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Mohammadi5,6*, Ayellet V. Segrè1*, Zachary Zappala7,8*, Nathan S. Abell7,8, Laure Frésard8, Eric5

R. Gamazon9, Ellen Gelfand1, Michael J. Gloudemans8,10, Yuan He11, Farhad Hormozdiari12,6

Xiao Li1, Xin Li8, Boxiang Liu8,13, Diego Garrido-Mart́ın14,15, Halit Ongen2,3,4, John J.7

Palowitch16, YoSon Park17, Christine B. Peterson18,19, Gerald Quon1,20, Stephan Ripke21,22,8

Andrey A. Shabalin23, Tyler C. Shimko7,8, Benjamin J. Strober11, Timothy J. Sullivan1, Nicole9

A. Teran7,8, Emily K. Tsang8,10, Hailei Zhang1, Yi-Hui Zhou24, Alexis Battle25, Carlos D.10

Bustamante7,26, Nancy J. Cox9, Barbara E. Engelhardt27, Eleazar Eskin12,28, Gad Getz1,29,11

Manolis Kellis1,20, Gen Li30, Daniel G. MacArthur1,20, Andrew B. Nobel16, Chiara Sabatti18,26,12

Xiaoquan Wen31, Fred A. Wright24,32, GTEx Consortium, Tuuli Lappalainen5,6, Kristin G.13

Ardlie1, Emmanouil T. Dermitzakis2,3,4†, Christopher D. Brown17†, Stephen B. Montgomery7,8†14

1 The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, 02142, USA15

2 Department of Genetic Medicine and Development, University of Geneva Medical School, 121116

Geneva, Switzerland17

3 Institute for Genetics and Genomics in Geneva (iG3), University of Geneva, 1211 Geneva,18

Switzerland19

4 Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland20

5 New York Genome Center, New York, NY, 10013, USA21

6 Department of Systems Biology, Columbia University, New York, NY, 10032, USA22

7 Department of Genetics, Stanford University, Stanford, CA, 94305, USA23

8 Department of Pathology, Stanford University, Stanford, CA, 94305, USA24

9 Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, TN,25

37232, USA26

10 Biomedical Informatics Program, Stanford University, Stanford, CA, 94305, USA27

11 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA28

12 Department of Human Genetics, University of California, Los Angeles, CA, 90095, USA29

13 Department of Biology, Stanford University, Stanford, CA, 94305, USA30

14 Bioinformatics and Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of31

Science and Technology, Barcelona 08003, Spain.32

15 Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF),33

Barcelona 08002, Spain34

16 Department of Statistics and Operations Research, University of North Carolina, Chapel Hill,35

NC, 27599, USA36

17 Department of Genetics, University of Pennsylvania, Perelman School of Medicine,37

Philadelphia, PA, 19104, USA38

18 Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA39

19 Present address: Department of Biostatistics, The University of Texas MD Anderson Cancer40

Center, Houston, TX, 77030, USA41

20 Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, 02139, USA42

21 Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA,43

02114, USA44

22 Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge,45

02142, MA, USA46

23 Center for Biomarker Research and Personalized Medicine, Virginia Commonwealth47

University, Richmond, VA 23298, USA48

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 9, 2016. ; https://doi.org/10.1101/074450doi: bioRxiv preprint 

https://doi.org/10.1101/074450
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 Bioinformatics Research Center and Department of Biological Sciences, North Carolina State49

University, Raleigh, NC, 27695, USA50

25 Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA51

26 Department of Statistics, Stanford University, Stanford, CA, 94305, USA52

27 Department of Computer Science, Center for Statistics and Machine Learning, Princeton53

University, Princeton, NJ, 08540, USA54

28 Department of Computer Science, University of California, Los Angeles, CA, 90095, USA55

29 Massachusetts General Hospital Cancer Center and Department of Pathology, Massachusetts56

General Hospital and Harvard Medical School, Boston, MA, 02114, USA57

30 Department of Biostatistics, Mailman School of Public Health, Columbia University, New58

York, NY, 10032, USA59

31 Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA60

32 Department of Statistics, North Carolina State University, Raleigh NC, 27695, USA61

* Co-first authors, listed alphabetically62

† Co-corresponding authors63

Abstract64

Expression quantitative trait locus (eQTL) mapping provides a powerful means to identify func-65

tional variants influencing gene expression and disease pathogenesis. We report the identification66

of cis-eQTLs from 7,051 post-mortem samples representing 44 tissues and 449 individuals as part67

of the Genotype-Tissue Expression (GTEx) project. We find a cis-eQTL for 88% of all annotated68

protein-coding genes, with one-third having multiple independent effects. We identify numerous69

tissue-specific cis-eQTLs, highlighting the unique functional impact of regulatory variation in di-70

verse tissues. By integrating large-scale functional genomics data and state-of-the-art fine-mapping71

algorithms, we identify multiple features predictive of tissue-specific and shared regulatory effects.72

We improve estimates of cis-eQTL sharing and effect sizes using allele specific expression across tis-73

sues. Finally, we demonstrate the utility of this large compendium of cis-eQTLs for understanding74

the tissue-specific etiology of complex traits, including coronary artery disease. The GTEx project75

provides an exceptional resource that has improved our understanding of gene regulation across76

tissues and the role of regulatory variation in human genetic diseases.77

Introduction78

Genome-wide association studies (GWAS) have identified a wealth of genetic variants associated79

with complex traits and disease risk. However, characterizing the molecular and cellular mechanisms80

through which these variants act remains a major challenge that limits our understanding of disease81

pathogenesis and the development of therapeutic interventions. Expression quantitative trait locus82

(eQTL) studies provide a systematic approach to characterize the molecular consequences of genetic83

variation across tissues and cell types1–4. Multiple studies have identified eQTLs for thousands of84

genes5–7, providing novel insights into gene regulation and enabling the interpretation of GWAS85

signals8–12. These studies have largely been performed in a few easily accessible cell types and cell86

lines, precluding interpretation of the systemic and tissue-specific consequences of genetic variation.87

To overcome these limitations, the Genotype Tissue Expression (GTEx) project was designed to88

identify and characterize eQTLs across a broad range of tissues. During the pilot phase, which89

focused on nine tissues, the GTEx project highlighted patterns of eQTL tissue-specificity and90
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demonstrated the value of multi-tissue study designs for identifying causal genes and tissues for91

trait-associated variants1. These results indicated that the identification of eQTLs across an even92

broader range of tissues would drastically improve characterization of the gene- and tissue-specific93

consequences of genetic variants.94

Here, we report on the discovery of cis-eQTLs across an expanded collection of 44 tissues in95

the GTEx V6p study. This dataset consists of 7,051 transcriptomes from 449 individuals and96

44 tissues (median 16 tissues per individual, 127 samples per tissue), including multiple tissues97

that are difficult to sample such as 10 distinct brain regions. With this dataset, we identified cis-98

eQTLs within each tissue and characterized the sharing of eQTLs across tissues. We next assessed99

the relationship between tissue-specific and shared eQTLs with different functional annotations,100

including promoters, enhancers and Hi-C contacts, and with allele-specific expression (ASE). Fi-101

nally, we demonstrated the utility of this multi-tissue resource for the interpretation of genetic102

variation associated with complex disease. We provide openly available summary statistics of cis-103

eQTLs for all 44 tissues on the GTEx Portal (http://gtexportal.org) and all raw data in dbGaP104

