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Abstract

This paper proposes a novel technique to reduce the computational burden associated with
the simulation of localised failure. The proposed methodology affords the simulation of damage
initiation and propagation whilst concentrating the computational effort where it is most needed,
i.e. in the localisation zones. To do so, a local/global technique is devised where the global
(slave) problem (far from the zones undergoing severe damage and cracking) is solved for in
a reduced space computed by the classical Proper Orthogonal Decomposition, while the local
(master) degrees of freedom (associated with the part of the structure where most of the damage
is taking place) are fully resolved. Both domains are coupled through a local/global technique.
This method circumvents the difficulties associated with model order reduction for the simulation
of highly non-linear mechanical failure and offers an alternative or complementary approach to the
development of multiscale fracture simulators.
Keywords: Adaptive Model Order Reduction (MOR); Local/global Approach, Nonlinear Fracture
Mechanics; Proper Orthogonal Decomposition (POD); Newton/Krylov Solver;

1 Introduction

Simulating damage initiation and subsequent global structural failure is one of most active topics in
computational mechanics. Several mathematical models and numerical methods have been developed
over the years to assess various limit states such as failure due to permanent deformations, cracks
or decohesion/delamination, e.g. in composite materials. Yet, these models, be they damage based
or relying on discrete cracks are generally computationally expensive, as they require a fine scale
description of the structural and material properties. Therefore, today’s engineers are not able to use
these state-of-the-art models for routine design. For important recent advances in the treatment of
material failure (e.g. discontinuous fracture [1], advanced damage [2, 3], damage plasticity models [4, 5]
or their combination [6], etc.) to become useful in practice, it is thus important to devise techniques
which are able to significantly reduce the computational effort required without sacrificing accuracy.

Historically, reducing the computational time associated with solving nonlinear problems in solid
mechanics has mainly been addressed by developing homogenisation techniques [7, 8]. In this case,
the material properties associated with a material point in a coarse representation of the structure
is obtained by averaging of the fine scale material behaviour over a “representative volume element”
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which suppresses the need to resolve the fine scale explicitly over the (possibly large) structure. These
methods are widely adopted (see e.g. for a recent description [9]) and are rather effective in decreasing
the computational costs associated with solving fine scale problems.

However, the application of homogenisation-based methods to failure simulations is not straight-
forward, as the assumptions required to prove the separation of scales are not satisfied. This may
explain why such methods are still under-developed for fracture problems. The ability to coarse-grain
fracture information would however lead to a further decrease of computational time by concentrating
the computational effort where it is needed most. In the wake of a propagating crack, for example,
the full resolution used to resolve fine scale effects close to the crack front is no longer necessary, and
a coarse description may be sufficient. This issue is being intensively investigated by several teams,
namely [10] who developped a coarse graining method called Multiscale Aggregating Discontinuities,
and [11, 12, 13] who were able to derive an homogenisation scheme for lumping the fine scale deffects
of Representative Volume Elements (RVEs) into cohesive cracks introduced at the coarse scale. The
solutions proposed so far are however highly problem-dependent and usually do not inherit the solid
mathematical foundations from homogenisation theory.

We propose here to follow an alternative route which relies on very recent advances in model order
reduction strategies for highly nonlinear structural problems [14, 15, 16, 17, 18]. We believe that,
though rarely studied in the context of failure simulation in nonlinear mechanics, this avenue provides
a possibly interesting alternative (or complementary) approach to homogenisation-based solution pro-
cedures. This paper is in substance a significant improvement of the work proposed in [18], dedicated
to the fast prediction of the onset of structural failure by adaptive model order reduction. We aim here
at preserving the computational efficiency and accuracy obtained in [18] when the size of the damaged
zone becomes significant compared to the overall structure.

The definition of model order reduction can vary depending on authors. We speak here of an
approximation of the unknown field in a coarse space spanned by a basis of global vectors (as opposed
to locally supported shape functions, in finite elements for example), called Ritz vectors. Model order
reduction finds its roots in the system engineering community, where the issue of obtaining a fast
and reliable approximation of transfer functions has been extensively addressed over the years. The
interested reader can refer to the review proposed in [19]. In the context of solid mechanics, most
studies have focused on the reduction of dynamics problems. Starting from classical modal basis [20]
in a Ritz-Galerkin framework, two main classes of model order reduction have been proposed. The
first propose a truncation of modal basis and an approximation of the high-frequency behaviour by
static corrections (see for instance [21]). The second use the idea of domain partitioning. Slave degrees
of freedom are eliminated by Guyan reduction (or static condensation). The famous Craig-Bampton
method [22] is an evolution of this idea, using truncated modal basis to enhance static condensation.
These techniques have been extended to the approximation of nonlinear dynamical behaviour (an
interesting review is proposed in [23]).

The literature concerning the application of model order reduction to the approximation of the
(quasi-)static behaviour of nonlinear structures is a lot sparser. Different routes have been investigated
to develop such reduced models. The first family of methods consists in taking advantage of the a
priori knowledge of a set of representative solutions to fasten the solution process. These representative
responses, called snapshots [24], can be for instance a set of solution vectors obtained for given values
of structural parameters. The Proper Orthogonal Decomposition (POD) [25, 26] can classically be
used to extract a relevant Ritz basis from these snapshot vectors, which in turn defines a coarse space
where the solution to the structural problem with a different set of parameters can be cheaply searched.
The second family is not exactly based on reduction by projection. Spectral approaches referred to as
Proper Generalized Decomposition (PGD) are a family of solvers capable of building the solution to
a multidimensional reference problem as a sum of the products of separated variables functions. The
dimensions can be space or time, but also structural parameters. Once this solution is solved offline,
the online computation simply consists in the evaluation of the separated functions, which are known
explicitly. These novel methods are very appealing and were recently applied to linear, stochastic
and/or time dependant problems [27, 29] (including linear predictions of nonlinear solvers [28]), and
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to non-linear partial differential equations [30, 29]. Their extension to irreversible constitutive laws
such as the ones considered in damage mechanics does not seem to be straightforward, and, as far as
we know, has never been adressed before (it is therefore a very interesting possible extension of the
present piece of work).

We focus here on the first family of solvers. To the authors’ knowledge, the application of Ritz
methods to failure simulations has virtually never been adressed. The main reason for this is that
the solution fields in the zones of the structure where damage or failure initiate and propagate are
highly parameter-dependent, and cannot be known in advance. Hence, precomputed reduced basis
are unable to represent the structural behaviour beyond the onset of strain localisation, damage and
fracture. In the particular case of linear elastic fracture mechanics, the authors of [31] have proposed
a mesh morphing technique that allows to keep an autosimilar description of the singularity during
propagation. In this particular case, the use of a snapshot POD is relevant and allow for interesting
computational savings. Corrective POD algorithms have also been proposed to alleviate this in the
case of plasticity or damage models [15, 18]. Both these techniques are based on global corrections of
the initial Ritz basis by Krylov algorithms. Though efficient for global nonlinearities, it was shown in
[18] that in the case of damage assessment, the number of corrections increases when nonlinearities
localise, i.e.: when failure happens. The purpose of this paper is to circumvent this phenomenon.

