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Abstract: Predicting rolling bearing fatigue life requires knowledge of the three-dimensional (3D) stress fields 

in the roller and raceway near the lubricated contact. Owing to the increasingly severe operating conditions, 

the effect of localized features such as surface roughness, subsurface inclusions, and even the crystallographic 

structure of the material becomes important. Achieving such detail requires (locally) extremely dense gridding 

in simulations, which in 3D is a major challenge. Multigrid techniques have been demonstrated to be capable of 

solving such problems. In this study, multigrid techniques are shown to further increase the efficiency of the 

solution by exploiting local grid refinement while maintaining the simplicity of a uniform discretization. This is 

achieved by employing increasingly finer grids only locally, where the highest resolution is required. Results 

are presented for dry contact and elastohydrodynamically lubricated contact cases, circular as well as elliptic, 

with varying crystallographic structure, and with surface roughness. The results show that the developed 

algorithm is very well suited for detailed analysis, with also excellent prospects for computational diagnostics 

involving actual material crystallographic structure from electron backscatter diffraction measurements. 
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1  Introduction 

Rolling bearing steels are usually exposed to millions 

of Hertzian-type stress cycles during their service. As 

a result, the bearing raceways and rolling elements 

can undergo rolling contact fatigue (RCF). Depending 

on the operating conditions, such as load and material 

microstructure, there are different manifestations of 

RCF, which are summarized in a recent review paper 

[1]. Under well-lubricated conditions, RCF usually 

appears in the form of material spalling, driven by 

material heterogeneity. It has been recognized that 

the steel chemical composition, heat treatment, and 

cleanliness significantly affect the bearing life [2]. 

Therefore, understanding the effect of the steel 

microstructure on bearing performance is of crucial 

importance to meet the constant demand for reduced 

carbon dioxide emissions, higher energy efficiency, 

reduced friction, and cost across industries. 

While often approximated as homogeneous for 

easier stress calculations, it is important to point out 

that in general the microstructure of bearing steels 

is very heterogeneous. Different aspects contribute 

to the overall heterogeneity. First, the chemical com-

position and heat treatment of the steel affect its 

texture as manifested through different martensite 

grain sizes (from laths to packets), grain orientation, 

amount of retained austenite, and the size, shape, 

and chemistry of residual and tempered carbides [3]. 

In addition, the metallurgical processes used in steel  
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Nomenclature 

a    Half width of Hertzian contact in x  

   direction (m) 

b    Half width of Hertzian contact in y  

   direction (m) 

c11, c12, c44  Elastic constants for cubic material (Pa) 

Ci, j, k, l  The elastic stiffness matrix (Pa), i, j, k, l are 

   the indexes of the fouth-rank tensor 

d   The dimension of the problem 

E   Young’s modulus (Pa) 

F   Applied load (N) 

hx, y, z   Grid mesh 

h   Film thickness (m) 

hf   Fine grid  

Hc   Coarse grid 

H   Dimensionless film thickness, h/(a2/Rx) 

Haf   Anisotropy factor (Pa) 

L, M   Moes dimensionless parameters for point  

 contacts, 
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p   Pressure (Pa) 

pH   Maximum Hertzian pressure (Pa) 

P   Dimensionless pressure, p/pH 

Rx, Ry  The radius of a sphere in x and y directions (m)

s11, s12, s44   Elastic compliance constants for cubic 

    material (Pa−1) 

um    Entrainment velocity (m/s) 

u, v, w   Displacements in x, y, and z directions (m)

W    Displacement in z direction of the top  

    surface, w/a 

UEHL, WEHL, Hamrock and Dowson dimensionless 

GEHL    parameters for point contacts: 
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      Pressure viscosity coefficient (Pa−1) 
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II     High order interpolation operator 

 

production influence the overall steel cleanliness 

(e.g., the presence of nonmetallic inclusions, material 

segregations, etc.). All of these aspects affect the 

overall subsurface stress state, which can potentially 

lead to faster or slower RCF. Therefore, a better 

understanding of the effect of the steel microstructure 

is of crucial importance for predicting and improving 

bearing performance. This means that the development 

of fast and accurate numerical tools for stress 

calculations that can handle the types of heterogeneity 

mentioned above is of high practical importance. 

The type of contact in a bearing (point versus line) 

depends on the geometry of the rolling elements.  

For roller bearings, the contact geometry can be 

simplified to a finite or an infinite line contact, whereas 

for ball bearings, the contact geometry is typically   

a point or elliptical contact. Both line and circular 

contact may be treated as special cases of an elliptical 

contact. Line contact problems have been studied 

intensively over the last few decades, and closed- 

form analytical solutions are available [4]. However, 

analytical solutions are usually limited to smooth 

contact between isotropic homogeneous materials, 

and therefore, they cannot easily be applied to  

more realistic problems. Hence, different numerical 

techniques have been developed to address various 

contact problems. The numerical implementation for 

line contact problems is computationally inexpensive, 

and various interesting problems have been addressed 

[5, 6]. Warhadpande and Sadeghi [7] investigated the 

effect of surface defects on RCF in heavily loaded 

lubricated contacts. The results in Ref. [7] showed that 

the time required for crack nucleation is negligible 

compared to the time required for crack propagation 

during spalling, which is in line with experimental 

observations. In the work of Bomidi and Sadeghi [8], 

both stress and accumulated plastic strain-based 

damage evolutions were considered in order to predict 
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fatigue failure initiation and propagation in heavily 

loaded contacts. The model was demonstrated to be   

a phenomenological tool for reliable analyses of RCF 

life, scatter, and subsurface spalling. Moghaddam  

et al. [9] investigated the butterfly wing formation 

around non-metallic inclusions, and studied the 

effects of inclusion size, stiffness, and depth on crack 

formation. The results in Ref. [9] showed that the 

crack initiation locations and final spall shapes were 

similar to the observations of failed bearings. 