(phs000424.v6.p1).105

Single-tissue cis-eQTL discovery106

cis-eQTLs, or associations between local genetic variation and gene expression (≤ 1 Mb from107

the transcription start site, TSS), were identified using genotype and RNA-seq data generated108

from 44 tissues (N = 70–361 samples per tissue) using a linear model (FastQTL)13 (Fig. 1a,b).109

Within each tissue, we identified a median of 2,866 genes with cis-eQTLs at a 5% FDR (hereafter110

referred to as eGenes). In total, we found 159,760 cis-eQTLs for 20,175 genes, representing 82.6%111

of all genes tested in GTEx and 78.3% of all annotated autosomal lincRNA and protein coding112

genes14. For autosomal protein-coding genes alone, we identified 16,605 eGenes representing 90.2%113

of all expressed protein-coding genes in GTEx and 88% of all annotated protein-coding genes (Fig.114

1c). For genes without an eQTL in any tissue, we observed less selective constraint as well as115

enrichment of functions related to transcriptional regulation, environmental response, and cellular116

differentiation, indicating that biological context influences the discovery of eQTLs for these genes117

(Extended Data Fig. 1). eGene discovery increased linearly with sample size with no evidence of118

saturation at the full sample size for each tissue, suggesting that all genes may ultimately be shown119

to be influenced by regulatory variation (Extended Data Fig. 2).120

We also identified conditionally independent regulatory variants for each eGene (secondary121

cis-eQTLs) using forward-backward stepwise regression separately in each tissue. This approach122

revealed an additional 22,099 cis-eQTLs across the 44 tissues, with 36.7% of protein-coding genes123

and 12.5% of lincRNAs having multiple, conditionally independent cis-eQTLs in at least one tissue124

(Extended Data Fig. 3).125

The large sampling of tissues allowed us to develop a comprehensive view of the sharing of126

cis-eQTLs across tissues in the human body. We tested the replication of cis-eQTLs using the π1127

statistic15 for all tissue pairs (Fig. 2a). We observed patterns of sharing that reflected previously128

identified relationships between tissues1. For example, we found a high degree of sharing between129

brain tissues (mean π1 of 0.864), arterial tissues (mean π1 of 0.854), and skeletal muscle and heart130

tissues (mean π1 of 0.819). The mean π1 sharing across all tissue pairs was 0.727 ranging from131

0.354 to 0.981. Since individuals in the GTEx dataset contribute samples for multiple tissues, we132

investigated the effect of this grouping on sharing estimates by calculating π1 for tissues subsampled133

to have complete sharing among individuals (Extended Data Fig. 4). These sharing estimates134

correlated with estimates from variable levels of individual overlap between tissues (Spearman ρ =135

0.53, P < 2.2× 10−16). Furthermore, in the full dataset for each tissue, we observed that even for136
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Figure 1. Sample size and eGene discovery in the GTEx V6p study. (a) Illustration of
the 44 tissues and cell lines included in the GTEx V6p project with the associated number of
eGenes and sample sizes. (b) The proportion of expressed genes discovered as eGenes versus
sample size. Cells - Transformed fibroblasts are highlighted as the tissue with the highest
proportion. Muscle - Skeletal has the largest sample size. (c) Fraction of genes that are eGenes
across all tissues by transcript class. As in (b), Cells - Transformed fibroblasts and Muscle -
Skeletal are shown as a reference. Annotated genes are all known human genes for each transcript
class as curated in GENCODE v19.

very strong shared associations (P < 10−10 in each tissue), roughly 10% exhibited different single137

top gene associations across tissues, indicating that the interpretation of the regulatory effect of138

these variants can still be tissue-dependent (Fig. 2b).139

To quantify the impact of sample size and number of tissues studied on cis-eQTL discovery, we140

first compared eGene discovery across a range of sample sizes and tissues (Fig. 2c). The discovery141

of new eGenes was most influenced by sample size. However, a diverse sampling of tissues also142

improved eGene discovery. At its full sample size of 256 individuals, tibial nerve had the most143

eGenes of any tissue at 8,604, yet 9,394 unique eGenes were found for the top two tissues at a144

subsample size of 150 individuals. Cerebellum, Testis, Nerve - Tibial, and Thyroid were among145

the most effective tissues in increasing the total number of unique eGene discoveries. We next146

tested how sample size influenced patterns of cis-eQTL sharing across tissues. We observed that147
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cis-eQTLs discovered in GTEx tissues with large sample sizes were less likely to be shared in other148

tissues, indicating that weaker associations identified in deeply sampled tissues remain difficult to149

replicate due to their smaller and possibly tissue-specific effects (Fig. 3; Extended Data Fig. 5).150

Replication tissue
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Figure 2. Single-tissue eQTL discovery across tissues. (a) Replication of eQTLs between
tissues. Pairwise π1 statistics are reported for single-tissue eQTL discoveries in each tissue.
Higher π1 values indicate an increased replication of eQTLs. Tissues are grouped using
hierarchical clustering on rows and columns separately with a distance metric of 1− ρ, where ρ is
the Spearman correlation of π1 values. π1 is only calculated when the gene is expressed and
testable in the replication tissue. (b) Proportion of variants with top associated protein-coding
gene preserved between tissues shown for varying nominal association thresholds. (c) eGene
discovery as a function of sample size and number of tissues assayed. Each tissue was subsampled
to 70, 100, and 150 individuals and a greedy algorithm was used to assess sequential combinations
of tissues that maximize the total number of unique eGenes discovered.
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Multi-tissue cis-eQTL discovery151

Multi-tissue cis-eQTL analyses have been shown to increase power while explicitly modeling sharing152

patterns across tissues16–18. We performed a meta-analysis across all 44 tissues using METASOFT19
153

and identified between 4,538 and 9,327 eGenes (m-value ≥ 0.9) per tissue. On average, each cis-154

eQTL effect was shared across 15 tissues. The advantage of meta-analysis was most apparent155

for individual tissues with smaller sample sizes (Fig. 3a), most notably for the 10 sampled brain156

regions. For example, in the hippocampus (N = 81), the number of single-tissue eGenes is 847157

whereas the number of eGenes detected through meta-analysis is 4,636. eGenes identified by meta-158

analysis were more likely to be significant in single tissue analyses at larger sample sizes (Extended159

Data Fig. 6). Our meta-analysis approach demonstrates that sharing of cis-eQTL effects across160

multiple tissues can improve discovery in specialized or difficult-to-access tissues.161

To ensure these findings did not depend on the modeling assumptions of METASOFT, we an-162

alyzed the FastQTL P -values for all genes and all tissues with TreeQTL, a hierarchical multiple163

comparison procedure, that controls the FDR of eGene discoveries across tissues20. This procedure164

identified 19,610 eGenes, 565 fewer eGenes than with the single-tissue analysis. While more conser-165

vative overall than the tissue-by-tissue analysis, we observed an increase in the number of eGenes166

detected in the tissues with the smallest sample sizes, as well as an increase in the average number167

of tissues in which an eGene is detected (from 7.9 for single-tissue analysis to 8.5; Extended Data168