The first stage of the proposed method is to only reduce the set of balance equations which exhibits
a “smooth” nonlinearity. In the context of the simulation of damage, one part of the degrees of freedom,
corresponding to highly damaged zones, will be considered as master degrees of freedom, which will
be fully solved for, while the remaining will be approximated as a linear combination of Ritz vectors,
which may be precomputed and corrected on the fly. In this respect, the proposed method has strong
links with Craig-Bampton methods, or model order reduction by substructure such as the one proposed
in [32, 33, 28]. A similar approach was also proposed in [34]. The second stage of our developments
consists in developing an efficient solver for the linearized system of equations obtained by a Newton
solution algorithm for the reduced problem. The system is condensed on the master degrees of freedom,
and solved by a Krylov algorithm. The global Ritz basis is used to efficiently solve consensed problem:
an augmentation technique ensures that the iterations are performed in a space which is orthogonal
to the one spanned by the Ritz basis. As a result, the augmented Krylov iterations correspond to a
two-level solver, the coarse level being the space spanned by the restriction of Ritz vectors to the fully
resolved set of degrees of freedom.

The paper is organized as follows. In the first section, we recall the basics of projection-based model
order reduction applied to the solution of nonlinear problems in quasi-static. In section 3, we formally
describe the proposed local/global reduction algorithm. This technique is applied to the reduction of
damage structural models in section 4. Finally, we show in the last section that this technique permits
to drastically reduce the number of corrections of the Ritz basis required to obtain a desired level of
accuracy.

2 Model order reduction by projection: general concepts

Projection-based model order reduction can be introduced as a means to obtain, at low computational
cost, a good approximation to a set of nonlinear equations of the form:

F
(
(Xi)i∈J0,NK

)
= 0 (1)

Where F is a vectorial, possibly nonlinear, function of a set of vectorial state variables X. The
expression of this function can take various forms, depending on the application.

2.1 Problem statement in nonlinear continuum mechanics

We consider a structure occupying a continuous domain Ω with boundary ∂Ω. It is subjected to pre-
scribed displacements UD on its boundary ∂Ωu and to prescribed tractions FD on the complementary
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boundary ∂Ωf = ∂Ω\∂Ωu, over time interval [0, T ]. Let u be the unknown displacement field, which
belongs to the space U of kinematically admissible fields:

U =
{
u ∈ H1(Ω) | u|∂Ωu

= UD

}
(2)

Let U0 be the associated vector space.

U0 =
{
u ∈ H1(Ω) | u|∂Ωu

= 0
}

(3)

Under the assumptions of quasi-static evolution of the structure and small perturbations, the weak
form of the equilibrium and constitutive laws read, at any time t ∈ [0, T ]:

∀u⋆ ∈ U0, find u ∈ U such that:∫

Ω

σ : ǫ(u⋆) dΩ =

∫

Ω

f
D
.u⋆ dΩ+

∫

∂Ωf

FD.u
⋆ dΓ

σ = σ
((

ǫ(u)|τ
)
τ≤t

) (4)

where σ is the Cauchy stress tensor and ǫ(u) is the symmetric part of the displacement gradient. The
constitutive relation between σ and ǫ(u) is nonlinear and described using internal variables (plasticity,
damage for instance). It is assumed local and rate-independent.

2.1.1 Space and time discretization

Let us perform a standard finite element approximation of the space of unknown displacement field U
(and a similar approximation of the space of test functions U0):

Uh(Ω) =

{
u(x) | u(x) =

nn∑

i=1

Ni(x)ui

}
(5)

where nn is the number of nodes, x is the position vector, (Ni)i∈J1,nnK are the finite element shape
functions associated to each node of the finite element mesh, and (ui)i∈J1,nnK are the nodal values of
the displacement field.

The nonlinear solution strategy used to solve the problem over time is a classical time discretization
scheme for quasi-static and rate-independent problems. This procedure consists in finding a set of
consecutive solutions at times (tn)n∈J0,ntK.

The introduction of the finite element approximation and time discretization into equation (4) at
any time tn+1 of the analysis leads to the following nonlinear vectorial equation:

FInt

(
∆U,

(
U|tm

)
m∈J0,nK

)
+ FExt = 0 (6)

where the vector of increment in the nodal unknowns ∆U ∈ R
nu (nu is the number of scalar nodal

unknowns) is defined by ∆U = U|tn+1
−U|tn

, FInt ∈ R
nu and FExt ∈ R

nu are respectively the internal
forces resulting from the discretization of the internal virtual work (left-hand side of the first equation
of system (4)) and the external forces resulting from the discretization of the external virtual work
(right-hand side of the first equation of system (4)). In the following equation presented in this paper,
the dependency of the internal forces with respect to the history of the unknown fields will not be
written explicitly, unless necessary.

The set of successive solution vectors to problem (6) at times (tn)n∈J0,ntK, obtained by a tangent
Newton algorithm, will be considered as the reference solution in the presented piece of work. The
algorithms used in the following should provide a solution closer to the reference, at cheaper computa-
tional cost. Therefore, the relevance of (i) the initial space and time discretizations and (ii) the chosen
Newton solution algorithm will not be discussed in this paper.
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2.2 Reduced solution of the balance equations by projection

2.2.1 Principle

The solution vector is searched for in a space of small dimension (several orders smaller than the
number of finite element degrees of freedom). Let us call C the matrix whose columns form a basis of
this space:

C =
(
C1 C2 ... Cnc

)
(7)

where nc is the dimension of the reduced space, and (Ck)k∈J1,ncK ∈ (Rnu)
nc are the basis vectors,

usually called Ritz vectors. Applied to the reduction of problem (6), the increment in the solution field
is approximated by:

∆U = Cα (8)

where we introduced the reduced state variables α ∈ R
nc . Problem (6) is now overconstrained. One

usually tackle this problem by prescribing a Galerkin orthogonality condition: the residual of equation
(6) R = FInt(U|tn

+ Cα) + FExt is constrained to be orthogonal to any test vector δU⋆ = C δα
⋆

belonging to the space spanned by the Ritz vectors (Ck)k∈J1,ncK:

CT R = 0 (9)

The reduced form of problem (6) takes the following form:

CT
(
FExt + FInt(U|tn

+Cα)
)
= 0 (10)