It is well known that the isotropic elastic properties 

of bearing steels emerge on a macroscale when 

assuming a random distribution of the orientation  

of anisotropic crystals (martensite blocks). Locally, 

however, the different material regions are anisotropic 

with individual orientations, leading to a complex 

stress distribution that requires a detailed microscopic 

analysis using the concept of anisotropic elasticity. 

Hence, a full understanding of experimental data 

and accurate fatigue life predictions requires more 

detailed stress analysis using the concept of anisotropic 

elasticity at the scale of single grains. The analytic 

solution for an anisotropic homogenous material in 

plane strain can be derived from using Green’s function 

for a half space and the Stroh formalism [10, 11]. 

However, because it is rather difficult to handle these 

functions in the most general case, and because they 

are limited to homogenous materials, the numerical 

approach is considered to be more efficient. Paulson 

et al. [12] studied the effect of polycrystalline anisotropy 

on RCF using the finite element method (FEM), and 

found that the variation in crystal elasticity affects 

the fatigue life, which may help to explain the life 

scatter observed in experiments. Later, this work was 

extended to consider the influence of the lubricating 

film and crystal elasticity [13], which makes the 

simulation results much closer to experimental results 

than when employing isotropic material. 

For a point contact, the stress field analysis requires 

much more computational effort because of the 

extension of the dimension from two-dimensional 

(2D) to three dimensional (3D). Wang et al. [14–16] 

applied discrete convolution and fast Fourier transform 

(DC–FFT) [17] in a numerical method to speed up  

the computation of the surface deformation and 

subsurface stress fields for layered materials in a 

point elastohydrodynamic lubricated (EHL) contact. 

Zhang et al. [18] used an equivalent inclusion 

method [19] to investigate the effect of inhomogeneous 

materials on the lubrication performance. Essentially, 

in these cases, a point contact problem is solved as all 

material aspects are captured in the influence functions 

that describe the surface deformation. The related 

stresses are computed a posteriori using an FFT-based 

approach. Their results showed the influence of the 

position, size, and properties of the inclusions on 

the resulting stress field, film thickness, and pressure 

distribution. Golmohammadi and Sadeghi [20] 

developed a 3D finite element model to investigate 

the influence of refurbishing on RCF, and conducted 

a parametric study to evaluate the effect of material 

removal depth, load cycles, and applied load on the 

fatigue life. In Ref. [20], some simplifications were 

used to reduce the time cost, such as assuming a 

Hertzian pressure distribution and performing the 

computation in half of the 3D domain. Boffy et al. 

[21–23] developed a multigrid solution for the 3D 

stress field analysis of heterogeneous materials 

(granular material and fiber-reinforced material). 

Later, Zhang and Venner applied the multigrid 

method for the stress field analysis of polycrystalline 

anisotropic material under dry contact [24] and 

lubricated conditions [25], and investigated the 

influence of material anisotropy on RCF [26]. Some 

recent studies have shown that the multigrid method 

is also suitable for the stress field analysis of com-

posite materials [27]. Finally, parallel computing can 

be used to further enhance the efficiency of multigrid 

methods [28, 29]. 

To summarize, the numerical solution of the contact 

stress field has been achieved using semi-analytical 

methods [30], such as the integral transform combined 

with multilevel multi integration (MLMI) [31], fast 

Fourier transform (FFT) [14, 15, 18], FEM [7, 9, 12, 13, 

20], and the finite difference method combined with 

multigrid methods [21–28]. The former two methods 

are suitable for some relatively simple cases in which 

the influence coefficient (the function relating contact 

pressure and stresses) is available. The integral 

transform combined with an FFT is suitable for the 

displacement and stress field analysis of layered, 

inhomogeneous, viscoelastic materials [32], and its 

advantage is the fast calculation of the top boundary 

displacement. In previous studies, multigrid methods 
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have been shown to have high efficiency in solving the 

stress field for heterogeneous [21–23], composite [27], 

and polycrystalline anisotropic [24–26] materials. The 

efficiency of the multigrid method can be further 

increased by incorporating local grid refinement (LGR), 

in which high-resolution solutions are computed 

only locally where necessary. It should be noted that 

in multigrid solvers based on Ref. [31], local grid 

refinement is possible; e.g., Ref. [33]. However, in  

Ref. [33], the standard discretization of the semi- 

infinite domain elastic deformation integrals yields 

influence coefficients that are mesh size dependent, 

and hence requires special measures to be able to 

make the MLMI algorithm work efficiently [34]. 

To facilitate a faster and more efficient analysis of 

the stress conditions in heterogeneous anisotropic 

materials, in this study the multigrid method developed 

in Refs. [24–26] was extended to incorporate the LGR 

technique [35, 36]. The new implementation was tested 

on both homogeneous isotropic and polycrystalline 

anisotropic materials under 3D dry and lubricated 

contact conditions. The accuracy of the result was 

verified by comparing with solutions obtained without 

LGR. The remainder of this paper is organized as 

follows. In Section 2, we introduce the theoretical 

foundation for the multigrid elastic solver, and 

explain the implementation of grid refinement. In 

Section 3, we verify the current implementation for 

isotropic and anisotropic materials under both dry 

and lubricated contact, resembling typical contact cases 

in bearings. Section 4 discusses the computational 

efficiency of the new implementation. The new 

implementation is then tested on two different 

contact phenomena in Section 5. Finally, in Section 6, 

we revisit the main findings and further research 

directions. 

2 Local grid refinement (LGR): Background 

and theory 

Figure 1 schematically shows the solved problem of a 

rigid ball loaded against an elastic body consisting of 

polycrystalline anisotropic grains. The top boundary 

condition is dry contact or lubrication. The orientation 

and location of the coordinate system are chosen 

such that the Z axis points from the contact surface  

 

Fig. 1 Schematic graph for 3D elastic contact. 

deeper into the bearing material. The X axis is along 

the rolling direction, while the Y axis is the cross 

product of the two. Neumann boundary conditions 

are applied on the contact side (i.e., at Z = 0, Fig. 1), 

and can be expressed as 


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The sides of the 3D body are traction-free: 

  σ 0, ,
i ij j

i x yt n               (2) 

where σ
ij

 is the stress tensor, and 
j

n  is the surface 

normal. Finally, zero-displacement boundary con-

ditions are set on the bottom surface (see Fig. 1). 