Fig. 7).169

Modeling of cis-eQTL sharing across tissues using METASOFT showed a bimodal pattern with170

increasing tissue-specificity for tissues with larger sample sizes (Fig. 3b). Increased tissue-specificity171

likely emerges from differences in discovery power and effect sizes across tissues. It also suggests172

that deep sampling diminishes the gains of meta-analysis, instead benefiting identification of more173

tissue-specific effects. The bimodal pattern of sharing was further supported by three different174

methods: simple overlap of the single-tissue results, the hierarchical procedure of TreeQTL, and an175

empirical Bayes model18 (Extended Data Fig. 8).176

Genomic features of cis-eQTLs177

To characterize the genomic properties of cis-eQTLs, we annotated the associated variants (hereafter178

referred to as eVariants) with chromatin state predictions from 128 cell types sampled by the179

Roadmap Epigenomics Consortium, including 26 tissues that match GTEx tissues21. eVariants were180

enriched in predicted promoter and enhancer states across a broad range of tissues and exhibited181

significantly greater enrichment in promoters and enhancers from their matched tissues (linear182

model controlling for discovery cell type, P < 5.7 × 10−10), illustrating consistent patterns of cell183

type specificity for both cis-regulatory elements (CREs) and cis-eQTLs (Fig. 3c, e). Furthermore,184

cis-eQTLs were more likely to be active across pairs of tissues if the eVariant overlapped the same185

chromatin state in both tissues (paired Wilcoxon signed rank test, P < 2.2 × 10−16, Fig. 3d).186

Compared to primary eVariants, secondary eVariants were located on average further away from187

the TSS (median distance 50.1 kb from the TSS versus 28.9 kb, Wilcoxon rank sum test, P < 2.2188

× 10−16; Extended Data Fig. 9a) and exhibited less tissue sharing than primary eQTLs (Wilcoxon189

rank sum test, P < 2.2 × 10−16; Extended Data Fig. 9b). Both primary and secondary eVariants190

were enriched for promoter Hi-C contacts compared to background variant-TSS pairs (Wilcoxon191

rank sum test, P < 2.2 × 10−16; Extended Data Fig. 9c). This observation suggests that, despite192

their genomic distance from the TSS, many primary and secondary eVariants remain in close193

physical contact with their target gene promoters via chromatin looping interactions. Although194

primary eVariants are significantly more enriched in promoters than enhancers (Wilcoxon rank195
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sum test, P < 2.2 × 10−16), secondary eVariants show greater enrichment in enhancers, consistent196

with their increasing distance from the TSS and tissue-specific activity (Wilcoxon rank sum test,197

P < 2.2 × 10−16; Fig. 3e; Extended Data Fig. 9c). This result underscores the importance198

of analyzing eQTLs beyond the primary association to discover regulatory variants in enhancers,199

which are known to be particularly relevant for disease associations22–24.200

Integration of genomic annotations in eQTL testing has been demonstrated to improve power6,25–27.201

We applied a Bayesian hierarchical model incorporating variant-level genomic annotations for eQTL202

discovery in 26 tissues with cell-type matched annotations from the Epigenomics Roadmap28 (Wen,203

X. submitted). Distance to the TSS and promoter and enhancer annotations improved our ability204

to discover eQTLs (Extended Data Fig. 10a). Using these annotations increased the total number205

of eGene discoveries by an average of 43% (1,200 genes) across tissues (Extended Data Fig. 10b).206

Fine-mapping eQTL variants207

To identify likely causal variants underlying eQTLs, we applied two computational fine-mapping208

strategies. First, we identified 90% credible sets for each eGene in each tissue using CAVIAR29, a209

probabilistic method that utilizes the observed marginal test statistics and LD structure to detect210

variant sets that may harbor more than one causal variant29. Across all tissues, the mean credible211

set size was 29 variants (per tissue means ranged from 25 to 31). Credible set size decreased with212

increasing discovery tissue sample size. The addition of 100 samples reduced credible set size by an213

average of one variant indicating that large sample sizes are required to identify causal variants using214

association strength alone (Extended Data Fig. 11a). As expected, credible sets overlapped across215

tissues more extensively for tissue-shared eQTLs compared to tissue-specific eQTLs (Extended216

Data Fig. 11b).217

We estimated the probability that each eVariant is a causal variant using CaVEMaN, a non-218

parametric sampling-based approach that accounts for noise in expression measurements and linkage219

structure (Brown et al. in preparation). Across tissues, we estimated that between 3.5%-11.7%220

of primary eVariants are causal (probability ≥ 0.8; Extended Data Fig. 12). For predicted causal221

variants, the same variant is predicted as causal for 13.3% to 32.6% of variants at the same proba-222

bility threshold in separate tissues where an eGene is also identified. However, the replication rate223

π1 was considerably higher (59.6%-93.5%), demonstrating the difficulties in fine mapping variants224

even when the LD structure is expected to be preserved across tissues. Consistent with predicted225

causal variants being functional regulatory variants (as opposed to LD proxies), 24.3% of eVariants226

with causal probabilities in the top 10th percentile (P > 0.77) overlapped open chromatin regions227

compared to 11.2% of all eVariants and 6.6% of eVariants in the lowest 10th percentile (0.027 < P228

< 0.19; Fig. 3f).229

cis-eQTL effect sizes230

To determine the effect sizes of eQTLs discovered in GTEx, we used an additive model of eQTL231

alleles on total gene expression, allowing for biologically meaningful interpretation of effect sizes as232

an allelic fold change between the two eQTL alleles (see Methods; Mohammadi et al. in prepara-233

tion). 17.4% of eGenes had eQTLs with median effect sizes of ≥ 2-fold across tissues (Fig. 4a).234

As expected, mean effect sizes per tissue were influenced by sample size (Extended Data Fig. 13).235

When stratifying each gene by the number of tissues that it is expressed in, we observed a decrease236

in the average effect size per gene indicating that genes expressed in multiple tissues are less likely237

to have eQTLs with large regulatory effects (Spearman ρ = −0.29, P < 2.2 × 10−16, Fig. 4b).238