2.2.2 One particular choice of projection space: the proper orthogonal decomposition

Various choices of projection spaces are proposed in the literature. One of the most successful, as far as
nonlinear simulations are concerned, is the snapshot-POD [24]. This particular technique requires the
knowledge of a representative family of solutions to the global problem. This set of vectors (Sk)k∈J1,nsK

is called snapshot. The aim is to find an orthonormal basis (Ck)k∈J1,ncK, of dimension nc smaller than
ns such that the distance between spaces Im(C) and Im(S) is minimum. This distance can be quantified
by the following metric:

J(C1, . . . ,Cnc) =

ns∑

j=1

∥∥∥∥∥S
j −

nc∑

i=1

(
CiTSj

)
Ci

∥∥∥∥∥

2

(11)

which must be minimized under the constraint of orthonormality of (Ck)k∈J1,ncK. Problem (11) can
be reformulated as an unconstrained formulation:

L(C1, . . . ,Cnc , λ11, . . . , λncnc
) = J(C1, . . . ,Cnc) +

nc∑

i=1

nc∑

j=i

λij

(
CiTCj − δij

)
(12)

where (λij)i,j∈J1,ncK are Lagrange multipliers and δij the Kronecker symbol. The nc(nc+1)/2 optimal-
ity conditions for maximizing the Lagrangian with respect to the lagrange multiplier naturally ensure
the orthogonality of the basis:

∂L

∂λij

= 0 → CiTCj = δij (13)

Whereas the nc optimality conditions for minimizing the Lagrangian with respect to the basis vectors
reads:

∂L

∂Ci
= 0 →

ns∑

j=1

Sj
(
CiTSj

)
= λii C

i and λij = 0 for i 6= j (14)
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Defining λi = λii and S =
(
S1 S2 ... Sns

)
∈ R

nu × R
ns , equations (14) can be written as the

following nu × nu eigenvalue problem:
SSTCi = λi C

i (15)

This problem is equivalent to computing the Singular Value Decomposition (SVD) of S, where the

singular values si are such that s2i = λi ≥ 0. If ns ≪ nu (which is the case in general when applying
the snapshot-POD), replacing problem (15) by the eigenvalue problem on the ns ×ns operator STS is
computationally cheaper, and reads:

Ci = λ
− 1

2
i SVi with STSVi = λi V

i (16)

The error associated with the truncation of the SVD at rank nc is quantifyed by the distance J(C1, ...,Cnc)
which can be shown to be equal to the sum of the truncated eigenvalues:

J(C1, ...,Cnc) =

ns∑

i=nc+1

λi (17)

This result provides a precious tool for choosing the most relevant basis. Indeed, only the basis vectors
Ci associated with the largest λi (in practice, those such that λi/λmax > ε, ε being a small parameter
depending on the required accuracy) are selected as Ritz vectors. This ensures that for an given
number nc of basis vectors, the approximation of the snapshot space is maximised in the sense of (11).

2.3 Nonlinear solution algorithm

At any time step, problem (10) can be solved by classical Newton algorithms (successive linearizations).
Iteration i+ 1 of the tangent Newton method consists in solving the following linear predictor:

Ki

T,R
δα

i+1 = −Ri
R (18)

where the increment in the reduced state variables is δαi+1 = αi+1−αi, and the residual and tangent
operator obtained from the knowledge of the solution at iteration i read (see [18] for more details):





Ri
R = CT

(
FInt(U|tn

+Cα
i) + FExt

)

Ki

T,R
= CT

∂FInt(U|tn +Cα)

∂α

∣∣∣∣
α=α

i

(19)

3 Local/global model order reduction strategy

Projection-based model order reduction techniques introduce a global approximation of the displace-
ment. As such, even adaptive versions [35, 18] of these methods are not well suited to the analysis of
localised nonlinearities. We propose in the following to use reduction techniques by projection for the
“weakly nonlinear” equations of reference problem (6), namely equations for which ROM is relevant,
while the remaining equations will be solved directly.

3.1 Displacement approximation

The principle of the proposed local/global strategy is to split the unknown solution vector into two
parts, only one of them being approximated as a linear combination of Ritz vectors. We shall use
superscript (r) for the approximated “slave” part of the solution vector, while superscript (f) (which
stands for “fully resolved”) will be used to denote its complementary “master” part.
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More precisely, let ∆̃U be the unknown increment vector at time tn+1, the numbering being
reorganised as follows:

∆̃U =

(
∆̃U

(r)

∆̃U
(f)

)
=

(
E(r)

E(f)

)
∆U (20)

In the above notations, ∆̃U
(r)

∈ Rnr and ∆̃U
(f)

∈ Rnf , with nr+nf = nu and nf much smaller than

nr. E(r) ∈ {0, 1}nr × {0, 1}nu and E(f) ∈ {0, 1}nf × {0, 1}nu are two boolean extractors (rectangular
matrices with one 1 per line, the other coefficients being null).

∆̃U
(r)

is approximated as a linear combination of Ritz vectors (Ck)k∈J1,ncK ∈ (Rnu)
nc :

∆̃U
(r)

=
(
E(r)C

)
α (21)

where α ∈ R
nc are the reduced degrees of freedom. In the initial numbering, the unknown vector

can be expressed in the form:

∆U = ∆U(r) +∆U(f)

where





∆U(r) = E(r)T ∆̃U
(r)

∆U(f) = E(f)T ∆̃U
(f)

(22)

Introducing projector P(r) = E(r)TE(r), the approximation of the displacement increment finally reads:

∆U = P(r)Cα+E(f)T ∆̃U
(f)

(23)

For the sake of legibility, we define the new state vector X at time tn+1:

X =

(
α

∆̃U
(f)

)
(24)

Using the above definition, the approximation of the displacement increment is now:

∆U = A X where A =
(
P(r)C E(f)T

)
(25)

3.2 Locally reduced set of balance equations

At that point, we need to define how the overconstrained balance equations (6) will be solved for. Let
us restrict our numerical investigations to the Galerkin procedure. The balance equation are therefore
required to be orthogonal to any test vector:

δU⋆ = A

(
α⋆

δ̃U
(f)⋆

)
(26)

where δα
⋆ ∈ R

nc and δ̃U
(f)⋆

∈ R
nf are arbitrary test state variables. The orthogonality requirement

applied to the initial nonlinear set of equations (6) yields the following nonlinear system:

RR(X) = AT
(
FInt

(
∆U(X) +U|tn

)
+ FExt

)
= 0 (27)
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3.3 Newton solution scheme

At each time step of the time discretization scheme, the reduced problem (27) is solved by a Newton
algorithm. The (i+ 1)th Newton iteration consists in finding δXi+1 satisfying the following set of
nc + nf linearized equation:

∂RR(X)

∂X

∣∣∣∣
X=Xi

δXi+1 = −Ri
R (28)

where δXi+1 = Xi+1 −Xi and Ri
R is the residual of problem (27) computed at iteration i:

Ri
R = RR(X

i) (29)