The deformation behavior of the elastic body is 

described by the Navier–Cauchy equations in three 

dimensions [37]:  
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where 
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in which Cglobal is the stiffness matrix in the global 

coordinate system Xglobal, Yglobal, Zglobal, and is defined by 
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where 
2
,  ,   are three Euler rotation angles for 

each grain, Rx, Ry, and Rz are three rotation matrices, 

and  
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where c11, c12, and c44 are three material constants. To 

solve these partial differential equations numerically, 

they are discretized using a discretization scheme 

such as the finite-difference method (FDM) or FEM. 

In this study, FDM was used. The system of equations 

was discretized with second-order accuracy on a 

uniform grid with the same mesh size in each spatial 

direction. The discrete equations are given in Refs. 

[24, 25, 27]. The calculation domain was further divided 

into small cells (volumes) by Voronoi tessellation:   

A grain (Voronoi cell) consists of all grid points of the 

calculation domain closer to that seed (crystal nucleus) 

than to any other. Each Voronoi cell was assigned 

three Euler rotation angles (
2

,  ,  ) to mimic  

the grain topology of the bearing material [12]. For 

isotropic material, the elastic stiffness matrix is the 

same after rotation, which means that the global 

stiffness matrix of each grid point is the same. For 

anisotropic material, the elastic stiffness matrix becomes 

full after rotation, which introduces additional terms 

in the stress–strain relation compared to isotropic  

material. This means that the global stiffness matrix 

varies between grains because of the difference between 

the Euler rotation angles. The size of the grains varies 

depending on the Voronoi tessellation. The shape of 

the grains can be reflected by the variation of Cglobal 

of each grid point.  

The discretization of the above equations leads to a 

system of algebraic equations for the displacements 

at each grid point. A simple way to solve this 

system is through the use of iterative methods such 

as Gauss–Seidel relaxation. Such methods generally 

reduce high-frequency (with respect to the grid) errors 

efficiently in the solution. However, low-frequency 

(smooth) error components are reduced at a much 

slower rate, and dominate the asymptotic convergence 

behavior [38]. 

Multigrid methods accelerate the convergence of 

such iterative methods by solving for these low- 

frequency errors on coarser grids. This improves 

efficiency in two ways: 1) Low-frequency errors appear 

more oscillatory on coarse grids, allowing them to 

be reduced effectively by relaxations. 2) Performing 

relaxations on coarser grids requires much less 

computational work owing to the reduced number 

of grid points. Assuming standard coarsening with 

the coarse grid having twice the mesh size of the 

fine grid, the number of points is reduced by a factor 

of eight in 3D problems. The key to the successful 

development of a multigrid algorithm is a relaxation 

process that provides good error smoothing. For a 

system of equations, as considered here, this also 

depends on the coupling between the equations. For 

the Navier–Cauchy equations, if the Poisson ratio is 

away from the incompressible case of 0.5, a simple 

sequential relaxation per unknown works sufficiently 

well to yield grid-independent convergence of the 

multigrid cycle. Regarding the boundary condition, a 

collective relaxation is required for dry contact, and a 

line relaxation in the boundary plane is required for 

the elastohydrodynamically lubricated contact. This 

is discussed in detail in Refs. [21–26]. 

Suppose a solution is sought on the finest (target) 

grid with mesh size hf. A multigrid (MG) cycle consists 

of the following steps. 

1) Starting with an initial approximation on the 

finest grid, 1 relaxations are performed on the target 

grid, yielding an improved approximation from which 
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the high-frequency error components have been 

eliminated. 

2) The problem is transferred to the next-coarser 

grid using a suitable choice of intergrid transfers and 

coarse-grid operators. 

3) The coarse grid problem is solved recursively 

by performing a number of multigrid cycles. The 

coarse-grid solution is then interpolated to provide 

a correction to the next-finer grid. 

4) Finally, 2 relaxations are performed on the fine 

grid to reduce high-frequency errors that may have 

been introduced by the interpolation. 

When appropriately designed, the multigrid cycles 

yield a convergence rate independent of the target 

grid mesh size, in an amount of computational work 

that is equivalent to just a few iterations carried out 

on the target grid. In addition, coarser grids can be 

used to generate a good first approximation, so that 

on the target grid, one already starts with a small 

error. This is the essence of a full multigrid (FMG) 

algorithm, which consists of performing MG cycles 

on each of the grids starting from the coarsest grid 

and interpolating the solution to supply a good 

approximation to the initial solutions of the next- 

finer grid. Figure 2 illustrates the algorithm for three 

grid levels when one multigrid W cycle is used to 

solve the coarse-grid problem. In principle, the FMG 

algorithm can solve the finest-grid problem in O(N) 

operations, where N is the number of unknowns in 

the algebraic system of equations [38]. For a more 

detailed description of the equations being solved by 

the FMG algorithm, see the Appendix. B. Additionally, 

interested readers are referred to Refs. [36, 38] for 

more information on multigrid methods. 

In our previous work, a FMG algorithm based on 

a finite-difference discretization was developed for 

dry contact [24] and lubricated point contact 

problems [25]. These problems require a large com-

putational domain to justify the assumption of zero- 

stress or zero-displacement boundary conditions 

far from the contact. Additionally, small mesh sizes 

must be used to capture the intricacies of the stress 

field in polycrystalline anisotropic materials. This leads 

to many unknowns, especially as it is a 3D problem 

with three equations and unknowns (displacements). 

The total work of FMG algorithm for 3D using W 

cycles is ideally twice the total work involved in the 

relaxations on the finest grid in a cycle. As this number 

is usually small O(3–5), the total work of solving the 

problem is the equivalent of approximately (6–10) 

relaxations on the fine grid to solve the problem to 

the level of the discretization error, which is extremely 

effective. Further optimization can be obtained by 

parallelizing the algorithm using multiple processors 

[28, 29], or, as is the topic in this study, reduce the 

dominant contribution to the amount of work, i.e., 

the work done on the finest grid. Figure 3 shows the 

solution time spent on each grid for the studied 

problems in the case of five grid levels, taken from 

solving an actual problem. The graph shows that the 

total work is indeed approximately twice the work 

actually done on the finest grid. To reduce the amount 

of work further, one should reduce the amount of 

work done on the finest grid, which can be achieved 

by exploiting this finest grid only where absolutely 

necessary for solution accuracy. 