Supporting this observation, tissue-shared eQTLs had significantly smaller effect sizes than tissue-239
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Figure 3. Multi-tissue eQTL discovery and genomic context. (a) The proportion of
expressed genes for which eGenes are discovered in single tissues (5% FDR; small dots) and the
multi-tissue meta-analysis (m-value ≥ 0.9; large dots), stratified by the sample size of individual
tissues. In the meta-analysis, eQTL discoveries are made using METASOFT to identify tissues
where the posterior probability a given eQTL effect exists (i.e. the tissue's m-value) is ≥ 0.9. (b)
The number of tissues in which a given eQTL is shared as a function of tissue sample size. For
each tissue, we calculated the degree of sharing (i.e. the number of tissues with m-value ≥ 0.9) for
all eQTLs identified in that tissue at a 5% FDR. Tissues were then binned into quartiles based on
sample size. The median number of shared tissues is plotted for each quartile as a horizontal
black line. (c) Enrichment of eVariants in cis-regulatory elements (CREs) across 128 NIH
Epigenomics Roadmaps cell types is depicted for each GTEx discovery tissue. Stronger
enrichment was observed in matched tissues (colored dots) compared to unmatched tissues
(boxplots). (d) Proportion of eQTLs that are shared between two tissues (m-value in both tissues
≥ 0.9) if the eVariant overlaps the same Roadmap annotation in both tissues (y-axis) or different
annotations (x-axis). Points represent the mean of pairwise comparisons between all tissues,
colored by the discovery tissue. (e) Enrichment of eVariants in tissue-matched enhancers (white)
and promoters (grey) for the first four conditionally independent eQTLs discovered for each
eGene (x-axis, sorted by discovery order). (f) Proportion of eVariants overlapping tissue-matched
DNAse I hypersensitive sites as a function of the probability that a variant is causal. Points are
colored by the eQTL discovery tissue.

shared eQTLs matched for significance level (Wilcoxon rank sum test, P < 2.2 × 10−16, Fig. 4c;240

Extended Data Fig. 13).241

We assessed whether variants with distinct functional annotations had different average effects242

on gene expression using the large number of eQTLs we discovered. eVariants at canonical splice243

sites exhibited the strongest effects, followed by variants in noncoding transcripts (Fig. 4d). Vari-244
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ants in the 3' UTR had the weakest effect, significantly weaker than those in 5' UTRs (Wilcoxon245

rank sum test, P < 4.81 × 10−10). Missense variants had a significantly stronger effect on gene246

expression than synonymous variants (Wilcoxon rank sum test, P < 8.65 × 10−5). Analysis of247

eQTL effect sizes around the TSS demonstrated that upstream variants had a stronger effect on248

gene expression than downstream variants (Wilcoxon rank sum test, P < 1.94 × 10−15; Fig. 4e),249

an effect that seems to persist through the gene body and beyond. These results suggest that250

eVariants likely to affect transcription have stronger effects on gene expression levels than variants251

likely to impact post-transcriptional regulation of mRNA levels.252

Allele-specific expression (ASE)253

The impact of a regulatory variant on expression may be estimated from either total expression254

or allele specific expression (ASE) estimates. We measured ASE30 at over 135 million sites across255

tissues and individuals, with a median of over 10,000 genes quantified per donor (Extended Data256

Fig. 14a-f). In total, 63.5% of all protein-coding genes could be tested for ASE in at least one257

individual and tissue with 62.6% having ASE data from multiple individuals in at least one tissue.258

87.9% of testable genes had significant allelic imbalance in at least one individual (binomial test,259

FDR < 0.05), demonstrating an abundance of cis-linked regulatory effects. Across individuals, a260

median of 1,963 genes had significant allelic imbalance in at least one tissue, with a median of261

570 genes where the individual was not heterozygous for a top eQTL. We independently estimated262

the effects of the primary eVariant for each eGene in each tissue using both allele-specific and263

total gene expression measurements (see Methods). Effect size estimates from both approaches are264

highly consistent with an average Spearman correlation of 0.84 (std. dev. = 2%; Extended Data265

Fig. 15) and an average ratio of ASE effect size to eQTL effect size of 98.5% (std. dev. = 1%).266

This observation confirms that cis-eQTLs and ASE capture the same biological phenomenon.267

We modeled allelic expression in genes across different tissues of each individual in order to268

capture tissue-specificity of regulatory variant function. Over 17% of genes exhibit allelic expression269

patterns that differed across tissues in at least one individual. Patterns of ASE sharing in these270

genes were used to cluster tissues independently of total gene expression levels, which may be more271

susceptible to shared environmental influences, and without the strong dependency with sample size272

that complicates analyses of eQTL sharing (Extended Data Fig. 14g; Fig. 2a). Indeed, pairwise273

ASE sharing was highly correlated with pairwise eQTL sharing (Spearman ρ = 0.70, P < 2.2 ×274

10−16). Moreover, both pairwise ASE and eQTL sharing are correlated with pairwise tissue sharing275

of eVariant CRE annotation (Spearman ρ > 0.29, P < 2.6 × 10−7; Fig. 4f).276

eQTLs and GWAS277

The expanded GTEx resource provides a unique opportunity to interpret GWAS associations for a278

wide range of complex traits and diseases. The increased diversity of tissue sampling has resulted in279

more identified tissue-specific eQTLs. Indeed, the degree of tissue sharing of an eQTL is associated280

with several indicators of phenotypic impact. eGenes shared across many tissues harbor fewer281

protein-coding loss-of-function (LoF) variants curated in the ExAC database31 (Fig. 5a), consistent282

with purifying selection removing large effect regulatory variants that involve many tissues. Tissue-283

shared eGenes were also less likely to be annotated disease genes compared to tissue-specific eGenes284

(Fisher's exact test, nominal P < 10−6 for GWAS, OMIM, and LoF intolerant gene sets; Fig. 5a,285

Extended Data Fig. 16), highlighting that the cell-type specific mechanisms underlying complex286

genetic diseases may be elucidated only through broad tissue sampling.287

This broad sampling affects the interpretation of eQTL data in the context of GWAS variants.288
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Figure 4. ASE and the epigenomic context of cis-eQTLs across tissues. (a) For each
autosomal protein-coding and lincRNA eGene, the median effect size was computed across all
tissues with eVariants for that eGene. The empirical CDF of these median effect sizes is depicted.
(b) Median (line) and interquartile range (ribbon) of absolute eQTL effect size, corrected for
median expression level across tissues and the minor allele frequency of the eVariant, as a
function of the number of tissues the eGene is expressed in. (c) Comparison of effect sizes
between q-value-matched tissue-shared eQTLs (m-value > 0.9 in at least 35 tissues) and
tissue-specific eQTLs (m-value ≥ 0.9 in only the discovery tissue). (d) Normalized absolute eQTL
effect size for each top eVariant, for each eVariant annotation. Normalized effect sizes were
estimated by correcting for eVariant minor allele frequency and cross tissue effect size differences.
(e) Normalized (as in d) eQTL effect size depicted in 200bp bins, relative to the eGene TSS. Bin
medians and interquartile ranges plotted as lines and ribbons, respectively. (f) Pairwise tissue
sharing of ASE effects for genes with bimodal ASE effects (proportion with same ASE mode;
y-axis) is correlated with pairwise eQTL sharing (π1, x-axis), and the fraction of eVariants
overlapping the same Roadmap annotation in both tissues.