The expression of the tangent operator Ki

T,R
=

∂RR(X)

∂X

∣∣∣∣
Xi

is obtained by differentiation of

equation (27) with respect to the set of reduced state variables, in any arbitrary direction δX such
that:

δX =

(
δα

δ̃U
(f)

)
(30)

This differentiation reads:

Ki

T,R
δX =

∂RR(X)

∂X

∣∣∣∣
Xi

δX (31)

Using the tangent operator of the full system of equations (6), and assuming that
∂FExt

∂∆U
= 0, on can

write:

Ki

T,R
δX = AT ∂FInt(∆U)

∂∆U

∣∣∣∣
∆U=AXi

∂∆U

∂X

∣∣∣∣
∆U=AXi

δX (32)

Using the notation Ki

T
=

∂FInt

∂∆U

∣∣∣∣
∆U(Xi)

, the previous equation yields the expression of the reduced

tangent operator as a function of the tangent of the full system of equations:

Ki

T,R
δX = ATKi

T
A δX (33)

Introducing the above expression of the tangent into equation (28), and expanding the expression of
operator A, one finally obtains the following linearized system:

(
CTP(r)Ki

T
P(r)C CTP(r)Ki

T
E(f)T

E(f)Ki

T
P(r)C E(f)Ki

T
E(f)T

)
δXi+1

= −
(

CTP(r)

E(f)

)(
FInt

(
∆U(Xi) +U|tn

)
+ FExt

) (34)

Notice that problem (34) is considerably reduced compared to a direct linearisation of (6). Indeed,
Ki

T,R
∈ R

nc × R
nf where nc ≪ nu and, applied to the analysis of localised nonlinearities, we can

reasonably expect that nf is at least one order of magnitude smaller than nu, which means that only
a few of the balance equations are strongly nonlinear. This assumption will be validated in section 4.

This framework is very general. It does not rely on domain decomposition but on a splitting of
the balance equations. Yet, this technique will be particularized in section 4, and we will show that
using the ideas inspired from domain decomposition methods [36, 37] and local/global methods [38, 39]
provides efficient splitting in the case of damage mechanics.
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3.4 Two-level solution of the linearized systems

The successive solution to (28) could be obtained by a direct solver. This would not affect the results
given in the following. However, we believe that, for this particular application, an iterative solver has
several advantages:

• Iterative solvers, such as a conjugate gradient (see [40] for instance), do not require any fac-
torisation. Factorisations usually deteriorate the sparsity of algebraic systems, which results in
an increase in the memory requirements. Newton-Krylov methods do not, in theory [41], even
require the assembly of the stiffness operator.

• Direct solvers are less versatile than iterative ones, and are usually a limiting point to extend
numerical solution schemes to parallel computing.

• Solving exactly the successive linearized systems (28) is not required. This idea has led to
intensive work on Inexact Newton Methods [42]. This issue will not be addressed in this paper,
but the interested reader can refer to [37, 18] for studies on similar topics in the scope of domain
decomposition and model order reduction.

• More importantly, a basic direct solver such as Cholesky factorizations will not make use of any
mechanically relevant information obtained during the previous iterations of the nonlinear solver.
In the chosen iterative algorithm, the part of the displacement that “fully resolved” will be solved
for efficiently using the Ritz basis as a preconditioner, following the ideas proposed for instance
in [43, 41, 37].

We use here a Krylov algorithm to efficiently find a solution to linearized system of equation (28).
Three stages of preconditioning are performed: a condensation, a projection and a crude precondition-
ing of the resulting system.

3.4.1 Condensation

Let us condense the linearized problem (34) on the master (i.e.: “fully resolved”) degrees of fredom:

S(f)

P
δ̃U

(f)
= R

(f)
C (35)

where the superscript corresponding to the current and previous Newton iterations have been dropped

for the sake of legibility. S(f)

P
is the primal Schur complement and R

(f)
C the condensed residual. They

are defined by: 



S(f)

P
= K(ff)

T,R
−K(fr)

T,R

(
K(rr)

T,R

)−1

K(rf)

T,R

R
(f)
C = K(fr)

T,R

(
K(rr)

T,R

)−1

R
(r)
R −R

(f)
R

(36)

Where we have used the usual block notations:

K
T,R

=

(
K(rr)

T,R
K(rf)

T,R

K(fr)

T,R
K(ff)

T,R

)
(37)

RR =

(
R

(r)
R

R
(f)
R

)
(38)

The state variables corresponding to the reduced part of the displacement vector increment have
been eliminated from the system of equations and can be retrieved as follows:

δα = −
(
K(rr)

T,R

)−1
(
R

(r)
R +K(rf)

T,R
δ̃U

(f)
)

(39)
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(
K(rr)

T,R

)−1

is an operator of very small size, which can be explicitly computed prior to applying the

iterative Krylov solver. However, in the case where a very large number of Ritz vectors is used to ap-
proximate the unknown field in the smooth region, computing the Schur-complement/vector products
corresponding to the construction of the successive Krylov basis vectors will become computationally
more efficient.

3.4.2 Iterative solution to the condensed problem

The classical projected (or augmented) conjugate gradient [44, 36] is applied to the approximate
solution of (35) (the linearized operator is assumed symmetric, positive and definite). The chosen

augmentation space is the space spanned by the Ritz vectors Im(C(f)) with the restriction C(f) =

E(f)C.
The starting point of augmented Krylov solvers is to decompose the unknown solution increment

in two supplementary spaces:

δ̃U
(f)

= δU
(f)
C + δU

(f)
K

where





δU
(f)
C ∈ Im

(
C(f)

)

δU
(f)
K ∈ Im(C(f))

⊥
S
(f)
P = Ker

(
C(f)TS(f)

P

) (40)

⊥
S(f)

P

designing the S(f)

P
−orthogonality, which is ensured by introducing the classical projector:

P = I
d
−C(f)(C(f)TS(f)

P
C(f))−1C(f)TS(f)

P
(41)

and writing that δU
(f)
K = P δU

(f)
K .

This separation of the search space into two subspaces Im
(
C(f)

)
and Im(P) in direct sum leads

to the following uncoupled equations:

δU
(f)
C = C(f)(C(f)TS(f)

P
C(f))−1C(f)TR

(f)
C(

PTS(f)

P
P
)
δU

(f)
K = PTR

(f)
C

(42)

The first line of equation (42) is a coarse initialization of the projected conjugate gradient. The second

line is the linear prediction of the full problem projected on Im(C(f))
⊥

S
(f)
P . This system is symmetric

and can be solved by a preconditioned conjugate gradient. Hence one solves iteratively:

M̃
−1
(
PTS(f)

P
P
)
δU

(f)
K = M̃

−1
PTR

(f)
C (43)

where M̃
−1

is the left preconditioner (symmetric, definite and positive). In our test cases, M̃ is a

diagonal matrix whose entries are the elements of the diagonal of S(f)

P
. Algorithm 1 gives the classical

implementation of an augmented preconditioned conjugate gradient.