Discretization errors in finite-difference appro-

ximations depend on the chosen mesh size and the 

size of the gradients in the solution. In the contact 

problems considered, large gradients in the dis-

placements are expected only in the proximity of 

the contact. This suggests that the computational 

cost can be reduced by using fine meshes only in a  

small region surrounding the contact and a coarser 

 

Fig. 2 Flow diagram of a FMG algorithm for the case of three grid levels with one W cycle per refinement (v0, v1, v2, and v3 are the 
number of relaxations, v3 = v1 + v2). 
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mesh elsewhere. Such LGR can greatly reduce the 

computational time and memory usage while retaining 

accurate results for the stress field, and contact pressure 

close to the contact. Figure 4 shows a schematic 

demonstration of a 2D grid without and with LGR. 

The red (Fig. 4(f)) and blue (Fig. 4(g)) dashed lines 

indicate regions covered by the finer mesh of a higher 

grid level. These patches of increasingly finer grids 

are used only at locations where they are required 

for the accuracy of the solution. Consequently, the 

total number of grid points that must be relaxed on 

the fine grids is significantly reduced compared to 

the full-domain grids, as shown in Figs. 4(c) and 4(d). 

Significant savings in computational time and 

memory cost can therefore be obtained if the fine-grid 

patches are small relative to the size of the domain. 

This is the case for the contact problems studied in 

Refs. [24, 25], and the implementation of LGR in the 

developed solvers can be expected to make them 

more efficient and hence even more suitable for 

engineering applications. 

The multigrid formulation in the full approximation 

 

Fig. 3 Relative time cost distribution for the developed multigrid method under (a) dry contact and (b) lubricated conditions (FMG, 
3 W-cycles, 5 grid levels with 333 points on level 1 and 5133 points on level 5, v0 = 120, v1 = 2, v2 = 1, single processor, Intel X5650 
CPU at 2.66 GHz). 

 

Fig. 4 2D grids of different levels for a computational problem requiring higher levels of accuracy locally without and with LGR for
the case of three grid levels (taking 5 × 5 points as an example on the coarsest grid level, LGR starts from Level 2). 
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scheme allows for the straightforward implementation 

of LGR. The advantage here is that, combined with 

the FMG algorithm, a solution is generated on an 

effectively non-uniform grid that is realized by 

increasingly fine uniform local grids. A more detailed 

explanation is given in the Appendix C. Further 

background on the use of multigrid with LGR can be 

found in Refs. [35, 36, 38]. In this study, the LGR 

technique is incorporated into the previously developed 

multigrid methods [24, 25, 39], and it is shown that 

this leads to a more efficient algorithm, while the 

accuracy of the solutions is almost unaffected. The 

results are verified against solutions obtained using 

grids covering the full domain for heterogeneous 

grain-structured material with varying crystallographic 

orientation and for a few other cases characteristic  

of (lubricated) contact mechanics simulations. It is 

emphasized that the purpose of this paper is to 

explain and demonstrate the natural way in which 

local grid refinement can be implemented in a 

multigrid solution algorithm, and to show LGR 

accuracy, capability, and robustness. Parameter studies 

regarding various aspects of the problem have 

already been presented in Refs. [24–26]. In this study, 

we consider only the case of a single refinement region 

with a rectangles shape. However, it is straightforward 

to have multiple refined regions (patches) at each 

grid level, which in turn can be refined in multiple 

regions or complex refinement shapes. Multiple 

refined regions with complex shapes can be used for 

applications such as cluster or inclusion cases [40]. 

For more details, please refer to the original papers of 

Brandt et al. [35, 41], to Chapter 3 of Ref. [38], and to 

Ref. [42]. 

3 Verification 

In this section, the results of MG with LGR are com-

pared with those without LGR and other numerical 

methods under dry contact and lubricated conditions. 

The contact and operating parameters are listed in 

Table 1. The isotropic and cubic anisotropic material 

parameters are listed in Table 2. The isotropic stiffness 

tensor is chosen such that its Young’s modulus 

matches the experimental value of 206 GPa measured 

for 100Cr6 (SAE-AISI 52100) martensitic bearing steels.  

The anisotropic cubic elastic constants corresponding 

to the body-centered cubic (bcc) Fe were taken from 

Ref. [43]. Note that it is not uncommon to use some 

of the averaging methods, such as Voigt or Reuss, to 

compute the approximate isotropic elastic constants 

(see Appendix A) [44]. For the sake of completeness, 

the Voigt and Reuss averages for Young’s modulus 

are estimated to be 
v

227 GPaE  and 
R

194 GPaE , 

respectively. Because 100Cr6 is a low-alloyed steel, 

the two values are the upper and lower bounds of the 

experimental value, as expected thermodynamically 

[45, 46]. The calculation domains and number of grid 

points on each level are listed in Table 3. In this 

study, LGR starts from grid level 3 to ensure a good 

approximation from the coarse grids, i.e., the MG 

approach is carried out on the whole domain for grid 

levels below 3, and from level 3 calculations are 

performed on locally defined regions. The borders of 

LGR are listed in Table 3. The effect of mesh size is 

given in Appendix D. Verification was performed for 

both isotropic and polycrystalline anisotropic materials  

Table 1 Contact and operating parameters. 

Parameter Value Condition 

F 40.34 N 

Rx, Ry 20 mm 

pH 1.0 GPa 

E 206 GPa 

a 0.13878 mm 

Dry contact and 

lubrication 

um 1.3177 m/s 

0  0.08 Pa·s 

  22 GPa−1 

0z  0.6036 

UEHL 1.45 × 10−12 

WEHL 2.23 × 10−7 

GEHL 9,960 

  2.36 × 10−2 

Lubrication 

 

Table 2 Elastic properties of the used isotropic and cubic 
anisotropic bearing body material. 

