morse-index. Let Nµ be the number of critical
points of Morse-index µ, here we have

N1 = N2 = l − 2 , N0 = N3 = 0 . (3.12)

The Morse index characterizes topological properties of the Higgs field zeros and determines
the matter localized at these.
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3.3 Example: twisted connected sum G2-manifolds

Non-split spectral covers feature in the local models associated twisted connected sum
(TCS) G2-manifolds [11–13]. These geometries have been discussed in the physics litera-
ture [16, 19, 60, 61] and constitute a landscape of 106 compact G2-manifolds. We give an
overview of their construction and discuss the Higgs bundles and spectral covers of their
local models.

TCS G2-manifolds are constructed from a pair of building blocks Z± which are in
turn constructed using methods from algebraic geometry to satisfy a list of topological
constraints [13, section 3]. The building blocks Z± are algebraic 3-folds admitting a K3
fibration

S± −֒→ Z± → P1 , (3.13)

where S± is a generic K3 fiber. The fiber class [S±] = c1(Z±) is required to be given
by first Chern class of its building block. From the building blocks Z± one constructs
asymptotically cylindrical (aCyl) Calabi-Yau 3-folds X± = Z± \ S0

± by excising a generic
fiber S0

±. The aCyl Calabi-Yau 3-folds X± are therefore fibered as

S± −֒→ X± → C . (3.14)

The boundaries of X± are given by S1
int ×S0

±. Approaching the boundaries the Calabi-Yau
structure (ω±,Ω±) of X± asymptotes to that of the cylinder R>0 ×S1

int ×S0
±. The latter is

given by (ω∞,±,Ω∞,±) where ω∞,± = dt ∧ dθ + ωS,± and Ω∞,± = (dθ − idt) ∧ ΩS,±. Here
(t, θ) are coordinates on the cylinder R>0 ×S1 and ωS,±,ΩS,± are the Calabi-Yau structure
of the K3 surface S0

±. Alternatively, we can express the data of the K3 fiber S0
± using its

Hyperkähler triplet (ω1,±, ω2,±, ω3,±) which gives ωS,± = ω1,± and ΩS,± = ω2,± + iω3,±.
Each aCyl Calabi-Yau X± is extended to a 7-manifold X± × S1

ext whose boundary is
given by S1

int × S1
ext × S0

± by trivially adding an external circle. A compact 7-manifold is
now constructed by gluing this pair along their boundaries. The gluing diffeomorphism
interchanges the external and internal circles and identifies the K3 surfaces S0

± via the map
ξ : S0

+ → S0
−. The diffeomorphism ξ is referred to as a hyper-Kähler rotation, often called

a Donaldson matching, and acts on the hyper-Kähler triplets as

ξ∗ (ω1,−) = ω2,+ , ξ∗ (ω2,−) = ω1,+ , ξ∗ (ω3,−) = −ω3,+ . (3.15)

The base and fibers are glued separately and thereby the resulting smooth, compact 7-
manifold is K3-fibered over a 3-sphere. Furthermore, it admits a metric with G2 holon-
omy [11, 13]. We sketch the gluing construction in figure 4.

Local models for TCS G2-manifolds are now obtained by replacing the K3 fibers with
ALE fibers, i.e. they are given by the fibrations (1.1) with M3 = S3. The spectral cover
of this local model results from gluing the spectral covers associated with X± × S1

ext and
its topology is fixed by the Donaldson matching (3.15). To expand on this consider the
restriction map

ρ± : H2(Z±,Z) → H2(S0
±,Z) ∼= (−E⊕2

8 ) ⊕ U⊕3 ≡ L, (3.16)
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K3K3

S1
int

× R>0

1

S1
int

× R>0

1

×

S1
ext

×

S1
ext

ξ

X+ X−

Figure 4. The figure shows a TCS G2-manifold. It is glued from X+ ×S1
ext and X− ×S1

ext. Internal
and external circles are interchanged by the gluing diffeomorphism. The hyperkähler rotation or
Donaldson gluing is implemented by ξ : S0

+ → S0
−

.

where L is the K3 lattice of signature (3, 19). The Donaldson matching gives an isomor-
phism H2(S0

+,Z) ∼= H2(S0
−,Z) and the 2-forms in the intersection

g = Im ρ+ ∩ Im ρ− , (3.17)

are dual to 2-cycles in the fibers which sweep out 5-cycles across the base 3-sphere. These
are in turn dual to rank(g) independent harmonic 2-forms on the TCS G2-manifold. In a
KK-reduction of the supergravity 3-form this give rise to rank(g) abelian gauge fields in
4d. To understand the relation to the spectral cover of the local model we begin with the
spectral covers of X± × S1

ext. These are constructed by replacing the K3 fibers with ALE
fibers and collecting the Hyperkähler periods of the 2-cycles σI ∈ H2(S0

±,Z) as in (2.5).
The Donaldson matching then prescribes the gluing of the Higgs fields φ± as

φ−
I,1 =

∫

σI

ω1,− =

∫

σI

ω2,+ = φ+
I,2 ,

φ−
I,2 =

∫

σI

ω2,− =

∫

σI

ω1,+ = φ+
I,1 ,

φ−
I,3 =

∫

σI

ω3,− = −
∫

σI

ω3,+ = φ+
I,3 .

(3.18)

The gluing requires the ALE fibers on both sides to be of the same type. The resulting
spectral cover C = ∪Nk=1Ck is traced out by the glued forms (3.18). The difference Ck − Cl
of two irreducible components lifts to a 5-cycle in the ALE-fibration of which N − 1 are
independent and again give dual 2-forms which determine the number of 4d gauge fields
in a KK-reduction of the supergravity 3-form on the ALE-fibration. We therefore find the
number N of irreducible components of the spectral cover C to be given by

N = rank (g) + 1 . (3.19)

We now touch on the discussion to singular ALE-fibrations for which some of the 2-
cycles σI are collapsed throughout the base 3-sphere. These were argued in [19, 62] to

– 14 –



J
H
E
P
0
5
(
2
0
2
1
)
0
0
2

describe the local geometry of 7-folds constructed from singular aCyl Calabi-Yau 3-folds
X±. The 3-foldX± have singular K3 fibers S± with a generic ADE singularity and X±×S1

ext

are expected to glue to singular, compact TCS G2-manifolds. The details of the singular
limit for X± are discussed for different ADE singularities in [63, 64]. The associated spectral
covers have Higgs fields where some of the Cartan components φI vanish identically, i.e.
the singularities specifies the number of zero sections contributing sheets to the cover C.

The landscape of TCS G2-manifolds realize via their local models a large class of
examples of split and non-split spectral covers over a base 3-sphere. The source loci of (3.4)
are left implicit in these constructions, this was already found to be the case for split spectral
covers discussed in [21].

3.4 Topology of cyclically branched covers and recombined Higgs fields

The data of the 4d theory engineered by a geometry with a split or non-split spectral cover
can be extracted from a particle probing S3 with a potential set by the Higgs field. Of
interest here is in part the topology of the spectral cover, as we explain in section 5 and 6.
In this section we discuss the topology of a simple class of non-split spectral covers. For
concreteness we consider spectral covers associated with the Lie algebra gADE = su(n).

We focus on irreducible spectral covers with a single component, more general covers
are given by unions of these irreducible covers. Further we restrict to set-ups for which the
monodromy elements si = s ∈ Sn are identical for all components of the branch locus and
of order n for n-sheeted coverings. In this setting the topology in the vicinity of branch link
Li is that of the branched multi-covering studied in knot theory [59], from which we excise
the links Li along which the Higgs field diverges. We refer to these covers as irreducible,
cyclically branched n-sheeted coverings. The example of section 3.2 realizes such a cover
for n = 2 and gADE = su(2) with Li = S1 and s = −1 ∈ S2.

We start with a solution to (3.4) for eigenvalue 1-forms ΛK where K = 1, . . . , n. The
eigenvalues ΛK sweep out a n : 1 cover C → S3 \ ∪iLi away from the branch locus and
picking Seifert surfaces for each link (Li, Fi) the spectral cover C can be written as

C = C̃ \ ∪iLi , (3.20)

where the covering C̃ is glued from n copies of the base with the Seifert surfaces removed

C̃ =
(
S3 \ ∪iFi

)
1

# . . .#
(
S3 \ ∪iFi

)
n
. (3.21)

The cut out S3 \ ∪iFi contains two copies of the Seifert surfaces F±
i corresponding to

its positive and negative sides which intersect along the links Li. The gluing in (3.21) is
performed by identifying F+

i in the i-th gluing factor with F−
i in the (i+ 1)-th factor and

finally gluing F+
i in the n-th gluing factor to F−

i in the first. Each gluing factor is in
correspondence with a sheet of the spectral cover. For further details we refer to [59, 67].

The homology groups of the cover (3.21) are computed by an application of the Mayer-
Vietoris sequence to a decomposition of the cover C̃ into patches whose projection to the
base contain at most a single Seifert surface Fi. The homology groups of the spectral
cover (3.20) are then computed by another application of the Mayer-Vietoris sequence to
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Knot Name Sketch 2-fold C 3-fold C 4-fold C 5-fold C

01 1 1 1 1

31 Z3 Z2 × Z2 Z3 1

41 Z5 Z4 × Z4 Z3 × Z15 Z11×Z11

51 Z5 1 Z5 Z2 × Z2 × Z2 × Z2

Table 1. We table examples of knots. Each column list the torsion component of the first homology
of the n-fold covering space C → S3 of the knot [59]. The torsion numbers are tabled in [65]. The
pictures are taken from [66].

the covering C̃ = C∪T where T is tubular neighbourhood of the links ∪iLi ⊂ T . We restrict
to the case in which the links Li = Ki are simply knots and T thus becomes a collection
of l solid tori. We give further details in appendix B. For an n-sheeted cover with l knots
Ki the result reads

H1(C,Z) = Z(n−1)(l−1)+l ⊕
l⊕

i=1

H
(n)
1 (Ki) , H2(C,Z) = Z(n−1)(l−1) , (3.22)

together with H0(C,Z) = Z and H3(C,Z) = 0. Each knot contributes a torsion factor to
the first homolog group while the number of links and sheets determines the free factor
in (3.22). In table 1 we list the group H

(n)
1 (Ki) for some low component coverings, a

substantially more extensive list of examples is given in [65].
The cover (3.20) inherits a natural metric from its gluing factors. The eigenvalues ΛK

of the Higgs field then combine to a harmonic 1-form on the spectral cover

Λ ∈ Ω1(C) , Λ
∣∣
[S3\∪iFi]K

= ΛK , K = 1, . . . , n , (3.23)

which by constructions restricts on each gluing factor to one of the local 1-form eigenvalues
ΛK of the Higgs field. Supersymmetric deformations of the cover C are now described
by harmonic perturbations Λ → Λ + δΛ or equivalently n harmonic perturbations ΛK →
ΛK + δΛK which glue consistently across the branch sheets ∪iFi.
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Finally note that we can equip the cotangent bundle T ∗S3 with an auxiliary Calabi-Yau
structure whose symplectic 2-form ω and holomorphic 3-form Ω are given by

ω =
i

2

3∑

i=1

dzi ∧ dz̄i , Ω = dz1 ∧ dz2 ∧ dz3 , (3.24)

where dzi = dxi + idyi with xi, yi being local coordinates on S3, T ∗
xS

3 respectively. With
respect to this auxiliary Calabi-Yau geometry the spectral cover C is an immersed, non-
compact Lagrangian submanifold, which follows from ω|C = dφ = 0.

4 Colored SQMs probing Higgs bundles

Given a vacuum of the 7d SYM in terms of a complex flat connection (2.13) the massless
modes in 4d are determined by the mass matrix (2.18) and their interactions are set by
the Yukawa integral (2.19). These overlap integrals can be interpreted as amplitudes of a
colored N = 2 supersymmetric quantum mechanics. The relevant structures of the SQM
for this identification are its physical Hilbert space Hphys. and supercharge Q which are
given by

Hphys. = Λ (M3, adPADE) , Q = d+ [(φ+ iA) ∧ , · ]. (4.1)

Here we present this new N = 2 = (1, 1) supersymmetric quantum mechanics. In [68, 69]
similar quantum mechanical systems with less supersymmetry have been considered. We
refer to the SQM as ‘colored’ due to the presence of additional fermions over the SQM
considered in [46] which extend the Hilbert space by color degrees of freedom associated
with the Lie algebra gADE. The colored SQM is constructed working backwards from (4.1).

4.1 Set-up and conventions

We consider the manifold M3 with metric g and a principal bundle PADE → M3 with gauge
group GADE over it. The corresponding Lie algebra is denoted gADE . This gives rise to the
associated adjoint vector bundle adPADE → M3 . Both are naturally complexified. Greek
indices run as α, β, γ = 1, . . . , dimGADE and are associated to the fiber while latin indices
run as i, j, k = 1, 2, 3 and are associated to the base. The Killing form καβ gives rise to
a non-degenerate pairing on the fibers of adPADE → M3 which is used to raise and lower
greek indices. Latin indices are raised and lowered with the metric gij . The generators of
the Lie algebra gADE are denoted by Tα and are taken to satisfy

[Tα, Tβ] = icαβγT
γ . (4.2)

We probe the geometry adPADE → M3 with a non-linear supersymmetric sigma model. We
denote the flat worldline by Rτ and take τ to denote the time coordinate on it. The bosonic
and fermionic fields are given by the maps x : Rτ → M3 and sections ψ : Rτ → x∗(TM3)

respectively. Further we add a color field given by sections λ : Rτ → x∗(adPADE) . The
dynamics of the model are governed by a non-dynamical background connection A ∈
Ω1(M3, adPADE) and Higgs field φ ∈ Ω1(M3, adPADE) on the target manifold M3 . These
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are real Lie algebra valued 1-forms on the target manifold M3 . The connection Aiα and
Higgs field φiα are required to satisfy the BPS equations (2.11) .