3.4.3 Interpretation and comments on the expected additional costs

The three preconditioning techniques that we have detailed in the previous sections define a cheap
structural preconditioner. A schematic representation of this algorithm is given in figure (1).

From an algebraic point of view, it can easily be proved that the condensation has the same effect
on the conjugate gradient iterations as a left block preconditioner for system (34):

M̃
Condens

−1
=

( (
K(rr)

T,R

)−1

0

0 0

)
(44)
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δU = E
(f)T

δU
(f)

+P
(r)

C δα

δU
f
C = δU

(f)
C + δU

(f)
K

j ← j + 1

j = 0

Condensation of the linearized reduced 
problem on the master degrees of freedom

Computation of the residual             of the 
projected problem (“non-corrected” search 

direction)          

Coarse scale correction of the 
search direction by orthogonality 
with respect to the reduced space

Orthogonalization and 
Minimisation

Computation of the displacement 
of the slave degrees of freedom

Computation of the displacement 
of the master degrees of freedom

Convergence checkYES

NO

A priori reduced basis
F

D

New problem

F
D

Zj = P�M
−1

RCG,j

Coarse initialisation in the reduced space 

δU
f
C ∈ Im

(

E
(f)

C

)

||RCG,j ||

||R
(f)
C ||

< ε

RCG,j

δU
(f)
K,0 = 0

δU
(f)
K,j = δU

(f)
K,j-1 + αj Wj

Figure 1: Graphical representation of the two-level solution algorithm.
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Algorithm 1: Augmented preconditioned conjugate gradient for the solution to the condensed
linearized reduced problem

Compute





S(f)

P
= K(ff)

T,R
−K(fr)

T,R

(
K(rr)

T,R

)−1

K(rf)

T,R

R
(f)
C = R

(f)
R −K(fr)

T,R

(
K(rr)

T,R

)−1

R
(r)
R

C(f) = E(f)C

(C(f)TS(f)

P
C(f))−1

δU
(f)
C = C(f)(C(f)TS(f)

P
C(f))−1C(f)TR

(f)
C

RCG,0 = R
(f)
C − S(f)

P
δU

(f)
C = PTR

(f)
C

Z0 = PM̃
−1

RCG,0 , W0 = Z0 and δU
(f)
K,0 = 0

for j = 1, . . . , n do

αj−1 = (RCG,j−1,Wj−1)/(S
(f)

P
Wj−1,Wj−1)

δU
(f)
K,j = δU

(f)
K,j-1 + αj−1Wj−1

RCG,j = RCG,j−1 − αj−1S
(f)

P
Wj−1

Zj = PM̃
−1

RCG,j

βj = (S(f)

P
Wj−1,Zj)/(Wj−1,S

(f)

P
Wj−1)

Wj = Zj − βjWj−1

end

From a mechanical point of view, condensing the problem on the master degrees of freedom ensures that
any solution provided by the iterative solver exactly solves the reduced part of the balance equations.

The augmentation of the conjugate gradient can also be seen as a left preconditioner for the
condensed system of equations (second line of system (42)), which is associated with an initialization

of the iterative alogrithm. The initialization δU
(f)
C (first line of system (42)) is the best solution of

the condensed problem in the restriction of the pre-computed reduced basis to the master degrees
of freedom (in the sense of a (S(f)

P
)−1-norm). Taking into account the previous comments on the

interpretation of the condensation step, this initialisation is exactly the solution to the linearized
system of equation (18) on the master degrees of freedom. In other words, the initialization of the
iterative algorithm provides the solution of the reduced linearized problem which would have been
obtained without local/global enhancement. No significant additional costs compared to the basic
projection-based reduced order modelling are involved so far. In the case where the solution which is
looked for is correctly approximated in the reduced space (e.g.: “smooth” nonlinearity, or unloading
of the structure), no conjugate gradient iteration is required.

If conjugate gradient iterations are required, the augmentation acts as a global correction of the
successive search directions (see figure (1)). It ensures that any solution of the form (40) still satis-
fies the reduced balance equations without local/global enhancement. Therefore, the complementary

solution δU
(f)
K can be interpreted as a local correction to the solution provided by the pre-computed

reduced model. We will see in the examples that, as the conjugate gradient does not need to search for
the part of the solution that is directly captured in the pre-computed reduced space, the convergence
rate is very high.

The diagonal preconditioner M̃
−1

classically accounts for local heterogeneities in the structure. A
much more sophisticated preconditioner can of course be used (e.g.:incomplete Cholesky factorization).
Yet, if the reduced basis is correctly pre-computed and/or updated, the computational effort required
to obtain a good solution of the projected problem should be relatively low. Hence, the potentially
expensive construction of an advanced preconditioner is not a priori justified. The example section
will show that the number of conjugate gradient iterations required to compute a correction to the

12



reduced model is indeed kept very low, even while only using this crude preconditioner.

4 Application to the adaptive reduction of damage problems

4.1 Damageable lattice model

We focus on a very simple damageable lattice structure, made of bars under traction or compression
(figure (3)). Elementary bar indiced b occupies domain Ωb such that Ω =

⋃
b∈J1,nbK Ωb, where nb

is the number of bars. The direction of bar number b is denoted by nkl = PkPl/‖PkPl‖ where Pk

and Pl (k < l and (k, l) ∈ J1, nP K2) are the two extremities of the bar as defined in figure (2). The
displacement field in is supposed constant in a cross-section. Therefore, the displacement of any point
M ∈ Ωb can be expressed in the following form:

u|M∈Ωb
= (u(x̃).nkl)nkl = u(x̃)nkl (45)

where each cross section is parametrised by a scalar x̃ ∈ [0, ‖PkPl‖], defined by x̃ = PkM.nkl.
We use a constitutive law based on classical damage mechanics to describe the behaviour of the

lattice structure. The lineic strain energy of bar b reads:

ed|x̃ =
1

2
E(1− d)Sb ǫ

2
|x̃ (46)

where ǫ|x̃ = u,x̃(x̃) is the strain measured in the direction of the bar, (Sb)b∈J1,nbK, is the section of the
bar, and d is a damage variable which ranges from 0 (undamaged material) to 1 (completely damaged
material). The local state equations, derived from the strain energy read:





N|x̃ =
∂ed
∂ǫ

= E(1− d)Sb ǫ|x̃

Y|x̃ = −∂ed
∂d

=
1

2
E Sb ǫ

2
|x̃

(47)

where we have introduced the axial force N = Sb

(
nT
kl.σ.nkl

)
, and the thermodynamic force Y . A

non-local evolution law is defined to link the damage variables to the thermodynamic forces:

d|x̃ = max
x̃∈[0,‖PkPl‖]

(
min

(
1, sup

τ≤t

(
α(Y|x̃,τ )

β
)))

(48)

We suppose that the lattice is not subjected to any volume force, that the material of each elemen-
tary bar is isotropic and homogeneous, and that the section of each bar is constant. As a consequence,
the resulting displacement field evolves linearly along the direction of each bar.