Parameter Isotropic (GPa) Anisotropic (GPa) [43] 

c11 277.31 237 

c12 118.85 141 

c44 79.23 116 
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Table 3 Dimensionless calculation domains and number of grid 
points on each grid level. 

Without LGR With LGR 
    

Level Grid 
points 
(X/Y/Z) 

Calculation 
domain  
(X/Y, Z) 

Grid 
points 
(X/Y/Z) 

Calculation  
domain  
(X/Y, Z) 

1 33 33 

2 65 65 
−5–5, 0–10 

3 129 105 
−4.0625–4.0625, 

0–8.125 

4 257 161 −3.125–3.125, 0–6.25

5 513 

−5–5, 0–10 

225 
−2.1875–2.1875, 

0–4.375  
 

of the bearing body material. The dimensionless results 

are as follows. 

3.1 Isotropic material results 

In this section, the numerical results with LGR are 

compared with those without LGR and other 

numerical methods for dry and lubricated contact 

problems assuming isotropic material behavior of the 

bearing body. The results are summarized in Fig. 5, 

where the data are plotted on the XZ plane at Y = 0 

and on the YZ plane at X = 0 from Fig. 1. The dashed 

green lines in Figs. 5(b), 5(d), 5(f), and 5(h) indicate 

the borders of LGR from grid level 3 to 5. First, it 

can be noted that the pressure, deformation, and film 

thickness distributions agree well with and without 

LGR for both contact problems. Second, we compare 

the von Mises stress (VMS) as a function of X and Z, 

for Y = 0 (compare Figs. 5(a) and 5(e) with Figs. 5(b) 

and 5(f), respectively) and of Y and Z, for X = 0 

(compare Figs. 5(c) and 5(g) with Figs. 5(d) and 5(h), 

respectively). We note that the reduced mesh density 

in the part of the domain outside of the LGR region 

locally led to step-like solutions displaying minor 

quantitative differences with the solution of a fine 

grid over the entire computational domain. However, 

this part of the domain is typically located far away 

from the zone of the maximum Hertzian contact, and 

thus is typically less important. In addition, RCF is 

mostly controlled by the stress in the zone, which is 

very well described by LGR, and it does not obviously 

affect the solution results at the surface. Furthermore, 

for the sake of quantitative clarity, Figure 6 presents 

the plots of surface pressure, surface displacement, 

film thickness, and VMS. Under dry contact, the 

maximum VMS locates along the central line (X = Y = 0). 

Under lubrication, the value of the maximum VMS 

is larger than that of the dry contact, and its position 

moves to the right owing to the second pressure 

spike. The results of using LGR agree well with those 

obtained without using LGR and also with the results 

of the numerical methods in Refs. [16, 38]. The 

maximum percent errors of the surface pressure, 

surface displacement/film thickness, and VMS with 

and without LGR on level 5 of the central XZ (Y = 0)  

 

Fig. 5 (Dimensionless) pressure, deformation, film thickness, and von Mises stress field distribution on the XZ (Y = 0) and YZ (X = 0)
planes, calculated with and without LGR for isotropic bearing material under (a–d) dry contact and (e–h) lubricated conditions. 
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Fig. 5 (Continued) 
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and YZ (X = 0) planes are 1.12% and 1.14% for dry 

contact and lubrication, respectively. Excellent 

agreement was obtained between the results of    

the solvers with and without LGR for both contact 

problems. Almost identical results were obtained 

for the surface pressure, surface displacement/film 

thickness, and VMS with and without LGR (see  

Figs. 6(a), 6(c), 6(e), and 6(g), and Figs. 6(b), 6(d), 6(f), 

 

Fig. 6 (Dimensionless) pressure, deformation, film thickness, and von Mises stress field distribution calculated with and without LGR 
under (a–d) dry contact and (e–h) lubricated conditions (isotropic bearing material). 
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and 6(h)). For more detailed comparisons of dry 

contact and lubrication conditions on pressure and 

subsurface stress field distribution, interested readers 

are referred to Ref. [26]. 

3.2 Polycrystalline anisotropic material results 

To further test the accuracy and reliability of the LGR 

technique, solutions were also obtained considering a 

polycrystalline anisotropic material. In this example, 

we include the most important length scale of the 

high-C martensite 100Cr6. To approximate the topology 

of the bearing material, a granular approach was 

adopted. Millions of grains with various local stiffness 

tensors were used to fill in the calculation domain. 

The typical length scale incorporated in the simulation 

is the average grain size, which has a value of 10 μm 

specifically chosen to match the block size observed 

in high-C martensitic bearing steels [47]. While 

martensite has a very hierarchical microstructure 

with the smallest unit being the submicron laths of a 

single variant, the main strengthening contribution 

is related to the block size [48]. 

The randomly assigned rotation angles (  
2
, , ) 

of grains were assumed to be uniformly distributed 

from 0 to π/2 . The rotation of a cubic stiffness tensor 

from local material coordinates to the global coordinate 

system leading to a situation in which every grain has  

a different stiffness along the X, Y, or Z direction. 

Figure 7 shows the elastic modulus along the Z 

coordinate, computed as 

 
       

 


 

  
 

2 2 2

11 11 12 44 2
2 2 2

1
, ,

2 0.5

E l m n
lm ln mn

s s s s
l m n

 

(7) 

where (l, m, n) is an arbitrary lattice plane, and s11, s12, 

and s44 are the elastic compliance constants for the 

cubic material [49]. This very wide distribution in 

stiffness between the grains can lead to local stress 

concentrations between grains with large orientation 

differences and therefore faster RCF. However, the 

average stress cannot be greater or less than the values 

computed using isotropic elasticity and Voigt and 

Reuss average constants, which act as upper and lower 

bounds, respectively. 

 

Fig. 7 Distribution of the cell elastic modulus along the Z 
direction. 