The sigma model can thus be summarized as

x∗(TM3 ⊕ adPADE) ⊗ C (TM3 ⊕ adPADE) ⊗ C

Rτ M3

ψ, λ

x∗

π

x

πτ A, φ (4.3)

where π, πτ denote the canonical projections. Expanded in components the fields ψ, λ read

ψ(τ) = ψi(τ)
∂

∂xi

∣∣∣∣
x(τ)

, λ(τ) = λα(τ)eα
∣∣
x(τ)

, (4.4)

where eα are fiber coordinates induced by a local trivialisation of adPADE . Both ψ, ψ̄ and
λ, λ̄ are taken to be anti-commuting fermionic fields. The latter we package into bilinears

T̃ = −
[
λ̄, λ

]
= T̃αeα = −icαβγ λ̄βλγeα , T̃ †

α = T̃α , (4.5)

which we pair with the connection Aiα and Higgs field φiα to form the color contracted
1-forms

Aλ = (Aλ)i dx
i = Aαi T̃αdx

i = κ
(
λ̄, [Ai, λ]

)
dxi ,

φλ = (φλ)i dx
i = φαi T̃αdx

i = κ
(
λ̄, [φi, λ]

)
dxi .

(4.6)

The bilinears T̃ quantize to the Lie algebra generators T . To remind of this contraction
we introduce a subscript λ as in (4.6) .

We combine the connection Aiα and Higgs field φiα into a complex Lie algebra valued
1-form ϕ with components

ϕiα = φiα + iAiα . (4.7)

There are now three connections on M3 given by the natural connection D on adPADE and
its complexification Q which read

D = d+ i[A∧ , · ] , Q = d+ [ϕ∧ , · ] , (4.8)

together with the Levi-Civita connection ∇ of the metric gij . Each of these pulls back to
the world line Rτ in (4.3) and acts on the fermions ψ, ψ̄, λ, λ̄ of (4.4) as

∇τψ
i = ∂τψ

i + Γijkẋ
jψk ,

Dτλα = ∂τλα + cαβγ ẋ
iAβi λ

γ ,

Qτλα = ∂τλα − icαβγ ẋ
iϕβi λ

γ .

(4.9)

The pullback is referenced by adding the world line parameter τ as an index to the respec-
tive connections.
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4.2 Colored N = (1, 1) supersymmetric QM

The dynamics of the sigma model described in section 4.1 is governed by the Lagrangian

L =
1

2
ẋiẋi + iψ̄i∇τψi + iλ̄αDτλα +

i

2
(Fij)λ ψ̄

iψj − 1

2
Rijklψ

iψ̄jψkψ̄l

−
(
D(iφj)

)
λ
ψ̄iψj − 1

2
φiλφλ,i − 1

2
[φi, φj ]λψ̄

iψj + ζ
(
λ̄αλα − n

)
.

(4.10)

Here Rijkl denotes the Riemann curvature tensor, the bracket notation D(iφj) denotes a
symmetrisation of indices, the integer n is set to n = 1 and ζ is a Lagrange multiplier. The
action (4.10) is invariant under

δxi = ǫψ̄i − ǭψi ,

δψi = iǫẋi + ǫφiλ − ǫΓijkψ̄
jψk ,

δψ̄i = −iǭẋi + ǭφiλ − ǭΓijkψ̄
jψk ,

δλα = −iǫcαβγψ̄iϕβi λγ − iǭcαβγψ
iϕ̄βi λ

γ ,

δλ̄α = −iǫcαβγψ̄iϕβi λ̄γ − iǭcαβγψ
iϕ̄βi λ̄

γ .

(4.11)

The supercharges associated to the variations (4.11) are given by

Q = ψ̄i
(
iẋi + φiλ

)
, Q† = ψi

(
−iẋi + φiλ

)
. (4.12)

There is no R-symmetry rotating the supercharges. We check the supersymmetric varia-
tions (4.11) and provide a derivation of (4.12) in appendix C.1.

The physics of the quantum mechanics (4.10) is that of a particle moving in the target
space M3 . In addition to its position, its state is characterized by its fermion and color
content which are given by vectors in the pullback of the exterior algebra ΛM3 and ad-
joint bundle adPADE to the world line respectively. The latter are the fermions λ, λ̄ and
determine the color contracted Higgs field φλ setting the potential for the particle via (4.6).

Quantization of the SQM (4.10) leads to the physical Hilbert space

Hphys. = Λ (M3, adPADE) , (4.13)

consisting of Lie algebra valued forms on M3. The Lagrange multiplier in (4.10) gives rise
to the constraint that only states with a single λ̄ excitations are considered physical which
precludes states in higher powers of the adjoint representation of gADE from contributing
to the spectrum. States of even, odd degrees are bosonic, fermionic respectively. The
supercharge is realized on Hphys. as the operator

Q = d+ [(φ+ iA) ∧ , · ] . (4.14)

We give further detail on the quantisation procedure in appendix C.2.
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4.3 Perturbative ground states and instantons

Perturbative ground states of the quantized SQM are given by Lie-algebra valued forms
χ ∈ Ωp (M3, adPADE) annihilated by the Hamiltonian H = 1

2

{
Q,Q†

}
or equivalently by

the two supercharges Q,Q† to all orders in perturbation theory

Hχ = 0 ↔ Qχ = 0 , Q†χ = 0 . (4.15)

In the path integral formulation of the SQM perturbative ground states correspond to con-
stant maps fixed by the Euclidean fermionic supersymmetry variations δEψi, δEψ̄i which
emphasizes the second condition given in (4.15). We give the Euclidean versions of the
Lagrangian (4.10) and variations (4.11) together with the Hamiltonian of the SQM in ap-
pendix C.3. A characterization of the perturbative ground states already follows from
inspection of the unquantized supercharges (4.12), constant maps annihilated by the su-
percharges necessarily map to points at which the Higgs field φλ vanishes. We conclude
that perturbative ground states are labelled by pairs

(xA, λA) ∈ M3 × gADE , (4.16)

which are such that the color contracted Higgs field at xA with respect to λA vanishes

φλA
(xA) = κ

(
λ̄A, [φi(xA), λA]

)
dxi = 0 . (4.17)

Here we have introduced capital latin indices A,B,C which label pairs in M3 × gADE .
Further we assume that φλA

has simple isolated zeros or equivalently that it is a Morse
1-form.

To fully determine a perturbative ground state (4.16) we further need to specify its
ψ, ψ̄ fermion content. This however is already fixed by a given pair (xA, λA) by considering
how the 1-form φλA

∈ Ω1(M3) vanishes at xA ∈ M3 . Consider a small sphere S2
ǫ ⊂ M3 on

which the color contracted Higgs field φλA
does not vanish and which encloses the point

xA ∈ M3 . Then we have a map of spheres

φλA

||φλA
|| : S2

ǫ → S2 . (4.18)

The degree µ(xA, λA) of this map topological characterizes the vanishing of the 1-form φλA

at xA ∈ M3 . The number of ψ̄ excitations of the perturbative ground state, or equivalently
its degree p as a differential form, is given by p = µ(xA, λA) . This generlizes the notion of
Morse index as introduced in [46] and explained in [21]. The pairs (4.16) thus fully label
perturbative ground states.1 In Dirac notation we denote these by

χA = |xA, λA, µA〉 ∈ ΩµA(M3, adPADE) . (4.19)

1Here we have discussed generic localized perturbative ground states. To a given Higgs field background

φ there also exist color vectors λ such that the color contracted Higgs field φλ ≡ 0 vanishes identically.

We say that these color vectors and associated ground states of Q, Q† live in the bulk. Whenever φλ 6= 0

we refer to the color vectors and their associated perturbative ground states as localized. Generically the

local 1-form φλ will have isolated simple zeros, this is the case discussed here. We do not discuss higher

dimensional zero loci of the color contracted Higgs field φλ.
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Given two perturbative ground states χA, χB we construct a third perturbative ground
state χAB = [χA∧ , χB] as, if χA, χB are annihilated to all orders in perturbation theory
by Q, then so is χAB by

Q [χA∧ , χB] = [QχA∧ , χB] + (−1)µA [χA∧ ,QχB] . (4.20)

It is also annihilated to all orders in perturbation theory by an analogous relation for Q†

proving it a perturbative ground state itself. Perturbative ground states are thus seen to
come in families, the above procedure can be repeated with either of the pairs (χA,B, χAB) .
However χAB 6= 0 is not necessarily true, the terms in (4.20) may potentially cancel or more
trivially the degree of χAB may exceed the dimension of the target space M3.

Half-BPS instantons are field configurations minimizing the Euclidean Lagrangian and
are annihilated by half of the supercharges (4.12) in Euclidean time. They are distinguished
by boundary conditions fixing the initial and final position of the particle. Field config-
uration may only converge to stationary points on M3 allowing for ẋ = 0, i.e. instantons
necessarily connect perturbative ground states. From the Euclidean Lagrangian we obtain
the flow and parallel transport equations

ẋi ± φiλ = ẋi ± icαβγg
ij λ̄αφβj λ

γ = 0 , Dτλα = 0 , (4.21)

supplemented with the constraint λ̄λ = 1 enforced by the Lagrange multiplier. An instan-
ton of the colored SQM solves (4.21) piecewise and connects multiple perturbative ground
states. We refer to instantons of the SQM as generalized instantons whenever they connect
more than two perturbative ground states, this more general class of instantons is absent
in SQMs without λ, λ̄ color degrees of freedom.

Instanton connecting two perturbative ground states, as familiar from Witten’s SQM
or Morse theory, start out at a point (xA, λA) ∈ adPADE satisfying φλA

(xA) = 0 where
the color contracted Higgs field φλA

is given in (4.17). From this initial configuration the
instanton flows on M3 along a path γ determined by the 1-form φλ(τ) where λ(τ) is the
parallel transport of λA along the path γ with respect to the background connection A on
M3 . The flow can end at a point (xB, λB) ∈ adPADE satisfying φλB

(xB) = 0. Summarizing
we have

(xA, λA) , φλA
(xA) = 0

ẋ(τ) = ±φλ(τ)−−−−−−−−−−−−→
Dτλ(τ) = 0

(xB, λB) , φλB
(xB) = 0 , (4.22)

where τ runs from −∞ to +∞ from left to right. Completing the square in the Euclidean
Lagrangian, instanton effects are found to be suppressed by

Sinst = ∓
∫ +∞

−∞
dτẋiφλ,i > 0 , (4.23)

where the sign depends on whether ascending or descending flows are considered in (4.21).
Generalized instantons connecting three perturbative ground states are pieced together

from flows parametrized by half-lines where τ runs from −∞ to 0 or from 0 to +∞ on each
segment. We depict such a generalized instantons connecting three perturbative ground
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M3

xA

xC

$C
$A

$B
xB

Figure 5. Sketch of an instanton connecting three perturbative ground states labeled by (xA, λA),
(xB , λB) and (xC , λC). The color degrees of freedom are valued in the pull back bundle x∗(adPADE)

and are depicted as internal vectors attached to the localization site of the perturbative ground
states. The three legs of the instanton are piecewise determined by the flow equations (4.21).

states labelled by (xA, λA), (xB, λB) and (xC , λC) in figure 5. Along each leg the instanton
is determined by the flow equations (4.21) and boundary conditions imposed at the junction
and perturbative ground states. We discuss these generalized instantons in greater detail
in section 5.2.

4.4 SYM and SQM

The colored SQM is a powerful computational and organisational tool when applied to the
compactification of the partially twisted 7d SYM on M3, we briefly discuss the dictionary
between the SQM and SYM which follows from (4.1).

The perturbative ground states of the SQM (4.19) are to be identified with the approx-
imate zero modes (2.17) of the partially twisted 7d SYM. As a consequence the matrix
elements of the supercharge Q with respect to the perturbative ground states is given
by the mass matrix (2.18) of the 4d modes associated with the approximate zero modes.
The ground states of the SQM then determine the massless spectrum in 4d (2.16). The
identification of perturbative ground states and approximate zero modes allows for an inter-
pretation of the Yukawa overlap integral (2.19) as a tunneling amplitude. States occupying
two perturbative ground states χA, χB can tunnel to a third χC and the overlap YABC then
gives the amplitude for this process. We give a summary of these relations in appendix A.

The non-perturbative effects of the SYM derived from an ALE-geometry are under-
stood to originate from M2-brane instantons wrapping supersymmetric 3-cycles. In the
SYM these effects are in correspondence with flow trees of the Higgs field which are given
by the projection of the supersymmetric 3-cycle to the base M3, see e.g. figure 1. These
flow trees are precisely piecewise solutions to the flow equations (4.21) and thereby in one
to one correspondence with the generalized instantons of the SQM. Along these graphs
the approximate zero modes and perturbative ground states have maximal overlap and
consequently these give the dominant contributions to the two integrals (2.18) and (2.19).
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5 Higgs bundles with split spectral covers

The simplest backgrounds to study the correspondence between non-perturbative effects
in the 7d SYM, which originate from M2-brane instantons in M-theory, and generalized
instantons of the colored SQM are abelian solutions to the BPS-equations with split spectral
covers. These backgrounds have previously been studied in [21, 23–25, 70] and serve as a
precursor to studying abelian solutions to the BPS equations with non-split spectral covers.
Configurations with split spectral covers already display many features relevant for model
building. Further, the cohomologies (2.16) characterizing the 4d massless matter content
are computable in many cases and are easily engineered to give a chiral spectrum [21, 24].

Here we find that the single particle sector of the colored SQM decomposes into a
direct sum of Witten SQMs [46], one for each generator of the Lie algebra gADE. These
interact via multi-particle effects encoded in higher order operations on the Morse-Witten
complex of the colored SQM. They originate from M2-branes associated with the Y-shaped
instantons as shown in figure 1 and higher-point generalized instantons. We quantify these
effects by computing Yukawa overlap integrals (2.19) via supersymmetric localization.