We observed that 92.7% of all common variants assayed by GTEx are nominally associated with289

the expression of one or more genes in one or more tissues (P < 0.05) and nearly 50% are significant290

when performing a Bonferroni correction based on the number of tissues tested (Fig. 5b). Given291

the ubiquity of eQTL associations, caution is warranted when using eQTL data to interpret the292

function of candidate variants without assessing whether GWAS and eQTL association signals are293

likely driven by the same causal variant by colocalization approaches that examine local LD and294

trait summary statistics22,32–34.295

To illustrate the utility of GTEx for the interpretation of disease-associated variation, we ap-296
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plied GTEx to the PHACTR1 locus which is associated with a range of complex traits, including297

myocardial infarction (MI)35, coronary artery disease (CAD)36–38, cervical artery dissection39, and298

migraines40 (Fig. 5c). Notably, the CAD and MI risk allele (G) at rs9349379 is protective for cer-299

vical artery dissection and migraines. Initial targeted analyses41 demonstrated that the CAD risk300

allele (G) at rs9349379 is associated with decreased expression of PHACTR1 in coronary arteries.301

To investigate the mechanism and tissue of action of this pleiotropic SNP, we characterized302

the effect of rs9349379 across the 44 GTEx tissues. rs9349379G was strongly associated with303

decreased PHACTR1 expression (Fig. 5e; meta-analysis P < 2.2 × 10−16), with a tissue-specific304

eQTL effect observed only in aorta, coronary, and tibial arteries (Fig. 5e; m-value ≥ 0.9), where305

the risk allele expression is 72%, 57% and 65% of the protective allele expression, respectively.306

PHACTR1, TBC1D7, and the nearby noncoding RNA, RP1-257A7.5, were the only genes within307

1 Mb associated with genotype at rs9349379 in any tissue. Notably, the tissue specificity of the308

eQTL effect was not mirrored in the tissue specificity of PHACTR1 gene expression (Extended309

Data Fig. 17). Colocalization analysis in arterial tissues indicated that rs9349379 is likely the310

variant responsible for both the GWAS and the eQTL signal in the locus (Fig. 5f; RTC = 1,311

eCAVIAR = 0.95)34,42. Applying the PrediXcan method12 to the BioVU repository43, we found312

that genetically predicted decreased PHACTR1 expression in coronary and aorta arteries was313

associated with tachycardia (meta-analysis P < 10−6), whereas genetically predicted increased314

PHACTR1 expression was associated with migraines (P = 1.2 × 10−7). PHACTR1 is the sole315

gene in the locus that was implicated by PrediXcan in BioVU, using arterial tissues, for either316

trait. These results suggest that the pleiotropic effects of rs9349379 are driven by a consistent,317

tissue-specific molecular phenotype that causes diverse downstream consequences.318

Discussion319

The most immediate effects of functional genetic variation are on molecular phenotypes. Combining320

trait and disease associated variants with molecular QTL data has been a successful strategy for321

resolving causal genes and tissues44. In particular, these approaches have provided key information322

on human-specific traits and therapeutic interventions11,45,46. While the pilot phase of the GTEx323

project identified cis-eQTLs in nine tissues, the GTEx V6p collection has been expanded to 44324

tissues providing a wealth of additional cis-eQTL discoveries. These data facilitate both systematic325

and targeted interpretation of the functional consequences of genetic variants across a range of326

biological contexts.327

We found a pervasive effect of common regulatory variation on the vast majority of human328

genes with a sizable proportion of genes having multiple independent loci associated with their329

expression levels. By combining cis-eQTL data across tissues, we demonstrated that GTEx V6p330

data may be used to enable cis-eQTL discovery in tissues with limited sample sizes. Many of the331

largest, primary effects are shared across tissues. Additionally, we observed that both secondary332

cis-eQTLs and cis-eQTLs from deeply sampled tissues exhibit more tissue-specificity. cis-eQTLs333

are enriched in both tissue-specific enhancers and promoters and patterns of regulatory element334

overlap are predictive of tissue sharing for cis-eQTLs. Secondary cis-eQTLs were as enriched as335

primary cis-eQTLs for Hi-C contacts suggesting a direct effect on gene expression facilitated by336

chromosome looping and local nuclear organization. Furthermore, we demonstrated that tissue-337

specific genes and eQTLs have larger effect sizes, and we have presented a large resource of allelic338

expression data that demonstrates correlated estimates of tissue-sharing and effect size estimates339

with eQTLs. Overall, these observations illustrate the systemic effects of regulatory variants and340

inform eQTL study design by highlighting the unique contributions of tissue-specific eQTLs that341
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Figure 5. Intersection of cis-eQTLs with GWAS. (a) Enrichment of tissue-specific and
tissue-shared eGenes in disease and loss of function mutation intolerant genes. eGenes were
defined in each tissue using METASOFT (m-value ≥ 0.9). Tissue-specific and shared eGenes were
defined as eGenes in the bottom and top 10% of the distribution of proportion of tissues with an
eQTL effect, respectively. Points represent the log odds ratio for enrichment of the eGene
category in each gene list. Bars represent 95% confidence intervals (Fisher's exact test). (b)
Proportion of eQTLs discovered as a function of P -value cutoffs. Nearly 93% of all SNPs passed a
nominal significance threshold of 0.05. More than 48% of all SNPs passed a Bonferroni threshold
defined as the nominal threshold divided by the number of tissues (44). To control the type I
error rate at 5%, a stringent cutoff of 10−12 is needed. (c) CAD association significance (y-axis)
for all SNPs within 250 kb of the sentinel SNP (x-axis). (d) Quantile-quantile plot for CAD
GWAS associations. Observed GWAS P -values (y-axis) plotted as a function of expected
P -values (x-axis), for the top 1,000 eQTLs (closed circles) and MAF and distance matched SNPs
(open circles). (e) For each tissue, the METASOFT m-value (x-axis) of the lead CAD SNP is
plotted against the single-tissue eQTL association significance (y-axis). Points are colored by
tissue. (f) eQTL association significance (y-axis) for PHACTR1 for all SNPs within 250 kb of the
sentinel CAD SNP (x-axis).

can only be identified through broad tissue sampling.342

The wealth of cis-eQTLs identified in this study bears important implications for GWAS inter-343

pretation. We demonstrated that 92.7% of variants tested in our study have a nominally significant344

association with expression (P -value < 0.05) and that approximately 10% of eVariants may change345

their top associated gene when tested in another tissue. Given the abundance of associations for346

any variant, care must be taken in using cis-eQTL data to propose novel biological mechanisms347
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for disease-associated variants. GWAS variants are enriched among tissue-specific cis-eQTLs, high-348

lighting the necessity for sampling of diverse tissues. The wealth of associations in GTEx may349

further aid in selecting candidate causal tissues where multiple GWAS signals for specific traits350

are enriched. Within these targeted tissues, colocalization strategies that combine locus-specific351

trait and expression association information are required to understand the underlying biological352

mechanism. We showed that a combination of these approaches may be used to interpret a GWAS353

signal of relevance to coronary artery disease, and we revealed novel tissue-specific biology identified354

through the analysis of GTEx V6p data.355

Together, cis-eQTL data in GTEx V6p provide the most comprehensive characterization of the356

local effects of regulatory variation to date. We expect that these data will be of considerable357

utility for the interpretation of gene regulatory mechanisms, human evolution, and complex trait358

and disease biology.359

Online Methods360

Sample procurement361

The GTEx V6p eQTL analysis freeze represents 44 distinct tissue sites collected from 449 post-362

mortem donors representing a total of 7,051 tissues. All human subjects were deceased donors.363