Figure 8 shows the results with and without LGR 

for polycrystalline anisotropic material. Variation of 

orientation angles leads to a difference of the crystal’s 

elastic properties in each direction, and generates 

local stress concentrations observed in Fig. 8 for the 

dry and lubrication cases. The results with LGR  

(Figs. 8(b), 8(d), 8(f), and 8(h)) agree well with those 

obtained without LGR (Figs. 8(a), 8(c), 8(e), and 8(g)). 

Figures 9(a), 9(c), 9(e), and 9(g) clearly demonstrate 

that the LGR approach is sufficiently accurate to 

model polycrystalline anisotropic material. For the 

stress distributions shown in Figs. 9(b), 9(d), 9(f), and 

9(h), values calculated with LGR agree very well with 

those obtained on a uniform grid with the finest grid 

mesh size. Note that the final LGR consists of the 

solution values in all grid points in the local area of 

the domain, which are in the locally finest grid. As 

long as the grid point is from the top grid level where 

the finest mesh is used (Z < 4.375 and X  < 2.1875), 

the solutions are virtually identical to the full domain 

solution of the finest grid. For regions where the grid 

is coarser, differences occur, as in these regions, the 

grid is effectively coarser. Yet, the existence of a finer 

grid in the higher gradient regions also improves the 

solution in these areas. Nevertheless, in the regions 

not covered by the finest mesh, the stress distribution 

with LGR has some differences compared to that on 

the finest grid without using LGR. There are two 

reasons for explaining the differences: 1) The accuracy 

resolution is different for the two solutions. For a 

grid point on a coarse grid, the calculation accuracy 

is lower than that on a fine grid. 2) The variation    

of the material topology (i.e. the orientation and  
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Fig. 8 (Dimensionless) pressure, deformation, film thickness, and von Mises stress field distribution on the XZ (Y = 0) and YZ (X = 0) 
planes calculated with and without LGR, for polycrystalline anisotropic bearing material under (a–d) dry contact and (e–h) lubricated 
conditions. 
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Fig. 8 (Continued) 

 

Fig. 9 (Dimensionless) pressure, deformation, film thickness, and von Mises stress field distribution calculated with and without LGR 
under dry contact and lubricated conditions (polycrystalline anisotropic material). 
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dimensions of the grains) is comparatively less well 

represented with coarser grids. As a result, the final 

displacement, strain, and stress distributions have 

some differences in regions where only a coarser grid 

is used. This also explains why the stresses of both 

solutions agreed well for isotropic materials in the 

previous section. 

Although both solutions have some differences in 

the regions not covered by the finest mesh for the 

LGR approach, these differences are relatively small. 

Moreover, the solution in these regions is due to the 

existence of the finer grid, which is more accurate 

than that it would have been when using only the 

coarser grid. This phenomenon can also be seen from 

the variation of the maximum VMS, as shown in  

Fig. 10. Here, the domains of LGR on grid levels 3 and 

4 are the same as those shown in Table 3. On the top 

grid level (level 5), the range of X, Y, and Z decreases 

gradually by the same distance. The horizontal axis 

of the graph is the starting point of LGR in the X 

direction. The calculation domain on level 5 is 

[X‒(−X), X‒(−X), 0‒(−2X)], which means that the size 

of the LGR volume decreases with the increase of  

Xstart. If Xstart equals −5, LGR is not employed. From 

the graphs shown in Fig. 10, it can be observed that 

the effect of LGR on the maximum VMS becomes 

large when its border is close to the location of the 

maximum VMS, and causes the largest deviation of 

0.79% (Fig. 10(a) black line) and 1.4 % (Fig. 10(b) blue 

line) for dry and lubricated contacts, respectively. 

The minimum film thickness computed for the 

EHL case is sensitive to the local mesh size when the 

so-called sidelobes where they occur are small, as in 

that case, a small mesh size is required to capture it 

accurately. For a detailed evaluation of the influence 

of the LGR region on the numerical results, the 

variation of the minimum film thickness as a function 

of LGR borders is shown in Fig. 11. It can be seen that 

if the LGR border is far away from the location of the 

minimum film thickness, the results are very close to 

those without LGR. When the LGR border is close to 

the actual location of the minimum film thickness 

location, some deviations can be observed. However, 

with the largest deviation of 1.4% compared to the 

results without using LGR for the studied case, it is 

concluded that the proposed MG method with LGR  

 

Fig. 9 (Continued) 

 

Fig. 10 Dependence of the (dimensionless) maximum von Mises stress on the start location of the LGR region (Xstart). 
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Fig. 11 Influence of the starting location of the LGR region on 
the (dimensionless) minimum film thickness (Hmin). 

can meet the accuracy requirement when the domains 

of interest, such as the location of the maximum VMS 

or the minimum film thickness, are covered by a fine 

mesh, and the point of interest is not close to the LGR 

border. 

Finally, to demonstrate the robustness of the 

developed LGR approach, 51 cases were considered 

for different microstructures. In each microstructure 

domain, there were more than two million grains  

with random orientations. The LGR domains are the 

same as those listed in Table 3. The random variations 

of the crystallographic orientation and grain topology 

result in a 10% scatter of the (dimensionless) maximum 

VMS and the (dimensionless) minimum film thickness, 

as shown in Fig. 12. Note that the horizontal axis 

here has no physical meaning other than a case 

number, which represents a different distribution 

of the crystallographic orientation over the grains. 

The results with and without using LGR agreed well. 

The maximum error percentages are 0.063%, 0.046%, 

and 0.024% for Figs. 12(a)–12(c), respectively, which 

demonstrates the robustness and accuracy of the 

proposed LGR. 

4 Model improved performance verifica-

tion 

Figure 13 shows the solution time as a function of 

FMG W-cycles. The Voronoi tessellation, size of the 

LGR patches, and other working conditions are the  

same as those in Section 3.2. The average ratios 

between the cases with and without LGR are 2.47  

 

Fig. 12 Variations of the (dimensionless) maximum VMS and the (dimensionless) minimum film thickness for 51 different
microstructures. 