5.1 Colored SQM and Witten’s SQM

We consider backgrounds characterized by a vanishing connection A = 0 and a diagonal
Higgs field φ = φIH

I . The Cartan components φI ∈ Ω1(M3) are singular 1-forms on
M3 solving the sourced equations (2.23). The color contracted Higgsfield φλ, introduced
in (4.6), now becomes

φλ = κ
(
λ̄, [φ, λ]

)
=
∑

α

αIφI λ̄
αλα , (5.1)

where the sum runs over all roots α of the Lie algebra gADE. The Lagrangian of the SQM
probing the Higgs bundle simplifies from (4.10) to

L =
1

2
ẋiẋi + iψ̄i∇τψi + iλ̄βλ̇β −

(
∇(iφj)

)
λ
ψ̄iψj − 1

2
φiλφλ,i

− 1

2
Rijklψ

iψ̄jψkψ̄l + ζ
(
λ̄βλβ − n

)
,

(5.2)

where β = 1, . . . , dim gADE runs over all generators T β of the Lie algebra gADE. The
bundle geometry is adPADE = M3 × gADE and as a consequence the Hilbert space (4.13)
which is now given by Lie algebra valued forms Hphys. = Λ (M3, gADE) decomposes into
the direct sum

Hphys. =
⊕

β

H(β)
phys. ,

H(β)
phys. = Λ (M3) ⊗ T β ,

(5.3)

paralleling the decomposition of adPADE into a sum of line bundles. States in H(β)
phys. are

p-forms oriented along the generator T β in Ωp(M3, gADE). Specializing to a Cartan-Weyl
Basis

{
HI , Eα

}
of the Lie algebra gADE we can sharpen the decomposition (5.3) to

Hphys. =
⊕

α

H(α)
phys. ⊕

⊕

I

H(I)
phys. , (5.4)
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and refer to the first summand ⊕αH(α)
phys. as the localized sector and to the second summand

⊕IH(I)
phys. as the bulk sector of this SQM. They are built from

H(α)
phys. = Λ(M3) ⊗ Eα , H(I)

phys. = Λ (M3) ⊗HI . (5.5)

The supercharge Q respects this decomposition as all component functions φi of the Higgs
field φ = φidx

i are valued in the Cartan subalgebra, i.e. it restricts to operators on the
subspaces (5.5)

Q(α) : H(α)
phys. → H(α)

phys. , χ⊗ Eα 7→
(
dχ+ αIφI ∧ χ

)
⊗ Eα ,

Q(I) : H(I)
phys. → H(I)

phys. , χ⊗HI 7→ dχ⊗HI ,
(5.6)

where χ ∈ Ωp(M3) is a p-form on M3. The Hamiltonian H = 1
2

{
Q,Q†

}
decomposes

similarly into restrictions as (5.6) which govern the time evolution of states of definite color

H(α) =
1

2

{
Q(α),Q(α)†

}
, H(I) =

1

2

{
Q(I),Q(I)†

}
. (5.7)

Stripping off the trivial Lie algebra generator in each sector we obtain Hamiltonians acting
on the exterior algebra Λ(M3). We thus find a copy of Witten’s SQM for every Lie algebra
generator and more precisely obtain the correspondences

Eα ∈ gADE ↔ Witten’s SQM with supercharge Q = d+ αIφI∧ ,
HI ∈ gADE ↔ Witten’s SQM with supercharge Q = d .

(5.8)

The study of colored SQMs with split Higgs fields thus equates to studying the interaction
between the family of uncolored SQMs (5.8) embedded within it. In appendix D we study
the above from view point of the Lagrangian and make contact with the analysis presented
in [21].

5.2 Organizing perturbative ground states

The linear combinations of perturbative ground states (4.19) which constitute true ground
states of the SQM, and therefore zero modes along M3 in the compactification of the 7d
SYM, are determined by the cohomology groups of the Morse-Witten complex. The Morse-
Witten complex of the colored SQM collects the Morse-Witten complexes of each copy of
Witten’s SQM in (5.8) into a single complex.

The Morse-Witten complex is built from the free abelian groups Cµ(M3, φ) generated
by the perturbative ground states (4.19) over the complex numbers

Cµ(M3, φ) =
⊕

α

Cµ,α(M3, α
IφI) ,

Cµ,α(M3, α
IφI) =

⊕

a

C |xa, λα, µa〉 ≡ Cµα(M3, φ) ,
(5.9)

where µ fixes the degree of the perturbative ground state as a differential form. It is
graded by the fermion number operators associated with the fermions ψ, ψ̄ and λ, λ̄. The
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supercharge gives rise to the boundary map on the complex (5.9) and as a consequence
of the decomposition (5.6) the colored Morse-Witten complex is found to decompose into
multiple standard Morse-Witten complexes whose chain groups are Cµα(M3, φ) for fixed
color α. We take capital latin indices to run over generic perturbative ground states of the
colored SQM and decapitalized latin indices to run over all perturbative ground states of a
fixed color, i.e. or equivalently over all perturbative ground states of a subcomplex of the
SQMs in (5.8).

The color restricted supercharge Q(α) of (5.6) now gives rise to the standard boundary
map [46, 71, 72] generated by oriented flow lines (4.21) of αIφI we have

C3
α(M3, φ) C2

α(M3, φ) C1
α(M3, φ) C0

α(M3, φ) .
Q(α) Q(α) Q(α)

(5.10)

The adjoint of the supercharge Q(α) maps in the opposite direction. There is no such
complex for colors in the bulk of the SQM. Each of the complexes (5.10) can be analyzed
separately and its cohomologies are the Novikov/Lichnerowicz cohomologies [73–75] with
respect to the closed 1-form αIφI on M3. The cohomology groups of the supercharge Q of
the colored SQM thus decomposes into a direct sum

H∗
Q(M3, gADE) ∼=

(
R⊕

I=1

H∗
dR(M3)

)
⊕

 ⊕

Eα ∈ gADE

H∗
Nov.(M3, α

IφI)


 , (5.11)

where each summand is in correspondence with an SQM of (5.8). For exact 1-forms αIφI =

αIdfI derived from Morse functions αIfI the complex (5.10) is that of Morse theory on a
manifold with boundary. The boundary is generated by excising the source terms (more
generally supported on graphs) as introduced in (2.23) and for purely electrically sources
Higgs fields jI = 0 the Novikov cohomoloiges in (5.11) reduce to relative cohomologies and
are readily computed [21, 24].

The complexes (5.10) of different color can interact via a cup product originiating
from (4.20) and mediated by Y-shaped instantons. These multi-particle effects are absent
in ordinary SQMs. Consider three perturbative ground states

χa = |xa, λα, µa〉 ∈ Ωµa(M3) ⊗ Eα ,

χb = |xb, λβ, µb〉 ∈ Ωµb(M3) ⊗ Eβ ,

χc = |xc, λγ , µc〉 ∈ Ωµc(M3) ⊗ Eγ ,

(5.12)

which we assume to be energy eigenstates with energies E0,r of the Hamiltonian H =
1
2{Q,Q†}. In general energy eigenstates will be linear combinations of the perturbative
ground states to which the arguments below extend naturally. We further restrict to cases
which allow for the normalisation κ(Ta, Tb) = δab of generators to simplify exposition.

The Y-shaped instantons determine the leading order contribution to the overlap in-
tegral (2.19). The integral vanishes unless three selection rules are satisfied

µa + µb = µc , α+ β = γ , E0,a + E0,b = E0,c . (5.13)
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If these are satisfied the Yukawa integral can be simplified to

Yabc =

∫

M3

〈χc , [χa∧ , χb]〉 =

∫

M3

∗χ (γ)
c ∧ χ(α)

a ∧ χ
(β)
b , (5.14)

where we took the trace over the Lie algebra generators in the second equality and made
the complex conjugation in the first factor explicit. Here the raised indices (α, β, γ) refer
to the differential form part of the perturbative ground stated stripped of its Lie algebra
generator.

We evaluate this integral in three steps. The first step consists of rewriting the per-
turbative ground states as projections of profiles which are highly localized at the point
xr ∈ M3 associated to the perturbative ground state with r = a, b, c. We then rewrite the
overlap integral as a path integral of the colored SQM in which the unprojected localized
profiles go over into boundary conditions. This path integral then splits into three pieces
each associated with a definite color which we evaluate via supersymmetric localization.

To begin note that the operator creating a perturbative ground state can be
rewritten as

χr = lim
T→−∞(1+iδ)

e−iHTΨr e
iHT

e−iE0,rT 〈χr|Ψr〉
≡ Ψr

∣∣
−∞

, 0 < δ ≪ 1 , (5.15)

where r = a, b, c. The Hamiltonian H is the Legendre transform of the Lagrangian given
in (5.2) and is given explicitly in (C.18). Here Ψr = Ψ

(α)
r λ̄α (no sum) creates a Lie algebra

valued µr-form oriented along the generator Eα whose support only contains the point
xr ∈ M3 and no other points at which perturbative ground states localize. The slightly
imaginary limit projects Ψr onto the state of lowest energy with non-trivial overlap, this
state is χr. Using the basis (C.17) we extract the component functions as

(
Ψr

∣∣
−∞

)(α)

i1...iµr

(x) = 〈x|λαψi1 . . . ψiµr
Ψr

∣∣
−∞

|0〉

= lim
T→−∞(1+iδ)

〈x|λαψi1 . . . ψiµr

(
e−iHTΨr

) (
e−iE0,rT 〈χr|Ψr〉

)−1
|0〉

= lim
T→−∞(1+iδ)

(
e−iE0,rT 〈χr|Ψr〉

)−1
〈x|λαψi1 . . . ψiµr

e−iHT |Ψr〉

= lim
T→−∞(1+iδ)

(
e−iE0,rT 〈χr|Ψr〉

)−1

× 〈x|λαψi1 . . . ψiµr
e−iHT

(
∑

s

|χs〉〈χs| +
∑

n

|n〉〈n|
)

|Ψr〉

= lim
T→−∞(1+iδ)

(
e−iE0,rT 〈χr|Ψr〉

)−1
〈x|λα(r)ψi1 . . . ψiµr

e−iHT |χr〉 〈χr|Ψr〉

= 〈x|λαψi1 . . . ψiµr
|χr〉

= χ
(α)
r,i1...iµr

(x) , (5.16)

which proves (5.15). Here the sum
∑
s runs over all perturbative ground states while the

sum
∑
n runs over all higher energy eigenstates in the physical Hilbertspace Hphys. of (5.4).

The support of the states Ψr is localized at xr and excludes the sites of localization of all
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other perturbative ground states. Consequentially 〈χs|Ψr〉 = δsr 〈χr|Ψr〉 holds. Note fur-
ther that we can anticommute the color fermions λ, λ̄ past another in (5.16) which results
in a simplification of the Hamiltonian evolving the states. We have

χ
(α)
r,i1...iµr

(x) = lim
T→−∞(1+iδ)

〈x|ψi1 . . . ψiµr

(
e−iH(α)TΨ(α)

r

) (
e−iE0,rT 〈χr|Ψr〉

)−1
|0〉 , (5.17)

where H(α) is the Hamiltonian given in (5.7).
Next we rewrite the overlap integral (5.14) using the expression (5.17) for the profile

of the perturabtive ground states

Yabc = lim
T→−∞(1+iδ)

∫

M3

d3x
(
e−i(E0,a+E0,b−E0,c)T 〈χa|Ψa〉 〈χb|Ψb〉 〈χc|Ψc〉

)−1

× 〈x|ψi1 . . . ψiµa

(
e−iH(α)TΨ(α)

a

)
|0〉

× 〈x|ψj1 . . . ψjµb

(
e−iH(β)TΨ

(β)
b

)
|0〉

× 〈x|ψk1 . . . ψk3−µc

(
eiH

(γ)T ∗ Ψ
(γ)
c

)
|0〉

× ǫi1...iµaj1...jµb
k1...k3−µc

(5.18)

We take Ψr to be δ-function like supported at xr, rescale the Higgs field φ → tφ and from
now on work to leading order in 1/t. In the t → ∞ limit the profile of the normalized
perturbative ground states χr increasingly localizes at xr . To leading order we thus have

〈χr|Ψr〉 = 1 + O(1/t) . (5.19)

The energies cancel by (5.13) and together with (5.19) we find (5.18) to simplify to

Yabc = lim
T→−∞(1+iδ)

∫

M3

d3x ǫi1...iµaj1...jµb
k1...k3−µc

× 〈x|ψi1 . . . ψiµa

(
e−iH(α)TΨ(α)

a

)
|0〉

× 〈x|ψi1 . . . ψiµb

(
e−iH(β)TΨ

(β)
b

)
|0〉

× 〈x|ψi1 . . . ψi3−µc

(
eiH

(γ)T ∗ Ψ
(γ)
c

)
|0〉

+ O(1/t) .

(5.20)

We now transition to the path integral representation by rewriting each matrix element
above as a separate path integral. These are associated to paths with time intervals (T, 0]a,b
and [0,−T )c . The profiles Ψr are supported at xr and give rise to boundary conditions for
the path integral at infinite times. All in all we have

Yabc =

∫

M3

d3x0

∫ ∏

−∞<τ <0
xa,−∞ =xa
xb,−∞ =xb

dxa,τ dψa,τ dψ̄a,τ dxb,τ dψb,τ dψ̄b,τ
∏

0<τ <∞
xc,∞ =xc

dxc,τ dψc,τ dψ̄c,τ

exp
[
i
(
S(α)[xa, ψa, ψ̄a] + S(β)[xb, ψb, ψ̄b] + S(γ)[xc, ψc, ψ̄c]

)]
+ O(1/t) . (5.21)
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Here we have introduced the half line actions

S(α) =

∫ 0

−∞
dτ L(α) , S(β) =

∫ 0

−∞
dτ L(β) , S(γ) =

∫ ∞

0
dτ L(γ) , (5.22)

where the color restricted Lagrangians L(α) are the Legendre transformation of the color
restricted Hamiltonians (5.7). These actions are associated with the time intervals (T, 0]a,b
and [0,−T )c in the T → −∞ limit. The slightly imaginary limit makes the Feynman
propagator the relevant propagator here. Further we have written x(τ) = xτ and denoted
the three paths generated by insertions of the identity operator by the labels a, b, c. Note
that these are only defined on half of the real line. These are constrained to start or end
at the points xa, xb, xc ∈ M3 where the perturbative ground states localizes at infinite time
and join at a common point x0 ∈ M3.

The expression (5.21) is technically not a path integral, the space of field configurations
integrated over is that of all Y-shaped graphs whose end points are given by xa,b,c. We
depict such a configuration in figure 6. In the SQM Yabc is to be identified with the
tunneling amplitude of two particles of color λa, λb located at xa, xb respectively combing
to a particle of color λc located at xc.