Informed consent was obtained for all donors via next-of-kin consent to permit the collection and364

banking of de-identified tissue samples for scientific research. Complete descriptions of the donor365

enrollment and consent process, as well as biospecimen procurement, methods, sample fixation366

and histopathological review procedures were previously described1,47. Briefly, whole blood was367

collected from each donor, along with fresh skin samples, for DNA genotyping, RNA expression368

and culturing of lymphoblastoid and fibroblast cells, and shipped overnight to the GTEx Labo-369

ratory Data Analysis and Coordination Center (LDACC) at the Broad Institute. Two adjacent370

aliquots were then prepared from each sampled tissue and preserved in PAXgene tissue kits. One371

of each paired sample was embedded in paraffin (PFPE) for histopathological review, the second372

was shipped to the LDACC for processing and molecular analysis. Brains were collected from373

approximately 1/3rd of the donors, and were shipped on ice to the brain bank at the University of374

Miami, where 11 brain sub-regions were sampled and flash frozen. These samples were also shipped375

to the LDACC at the Broad Institute for processing and analysis.376

All DNA genotyping was performed on blood-derived DNA samples, unless unavailable, in which377

case a tissue-derived DNA sample was substituted. RNA was extracted from all tissues, but quality378

varied1. RNA sequencing was performed on all samples with a RIN score of 5.7 or higher and with379

at least 500ng of total RNA. Nucleic acid isolation protocols, and sample QC metrics applied, are380

as described in1.381

Data production382

RNA was isolated from a total of 9,547 postmortem samples from 54 tissue types from up to383

550 individuals. 44 tissues were sampled from at least 70 individuals: 31 solid-organ tissues, 10384

brain subregions with two duplicate regions (cortex and cerebellum), whole blood, and two cell385

lines derived from donor blood and skin samples. Each tissue had a different number of unique386

samples. Non-strand specific, polyA+ selected RNA-seq libraries were generated using the Illu-387

mina TruSeq protocol. Libraries were sequenced to a median depth of 78 million 76-bp paired388

end reads. RNA-seq reads were aligned to the human genome (hg19/GRCh37) using TopHat48389

(v1.4) based on GENCODE v19 annotations14. This annotation is available on the GTEx Por-390
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tal (gencode.v19.genes.v6p model.patched contigs.gtf.gz). Gene-level expression was estimated as391

reads per kilobase of transcript per million mapped reads (RPKM) using RNA-SeQC on uniquely392

mapped, properly paired reads fully contained with exon boundaries and with alignment distances393

≤ 6. Samples with less than 10 million mapped reads or with outlier expression measurements394

based on the D-statistic were removed49.395

DNA isolated from blood was used for genotyping. 450 individuals were genotyped using396

Illumina Human Omni 2.5M and 5M Beadchips. Genotypes were phased and imputed with397

SHAPEIT250 and IMPUTE251, respectively, using multi-ethnic panel reference from 1000 Genomes398

Project Phase 1 v352. Variants were excluded from analysis if they: (1) had a call rate < 95%; (2)399

had minor allele frequencies < 1%; (3) deviated from Hardy-Weinberg Equilibrium (P < 10−6); or400

(4) had an imputation info score less than 0.4.401

cis-eQTL mapping402

We conducted cis-eQTL mapping within the 44 tissues with at least 70 samples each. Only genes403

with ≥ 10 individuals with expression estimates > 0.1 RPKM and an aligned read count ≥ 6404

within each tissue were considered significantly expressed and used for cis-eQTL mapping. Within405

each tissue, the distribution of RPKMs in each sample was quantile-transformed using the average406

empirical distribution observed across all samples. Expression measurements for each gene in each407

tissue were subsequently transformed to the quantiles of the standard normal distribution. The408

effects of unobserved confounding variables on gene expression were quantified with PEER53, run409

independently for each tissue. 15 PEER factors were identified for tissues with less than 150410

samples; 30 for tissues with sample sizes between 150 and 250; and 35 for tissues with more than411

250 tissues.412

Within each tissue, cis-eQTLs were identified by linear regression, as implemented in FastQTL13,413

adjusting for PEER factors, gender, genotyping platform, and three genotype-based PCs. We414

restricted our search to variants within 1 Mb of the transcription start site of each gene and, in415

the tissue of analysis, minor allele frequencies ≥ 0.01 with the minor allele observed in at least416

10 samples. Nominal P -values for each variant-gene pair were estimated using a two-tailed t-test.417

Significance of the most highly associated variant per gene was estimated by adaptive permutation418

with the setting "--permute 1000 10000". These empirical P -values were subsequently corrected419

for multiple testing across genes using Storey’s q-value method15.420

To identify the list of all significant variant-gene pairs associated with eGenes, a genome-wide421

empirical P -value threshold, pt, was defined as the empirical P -value of the gene closest to the 0.05422

FDR threshold. pt was then used to calculate a nominal P -value threshold for each gene based on423

the beta distribution model (from FastQTL) of the minimum P -value distribution f(pmin) obtained424

from the permutations for the gene. Specifically, the nominal threshold was calculated as F−1(pt),425

where F−1 is the inverse cumulative distribution. For each gene, variants with a nominal P -value426

below the gene-level threshold were considered significant and included in the final list of variant-427

gene pairs.428

Multi-tissue cis-eQTL mapping429

To increase sensitivity of cis-eQTL detection, in particular of cis-eQTLs with smaller effect sizes, we430

ran METASOFT54, a meta-analysis method, on all variant-gene pairs that were significant (FDR431

< 5%) in at least one of the 44 tissues based on the single-tissue results from FastQTL. The goal432

of this analysis was to gain power to discover additional tissues for a cis-eQTL. A random effects433

model in METASOFT (called RE2), designed to find loci with effects that may have heterogeneity434
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between datasets/tissues (and assumes estimates are independent and consistent in effect direction)435

was used19. The posterior probability that an eQTL effect exists in a given tissue, or m-value54,436

was calculated for each variant-gene pair and tissue tested. A significance cutoff of m-value ≥ 0.9437

was used to discover high-confidence cis-eQTLs.438

We applied a separate hierarchical multiple testing correction method to identify multi-tissue439

eGenes. First, we constructed a P -value for each eGene across tissues using the Simes combination440

rule55 on the tissue-specific beta-approximation P -values provided by FastQTL. Storey’s q-value441

method15 was then used to identify eGenes that are active in any tissue. To identify the specific442

tissues in which these eGenes are regulated, we applied the Benjamini and Bogomolov procedure56443

at the 0.05 level. This approach not only allowed us to control the FDR for the discovery of eGenes444

across tissues and the expected average proportion of false tissue discoveries across these eGenes,445

but also to gain power to detect eGenes in tissues with smaller sample sizes when there is evidence446

from other tissues supporting their regulation.447

Independent cis-eQTL mapping448

Single-tissue analysis449

Multiple independent signals for a given expression phenotype were identified by forward stepwise450

regression followed by a backwards selection step. The gene-level significance threshold was set to451