 

Fig. 13 Time cost as a function of FMG W-cycles for polycrystalline anisotropic material (5 grid levels with 333 points on level 1, 
v0 = 120, v1 = 2, v2 = 1, single processor, Intel X5650 CPU at 2.66 GHz). 
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and 1.61 for a dry contact and a lubricated contact, 

respectively. The ratio of the memory requirement 

without LGR and with LGR is approximately eight. 

The large decrease in memory cost is caused by the 

fact that the number of grid points on fine grid levels 

is greatly reduced. The reduction ratio of the calculation 

time and memory costs depends on the size of   

the patches and the number of grains (isotropic, 

homogenous isotropic, and polycrystalline anisotropic) 

used in the calculation. It should be pointed out that 

although the adoption of the LGR decreases the time 

cost, it is still slower compared to the point-lubricated 

contact problem solvers, which use influence functions 

for the surface deformation in the solution process 

with fast evaluation of this deformation by FFT,   

e.g., presented in Refs. [14–16] for the displacement 

calculation of the layered and inhomogeneous 

materials, or in the solvers described in Ref. [35]. This 

is because the present algorithm is a full 3D solver of 

the displacement equations combined with the contact 

problem. A detailed comparison of computing time is 

given in Ref. [24]. However, when full 3D topological 

and crystallographic orientation data are to be 

evaluated, this can only be achieved through the 

present type of solvers. 

5 Application example 

The application of LGR enables previously developed 

MG methods to exhibit similar accuracy resolutions 

at reduced computational resources, or yields higher 

accuracy solutions with reduced additional com-

putational cost. The ability of LGR to exploit varying 

resolutions for heterogeneous anisotropic materials, 

as presented in this paper, can also be used in com-

bination with other aspects in contact mechanics 

and EHL. In this section, this is illustrated using  

two typical cases. The first case shown in Fig. 14 is a 

contact problem that includes the effect of a single 

surface roughness (a half-sine wave). A locally refined 

grid mesh is used around the location of the single 

surface roughness, and the result is shown in Fig. 14(b). 

Compared to the result shown in Fig. 14(c) without 

LGR, the grain boundaries can be observed more 

clearly because of the locally refined mesh (without 

LGR: hx, y, z = 0.0195; with LGR: local hx, y, z = 0.0049). 

The second case is an elliptical contact problem. 

Elliptical contacts require a larger calculation domain 

in the direction of the major axis compared to that of 

the minor axis. Here, an ellipticity ratio (b/a) of 1.667 

was used. The dimensionless calculation domain in 

the Y direction ranged from −10 to 10. The remaining 

calculation domains and average grain size were the 

same as before. For the dry contact and lubrication 

conditions, surface roughness was used to test the 

robustness of the developed solvers. The waviness 

of the roughness was the same for both cases. Under 

dry contact, the surface roughness results in some 

isolated contact regions (Fig. 15(a)), which is very 

harmful for bearing fatigue life as it causes a larger 

local stress concentration (Fig. 15(c)) close to the 

contact surface, and plastic deformation may occur if 

the local stress is sufficiently high. When a lubricating 

film separates the two contacting bodies, pressure  

 

Fig. 14 (Dimensionless) pressure, deformation, and Von Mises stress field distribution on the XZ plane (Y = 0) with surface roughness 
under dry contact condition (roughness amplitude, 0.0833 μm; roughness wavelength, 91.3172 μm; and dimensionless wavelength,
0.6580). 



Friction 10(12): 2086–2110 (2022) 2103 

www.Springer.com/journal/40544 | Friction 
 

fluctuations (Fig. 15(b)) and local stress concentrations 

(Fig. 15(d)) are also observed. This illustrates the 

importance of the surface finish for extending the 

fatigue life of rolling bearings [50]. 

6 Conclusions and future research 

In this study, the use of local grid refinements embedded 

in multigrid techniques is adopted to further enhance 

the efficiency of the previously developed multigrid 

methods for displacement field solution in 3D with 

stress field analysis of polycrystalline anisotropic 

material under dry and lubricated point contacts. It 

has been proven that with the local grid refinement 

incorporated into previously developed programs 

[24‒26], the accuracy of the results remains almost 

unaffected, while the solution time and memory 

storage requirements are further reduced. As effective 

non-uniformity is achieved by exploiting only uniform 

grid discretization formulations, the application of 

the local grid refinement is relatively straightforward, 

and makes the multigrid-based solvers more efficient 

and suitable for calculations using normal computers 

and for engineering applications such as material 

optimizations and multi-scale simulations. Of course, 

a further reduction in computing time can be achieved 

by parallelization.  

In this study, the orientation angles of the grains 

were assumed to be random, and their distribution 

was uniform. This is more or less a worst case. In 

reality, grain orientations are not necessarily random, 

and can be affected by manufacturing. Using electron– 

backscatter diffraction techniques, the rotation angles 

of grains and compositions (Fe3C, martensite, and 

austenite) [51] in actual bearing steel can be obtained, 

which can serve as an input to the proposed algorithm. 

Together with the efficiency of the algorithm, this 

enables detailed and accurate predictions of the fatigue 

life, and brings actual computational diagnostics within 

engineering reach. 

Appendix A: Voigt and Reuss average elastic 

constants 

Here we provide equations for computing the Voigt 

and Reuss average elastic constants [44]. Considering 

a stiffness tensor c of a material with cubic symmetry 

expressed using matrix notation, the Voigt average 

 

Fig. 15 (Dimensionless) pressure and stress field distribution of elliptical contact with surface roughness (roughness amplitude,
0.0833 μm; roughness amplitude over the central film thickness, 0.1485; roughness wavelength, 91.3172 μm; and dimensionless 
wavelength, 0.6580). 
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elastic constants are computed using 

         
V V 11 af V 44 af V 12 af

2 1 1
2 ,

5
,

5 5
c H c H c H  

(A.1) 

where 
V

 and 
V

 are Lame’s constants, and Haf is 

the anisotropic factor: 

  
af 44 12 11

2H c c c            (A.2) 

The average Young’s modulus is then computed as 

  
 





V V V

V

V V

(3 2 )
E           (A.3) 

Next, Reuss elastic constants are computed using 

material compliance tensor  1s c , which then yields 

11 11 12 44

R

44 11 12 44

R

1 2 1

5 2

1 4 1
 

5 2

s s s s
E

s s s s


  
     

  


        

      (A.4) 

As mentioned above, the average elastic constant  

can be computed for polycrystalline material if the 

condition for random grain orientation is satisfied. 