As the final step we now evaluate the integral (5.21) via supersymmetric localization.
We rotate to euclidean time τ → −iτ and denote the resulting actions with a subscript,
we have

Yabc =

∫

M3

d3x0

∏

r=a,b,c

∫
DxrDψrDψ̄r e

−S
(αr)
E

[xr,ψr,ψ̄r] + O(1/t) . (5.23)

The total action

SE = S
(α)
E + S

(β)
E + S

(γ)
E , (5.24)

is not invariant under the supersymmetries derived from (4.11). Half of the supersymmetry
is broken by the boundaries of the actions (5.22), explicit computation yields

δSE = ǭ
(
ψia ẋa,i + ψib ẋb,i + ψic ẋc,i

)
τ=0

, (5.25)

whereby only the symmetry generated by ǫ is unbroken. Considering the factors of (5.23)
separately we see that the path integral thus localizes to ascending flow-lines of the 1-
forms αIφI , βIφI on each leg emanating from xa,b and to ascending flow lines of γIφI on
the leg ending at xc of the Y-shaped configuration depicted in figure 6. These flow-lines
are required to meet at a common point x0 ∈ M3 at time τ = 0. We refer to such a
BPS configuration as a flow tree Γabc. In a three dimensional set-up the only relevant
triplet of perturbative ground state have degrees µa = µb = 1 and µc = 2 as the D-term
constraint excludes perturbative ground states of degree 0 or 3. The moduli space of such
flow trees is generically zero dimensional which follows by dimension count. Ascending,
descending flow lines emanating from a point of Morse index µ = 1, 2 sweep out a manifold
of codimension 1 respectively. A common point of these flows is obtained upon intersecting
these submanifolds whose expected codimension is 3. Due to the common center point x0

there is no zero mode associated to time translations.
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xa xb

xc

xa,0 = xb,0 = xc,0

M3

! > 0

Figure 6. The figure shows an example of a Y-shaped graph whose end points are fixed at the
points xa,b,c . It is parametrized by two copies of R− and one copy of R+ . The set of Y-shaped
graphs constrained in this manner constitute the configuration space the path integral in (5.21)
localizes to. These Y-shaped flow trees are examples of generalized instantons which are a novel
phenomenon of colored SQMs.

The BPS locus of localization are thus Y-shaped flow trees as depicted in figure 6. The
localization computation then gives the result

Yabc =
∑

Γabc

(±)Γabc
exp

(
−t
∫

Γα

αIφI − t

∫

Γβ

βIφI + t

∫

Γγ

γIφI

)

+ O(1/t) ,

(5.26)

where Γσ with σ = α, β, γ are flow lines of the 1-form σIφI originating and ending at the
respective perturbative ground states at xa,b,c and x0. They glue to the flow tree Γabc over
which the sum runs. The sign (±)Γabc

denotes a fermion determinant. When σIφI = df (σ)

is exact this simplifies to

Yabc =
∑

γabc

(±)γabc
exp

(
−tf (α)(xa) − tf (β)(xb) + tf (γ)(xc)

)
+ O(1/t) . (5.27)

This fixes the proportionality constant which we could not determine in [21]. For exact
Higgs fields df (σ) the moduli space of Y-shaped flow trees has been described in [76], where
it is shown to be an oriented 0d manifold, the relative signs (±)γabc

are then a choice of
orientation on this moduli space.

The overlap integral Yabc therefore gives rise to a map between the chain groups of the
embedded Morse-Witten complexes

Y = [ · ∧ , · ] : Cµa
α (M3) × Cµb

β (M3) → Cµa+µb

α+β (M3) , (5.28)

which maps pairs of perturbative ground states according to the Y-shaped flow trees

(χa, χb) 7→
∑

c

Yabcχc , (5.29)
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where χa, χb, χc are given in (5.12). Ground states of the colored SQM are linear combi-
nation of perturbative ground states and thus the map Y descends to the cohomology of
the colored SQM complex (5.9) where it describes a cup product.

The Massey products mn of length n generalize the cup product Y . These are realized
by gradient flow trees connecting n+ 1 perturbative ground states and are associated to a
collection of Y-shaped gradient flow trees and gradient flow lines. We restrict our discussion
to the Massey products of length 3 which are given by the map

m3 : Cµa
α (M3) × Cµb

β (M3) × Cµc
γ (M3) → Cµa+µb+µc−1

α+β+γ (M3) (5.30)

and is defined by

(
|xa, λα, µa〉, |xb, λβ, µb〉, |xc, λγ , µc〉

)
7→ (−1)µa+µb−1 Y (S, |xc, λγ , µc〉)

+ (−1)µb+µc−1 Y (|xa, λα, µa〉, T ) ,
(5.31)

where S, T are perturbative ground states determined by the reverse flows

QS = (−1)µa Y (|xa, λα, µa〉, |xb, λβ, µb〉) ,
QT = (−1)µb Y (|xb, λβ , µb〉, |xc, λγ , µc〉) .

(5.32)

Up to signs these maps are easily understood as concatenations of gradient flow lines and
Y -shaped flow trees. The quantities Y (S, |xc, λc, µc〉) and Y (|xa, λa, µa〉, T ) corresponds
to s,t-channel like graphs respectively. They are depicted in figure 7 . General Massey
products of length n are described similarly. By linear extension all Massey products mn

descend to the cohomolgies of the complexes of (5.10).
Summarizing we note that the set of perturbative ground states of the colored SQM

can be organized into separate Morse-Witten complexes whose boundary maps are given
by the color restrictions Q(α) of the supercharge Q. The supercharge Q giving rise to
boundary maps. These complexes interact via the cup product Y and Massey products
mn with n ≥ 3 which give rise to 3-point and (n + 1)-point tunneling amplitutdes among
the perturbative ground states. We summarize the corresponding geometrical and field
theoretic structures in appendix A. Generalizing from (2.18) and (2.19) the massey products
are in correspondence with irrelevant couplings in the 4d N = 1 gauge theory. We therefore
focus on the flow lines and Y-shaped flow trees related to the 3-spheres shown in figure 1
going forward.

5.3 Partial Higgsing

When the group GADE is only partially Higgsed the correspondence (5.8) degenerates.
Consider the rank n Higgsing

GADE → GGUT × U(1)n ,

AdGADE → (AdGGUT ⊗ 1) ⊕ (1 ⊗ Ad U(1)n) ⊕
∑

Q

RQ ,
(5.33)
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yab

fQa+fQb

xb

xa xc

xd

ycd

-fQc+fQd fQd

fQcfQa

fQb

fQa+fQb=-fQc+fQd

S-channel

xb xc

xdxa

ybc

yad

fQb

fQa

fQc

fQd

fQb+fQc

-fQb+fQd

fQb+fQc=-fQa+fQd

T-channel

Figure 7. Picture of the flow trees contributing to the Massey product of length 3 . Two summands
marked with S, T respectively contribute to the Massey product m3 in (5.31). Pictorially these are
given by S-channel and T-channel like contributions. The Massey product m3 maps perturbative
ground states localized at the points xa, xb, xc to one localized at xd . Both channels are a given by
two Y-shaped gradient flow trees connect by a gradient flow line. This structure descend from (5.31)
which involves two cup products Y and a single boundary operator Q. Here we assume globally
exact Higgs fields φQr

= dfQr
. In the picture we mark the functions governing the gradient flows.

Two intermediate perturbative ground states are label by yrs for each channel.

where Q = (q1, . . . , qn) is a vector of U(1) charges. Then for every generator Eα ∈ RQ the
supercharge of the associated SQM reads Q = d + QIφI∧. The correspondence (5.8) can
be rephrased as

RQ ↔ Witten’s SQM with supercharge Q = d+QIφI∧ , (5.34)

making the degeneracy manifest. Representation not transforming under U(1)n correspond
to a free SQM mapping into M3 whose supercharge is the exterior derivative. Here the
selection rule in (5.13) for the roots of the Lie algebra becomes the well known constraint
on Yukawa interactions of requiring the sum of U(1) charges to vanish.

6 Higgs bundles with non-split spectral covers

We now turn to colored SQMs probing Higgs bundles with non-split spectral covers. These
covers are branched and were discussed in section 3, they are the spectral covers generically
encountered in F-theory constructions [26–28, 30–37]. Here we explore the Morse-theoretic
consequences of the presence of branch sheets and find that previously distinct copies of
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Branch Cut

%&

'&

s

Figure 8. Sketch of a flow line (black) encircling a branch cut (blue). The incoming flow is
determined by the Morse 1-form αIφI and the monodromy action associated to the branch circle is
given by s = −1, then the outgoing flow is determined by βIφI . The two Witten SQMs associated
to the roots α, β are coupled and combine to a single SQM.

Witten’s SQM combine into a single SQM whose target space is now topologically an irre-
ducible component of the spectral cover. Consequently the cohomology of the supercharge
Q on M3 computes topological properties for the spectral cover components Ck rather than
those of the base manifold M3. We discuss how to count zero modes in these models and
determine the gauge symmetry of the associated 4d physics. We further comment on turn-
ing on flat abelian connections A and how these generically lift zero modes. As in section 3
we specialize to M3 = S3.

6.1 Combination of Witten SQMs

We consider the Lagrangian (5.2) with a Higgs field φ = diag (ΛK) ∈ Ω1(S3, gADE) solving
the sourced BPS equations (3.4) whose associated n-sheeted spectral cover is irreducible
and cyclically branched as described in section 3.4. For concreteness we furthermore restrict
to Lie algebras gADE = su(n). The topology of such covers is fixed by the pairs (Li, Fi)

where Li = ∂Fi ⊂ M3 denotes the links of the branch locus and Fi ⊂ M3 a choice of Seifert
surfaces together with a cyclic monodromy action s ∈ Sn.

We begin analysing the 1-particle sector of the colored SQM. The notion of pertur-
bative ground states and the flow equations between these are identical to the case of
non-split spectral covers, but the global structure of flow lines is altered. Along a path
linking the branch locus the eigenvalues of the Higgs field are interchanged according to
the monodromy action which is given by

φ → gφg−1 , g ∈ SU(n) , (6.1)

where the element g is determined by the monodromy element s. A particle following the
flow line set by a sum of Higgs field eigenvalues αIφI follows a different combination of
eigenvalues βIφI after circling the branch locus and changes color. We have depicted this
process in figure 8. The color change is determined by the monodromy action

Eα → gEαg−1 , (6.2)
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and looping around the branch locus multiple times we find an orbit of generators

E[α] =
{
gkEαg−k | k = 0, . . . , n− 1

}
. (6.3)

For a standard choice of Cartan-Weyl basis Eα conjugation by gk acts as a permutation of
the roots α and we find an associated orbit of colors [α] to the action (6.3).

The eigenvalue 1-forms of the Higgs field can be distinguished on the simply connected
subspace S3 \∪iFi and while flowing in S3 \∪iFi the particle is of definite color. Traversing
the Seifert surfaces Fi the particle changes color according to (6.2). This leads to an
interpretation of the Seifert surfaces as defects in the colored SQM. The wave functions of
particles of definite color need not extend smoothly across the Seifert surfaces in S3 \ ∪iFi
but rather they are required to glue smoothly to a wave function profile on S3 \ ∪iFi
associated with a color prescribed by the monodromy action (6.2). Equivalently, they
must glue exactly as the eigenvalues of the Higgs field in (3.23). By this effect particles of
color α evolve identically to an uncolored particle probing n copies of S3 \ ∪iLi. Each copy
is associated with a color β ∈ [α] and the potential governing the particle is determined in
the respective copy by the 1-form βIφI . Due to (3.23) this gives a well-defined potential
on the n-fold glued space (3.20) which is topologically the spectral cover C. With this the
correspondence (5.8) is altered to

E[α] ⊂ su(n) ↔ Witten’s SQM on C with supercharge Q = d+ Φ[α] ∧ ,
HI ∈ su(n) ↔ Witten’s SQM on M3 with supercharge Q = d .

(6.4)

Here the 1-form Φ[α] ∈ Ω1(C) is defined by gluing the 1-forms βIφI across the gluing factors
given in (3.20).

The branch cuts of the Higgs field or equivalently its Seifert surface defects break the
gauge symmetry to the stabilizer Stab(φ) which consists of gauge transformations leaving
φ invariant. They are generated by the generators H of the maximal torus of the gauge
group which satisfy

gHg−1 = H . (6.5)

For the n-sheeted irreducible coverings discussed in this section all of the gauge symmetry is
broken. More general Higgs fields whose spectral covers have N+1 irreducible components
have their gauge group broken to U(1)N . This may enhance to include factors of SU(k) if
k eigenvalues of the Higgs field take the same value.

6.2 Monodromies and partial Higgsing

We are interested in preserving some of the gauge symmetry and non-split Higgs field
backgrounds whose spectral cover (2.20) has multiple components. The eigenvalues ΛK as-
sociated with each irreducible component of the cover can be activated successively whereby
we can focus on Higgs fields where n eigenvalues have been set to vanish and m have been
activated to trace out an irreducible m-sheeted cover.

We begin by consider a Higgs field background valued in the Lie algebra su(n + m)

for which m eigenvalues are turned on as described in section 3.4. This naively realizes a
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partial Higgsing of the gauge symmetry from SU(n+m) to SU(n) × U(1)m as discussed in
section 5.3. The adjoint representation breaks into representations of SU(n) × U(1)m as

Ad SU(n+m) → (Ad SU(n) ⊗ 1) ⊕ (1 ⊗ Ad U(1)m)

⊕
m∑

i=1

(nQi
⊕ n−Qi

) ⊕
m2−m∑

j=1

1Qj
.

(6.6)

Here we denote the fundamental representation of SU(n) by n and both Qi, Qj are charge
vectors of U(1)k. There are m pairs of the fundamental representation of SU(n) and
m(m− 1) trivial representations charged under U(1)k.

Monodromy effects (6.5) now break the gauge symmetry to SU(n) × U(1) and the
colored SQM now groups the representations in (6.6) into representations of this reduced
gauge symmetry. The m pairs of fundamental representations nQi

,n−Qi
belong to the same

monodromy orbit of colors with length m (6.3) and combine to a single pair of fundamental
representations n+,n− of the gauge symmetry SU(n)×U(1). Similarly the m(m−1) trivial
representations are grouped into (m−1) trivial representations which are uncharged under
the new gauge group. The m representations Ad U(1)m combine to Ad U(1). The latter
follows from the common geometric origin of the Higgs field φ and the connection A. The
gauge fields valued in Ad U(1)m are in correspondence with the m activated Higgs field
eigenvalues. They are constrained to glue in the same way as the eigenvalues (3.23) across
the branch sheets and are not independent. Summarizing we find that the monodromy
effects lead to following representation content

(Ad SU(n) ⊗ 1) ⊕ (1 ⊗ Ad U(1)m) ⊕
m2−m∑

j=1

1Qj
⊕

m∑

i=1

(nQi
⊕ n−Qi

)

→ (Ad SU(n) ⊗ 1) ⊕ (1 ⊗ Ad U(1)) ⊕
m−1∑

k=1

1
(k)
0 ⊕ (n+ ⊕ n−)

(6.7)

of the reduced gauge symmetry group SU(n) × U(1). The raised superscript 1
(k)
0 is intro-

duced to distinguish the m− 1 uncharged trivial representation.
We check these results by considering the circle reduction of M-theory on the ALE

geometry set by the Higgs field background to the IIA set-up. This is given by n + m

D6-branes of which m have been Higgsed leaving a stack of n coincident branes. The m
D6-branes recombine into a single D6-brane which explains the gauge symmetry reduction
to SU(n) × U(1). Further this interpretations explains the single pair of fundamental
representations n+,n− which correspond to the open string sector between the stack of
n D6-branes and the recombined, Higgsed D6-brane. The modes in the uncharged trivial
representations originate from the self-intersection of the Higgsed D6-brane.