be the maximum beta-adjusted P -value (correcting for multiple-testing across the variants) over452

all eGenes in a given tissue. At each iteration, we performed a scan for cis-eQTLs using FastQTL,453

correcting for all previously discovered variants and all standard GTEx covariates. If the beta454

adjusted P -value for the lead variant was not significant at the gene-level threshold, the forward455

stage was complete and the procedure moved on to the backward stage. If this P -value was sig-456

nificant, the lead variant was added to the list of discovered cis-eQTLs as an independent signal457

and the forward step moves on to the next iteration. The backwards stage consisted of testing458

each variant separately, controlling for all other discovered variants. To do this, for each eVariant,459

we scanned for cis-eQTLs controlling for standard covariates and all other eVariants. If no variant460

was significant at the gene-level threshold the variant in question was dropped, otherwise the lead461

variant from this scan, which controls for all other signals found in the forward stage, was chosen462

as the variant that represents the signal best in the full model.463

464

Multi-tissue analysis465

We ran a modified version of forward stepwise regression to select an ordered list of independent466

variants associated with a given gene across all tissues types. In each step k, we identify variants467

associated with expression of each gene across tissues, and refer to these as the tier k variants. In468

each tier k, for each tissue, Matrix-eQTL was run independently for each gene that had a variant469

added to the model at every previous step 1..k−1 (all genes are assessed in tier 1). In each tier, any470

significant variants identified in tiers 1..k − 1 are included as covariates. Significant tier k variants471

were assessed as follows. For each tissue, we obtained gene-level P -values for tier k via eigenMT57.472

Genome-wide significance of multiple independent variants per gene (in each tissue independently)473

was assessed via Benjamini-Hochberg (FDR < 0.05) for all gene-level P -values tested in tier k474

combined with all those tested in previous tiers58. To identify the cross-tissue tier k variant for475

a given gene, we selected the variant (out of all variants genome-wide significant for the gene in476

at least one tissue) with the smallest geometric mean P -value (across tissues). If no variant was477

genome-wide significant, no cross-tissue tier k variant was selected for that gene, and that gene will478

be estimated to have k − 1 total independent cross-tissue variants. If a particular tissue’s tier j479

genome-wide significant variant for a particular gene differed from the cross-tissue tier j variant for480
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the same gene, the P -value of that tissue‘s tier j genome-wide significant variant was used in the481

Benjamini-Hochberg procedure. If a particular gene‘s cross-tissue variant for tier k does not meet482

genome-wide significance in all tissues in the tier (k + 1) step due to increased multiple testing,483

that gene will be conservatively considered to have (k − 1) independent cross-tissue variants.484

Allele-specific expression485

Data generation486

For each sample, allele-specific RNA-seq read counts were generated at all heterozygous SNPs with487

the GATK ASEReadCounter tool using default settings30. Only uniquely mapping reads with a488

base quality ≥ 10 at the SNP were counted, and only those SNPs with coverage of at least 8489

reads were reported. Unless otherwise mentioned, SNPs that met any of the following criteria490

were flagged and removed from downstream analyses: (1) UCSC 50mer mappability of < 1, (2)491

simulation-based evidence of mapping bias59, (3) heterozygous genotype not supported by RNA-492

seq data across all samples for that subject (test adapted from Castel et al.30). Phasing between493

variants was determined using population phasing, and for some analyses was used to aggregate494

allelic counts across variants. Full ASE data is available through dbGAP.495

496

Modeling patterns of ASE sharing across tissues497

We used a beta-binomial mixture to model ASE across tissues, with each component corresponding498

to a distinct mode of allelic imbalance. The model was learned independently for each heterozygous499

coding SNP in each individual. Optimization was performed using five independent initial param-500

eters values. The number of components in the mixture model, K, was selected using Bayesian501

Information Criterion (BIC). Variance of the BIC was estimated by bootstrapping and the most502

parsimonious model within one standard deviation of the global minimum BIC model was chosen503

as the optimal model.504

Individuals with RNA-seq data from at least 20 tissues were included in the analysis (N = 131).505

The most highly expressed, coding, heterozygous SNP in each gene was selected. Genes with at least506

30 reads in at least two tissues and at least one tissue with allelic imbalance (defined as P < 10−3
507

under a binomial null model) were included in the analysis. In total 207,943 SNPs spanning 13,030508

genes were modeled using 1, 2, 3, and 4 modes of allelic imbalance. 2% of SNPs exhibited more509

than one pattern of allelic imbalance across tissues (K=2: 4219 cases, K=3: 64 cases, and K=4: 4510

cases). These multimodal cases involved 2,226 genes across individuals. SNPs with bimodal (K=2)511

pattern of allelic expression were used to derive estimates of ASE tissue sharing. Tissues with less512

than 100 cases were excluded from analysis. Tissue similarity was measured as the proportion of513

times two tissues exhibit the same mode of allelic imbalance.514

Effect size estimation515

cis-eQTL effect size516

cis-eQTL effect size was defined as the ratio between the expression of the haplotype carrying the517

alternative eVariant allele to the one carrying the reference allele in log2 scale and was calculated518

using the method presented in (Mohammadi et al. in preparation). In short, the model assumes519

an additive model of expression in which the total expression of a gene in a given genotype group520

is the sum of the expression of the two haplotypes: e(genotype) = 2er, er + ea, 2ea, for reference521

homozygotes, heterozygotes, and alternate homozygotes, respectively, where er is expression of the522

haplotype carrying the reference allele and ea, expression of the haplotype carrying the alternative523

allele is: ea = ker where 0 < k < ∞.524
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cis-eQTL effect size is represented in log2 scale as s = log2 k, and is capped at 100-fold to525

avoid outliers (|s| < log2 100). Expression counts were retrieved for all top eGenes in all tissues526

and PEER corrected. Data was log-transformed with one pseudo-count to stabilize the variance.527

The model was fit using non-linear least squares to derive maximum likelihood estimates of the528

model parameters k and er. A similar maximum likelihood approach with additive effects and529

multiplicative errors (prior to log transformation)60 was compared in several tissues to the effect530

size estimates reported here, exhibiting rank correlation 0.98. Confidence intervals for the effect531

sizes were derived using bias corrected and accelerated (BCa) bootstrap with 100 samples.532

For all analyses in a given tissue only the top eVariant per eGene was used. Only those eQTLs533

whose 95% confidence interval of the effect size estimate did not overlap zero were used for down-534

stream analysis. To control for differences in power due to eVariant allele frequency, the effect of535

MAF on eQTL effect size was estimated using LOWESS regression (Matlab function malowess:536

span=0.2, robust=true), and was subtracted from the effect sizes on a per tissue basis.537

538

ASE effect size539

For each sample, haplotypic expression at all eGenes was calculated by summing counts from all540

phased, heterozygous SNPs. For a given cis-eQTL variant, assume xi is the number of RNA-seq541

reads aligned to one haplotype, and yi is the total number of reads aligned to either haplotype542

in the ith individual. Regulatory effect size of the cis-eQTL was calculated as median log-ratio:543

s(x, y) = median[log2(xi) log2(yi − xi)]. Effect sizes were calculated for cis-eQTLs for which 10544

or more individuals with yi ≥ 10, and the effect sizes were constrained to be less than 100 fold545