In terms of finite element discretization, each bar will be considered as a linear element

u(x̃) =

(
1− x̃

‖PkPl‖

)
u|Pl

+
x̃

‖PkPl‖
u|Pk

(49)

Because of the assumptions made previously on the loading, geometry and material properties, the
finite element solution yields the “exact” solution to the damageable lattice problem.

4.2 Lattice structure and loading

We solve the problem defined in figures (3). The sections and Young’s modulus are unitary. The
material parameters are β = 0.5 and α =

√
2. Any bar parallel to axis (O, x), (O, y) or (O, z) has a

unitary length.
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Figure 3: Reference solution obtained at the eighth load increment of the full-scale simulation (max-
imum value of prescribed forces before unstable damage propagation). Darker bars have a higher
damage state.
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The Dirichlet boundary conditions applied to the structure read, for any node (Pi) (with i ∈ J1, npK)
of the lattice such that (Pi) ∈ (O, x, y):

u|Pi
.z = 0 (50)

As represented in figure (3), homogenous Neuman boundary conditions, in the −z direction, are applied
to any point Pi that belongs to plan P defined by:

P = {M = (x, y, z) |x ∈ [7, 9] and y ∈ [8, 10] and z = 11} (51)
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Figure 4: Final damage obained at the end of the full-scale simulation, performed in 30 load increments.
The bars that are completely damaged are not represented.

Increasing the value of the applied forces leads to the initiation and propagation of a damaged zone
as shown in figure (4). This phenomenon is unstable from a structural point of view, and the damage
state represented in this figure is past the limit point at which the force applied to the structure reaches
is maximum value. An arc-length algorithm with local control is used to solve the damage propagation
beyond this limit point. The basic idea of this algorithm is to look for the amplitude of the force under
the constraint that the maximum increment in the damage variables over a time step is fixed (see
[45, 2] or [18] for additional details). The reference solution is obtained by solving the full problem (6)
in 30 of these damage increments of the Newton/arc-length algorithm. The final state is represented
in figure (4).

Our purpose is to check the relevancy of the proposed local/global reduction technique when trying
to obtain at cheap costs the load/deflection curve (pre and post failure phases) of the structure under
the loading conditions described previously. The results provided in the following sections give the
value of the norm of the external forces vector (also called loading factor) obtained by the arc-length
method. The displacement used to plot the load/deflection curves is the average vertical displacement
of the points at which forces are applied.
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reduction method (left: load increment 4, right: load increment 30). Dark bars are connected to at
least one fully resolved node. As time increases, the degrees of freedom for which no reduction is
performed localises in the region of failure.

4.3 Particularisation of the local/global approach

4.3.1 Definition of the Local/Global splitting

We need at that point to particularize the general method developed in section 3. The splitting between

reduced degrees of freedom ∆̃U
(r)

and the complementary ones ∆̃U
(f)

is made by considering that
the part of the structure undergoing strong damage variations will not be correctly solved for when
projected on a pre-computed Ritz basis (see [38, 37] for similar assumptions in a domain decomposition-
based local/global approaches). This statement is purely based on mechanical intuition and will be
validated in the following examples.

The following procedure is adopted. The splitting will be fixed over a time step, to avoid the
stagnation or divergence of the Newton process. At the end of a time step, the element undergoing
the maximum damage increment is spotted, and a sphere of radius ρs, centred at the isobarycenter of
the element is created. Every degree of freedom belonging to a node located inside this sphere is set
as a fully resolved degree of freedom.

This procedure is repeated on the remaining elements (those which do not have all their degrees of
freedom in the previous list).

The algorithm is stopped if one of the two following statements is satisfied.

• The maximum damage increment in the remaining elements is lower than kDam times the global
maximum. In our examples, kDam is set to 0.5. This ensures that the fully resolved degrees
of freedom are actually connected to elements undergoing a significant increase in their damage
state compared to the remaining of the structure.

• The number of fully resolved degrees of freedom exceeds kLocGlo times the total number of
unknowns. kLocGlo is set to 0.1 in our examples. This statement will be satisfied if the former
one is not, which means that the structure undergoes a virtually homogeneous increase in its
damage state. In that case, the local/global procedure might be inefficient.

To illustrate this procedure, two different reduced domain are represented in figure (5). The dark
elements are connected to at least one fully resolved node. The first one is obtained at the end of the
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third time step and is used to solve the fourth time step of the analysis, while the second one is used to
solve the thirtieth and last time step. The first figure is obtained during the initiation phase. Notice
that the maximum damage increments are found in the zone where the the load is applied, and in the
“pillar” that is closer to this zone, which undergoes a significant bending loading. In the later case,
corresponding to unstable propagation phase, the damage increment localises in the zone where the
load is applied.

This empirical choice for the local/global splitting is only justified by its efficiency. However we only
considered one type of model for brittle fracture. We expect the optimal splitting to depend on the
chosen model and on the stage of the structural failure. A more suitable criterion should be investigated
in future work, based on algebra to circumvent this dependency. For instance, one could consider the
decrease rate of the singular values of the correlation matrix restricted to an assumed smoothed domain
and loosely maximise it, with a greedy-like algorithm, by successive small modifications of this domain.

4.3.2 Modification of the global Ritz basis

At the end of a time step, the Ritz basis is enriched in order to take into account the information
provided by the local iterative solver. The procedure used here is simply to add the successive solutions
to the initial snapshot, and sort them by a singular value computation. This step can be optimized,
following our previous work [18]. The issue here is that the reduced basis is only locally enhanced,
which might results in ill-posed reduced problems if not correctly addressed. This question will not be
further discussed in this paper, which focuses on the benefits provided by the local/global approach.

4.4 A posteriori Ritz basis

4.4.1 Reference solution to construct the a posteriori Ritz basis

The first test consists in using as a snapshot the consecutive reference solutions obtained by a Newton/arc-
length solution algorithm performed on the initial system of equations, without reduction. In other
terms, we try to reproduce the snapshot by reduced order modelling. It terms of realistic applications,
this example is not of particular interest as one would need to know the solution in advance in order
to obtain the followinf results. However, studying this academic case is interesting to understand the
behaviour of the proposed strategy.