The colored SQM now further determines a simplification of the cohomology groups
H∗

Q(S3, gADE) with gADE = su(n+m) which determine the 4d spectrum (2.16). The spec-
tral cover is the union of n copies of the zero section in T ∗S3 and the Higgsed eigenvalues
which sweep out the irreducible 3-manifold C ⊂ T ∗S3 given topologically by

C =

[
S3 \

(
⋃

i

Fi

)]

1

# . . . #

[
S3 \

(
⋃

i

Fi

)]

m

\ (∪iLi) . (6.8)
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For further details we refer to section 3.4 and appendix B. We discuss the zero mode
counting for each summand of (6.7) in turn. The fields transforming in Ad SU(n) ⊗ 1 are
not effected by the Higgs field background and the relevant zero modes in the reduction on
M3 are counted by the de Rham cohomology groups H∗

dR(S3,R). The fields transforming
in 1 ⊗ Ad U(1) commute with the Higgs field, but, as explained above, zero modes are
counted by the de Rham cohomology groups H∗

dR(C,R). The fields transforming in the
m−1 uncharged trivial representations 1(k) are similarly effected by the branch cuts. Such
representations resulted from combining m charged representations 1Qj

and the relevant
Higgs field for each of these is given by QIjφI . The charge vectors Qj are nothing but
the roots αj of su(m) and the glued representations 1Qj

precisely fit into a color orbit
of the monodromy action (6.2). The sum

∑m−1
k=1 1(k) =

∑
[α] 1[α] in (6.7) is equivalently

expressed as a sum over color orbits. The m 1-forms QIjφI associated with the color orbit
[α] glue across the m factors in (6.8) to the 1-form Φ[α] on the gluing space C. As a
consequence zero modes are counted by the Novikov cohomology groups H∗

Nov.(C,Φ[α]).
The fields transforming in n+ are identically argued to be counted by H∗

Nov.(C,Φ[β]) where
β is a positive root of su(n+m) that is neither a root of the subalgebras su(n) or su(m).
Of course there are many different (precisely nm) such roots but due to the degeneracy
explained in section 5.3 all such roots yield the same 1-form Φ[β]. Zero modes transforming
in n− are simply counted by the groups H∗

Nov.(C,−Φ[β]). Due to its distinguished role we
denote Φ[β] simply by Φ.

We can now generalize (5.11) for partial Higgsings with non-split spectral covers. For
the Lie algebra g = su(n+m) and monodromy orbits [α] of su(m) we have, counting with
multiplicities,

H∗
Q(S3, g) =



n2−1⊕

i=1

H∗
dR(S3,R)


⊕H∗

dR(C,R)

⊕

⊕

[α]

H∗
Nov.(C,Φ[α])


⊕

(
m⊕

k=1

[H∗
Nov.(C,Φ) ⊕H∗

Nov.(C,−Φ)]

)
.

(6.9)

More generally we can consider other ADE gauge groups and turn on Higgs fields
similarly as above. Consider for example the gauge symmetry breaking E8 → SU(5)GUT ×
SU(5)⊥ where the Higgs field is turned on along SU(5)⊥. Such a breaking is described by
a five sheeted spectral cover of SU(5)⊥ traced out by the non-vanishing eigenvalues of the
Higgs field. The Higgsing is a special case of

E8 → SU(5)GUT × SU(5)⊥

248 → (24,1) ⊕ (1,24) ⊕ (10,5) ⊕ (
5,10

)⊕ (
10,5

)⊕ (
5,10

)
,

(6.10)

for which SU(5)⊥ is further reduced to U(1) when taking the eigenvalues of the Higgs field
to trace out an irreducible 5-fold covering. The representations of SU(5)GUT follow from
orbits of the Weyl group action S5 on the representations in (6.10) of SU(5)⊥. The Higgs
field breaks SU(5)⊥ naively to S[U(1)5], the spectrum transforming under SU(5)GUT×U(1)

then follows as in (6.7). We normalize the U(1) charge of the fundamental representa-
tions 5 to unity and then find following spectrum transforming under the gauge symmetry
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SU(5)GUT × U(1)

240 ⊕
(

10 ⊕
4∑

k=1

1
(k)
0

)
⊕ 10+1 ⊕ 10−1 ⊕ 2 × 5+2 ⊕ 2 × 5−2 . (6.11)

The zero modes of Q transforming in each representation are again characterized by a
Higgs field on the space (6.8) constructed via gluing. For example the matter curves (here
points) of (10,5) in (6.10) give matter transforming in the anti-symmetric representation of
SU(5)GUT which localizes at ΛK = 0 for the K = 1, . . . , 5 eigenvalues of the Higgs field. The
eigenvalues ΛK glue to a 1-form Λ on C as in (3.23). The massless matter transforming
in 10+1 of (6.11) is therefore counted by H∗

Nov.(C,Λ). Similarly the massless matter in
(5,10) localizes at ΛK + ΛL = 0 with K > L. The monodromy action groups these ten
1-forms into two groups of five 1-forms which glue to the 1-forms Λ

(1)
as ,Λ

(2)
as on C. The

matter transforming in the two representations 5+2 are therefore counted by H∗
Nov.(C,Λ

(i)
as )

with i = 1, 2.

6.3 Example: 2-sheeted covers and monodromy

We give an explicit example of the effects discussed in the previous sections. Consider the
family of two-sheeted covers (3.9) constructed in section 3.2 and embed these two sheets
(Λ,−Λ) into an su(4) valued Higgs field φ on M3 = S3 as

φ = diag(0, 0,Λ,−Λ) . (6.12)

Here Λ is a 1-form with branch loci along a collection of circles ∪iS1
i defined on S3 \ ∪iDi

where Di are disks realizing the branch sheets and bound by the branch locus ∂Di = S1
i .

With respect to the Cartan basis

H1 = diag(1,−1, 0, 0) , H2 = diag(0, 1,−1, 0) , H3 = diag(0, 0, 1,−1) , (6.13)

consider the six positive roots

α1 = (2,−1, 0) , α2 = (−1, 2,−1) , α3 = (0,−1, 2) , (6.14)

α4 = (1, 1,−1) , α5 = (−1, 1, 1) , α6 = (1, 0, 1) . (6.15)

When traversing a closed path linking one of the circles S1
i the third and fourth sheet

of the spectral cover are interchanged, i.e. the Higgs field φ returns to (6.1)

φ → −φ = gφg−1 , g =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 −1 0




∈ SU(4) , (6.16)

which realizes a Z2 monodromy action. The gauge group is broken to SU(2) × U(1). The
supercharge Q = d + [φ∧ , · ] preserves the standard complexified Lie algebra generators
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Eαi associated with the roots (6.14) and restricts to each of the respective subspaces, in
the notation of (5.6), to

Q(α1) = d , Q(α2) = d− Λ ∧ , Q(α3) = d+ 2Λ ∧ , (6.17)

Q(α4) = d− Λ ∧ , Q(α5) = d+ Λ ∧ , Q(α6) = d+ Λ ∧ . (6.18)

The gauge transformation (6.16) determines which copies of Witten’s SQM associated with
different roots of su(4) combine across the branch sheets. The conjugation of (6.16) acts
on the positive generators of su(4) as

gEα1g−1 = Eα1 , gEα2g−1 = −Eα5 , gEα3g−1 = −(Eα3)T = −E−α3 , (6.19)

gEα4g−1 = −Eα6 , gEα5g−1 = Eα2 , gEα6g−1 = Eα4 , (6.20)

and the roots (6.14) and (6.15) together with their negative copies are grouped into the
color orbits

[α1] = {α1} , [−α1] = {−α1} , (
Ad SU(2)

)
(6.21)

[α2] = {α2, α5} , [α4] = {α4, α6} , (n+) (6.22)

[−α2] = {−α2,−α5} , [−α4] = {−α4,−α6} , (n−) (6.23)

[α3] = {α3,−α3} (10) . (6.24)

The twelve SQMs naively associated with the roots of su(4) in (5.8) consequently combine
across the branch sheets to SQMs associated with the color orbits (6.21)–(6.24). The
generators E±α1 commute with the Higgs field and give free SQMs mapping into S3. The
remaining color orbits contain two roots and are over (6.4) in correspondence with SQMs
mapping into the target space

C =
(
S3 \D

)
1

#
(
S3 \D

)
2

\ L , D =
N⋃

i=1

Di , L =
N⋃

i=1

S1
i , (6.25)

whose metric is inherited from the gluing factors. Each gluing component is associated
with one of the roots in of the pairs (6.22)–(6.24). The 1-forms Λ,−Λ glue to a single
harmonic 1-form Φ on C and consequently the supercharges (6.17), (6.18) combine in pairs
to give the supercharges of the SQMs mapping into (6.25).

We briefly comment on the IIA string theory interpretation of the above effects. In
the type IIA set-up associated with the Higgs field (6.12) we locally have four D6-branes
of which two have combined to a connected object corresponding to the spectral cover
component C. The transformations (6.19) are then understood as open string sectors
identified by the monodromy action. For instance, an open strings locally connecting
the first and third D6-branes are found to connect the first and fourth D6-brane when
transported around the branch locus. We depict this interpretation in figure 9.

The monodromy orbits already fix the representation content (6.7) transforming under
SU(2) × U(1) which here reads

Ad SU(2)0 ⊕ Ad U(1) ⊕ 10 ⊕ 2+ ⊕ 2− , (6.26)
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Monodromy

+

-+

0

(a)

(b)

(c)

(a)

(b)

(c)

Figure 9. The picture locally shows the four D6-branes which are IIA realization of the Higgs
field (6.12). The D6-branes labeled by ±Λ are connected by branch sheets and along a closed path
linking a branch cut locus S1

i the components of the combined D6-brane interchange. By (a,b,c)
we label three open string sectors and their image when transported around the branch locus. The
Chan-Paton factors of the string determine to which root of the Lie algebra su(4) it is associated.
The pairs of roots (6.21)–(6.24) are now understood as the open string sectors which are mapped
onto another by the monodromy action.

where the roots associated with each representation are as given in (6.21)–(6.24). In figure 9
the open string sectors corresponding to 2+,2−,10 are marked with (a, b, c) respectively.
The reflective symmetry θ → π − θ of the set-up, we refer to section 3.2, requires all
instanton effects potentially lifting perturbative ground states to come in pairs and cancel.
All perturbative ground states are therefore ground states of the colored SQM and their
count determines the cohomologies in (6.9). These are localized at the zero of the Higgs
field, counted in (3.12), and therefore the Novikov cohomology groups evaluate to

H∗
Nov.(C,Φ) =

{
0,Rl−2,Rl−2, 0

}
, (6.27)

where l is the number of disks participating in the gluing construction (6.25). The Novikov
groups for the 1-form Φ[α3] = 2Φ on C of the color orbit [α3] also evaluate to (6.27).

6.4 Flat abelian Higgs bundles with split covers

The most general supersymmetric vacua of the 7d SYM solving (2.11) are solutions with
non-vanishing connections. As a precursor to analysing these we consider split and non-
split Higgs bundles for which a flat abelian connection A along the Cartan subalgebra hADE

of the gauge algebra gADE has been turned on. Properties of these configurations have been
explored in [77, 78]. The Higgs field φ and connection A have a common geometric origin
whereby we restrict to abelian configurations for A which do not break the gauge symmetry
further from the initial Higgsing. We have A = AIH

I where the Cartan components AI
are only non-vanishing if the Cartan components φI is also non-vanishing. Further, branch
cut structures of the Higgs field φ and connection A agree when present. The two fields
commute [φ,A] = 0 whereby the BPS equations are unaltered. The gauge bundle adPADE

decomposes into line bundles

adPADE = M3 × hADE ⊕
(
⊕

α

Lα

)
, (6.28)

where α runs over the roots of the Lie algebra gADE.
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The supercharge associated to the Lie algebra generator Eα now takes the form Q(α) =

d+ αI(tφ+ iA)I∧ and perturbative ground states are approximated well by

|xA, λα, |KA|〉 = exp
[
−t|c(α)

k |(xk)2 + i(−1)kααIAkI (xA)xk
]
dxKA ⊗ Eα (6.29)

Here we have written locally αIφI = df (α) and expanded f (α) = c
(α)
k (xk)2 + O(|x|3) in

normal coordinates centered at xA . The gauge field is closed dA = 0 but need not vanish
at a zero of the Higgs field φQ . We approximate it therefore locally as αIAI = dg(α) with
g(α) = αIAkI (xA)xk+O(|x|2) . The exponential in (6.29) then subsumes these leading order
approximations up to signs. Here KA ⊂ {1, 2, 3} is subset of indices k for which c

(α)
k < 0

and kα = 0 if k ∈ KA and 1 otherwise. The index A runs over the perturbative ground
states of color α.