(|s(x, y)| < log2 100). Confidence intervals for the effect sizes were derived using BCa bootstrap546

with 100 samples.547

cis-eQTL fine-mapping548

CaVEMaN549

We utilized CaVEMaN (Causal Variant Evidence Mapping with Non-parametric resampling) to550

estimate the probability that an eVariant was a causal variant (Brown et al., in preparation). We551

used a non-GTEx reference cis-eQTL dataset from subcutaneous adipose tissue, lymphoblastoid552

cell lines, skin and whole blood, to simulate causal variants with characteristics matching genuine553

cis-eQTLs61 (effect size, residual variance, minor allele frequency, and distance to the TSS). For554

each simulation, we calculated the proportion of times the simulated causal variant was among the555

ith most significant eVariants and denoted this proportion as pi. For each lead eVariant in GTEx,556

we generated a single-signal expression phenotype by controlling for all covariates fitted in the cis-557

eQTL mapping and all other eVariants for the gene except the eVariant whose signal we wished558

to preserve. These data were sampled with replacement 10,000 times and cis-eQTL mapping was559

performed on each resample. The proportion of times a given eVariant was ranked i was calculated,560

denoted Fi. The CaVEMaN score is then defined as
∑10

i=1 pi · Fi. To calibrate CaVEMaN scores,561

across all genes and tissues simulated (removing blood as an outlier) we divided the CaVEMaN562

scores of the peak variants into twenty quantiles. Within each quantile, we calculated the propor-563

tion of times the lead variant was the causal variant and then drew a monotonically increasing564

smooth spline from the origin, through the 20 quantiles, to the point (1, 1) using the gsl interpolate565

functions with the steffen method (gsl-2.1, https://www.gnu.org/software/gsl/). This function566

provides our mapping of CaVEMaN score of the lead SNP onto the probability it is the causal567

variant, calibrated using the simulations.568

569

CAVIAR570
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CAVIAR (CAusal Variants Identification in Associated Regions)29 uses LD structure to model the571

observed marginal test statistics for each eGene as following a multivariate normal distribution572

(MVN). Applying this model, CAVIAR can define a credible set containing all causal variants573

with probability ρ. To define these credible sets in each tissue, we used a threshold of ρ = 90%.574

We utilized eCAVIAR (eQTL and GWAS CAVIAR) to colocalize GWAS and eQTL studies for575

detection of the target genes and relevant tissues42. eCAVIAR computes a posterior probability576

of a variant identified as causal in both GWAS and eQTL studies. We used a cut-off of 1% for577

colocalization posterior probability based on observations from previous simulations42.578

To test for a significant relationship between tissue sample size and the size of the 90% credible579

set, we compared credible set sizes for the top 100 single-tissue cis-eQTLs across tissues (Extended580

Data Fig. 11a). We further combined cis-eQTL sharing results from METASOFT with CAVIAR's581

90% credible sets to test if tissues with shared cis-eQTLs could be used to fine-map the causal582

variant. Here, from the initial METASOFT results, we identified the top shared cis-eQTL for each583

eGene by selecting the cis-eQTL with the smallest RE2 P -value. For eGenes that had a shared584

cis-eQTL or a tissue-specific cis-eQTL, we compared the intersection of the 90% credible sets within585

and between each group (Extended Data Fig. 11b).586

Overlap of tissue-specific and tissue-shared eGenes with disease genes587

For each gene tested for multi-tissue eQTLs using METASOFT, we calculated the proportion588

of tissues for which the gene had a strong eQTL effect (i.e. the proportion of tissues with m-589

value ≥ 0.9). We defined tissue-specific eGenes as genes in the bottom 10% of the empirical590

distribution of this proportion. Similarly, we defined tissue-shared eGenes as genes in the top 10%591

of this distribution. We examined the enrichment of tissue-specific and tissue-shared eGenes in592

six different gene lists: the NHGRI-EBI GWAS Catalog62, the Online Mendelian Inheritance in593

Man (OMIM) database63, the Orphanet database, the ClinVar database64, the list of genes with594

clinically actionable variants reported by the American College of Medical Genetics (ACMG)65,595

and the list of LoF intolerant genes from ExAC31. For the GWAS catalog, we restricted to only596

genes with reported associations. LoF intolerant genes were defined as those with a pLI score ≥597

0.9 in ExAC31. We calculated odds ratios and 95% confidence intervals using Fisher’s exact test598

for both tissue-specific and tissue-shared eGenes in each gene list. For the tissue-specific eGenes,599

we used as a background the remaining set of genes tested in METASOFT that were not classified600

as tissue-specific eGenes. Similarly, for tissue-shared eGenes, we used as a background the set of601

genes not classified as tissue-shared eGenes.602

GWAS analysis603

We have previously described the Regulatory Trait Concordance (RTC) score to assess whether a604

GWAS variant is tagging the same functional variant as a regulatory variant34. Briefly, for a cis-605

eQTL and GWAS variant located in the same region between recombination hotspots, we correct606

the eQTL phenotype (i.e., gene expression) for all the N variants within the region using linear607

regression, creating N pseudo-phenotypes from the residuals of the linear regression. We then test608

for eQTL association between the cis-eQTL variant and the N pseudo-phenotypes. These P -values609

are subsequently sorted (descending) and ranked, and the rank of the P -value arising from the610

cis-eQTL and GWAS variant corrected phenotype association is found and the score is defined as611

(N − GWASrank) / N . The RTC score ranges from 0 to 1 with 1 indicating higher likelihood of612

shared functional effect.613

614
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CAD GWAS615

Data on coronary artery disease and myocardial infarction have been contributed by CARDIo-616

GRAMplusC4D investigators and have been downloaded from www.cardiogramplusc4d.org.617

Data availability618

Genotype data from the GTEx V6p release are available in dbGaP (study accession phs000424.v6.p1;619

www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v6.p1). The620

VCFs for the imputed array data are in phg000520.v2.GTEx MidPoint Imputation.genotype-calls-621

vcf.c1.GRU.tar (the archive contains a VCF for chromosomes 1-22 and a VCF for chromosome X).622

Allelic expression data is also available in dbGap. Expression data (read counts and RPKM) and623

eQTL input files (normalized expression data and covariates for 44 the tissues) from the GTEx V6p624

release are available from the GTEx Portal (http://gtexportal.org). eQTL results are available625

from the GTEx Portal. In addition to results tables for the 44 tissues in this study (eGenes, signif-626

icant variant-gene pairs, and all variant-gene pairs tested), the portal provides multiple interactive627

visualization and data exploration features for eQTLs, including:628

• eQTL box plot: displays variant-gene associations629

• Gene eQTL Visualizer: displays all significant associations for a gene across tissues and linkage630

disequilibrium information631

• Multi-tissue eQTL plot: displays multi-tissue posterior probabilities from meta-analysis against632

single-tissue association results633

• IGV browser: displays eQTL across tissues and GWAS Catalog results for a selected genomic634

region635
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