The snapshot is composed of ns = 30 vectors. This information is compressed by using a singular
value decomposition as detailed in section 2.2.2. We plot, in figure (6), the normalised error in the
snapshot representation

νSVD =




ns∑

j=1

∥∥∥∥∥S
j −

nc∑

i=1

(
CiTSj

)
Ci

∥∥∥∥∥

2



1
2




ns∑

j=1

∥∥Sj
∥∥2



1
2

=

(
ns∑

i=nc+1

λi

) 1
2

(
ns∑

i=1

λi

) 1
2

(52)

as a function of the order of truncation of the SVD, where the eigenvalues (λI)i∈J1,nsK of the correlation
matrix are now sorted in decreasing order. The decrease rate of this criterion is relatively low, which
suggests that the information from the snapshot is poorly inclined to compression. For reference, in
[15], the author estimates that the snapshot space is correctly approximated by the space spanned
by the first nc singular vectors if νSVD ≤ 10−8. In our case, this would lead to the selection of the
30 singular vectors to define a relevant reduced model. The singular vector basis is here truncated
at order nc = 3 in order to yield a significant (thus observable) error in the solution when using the
basic POD method. This error can then be compared to the one obtained when using the proposed
local/global scheme.
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the snapshot definition (i.e.: the snapshot now is the restriction of the solutions to the part of the
domain which does not undergo significant damage). The resulting error curves are plotted in dash
lines.

In figure (7), the reference load/deflection curved is compared to the one obtained when using
the basic POD on the first hand, and when using the local/global reduction technique on the other
hand. The peak load obtained with the basic POD is slightly underestimated, by less than 2%, but the
overall behaviour of the structure is correctly captured. The local/global algorithm permits to further
increase the accuracy of the approximated solution. The error in the maximum load factor is now less
than 0.5 %.

We now analyse the effect of preconditioning the local iterations of the conjugate gradient by the
projection technique detailed in section 3.4.2. The convergence curves that are plotted in figure (8,
left) are obtained at the third Newton iteration of the fiftieth time step of the analysis (i.e.: during
the damage propagation phase). The norm of the condensed system (35) of equation, normalized by
the norm of the condensed right-hand term is observed as a function of the number of iterations of
the conjugate gradient solver. One can see that the number of iteration to convergence is significantly
decreased when using the augmented Krylov solver.

An other interesting observation is that the convergence curve decreases in a monotonic manner,
which means that the error in the global residual keeps decreasing as a function of the cost of the local
conjugate gradient. This is not, of course, a proof, and this conclusion is probably problem dependent,
but the same behaviour as been observed in all our numerical experiments. A probable reason for
this is that the augmentation deflates the spectrum of the condensed operator, removing its highest
eigenvalues and forcing the Krylov algorithm to its super-convergence phase (one can refer to [46] for a
proper analysis of the effect of eigenvectors-based augmentation on the convergence of Krylov solvers).
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Figure 7: Load/deflection curves obtained one using successively direct numerical simulation, simple
proper orthogonal decomposition and local/global reduction technique. The snapshot used here is the
solution of the direct numerical simulation.

4.4.2 Nearby solution to construct the a posteriori Ritz basis

In the second test case, we use as a snapshot the consecutive solutions obtained by solving a nearby
problem, which differs from the reference one only by the position of the applied forces: homogenous
Neumann boundary conditions are applied to any point Pi (with i ∈ J1, nP K) such that Pi ∈ P ′ defined
by:

P ′ = {M = (x, y, z) |x ∈ [9, 11] and y ∈ [9, 11] and z = 11} (53)

This snapshot is for instance a particular output of a parametric study meant to obtain the response
of the system subjected to various load cases. One would expect to be able to reuse the information
generated during this simulation to fasten the solution process of the next one. The difference between
the snapshot solution and the reference solution that is looked for is illustrated in figure (9). It
should be noted that far away from the part of the structure where Neumann boundary conditions are
applied, the solutions are qualitatively similar. Yet, they are very different within this process zone,
which qualitatively justifies the local/global splitting proposed in section (4.3.1). The same effect
appears in figure (6, which shows that the combination of the information from the two load cases can
be significantly compressed when removing the process zone from the SVD analysis.

Figure (10) compares the load/deflection curves obtained in the reference case, and when using
successively the basic POD strategy and the local/global reduction technique. Obviously, the POD
strategy looses its relevancy very quickly, as the damage localises in the part of the structure where
the damage would localise during the snapshot simulation. The resulting model is too stiff, and the
maximum strength of the structure is overestimated. When using the local/global approach, with the
parameters described previsouly for the fine analysis of the damaged areas, a much more accurate
load/deflection curve is obtained. Yet the peak load is still overestimated by 5%. This remaining
inaccuracy is due to the fact that the infomation from the snapshot is not correct in the reduced zone.
Global corrections of the Ritz basis are still necessary. This issue is discussed in the next section.

In figure (8, right) we analyse the effect of preconditioning the local iterations of the conjugate
gradient by the projection technique. As in the previous test case, the convergence curves are observed
at the third Newton Newton iteration of the fiftieth time step of the analysis. Again, the number of
iteration to convergence is significantly decreased when using the augmentation. We would expect this
precontionning technique to be less efficient in this particular case. Yet it is not the case, which is
probably due to the fact that the global update described in section 4.3.2 is mechanically relevant.
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Figure 8: Convergence curves of the augmented conjugate gradient used to solve the local problem, at
the third Newton iteration of load increment 15. On the left-hand side, the reference solution is used
as a snapshot. On the right-hand side, the snapshot used to define the reduced model is the solution
of the nearby problem.

5 Adaptive Ritz basis

We now try to reduce the inaccuracy observed in figure (10) by using global corrections of the reduced
model. The adaptation algorithm used here was introduced in [18]. We just recall the basics of this
particular strategy, and explain how it can be used to enhance the proposed local/global scheme.

5.1 ”On-the-fly” global corrections of the Ritz basis

The principle of these global corrections, is to update the global Ritz basis used to define reduced
problem (10). It is, for now, not linked to the global/local technique described previously in this
paper. The updates are done “on-the-fly”, at any iteration i+1 of the Newton algorithm used to solve
(10) at a given time step tn+1 of the analysis. If the reduced problem is sufficiently converged, and if
the residual of the norm of the initial problem evaluated at iteration i is estimated too high, then the
following linearized system is considered:

K̄
i

T
¯δU = −Ri (54)

K̄
i

T
is an approximation of the tangent Ki

T
, while Ri is the residual of the initial system of equations

(6) evaluated in U|tn
+ Ci

αi. Operator Ci designs the Ritz basis considered at iteration i of the
Newton process.