The supercharge acts on the perturbative ground states (6.29) as

Q|xA, λα, |KA|〉 =
∑

γAB

(±)γAB
exp

[
−
∫ xB

xA

αI (tφI + iAI)
∣∣
γAB

]
|xB, λβ, |KA| + 1〉

+ O(1/t) ,

(6.30)

which follows from a computation similar to the one leading to the canoncial result (D.24)
in the appendix. Here γAB is a flow line of αIφI connecting the two sites of localization
xA, xB ∈ M3 and the signs (±)γAB

again originates from fermion determinant in the path
integral computation. If the Higgs field exhibits branch cuts then these can be looped
by γAB and ground states of different color λα 6= λβ can connect. The tunnelling is again
restricted to be between states with a relative fermion number of 1. Note that compared to
the result (D.24) for vanishing connections A = 0 we have crucially picked up a Wilson line

Wα(γAB) = exp

(
−i
∫

γAB

αIAI

)
, (6.31)

which shifts the boundary map of the associated Morse-Witten complex by a phase.
The Wilson line (6.31) obstructs the cancellation of instanton contributions. Consider

a non-trivial 1-cycle C1 contained in M3 or more generally in the covering space C with
respect to which the connection A has non-trivial holonomy

∫
C1
A 6= 0. Assume that the

Higgs field αIφI = df (α) is such that it has two vanishing points xA, xB connected by two
flow lines γ(1)

AB, γ
(2)
AB which wrap C1 as depicted in figure 10 and have opposition signs,

(±)
γ

(1)
AB

= +1 , (±)
γ

(2)
AB

= −1 . (6.32)

We sketch this set-up in figure 10. The action of the supercharge on the perturbative
ground state |xA, λA, |I|〉 localized at xA is computed to leading order by

Q|xA,λA, |KA|〉 = c

[
exp

(
−i
∫

γ
(1)
AB

αIAI

)
−exp

(
−i
∫

γ
(2)
AB

αIAI

)]
|xB,λB, |KA|+1〉

= cexp

(
−i
∫

γ
(1)
AB

αIAI

)[
1−exp

(
i

∫

C1

αIAI

)]
|xB,λB, |KA|+1〉

(6.33)
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xA

xB

'AB
(2)

'AB
(1) C1

Figure 10. The picture shows two perturbative ground states localized at points xA, xB ∈ M3

which are connected by two instantons along the paths γ(1)
AB , γ

(2)
AB . The paths wrap a 1-cycle C1.

In the absence of a connection the non-perturbative contributions to the matrix element of the
supercharge between the perturbative ground states at xA, xB cancel. If a connection is turned on
then these contributions are shifted by a phase, no longer cancel and ground states are lifted.

where we introduced the constant c = exp
(
tf (α)(xA) − tf (α)(xB)

)
. Unless the holonomy

∫
C1
αIAI = 2πn is an integer multiple of 2π turning on A will break the cancelation between

the instanton effects and both |xA, λA, |KA|〉, |xB, λB, |KB|〉 are no longer ground states.

The prefactor exp

(
−i ∫

γ
(1)
AB

AQ

)
can be gauged to vanish.

7 Effective 4d physics

So far we have focussed on understanding the zero modes of the operator Q on M3 given
in (2.13) and identified an equivalent formulation of these as the ground states of a colored
quantum mechanics. We now turn to discuss the KK-reduction on M3 and the effective 4d
gauge theory. The relevant scales for the reduction of the partially twisted 7d SYM are the
volume VolM3 setting the mass scale MKK and the mass scale Mφ, set by an appropriate
average of the Higgs field, marking the scale at which the gauge symmetry is broken.

In addition to the massless sector we also find two sets of light modes. The M2-brane
induce masses for perturbatively massless fields which are exponentially below MKK and
the torsion factors (3.22) in the homology groups of the spectral covers yields modes below
Mφ [79–82]. After discussing these two sets of light modes we briefly give a summary of
the 4d effective physics adapting results in [21] to the set-up at hand.

7.1 Instantons, torsion and light modes

The light modes in the KK-reduction of the 7d SYM on M3 are given by approximate zero
modes, which receive non-perturbative contributions to their masses through M2-brane
instantons, and modes resulting from an expansion of the 7d fields in the generators of the
torsion cohomology classes of the sepectral cover. We discuss each in turn beginning with
modes receiving instanton corrections.

The ADE singularity in the ALE fibration enhances at each zero of the Higgs back-
ground (2.6) and M2-branes wrapped on the collapsing vanishing cycle contribute an ap-
proximate zero mode χA on M3. These transform in non-adjoint representation of the
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unbroken gauge symmetry and contribute matter in 4d. Their masses are set by the non-
vanishing eigenvalues of the mass matrix (2.18) which we reproduce for convenience here

MAB =

∫

M3

〈χA,QχB〉 , MAB ∼ MKK exp
(
−t 〈VolS3〉

)
. (7.1)

The associative 3-spheres S3 are traced out by a single vanishing cycle in the ALE fibration
and with 〈VolS3〉 we denote their average volume. In our analysis we computed the non-
perturbative effects of M2-branes wrapped on these 3-cycles to leading order in 1/t, see
e.g. (5.26). In this large t limit the modes (7.1) become increasingly light and should be
integrated out effecting the running of the gauge coupling at low energies.

We now discuss the light modes originating from possible torsion factors in the in first
homology group of a component C of its spectral cover

TorH1(C,Z) = Zm1 ⊕ · · · ⊕ Zmp . (7.2)

These torsion factors generally have two origins. For split spectral covers they follow from
those of the base manifolds as in this case each spectral cover component is one to one
covering of the base away from the singularities of the Higgs field. On the other hand,
for non-split spectral covers additional torsion factors can originate form the branch cut
structure of the cover as demonstrated in (3.22). We study the effect of torsion from the
view point of the partially twisted 7d SYM from which the 4d physics follows via a KK
reduction. Hodge theory does not give harmonic forms for each factor in (7.2) but it is
still possible to associate p 1-forms αi and closed 2-forms βi with each torsion generator.
These satisfy

dαi = (L−1) j
i βj , (L−1) j

i ∈ Z ,
∫

C
αi ∧ βj = δij , i, j = 1, . . . , p , (7.3)

where L is the linking form on H1(C,Z). We give further details in appendix E. These 2p

forms span eigenspaces of the Laplace operator and are characterized by a positive definite
mass matrix M as

∆αi = −M j
i αj , ∆βi = −M̃ j

i βj ≡ −(LML−1) j
i βj . (7.4)

The forms αi, βj are the lightest massive eigenvectors of the Laplacian on C with mass scales
below the scale Mφ [81, 82]. In the case of non-split spectral covers the torsion groups (7.2)
enter the reduction through (6.9) where we originally considered real coefficients to count
zero modes. The cohomology group TorH1

dR(C,Z) now additionally contributes the forms
αi in (7.3) for the expansion of the U(1) gauge field A7d of the 7d SYM associated with
the irreducible spectral cover component C. The standard KK-expansion

A7d = A4d +
p∑

i=1

ρiαi + . . . , (7.5)

gives p scalars ρi which by supersymmetry complete into light chiral multiplets in 4d.
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7.2 4d gauge symmetry, matter content and superpotential

We summarize the structures determining the 4d gauge symmetry, matter content and
superpotential. Instrumental in our analysis is the colored N = 2 supersymmetric quantum
mechanics (4.10) which fully determines the effective 4d physics from the partially twisted
7d SYM compactified on M3. Here we consider a non-split Higgs field background on S3

whose spectral cover C = ∪kCk consists of N + 1 components with a Higgs field breaking
the gauge symmetry locally to GGUT × U(1)m ⊂ GADE. We discussed set-ups of this kind
in section 6 and for these we determined the following 4d physics.

1. Gauge Symmetry: the gauge symmetry is broken by monodromy effects (6.5) to the
stabilizer of the Higgs field GGUT × U(1)N . In the SQM picture the wave functions
associated with the gauge fields of the naive gauge group U(1)m are constrained to
glue consistently across the Seifert surfaces breaking the gauge symmetry to U(1)N .
In the local G2 geometry the differences Ck − Cl lift to 5-cycles in the ALE geometry
which are Poincaré dual to N independent 2-forms. Expanding the 11d supergravtiy
3-form in these yields N abelian gauge fields. In the IIA set-up for GADE = SU(n)

the Higgsed sheets of the spectral cover descend to N independent D6-branes and
each contributes an abelian factor to the gauge symmetry.

2. Massless Matter: 4d N = 1 vector and chiral multiplets are counted by the cohomol-
ogy groups (2.16). For split and non-split spectral covers considered in this paper
these are computed to (5.11) and (6.9) respectively. In the SQM picture these coho-
mologies count the ground states, alternatively they can be derived from the pertur-
bative ground states corrected by flow line instanton effects and are computed by the
kernel of the mass matrix (2.18). In the local G2 geometry the perturbative ground
states are in correspondence with M2-branes wrapping vanishing cycles. These yield
light states in 4d and Euclidean M2-branes wrapping associative 3-spheres traced out
by the vanishing cycles determine their masses. In a IIA set-up we have perturba-
tively massless states originating from open strings localized at the intersection of
D6-branes and non-perturbative mass contributions via world sheet instantons.

For example, consider the breaking E8 → SU(5)GUT×SU(5)⊥ which is further broken
to SU(5)GUT×U(1) by a Higgs field with an irreducible 5-sheeted cover C as considered
in section 6.2. The eigenvalues of the Higgs field glue across the branch surfaces, along
which the sheets of the cover mix, to a 1-form Λ ∈ Ω1(C). For instance, massless mat-
ter transforming in 10+1 of (6.11) is then counted by the Novikov cohomology groups

Chiral multiplets in 10+1 : H1
Nov.(C,Λ) ,

Conjugate-Chiral multiplets in 10−1 : H2
Nov.(C,Λ) .

(7.6)

Other matter content is counted similarly. The chiral index for these representations
is given by

χ(10+1 ⊕ 10−1) = H1
Nov.(C,Λ) −H2

Nov.(C,Λ) (7.7)

and may be non-vanishing as the spectral cover C is non-compact. In addition to
these massless modes there are light modes below the two scales MKK ,Mφ of the
set-up, see section 7.1.
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3. Superpotential: Yukawa couplings for massless matter are determined by the general-
ized Y-shaped instantons of the colored SQMs which connect three of its perturbative
ground states. The contribution of a single such instanton explicitly reads (5.26).
Globally the set of instantons is constrained to encode a cup product (5.28). In
the local G2-manifold these interactions are due to euclidean M2-brane instantons
wrapped on associative 3-spheres traced out by three linearly dependent vanishing
cycles, as depicted on the right hand side in figure 1. In the IIA set-up these descend
again to world sheet instantons.

8 Conclusion and outlook

In this paper we studied M-theory on local G2-manifolds via an effective description as
a partially twisted 7d SYM theory. We determined the gauge group of the resulting 4d
N = 1 gauge theory and its matter content. The 4d superpotential in this reduction is
generated non-perturbatively by Euclidean M2-brane instantons. We characterized the low
energy avatars of these M2-brane instantons in the 7d SYM theory and found a one to one
correspondence with the instantons of a colored supersymmetric quantum mechanics. This
correspondence allowed for the computation of superpotential contributions of individual
M2-brane instantons from the perspective of the 7d SYM and constrained the set of all M2-
brane instantons to encode topological structures. The latter can not be read off from the
geometry and requires the colored SQM or equivalently the Higgs bundle of in the 7d SYM
to make manifest. The SQM serves as a computational tool in the reduction to 4d which,
given a Higgs bundle associated with local G2-manifold, outputs the data of the 4d theory.
This data is given in terms of cohomology groups and operations on these. The SQM is
not straightforwardly suited for constructing interesting Higgs bundles or quantifying the
relevant cohomological structures and it is in these two challenges which future research
opportunities lie:

1. Construction of Higgs Bundles: the class of TCS G2-manifolds suggests that large
number of Higgs fields φ = diag (ΛK) with split spectral covers exist. These are
solutions to the equations

dΛK = ∗jK , ∗ d ∗ ΛK = ρK , (8.1)

and additionally satisfy gluing conditions in the presence of branch cuts, see section 3.
Here jK , ρK are sources supported on codimension ≥ 1 subloci of the base manifold.
It would be interesting to classify possible source terms and therefore local models
as they are considered in the physics literature.

2. Construction of Complex Flat Connections: the partially twisted 7d SYM with gauge
group GADE allows for a larger class of vacua which are not necessarily solutions
to (8.1). Rather they are solutions to the BPS equations

iFA + [φ, φ] = 0 , dAφ = 0 , dA ∗ φ = 0 , (8.2)
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possibly extended by source terms on the right hand side. These equations state that
the operator Q = d+φ+iA is a complex flat gADE,C connection and solutions to (8.2)
are more loosely referred to as T-branes. The system (8.2) also arises as the BPS
equations of a partially twisted 5d N = 2 SYM in the context of the 3d-3d correspon-
dence [50, 83–85], for an overview see [86]. Here complex flat connections have been
intensely studied. In a compactification program we are interested in cases in which
the moduli space of complex flat connections is finite dimensional, as e.g. studied
for [87, 88] when gADE,C = sl(2,C). Isolated vacua, as for example studied in the
setting of knot complements, do not yield phenomenologically interesting 4d physics.

The problem of solving (8.1) and (8.2) for singular configurations with source terms
can alternatively be formulated as a problem on a manifold M3 with boundary ∂M3

where the boundary follows from excision of the source terms. Solutions are then
characterized as complex flat connection on ∂M3 which can be extended throughout
the bulk of the manifold. The 4d physics associated with these configurations would
be worthwhile exploring.

3. Computation of Cohomology Groups: given solutions to (8.1) or more generally (8.2)
the 4d spectrum and superpotential are determined by the cohomology groups of
the flat connection Q = d + φ + iA. The colored SQM sets up a Morse-theoretic
interpretation of these cohomology groups. This allowed for the evaluation of these
cohomology groups, e.g. for purely electrically sourced split Higgs field brackgrounds
(i.e. jK = 0 in (8.1)) in [21, 24] using [89, appendix D]. It would be of great interest
to enlarge the types of BPS configurations for which the cohomology groups of the
connection Q = d+ φ+ iA can be computed.

4. Derivation of the colored SQM: the colored SQM captures all non-perturbative effects
associated with M2-branes. It is natural to conjecture that it derives from an M2-
brane probing the ALE-fibered G2-manifold via a suitable reduction when wrapped
on the vanishing cycles. The colored SQM in this work was constructed bottom-up
by prescribing its supercharge and Hilbert space, a top-down derivation is currently
not available in the literature.
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A The dictionary: geometry, gauge theory, SQM

This appendix concisely summarizes the theories discussed in this paper. We list the field
theoretic interpretations of the geometric data of the local G2-manifold, both in 4d and
7d, as well as their SQM interpretations in table 2.
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ALE-fibered
G2-manifold

7d N = 1

Twisted SYM
4d N = 1

Effective Theory
N = 2 = (1, 1)

Colored SQM

Redsidual Singularity
along M3

Non-abelian
gauge symmetry

Non-abelian
gauge symmetry

Bulk sector

Singularity
enhancement

Approx. localized
zero mode on M3

Matter
Perturbative
ground state

Associative S3 Flow lines of φ Mass terms
Instanton and

differential ∂MW

Associative S3 Y-Flow tree of φ Yukawa coupling
Generalized instanton

and cup-product ∪

Associative S3 Flow-tree of φ
Higher-point

coupling
Generalized instanton,

Massey product mn

Globally defined
ALE 2-cycles

Split spectral cover
Maximal # of

U(1) symmetries
dim gADE embedded

Witten SQMs

Monodromy mixed
ALE 2-cycles

Non-split spectral
cover, Higgs field
with branch cuts

Submaximal # of
U(1) symmetries

Combination of
Witten SQMs

Table 2. List of correspondences between field theory, geometry and SQM.

B Homology groups of cyclically branched, n-sheeted coverings

In this appendix we discuss the computation of the homology groups (3.22) using the
Mayer-Vietoris sequence. Consider an n-sheeted covering π : C̃ → M3 where the n-sheets
are glued cyclically along the l Seifert surfaces Fi bounded by the links Li = ∂Fi as given
in (3.21). We proceed iteratively and resolve the contributions to the homology groups
originating from each link separately. Let U be a small open set containing the link Li and
V an open set containing M3 \U such that their intersection is a 2-sphere U ∩V = S2. We
apply the Mayer-Vietoris sequence to the open sets A = π−1(U) and B = π−1(V ) which
intersect along n copies of the 2-sphere A ∩B = (S2)n. This decomposition of the cover C̃
is sketched in figure 11. The relevant long exact sequence then reads

0 → H3

(
(S2)n ,Z

)
→ H3(A,Z) ⊕H3(B,Z) → H3(C̃,Z) →

H2

(
(S2)n ,Z

)
→ H2(A,Z) ⊕H2(B,Z) → H2(C̃,Z) →

H1

(
(S2)n ,Z

)
→ H1(A,Z) ⊕H1(B,Z) → H1(C̃,Z) →

H0

(
(S2)n ,Z

)
→ H0(A,Z) ⊕H0(B,Z) → H0(C̃,Z) → 0 ,

(B.1)

and starting from its third line one extracts, using that 2-spheres are simply connected,
the exact sequence

0 → H1(A,Z) ⊕H1(B,Z) → H1(C̃,Z) → Zn → Z ⊕ Z → Z → 0 , (B.2)
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Figure 11. We sketch the covering used to compute the homology groups of non-split spectral
covers using the Mayer-Vietoris sequence. The long exact sequence is applied iteratively to resolve
the contributions to the homology groups originating from the branch cut structure associated to
each Seifert surface F . The covering is given by C̃ = π−1(U) ∪ π−1(V ) where U is a small open
set containing the Seifert surface F and V is an open set containing M3 \ U . The intersection
U ∩ V = S2 lifts to n copies of the 2-spheres in the spectral cover C.

which in turn yields

H1(C̃,Z) = Zb1(B)+n−1 ⊕ Tor(H1(A,Z) ⊕H1(B,Z)) . (B.3)

The homology group TorH1(A,Z) is a topological invariant of the link Li ⊂ A and discussed
and tabled in [59, 65]. We denote this homology group by H

(n)
1 (Li). Next we apply the

Mayer-Vietoris sequence to a decomposition of B = A′ ∪ B′ where A′ projects to a small
neighbourhood U ′ containing a new link Lj and the open set B′ projects to an open set
covering π(B) \ U ′. This separates out, as in (B.3), the contribution of the link Lj to the
first homology group of the cover C and repeating this procedure for all links we find

H1(C̃,Z) = Z(n−1)(l−1) ⊕
l⊕

i=1

TorH(n)
1 (Li) . (B.4)

The remaining cohomology groups of the cover C̃ are fixed by Poincaré duality and the
universal coefficient theorem. They are given by

H0(C̃,Z) = Z , H2(C̃,Z) = Z(n−1)(l−1) , H3(C̃,Z) = Z . (B.5)

Next we remove a tubular neighbourhood Ti ∼= D2 × S1 containing the link Li from the
space C̃. We restrict to the case in which the link consists of a single knot Li = Ki. We
apply the Mayer-Vietoris sequence to the covering C̃ = C ∪ Ti, where C = C̃ \ T ′

i and T ′
i is

obtained by shrinking the radius of the disk D2 in the solid torus Ti. The relevant long
exact sequence reads

0 → Z → Z → H2(C,Z) → H2(C̃,Z) → Z2

ι−→ Z ⊕ H1(C,Z) → H1(C̃,Z) → Z → Z2 → Z → 0 ,
(B.6)
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where ι embedds the A,B cycle of the torus T 2 ∼= Ti ∩ T ′
i into the spaces Ti and C and has

vanishing kernel. With this we extract the exact sequences

0 → Z → Z → H2(C,Z) → H2(C̃,Z) → 0 ,

0 → Z2 ι−→ Z ⊕ H1(C,Z) → H1(C̃,Z) → Z → Z2 → Z → 0 ,
(B.7)

and the cohomologies

H2(C,Z) ∼= H2(C̃,Z) , H1(C,Z) = H1(C̃,Z) ⊕ Z . (B.8)

Each excised circle contributes a 1-cycle and we find (3.22).

C Comments on colored SQMs

In this appendix we show the supersymmetric invariance of the SQM Lagrangian (4.10)
and derive the supercharges (4.12). We further discuss the quantization of the SQM, its
Hamiltonian and Euclidean Lagrangian. The presented discussion is standard and in many
parts parallels that of [69, 71].

C.1 Supersymmetry variations

We now show that the Lagrangian (4.10) is invariant under the supersymmetry transfor-
mations (4.11) with the associated supercharges (4.12). To make the computations more
tractable we work in flat space gij = δij and making use of the BPS equations (2.11) the
Lagrangian (4.10) can then be rewritten as

L =
1

2
ẋiẋi + iψ̄iψ̇i + iλ̄αλ̇α − ẋiA

i
λ − 1

2
φiλφi,λ − (Qiφj)λ ψ̄

iψj . (C.1)

For notation see section 4.1. The operator Qi = ∂i + [ϕi, · ] involves the complexified Higgs
field ϕ = φ+ iA.

The variations (4.11) of the fermions λ, λ̄ are such that the generator T̃α = −icαβγ λ̄βλγ
introduced in (4.5) varies as

δT̃ = ǫψ̄i
[
ϕi, T̃

]
λ

+ ǭψi
[
ϕ̄i, T̃

]
λ
, (C.2)

which implies
δXλ = ǫψ̄i (QiX)λ − ǭψi

(
Q̄iX

)
λ
, (C.3)

for any Lie algebra valued quantity Xλ ≡ XαT̃α. With this the individual parts of the
Lagrangian (C.1) are checked to vary as

δ

(
−1

2
φ2
λ − (Qiφj)λ ψ̄

iψj
)

= iǫψ̄iẋj (Qiφj)λ + iǭψiẋj
(
Q̄iφj

)
λ

δ

(
1

2
ẋiẋi + iψ̄iψ̇i

)
= ǫ̇ẋiψ̄i − ˙̄ǫẋiψi + iǭψ̇iφ

i
λ + iǫ ˙̄ψiφ

i
λ

δ
(
iλ̄λ̇− ẋAλ

)
= i ˙̃Tα

(
ǫψ̄iϕαi + ǭψiϕ̄αi

)

− δẋiA
i
λ − ẋj

(
ǫψ̄i (QiAj)λ − ǭψi

(
Q̄iAj

)
λ

)

(C.4)
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where we have used the BPS equation and the Jacobi-identity repeatedly. Integrating by
parts and making further use of the BPS equations we derive

δL = ǫ̇ẋψ̄ − ˙̄ǫẋψ − i ˙̄ǫψφλ − iǫ̇ψ̄φλ = −iǫ̇
[
ψ̄ (iẋ+ φλ)

]
− i ˙̄ǫ [ψ (−iẋ+ φλ)] , (C.5)

which verifies the form of the supercharge given in (4.12).

C.2 Canonical quantization

Here we discuss the canonical quantization of the Lagrangian (4.10). Taking Grassmann
derivatives to act on the right the conjugate momenta to the fields x, ψ, λ are found to be

pi = πix = ẋi −Aiλ + iΓijkψ̄
jψk , πψ = iψ̄ , πλ = iλ̄ , (C.6)

which promoted to operators on a Hilbert space H lead to the (anti-)commutation relations
[
xi, pj

]
= iδij , [pi, pj ] = Rijklψ

kψ̄l ,
[
xi, xj

]
= 0 ,

{
ψi, ψ̄j

}
= gij ,

{
ψi, ψj

}
= 0 ,

{
ψ̄i, ψ̄j

}
= 0 ,

{
λα, λ̄β

}
= καβ ,

{
λα, λβ

}
= 0 ,

{
λ̄α, λ̄β

}
= 0 ,

(C.7)

with all other (anti-)commutators vanishing. The brackets in (C.7) are Dirac brackets. As
unphysical Hilbert space H we choose

H = Ω(M3) ⊗ Cliff(d) , (C.8)

where Cliff(d) is the standard representation of a Clifford algebra of dimension 2d where
d = dim gADE. The Hermitian inner product 〈 · , · 〉 on H is given by

〈ω1 ⊗ v1, ω2 ⊗ v2〉 = (v1, v2) ×
∫

M3

∗ω1 ∧ ω2 , (C.9)

where the inner product ( · , · ) on Cliff(d) will be shortly described as the canonical inner
product on a standard Fock space. As later explained it restricts to the Killing form on the
Lie algebra gADE identified with the 1-particle subspace of the Fock space. The operators
realising the (anti-)commutation relations (C.7) are

xi = xi× , pi = −i∇i ,

ψi = gijι∂/∂xj , ψ̄i = dxi∧ ,
λα = aα , λ̄α = a†

α .

(C.10)

Here aα, a†
α are standard anti-commuting lowering and raising operators. The Clifford alge-

bra Cliff(d) is then constructed from a vacuum state annihilated by all lowering operators
via the action of the raising operators. Setting the norm of this vacuum state to 1 fixes
the inner product ( · , · ) on Cliff(d).

The Lagrange multiplier ζ in the Lagrangian (4.10) gives rise to the constraint
(
a†
αa

α − n
)

|Physical State〉 = 0 , (C.11)
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with respect to standard normal ordering conventions. This condition leads to the definition
of the physical Hilbert space Hphys. ⊂ H spanned by physical states. Setting n = 1 picks
out a d-dimensional physical subspace from Cliff(d) which we identify with the Lie algebra
gADE. These are the states containing a single λ, λ̄ excitation. The physical Hilbert space
thus becomes the space of adjoint valued complex forms on M3

Hphys. = Λ (M3, adPADE) . (C.12)

To determine how the supercharges Q,Q† act on H we note that the anti-commutation
relations of (C.7) imply

[T̃α, T̃β] = icαβγ T̃
γ , (C.13)

for the contraction T̃ defined in (4.5). This allows for the identification

T̃α = adTα = [Tα, · ] , (C.14)

where Tα ∈ gADE are hermitian generators. Combining this with the form of the conjugate
momenta (C.6) the supercharges (4.12) are thus realized as the operators

Q = d+ [ϕ∧ , · ] , Q† = d† − [ιϕ̄ , · ] . (C.15)

Further the 1-particle states λ̄σ|0〉 = T σ ∈ gADE of the physical Hilbert space are identified
with Lie algebra generators T σ due to the relation

T̃αλ̄β|0〉 = icαβγ λ̄
γ |0〉 , (C.16)

in a local trivialzation of adPADE .
A complete basis of the physical Hilbert space (C.12) is given by

Bphys. =
{
λ̄α|xl〉, λ̄αψ̄i|x〉, λ̄αψ̄iψ̄j |x〉, λ̄αψ̄iψ̄jψ̄k|x〉

}
(C.17)

where α = 1, . . . , d and i, j, k = 1, 2, 3 and x ∈ M3. We separated these delta functions
by their degree as differential forms. Note that all states contain a λ̄ excitation as a
consequence of the constraint (C.11).

C.3 The Hamiltonian and Euclidean Lagrangian

The Hamiltonian generated by Legendre transformation of the Lagrangian (4.10) reads

H =
1

2

(
pi +Aiλ − iΓijkψ̄

jψk
) (
pi +Aλ,i − iΓijkψ̄

jψk
)

+
1

2
φi,λφ

i
λ + (Diφj)λ ψ̄

iψj − ζ
(
λ̄αλα − n

)
,

(C.18)

which is the Laplacian associated to the covariant derivative D of (4.8) deformed by the
Higgs field φ. Here we have used the BPS equations to simplify the expression.

Euclidean versions of the Lagrangian (4.10), Variations (4.11) and supercharges (4.12)
follow by making the replacement τ → −iτ in the action. We have

LE =
1

2
ẋiẋi + ψ̄i∇τψi + λ̄αDτλα − i (Fij)λ ψ̄

iψj +
1

2
Rijklψ

iψ̄jψkψ̄l

+ (Diφj)λ ψ̄
iψj +

1

2
φiλφλ,i + ζ

(
λ̄αλα − n

)
,

(C.19)
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and
δExi = ǫψ̄i − ǭψi ,

δEψi = ǫ
(
−ẋi + φiλ

)
− ǫΓijkψ̄

jψk ,

δEψ̄i = ǭ
(
ẋi + φiλ

)
− ǭΓijkψ̄

jψk ,

δEλα = −iǫcαβγψ̄iϕβi λγ − iǭcαβγψ
iϕ̄βi λ

γ ,

δEλ̄α = −iǫcαβγψ̄iϕβi λ̄γ − iǭcαβγψ
iϕ̄βi λ̄

γ ,

(C.20)

of which we highlight the ψ, ψ̄ variations which are key to deriving the generlized instantons
of this SQM. This follows from defining the positive definite combination

V = ψi
(
Qψ

)

i
= ψi

(
ẋi + φiλ − Γijkψ̄

jψk
)

(C.21)

which varies as

δEV = −ẋiẋi−ψ̄i∇τψi+(Diφj)λ ψ̄
iψj−i(Fij)λ+φi,λφ

i
λ+

1

2
Rijklψ

iψ̄jψkψ̄l = QV , (C.22)

and can be used to deform the euclidean action SE → SE − tQV . This deformation of
the action leaves the Euclidean partition function or more generally the Euclidean path
integral with Q-closed insertions invariant. In the t → ∞ limit these path integrals localize
on the BPS locus δψ = 0 .