The solution to this problem is searched for in two supplementary spaces by a projected Krylov
algorithm:

¯δU = ¯δUC + ¯δUK

where

{
¯δUC ∈ Im(Ci)

¯δUK ∈ Im(Ci)
⊥

K̄
i
T = Ker(CiT K̄

i

T
)

(55)

This problem is solved coarsely by a projected Krylov solver (10−1 is the typical value of the stopping

criterion), othogonally to the current Ritz basis. The resulting solution, which is K̄
i

T
−orthogonal to

the Ci, is added to the reduced basis:

Ci+1 =

(
Ci

¯δUK

‖ ¯δUK‖

)
(56)
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Figure 10: Load/deflection curves obtained one using successively direct numerical simulation, simple
proper orthogonal decomposition and local/global reduction technique. The snapshot used here is the
solution of the direct numerical simulation to the nearby problem.
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Newton prediction i+1 can now be solved after updating residual Ri
R and reduced stiffness Ki

T,R
with

respect to this new basis vector.
Various features are added to this algorithm to efficiently sort the successively added basis vectors,

but the main idea described above is sufficient to understand the following results.

5.2 Coupling with the local/global approach

Once the global norm of the residual of locally reduced problem (27) is sufficiently converged, and if
the global residual is juged too high, a correction vector of the global Ritz basis is calculated, following
the algorithm given in the previous subsection. The residual and tangent operator of problem (27)
are updated and condensed tangent problem (35) is solved with the projected conjugate gradient
algorithm. This algorithm converges in a very few iterations as the new basis vector, added to the
augmentation space, is very close to the solution which is looked for. The slight mismatch is only due
to:

• the approximation of tangent used to provide the global correction vector.

• the coarse solution of (54).

• the approximation of the displacement in the reduced zone of the local/global approach.

5.3 Results

The test case described in section 4.4.2 is solved using successively the local/global technique on its
own, the global correction algorithm on its own, and the local/global reduction technique coupled
with global corrections. The target norm of the relative global residual norm is 10−1. Corrections are
allowed only if the relative norm of the residual of locally reduced problem (27) is below 10−3. The
improvement in terms of error when using the global correction algorithm in the local/global approach,
as opposed to the global/local method on its own is obvious in the load-displacement curve in figure
(11). An illustration of the POD basis and its successive corrections is given in figure (13).

More importantly, the number of relatively expensive global corrections required to achieve the
target in terms of global residual norm is very low when using the local/global approach, as opposed
to the one observed when using only global corrections. This effect is shown in figure (12). On can also
notice that using only the global correction methods lead to an increase in the computational costs in
the damage propagation phase of the analysis, which has been reported in [18]. With the local/global
reduction approach, this effect disappears. The same trend have been observed in [37], where a
local/global algorithm was developed in a domain decomposition framework to avoid unnecessary
computations far away from the process zones. This suggests that the result obtained here is extensible,
and that the number of global corrections required to achieve a given level of accuracy does not depend
on the local nonlinearity (i.e: independent on the damage state).

6 Conclusions and discussion

The work described in this paper focuses on decreasing the computational effort required in solving
large scale damage and fracture problems, where small scale phenomena must be taken into account
to accurately represent the global structural behaviour. Though most of the investigations being done
to tackle this issue consider the extension of homogenisation frameworks, we followed an alternative
route, choosing projection-based model order reduction as a starting point. The proposed local/global
reduction technique was demonstrated on a damaging 3D frame structure, but we expect that the
algorithm will carry forward to the more general case of the initiation and propagation of cracks in
structures.

Two important conclusions of the work we presented in this paper are that:
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Figure 11: Load/deflection curves obtained one using successively direct numerical simulation, lo-
cal/global reduction technique and local/global reduction technique with ”on-the-fly” global correc-
tions.
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• The proposed local/global model order reduction approach can significantly improve the rele-
vancy of using a global Ritz basis to approximate the displacement field in the case of localised
failure;

• The number of global corrections of the reduced model required to obtain a given level of accuracy
is drastically reduced when excluding from the reduction the balance equations which exhibit
the highest level of non-linearity.

In most of the applications for which this methodology is intended, the additional computational
costs are kept minimal for two reasons:

• The damaged zone where no reduction is performed is small compared to the size of the structure
in realistic engineering problems;

• The local fine scale solution is efficiently obtained by Krylov corrections of a good initialisation
provided by the restriction of the reduced model to the damaged zone.

Yet, some issues need to be addressed before efficient and global/local reduction algorithms can be
efficiently and safely used to tackle engineering problems:

• Cost of the construction of the reduced systems. A system reduction is needed to ensure the
computational efficiency of the method. It is now well known that projection-based model order
reduction only reduces the size of the algebraic systems to solve, and that the construction of these
systems is still expensive. Indeed, it involves the evaluation of the internal forces to construct the
tangent stiffness and the residual of the reduced problem, which requires global updates of the
constitutive behaviour, and integrations over the whole domain. System approximations permit
to solve this issue. They basically consist in obtaining a cheap, but reliable approximation of
the internal forces. In [18], we used the so-called hyperreduction [15] (also introduced as the
missing-point approximation by [47] in a different context). We found that adaptive Ritz basis
methods need to be carefully tailored when used within this framework. Indeed, one cannot
rely on the fact that the residual of the full-scale problem is known at any iteration of the
nonlinear solver anymore: the number of global evaluation of the internal forces must be kept
minimal. In addition, we observed that the stability of the particular system approximation
that we used is highly dependent on the choice of its parameters (reduced integration domain),
especially when the damage mechanism localises. We foresee that excluding the most damaged
zones from the reduced domain can significantly improve the stability of this scheme. Some
numerical investigations are required to confirm this intuitive speculation.

• Quality control. Each step in the algorithm is a source of error: (i) choice of the set of degrees
of freedom for which the solution is searched in a reduced space (ii) choice of the Ritz basis (iii)
choice of the accuracy for the local solution (iv) The choice of the system reduction (v) The
choice of the time stepping parameters. These choices should be made within an encompassing
framework to ensure that the error associated with each of them can be controlled in the same
manner. Therefore, one needs to find a relevant error criterion and build a control process,
capable of ensuring that the above choices introduce the same order of error in the solution so
that the global error be not dominated by any of them in particular.

In terms of further applications, this method should be validated using more advanced models for
brittle fracture, in particular nonlocal continuum damage or softening plasticity models, for which
the distinction between local and global effects is not trivial. The extension to ductile failure and/or
geometric nonlinearities should also be possible, the global corrections being expected to efficiently
handle the “smooth” part of the nonlinearities, while the local/global scheme should treat separately
the localisation of defects.

We believe that this local/global reduction framework is an important milestone to obtain an
optimal reduction method applicable to the parallel simulation of failure in solids. Indeed, as alluded
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to in the introduction of this paper, several authors have proposed to perform a systematic model order
reduction of the expensive local problems (so-called “problems by substructure”) classically involved
in domain decomposition methods [32, 33, 28]. The application of such ideas to failure assessment has
never been tackled so far, as it first requires an efficient reduction scheme for the local problems, such
as the one proposed in this paper, in order to guarantee reasonable scalabilities and load balancing.
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