D Comments on split Higgs bundles

Here we give details on the colored SQM in the setting of split Higgs bundles. We discuss
how Witten’s SQM [46, 71] arises when considering the one-particle dynamics of individual
color sectors. In each color sector the standard relation between the low energy physics
of the SQM and Morse theory holds. This correspondence is generalized by phenomena
between sectors of different color, which come in form of generalized instantons in the SQM.
The relevant mathematical setting is now Morse theory with multiple morse functions as
discussed in [76].

D.1 One-partical dynamics and Witten’s SQM

Split Higgs bundles are characterized by Higgs fields φ = φIH
I ∈ Ω1(M3, gADE) valued in

the Cartan subalgebra of the gauge algebra gADE where the closed 1-forms φI are globally
defined on M3 and possibly singular due to source terms in the BPS equations (2.23). Here
HI denote Cartan generators with I = 1, . . . , R with R = rank gADE. Generically, these
backgrounds Higgs the gauge symmetry GADE to U(1)R and the adjoint representation of
the gauge group decomposes as

GADE → U(1)R ,

AdGADE → Ad
(
U(1)R

)
⊕
⊕

α∈Φ

Rα ,
(D.1)
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where Φ denotes the root system of gADE and Rα a one-dimensional representation of
U(1)R whose R-component charge vector given by the root α. The color contracted Higgs
field φλ for these backgrounds is given by

φλ =
∑

α∈Φ

αIφ
I λ̄αλα , (D.2)

where nα = λ̄αλα =
∑
β καβλ̄

αλβ is a number operator counting the λ̄-excitations of a state.
The Lagrangian of the colored SQM for this class of Higgs backgrounds takes the form

L =
1

2
ẋiẋi + iψ̄i∇τψi + iλ̄σλ̇σ −

(
∇(iφj)

)
λ
ψ̄iψj − 1

2
φiλφλ,i

− 1

2
Rijklψ

iψ̄jψkψ̄l + ζ
(
λ̄σλσ − n

)
.

(D.3)

Here σ runs over all Lie algebra generators. As a consequence of the diagonal form (D.2)
of the Higgs field the Lagrangian can be decomposed into color specific components. We
collect the color independent terms in

LKin. =
1

2
ẋiẋi + iψ̄iDτψi − 1

2
Rijklψ

iψ̄jψkψ̄l − nζ . (D.4)

The colors associated with Cartan generators HI , labelled by I = 1, . . . , R, feature in the
free fermionic Lagrangian

LBulk =
R∑

I=1

(
iλ̄I λ̇I + ζλ̄IλI

)
. (D.5)

We collect the terms involving the number operator nα = λ̄αλα in

L(α) = iλ̄αλ̇α + ζλ̄αλα −
(
αI∇iφ

I
j ψ̄

iψj
)
λ̄αλα − 1

2
(αIφ

I)2
(
λ̄αλα

)2
, (D.6)

where there is no sum running over α, and all the terms involving a mix of distinct number
operators in

L(αβ) = −(αIφI)(β
IφI)

(
λ̄αλα

) (
λ̄βλβ

)
, (D.7)

where α 6= β. The initial Lagrangian (D.3) is then simply the sum of these pieces

L = LKin. + LBulk +
∑

α∈Φ

L(α) +
∑

α,β∈Φ
α 6=β

L(αβ) . (D.8)

The Hamiltonian H is the Legendre transform of the Lagrangian L and decomposes
similarly

H = HKin. +HBulk +
∑

α∈Φ

H(α) +
∑

α,β∈Φ
α 6=β

H(αβ) . (D.9)

Setting n = 1 in the Lagrangian (D.3) and Hamiltonian (D.9) restricts the physical Hilbert
space to states containing a single λ̄-excitation. We denote physical states of a fixed color by

|χ, α〉 = χλ̄α|0〉 , χ = χI ψ̄
I . (D.10)
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Here I is a multi index and χ|0〉 quantizes to a differential form on M3. Consider two
physical states |η, α〉, |χ, β〉 of distinct color α, β, then trivially 〈χ, α|H|η, β〉 = 0 whereby
time evolution preserves color. Further the matrix elements between states of the same
color |χ, α〉, |η, α〉 only features two of the Hamiltonian pieces in (D.9), we have

〈χ, α|H|η, α〉 = 〈χ, α|
[
HKin. +H(α)

]
|η, α〉 . (D.11)

Commuting the λ̄, λ past each other in (D.11) we find a matrix element between two
differential p-forms χ, η and the operator

H|Rα = HKin. +H(α)/nα . (D.12)

When viewed as an operator on the physical Hilbert subspaces of fixed color α the color
restricted Hamiltonian H|Rα quantizes to

H|Rα =
{

Q|Rα , Q̄|Rα

}
, Q|Rα = d+ αIφI∧ , (D.13)

which acts on differential p-forms. In similar fashion one derives the Hamiltonian acting
on colors associated with the Cartan subalgebra of the gauge algebra to be the Laplace-
Beltrami operator. Whenever the Cartan components of the Higgs field are exact φI = dfI
the supercharge Q|Rα in (D.13) reduces to that of Witten’s SQM with superpotential αIfI .
For split Higgs bundles we can therefore associate an SQM to every Lie algebra generator
Eα with α ∈ Φ as well as R copies of a free SQM corresponding to generators of the Cartan
subalgebra.

The group GADE may also be partially Higgsed to GGUT × U(1)k. In this case one
again obtains an SQM for every Lie algebra generator, where now generators spanning
AdGGUT × U(1)k are associated with free SQMs and generators spanning representations
of GGUT × U(1)k are associated with the same SQM whose supercharge is determined by
the Higgs background and its vector of U(1)k charges.

As a simple example of this degenerate setting consider a Higgs fields φ = φtt which is
turned on along a Cartan generator t in such a way that the gauge group and its adjoint
representation breaks

GADE → GGUT × U(1) ,

AdGADE → AdGGUT ⊕ Ad U(1) ⊕ Rq ⊕ R−q .
(D.14)

In this case we associate with the Lie algebra generators spanning AdGGUT ⊕ Ad U(1) the
SQM with Lagrangian

L|AdG
GUT

⊕ Ad U(1) =
1

2
ẋiẋi + iψ̄iDτψi − 1

2
Rijklψ

iψ̄jψkψ̄l . (D.15)

To the representations Rq,R−q we associate to each an SQM given by

L|Rq =
1

2
ẋiẋi + iψ̄i∇τψi − 1

2
Rijklψ

iψ̄jψkψ̄l − q (∇iφj)t ψ̄
iψj − 1

2
q2φ2

t ,

L|
R−q

=
1

2
ẋiẋi + iψ̄i∇τψi − 1

2
Rijklψ

iψ̄jψkψ̄l + q (∇iφj)t ψ̄
iψj − 1

2
q2φ2

t ,
(D.16)

respectively. This example naturally generalizes to higher rank Higgsing and is the point
of view partially taken in [21], where the relevant SQMs where correctly noticed, however,
without fitting these together in the frame work of colored SQMs.
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D.2 Perturbative ground states and their Morse-Witten complex

The Morse-Witten complex of a colored SQM probing a split Higgs bundle is the direct
sum of the Morse-Witten complexes of the Witten SQMs embedded within it. Consider
the Witten SQM associated to the root α as in (D.13) with supercharge

Q|Rα = d+ αIφI∧ , (D.17)

where we require αIφI to be a Morse 1-form, i.e. the zeros of αIφI are isolated and when
expressing αIφI = αIdfI through locally defined function fI the Hessian of αIfI is non-
degenerate. In other words, αIφI is locally derived from a Morse function potential. The
Morse index µα(p) of an isolated zero p ∈ M3 of αIφI is defined to be the number of
negative eigenvalues of the non-degenerate Hessian of αIfI at p.

In a neighbourhood of a vanishing point p ∈ M3, parametrized by normal coordinates
centred at p diagonalizing the Hessian, we have the approximation

αIfI(x) = c
(α)
1 (x1)2 + c

(α)
2 (x2)2 + c

(α)
3 (x3)2 + O(|x|3) . (D.18)

An unnormalized perturbative ground state is then given to leading order in |x| by

|p, µα〉 = exp
[
−
(
|c(α)

1 |(x1)2 + |c(α)
2 |(x2)2 + |c(α)

3 |(x3)2
)]
dxI (D.19)

where the set I ⊂ {1, 2, 3} lists the subset of indices i = 1, 2, 3 for which c(α)
i < 0, it contains

|I| = µα(p) elements. This perturbative ground state is embedded into the colored SQM
by tensoring it with the Lie algebra generator Eα associated to the root α. We write

|p, λα, µ〉 = exp
[
−
(
|c(α)

1 |(x1)2 + |c(α)
2 |(x2)2 + |c(α)

3 |(x3)2
)]
dxI ⊗ Eα , (D.20)

for a perturbative ground state of the colored SQM, dropping the index α on µ as the
color α is now explicitly featured. These states generate the chain complex of the colored
Morse-Witten complex

Cµ(M3, φ) =
⊕

α∈Φ

Cµ(α)(M3) , Cµ(α)(M3) =
⊕

A

R · |pA, λα, µ〉 , (D.21)

where the index A runs over all vanishing points of αIφI with Morse index µ. The chain
complexes Cµ(α)(M3) are the Chain complexes of the uncolored Witten SQMs (D.13) associ-
ated to the individual colors. The supercharge Q of the colored SQM induces the boundary
map of this complex

C3(M3, φ) C2(M3, φ) C1(M3, φ) C0(M3, φ) .
Q̄

Q

Q̄

Q

Q̄

Q
(D.22)

However, the Higgs field (D.2) is diagonal and as a consequence the supercharge preserves
color and the complex contains the subcomplexes

C3
(α)(M3, φ) C2

(α)(M3, φ) C1
(α)(M3, φ) C0

(α)(M3, φ) ,
Q̄|Rα

Q|Rα

Q̄|Rα

Q|Rα

Q̄|Rα

Q|Rα

(D.23)
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where the boundary map follows from restricting the supercharge to each color sectors as
given in (D.17). As a consequence the Morse-Witten complex of the colored SQM is simply
a direct sum of the Morse-Witten complexes it contains. This is made completely explicit
through the action of the supercharge on perturbative ground states

Q|p, λα, µ〉 =
∑

q∈M3

∑

γpq

(±)γpq exp

[
−t
∫ q

p
αIφI

∣∣
γpq

]
|q, λα, µ+ 1〉 + O(1/t) , (D.24)

where q runs over the vanishing points of αIφI of Morse index µ + 1 and t is parameter
which was introduced by rescaling the Higgs field φ → tφ. The second sum runs over all
ascending gradient flow lines γpq of αIφI connecting the points p, q and (±)γpq is a sign
related to the orientation of the flow line in the moduli space of flow lines.

When the Higgsing is partial, as e.g. in (D.14), the Morse-Witten complexes associated
to the Lie algebra generators Eα spanning the same representations of the remnant gauge
group are identical. For example with (D.14) we would have two complexes with boundary
operators Q|Rq = d+ qφ∧ and Q|

R−q
= d− qφ∧ which are related by the Hodge star.

The cohomology groups of the complex (D.22) follow from those of the complex (D.23).
They are Novikov cohomology groups with resepect to the closed 1-form αIφI . The ranks
of these cohomologies are constrained by certain symmetries [75, 90]. Whenever M3 is con-
nected, compact, orientable and without boundary and the Higgs field has no singularities
the Euler character and thereby the chiral index in 4d vanishes. Singular backgrounds are
necessary to generate a non-vanishing Euler character and therefore a chiral spectrum in 4d.

E Torsion in KK reductions

In this appendix we comment on the role played by torsion factors in KK reductions. The
set-up under consideration is a 3-manifold C whose first homology contains the torsion
factors

TorH1(C,Z) = Zm1 ⊕ · · · ⊕ Zmp . (E.1)

The torsion homology groups contribute additional differential forms for the compactifica-
tion to 4d. These are not detected by the de Rham cohomology groups H i

dR(C) and are
not described by Hodge theory. Indeed, consider a torsion cycle γ ∈ TorH1(Ck,Z) of order
m, i.e. mγ = ∂Σ where Σ is a 2-cycle and briefly assume TorH1(Ck,Z) ∼= Zm. Any 1-form
α ∈ Ω1(Ck) integrated against the torsion cycle vanishes by Stoke’s theorem

∫

γ
α =

1

m

∫

mγ
α =

∫

Σ
dα = 0 . (E.2)

However to any such torsion cycle one can associate a differential form via the universal
coefficient theorem

TorH i+1(Ck,Z) ∼= Hom (TorHi(Ck,Z),Q/Z) , (E.3)

which here yields a 2-form β ∈ Ω2(Ck) associated with the torsional 1-cycle γ. The form β

acts on torsional cycles γ as

β(γ) =
1

m

∫

Σ
β mod 1 , β(γ) ∈ Z/m =

{
0

m
,

1

m
, . . . ,

m− 1

m

}
. (E.4)
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This form is exact, but not co-closed, and an eigenvector of the Laplacian ∆ on Ck, i.e. for
a positive mass µ we have

mβ = dα , ∆β = −µβ , ∆α = −µα . (E.5)

Torsional forms and their role in compactifications are discussed in [79–82].
We now discuss the generalizations of (E.5) to the more general homology groups (E.1).

For 3-manifolds Seifert introduced in [91] the linking form L, generalizing (E.4), which is
defined by

L : TorH1(C,Z) × TorH1(C,Z) → Q/Z , L(γi, γj) =
γi · Γj
mj

mod 1 , (E.6)

where Γj is a 2-chain such that ∂Γj = mjγj and the operation denoted by “ · ” abbreviates
intersections. The universal coefficient theorem (E.3) now yields p 2-forms βi to which
there exist p 1-forms αi such that the relations (E.5) generalize to

dαi = (L−1) j
i βj , (L−1) j

i ∈ Z ,
∫

M3

αi ∧ βj = δij , i, j = 1, . . . , p . (E.7)

These 2p forms again span eigenspaces of the Laplace operator and are characterized by a
positive definite mass matrix M as

∆αi = −M j
i αj , ∆βi = −M̃ j

i βj ≡ −(LML−1) j
i βj . (E.8)
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