The Voigt and Reuss average constants act as upper 

and lower bounds, respectively, over the grain stiffness 

expressed in the global (loading) coordinate system. 

In general, the Voigt average provides a better estimate 

for random grains under constant strain, whereas 

the Reuss average is more suitable for grains under 

constant stress. 

Appendix B: Multigrid algorithm using the 

full approximation scheme (FAS) 

After discretization of a set of differential equations 

on a grid with a mesh size hf, the remaining (algebraic) 

problem to be solved can be written as 

f f fh h hL u f               (B.1) 

where fhL  is a linear operator, fhu is a vector on a grid 

with mesh size hf, and fhf  is the discretized right-hand 

side. 

A general multigrid cycle starts with a number 1 of 

relaxations on grid hf to obtain an approximation  fhu . 

The residual of Eq. B.1 is then defined as 

f f f fh h h hur f L                (B.2) 

Then, an equation for the error fhv  in the appro-

ximation can be written as 

  f f f f fh h h h hL u L u r              (B.3a) 

    f f f f f f( )h h h h h hL v Lu u r            (B.3b) 

The error   f f fh h hv u u  will be low frequency with 

respect to the grid with mesh size hf by virtue of   

the smoothing effect of relaxation. This means that 

Eq. (B.3b) can be solved on a coarser grid with mesh 

size  2H h . To do so, Eq. (B.3b) is transferred to the 

coarse grid: 

   c c c c cf f

f f

ˆˆH H H H Hh h

h h
u IL L ru I      (B.4) 

where  c c cf

f

ˆˆ H H Hh

h
uI vu , c

f

ˆH

h
I  and c

f

H

h
I  are the choice 

of restriction operators for transferring quantities from 

grid hf to 
c
,H  and cHL  is a suitable representation of 

fhL  on the coarse grid. Equations (B.3) and (B.4) are the 

so-called full approximation scheme (FAS) equations 

[52] whose name refers to the fact that the quantity 
cˆHu  represents the full intended solution of the fine 

grid problem as represented on the coarse grid. After 

solving the coarse grid problem of Eq. (B.4), the fine 

grid approximation is corrected according to 

    c cf f f f

c f

ˆˆ H Hh h h h

H h
u u I u I u         (B.5) 

with interpolation operator f

c

h

H
I . Finally, 2 relaxations 

are performed on the fine grid to remove any high- 

frequency error components that may have been 

introduced during the interpolation. This completes 

one coarse-grid correction cycle. 

To solve the coarse grid problem in Eq. (B.4),     

the coarsening process is applied recursively until    

the grid contains so few points that the problem can 

be solved inexpensively using a large number of 

relaxations 0 or a direct solver. This means that the 

problem on any grid level is solved by performing a 

number of multigrid cycles on the next-coarser level. 

Common choices are V-cycles and W-cycles, which 

are named for the shape of their flow diagrams. 
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The FMG algorithm additionally makes use of the 

coarser grids to obtain a good initial approximation 

on the finest (target) grid. Starting from the coarsest 

grid level 1, multigrid cycles are performed, and 

their solutions are interpolated to supply an initial 

approximation for calculations performed on the 

next-finer grid. The resulting algorithm is depicted 

in Fig. 2 for three levels and W-cycles. 

Appendix C: Tau-correction and local grid 

refinements 

The FMG algorithm can be adjusted to offer a very 

efficient way of solving problems using varying mesh 

sizes. This is the most clear when the FAS, Eq. (B.4), 

is written in the form: 

 c c c cf

f f

ˆH H H Hh

h h
L u I f            (C.1) 

where    c c c cf f f

f f f

ˆ ( )( )H H H Hh h h

h h h
L I u I L u . Formulated in  

this way, Eq. (C.1) can be interpreted as a differential 

problem discretized on a grid with mesh size 
c f

2H h  

with a correction term  c

f

H

h
 added to the right-hand 

side. This correction term makes the solution of the 

coarse-grid problem in Eq. (C.1) coincide with that of 

the fine-grid problem on grid h, which is required  

to obtain the fine-grid solution. The  c

f

H

h
 term will  

be large when the difference in the solutions of the 

discretized problems on the fine and coarse grids 

are large, which is typically at locations where sharp 

gradients occur in the analytic solution. 

The idea behind local grid refinements is that a 

fine grid only needs to exist when it leads to a large 

correction to the coarse-grid equations and hence a 

noteworthy improvement in solution accuracy. Because 

the  c

f

H

h
 term affects the right-hand side of the coarse 

grid equations, this correction will improve the 

accuracy of the coarse-grid solution everywhere in 

the domain rather than only where the fine grid is 

defined. The full solution is obtained by combining 

the solutions on the locally finest grids. 

Figure C1 illustrates the implementation of local 

grid refinements in the FMG algorithm for two 

consecutive grid levels in a two-dimensional (2D) 

problem. Red circles indicate points on the coarse grid 

with mesh size 
c

H  (which are also points of the fine  

 

Fig. C1 Local grid refinement in a 2D problem. 

grid 
f

h  where it is defined). Green circles represent 

“inner” points where the fine-grid equations are 

defined, whereas at the blue “interface” points the 

coarse-grid solution is interpolated to provide a 

Dirichlet boundary condition to the fine-grid problem. 

A FMG cycle using local refinements starts from 

the coarsest grid as in the regular FMG case, except 

that the solution is only interpolated wherever the 

next-finer grid exists. The cycle on this finer grid 

then proceeds in the usual multigrid fashion (the 

Appendix B) except that in the definition of the FAS 

coarse grid right-hand side, the c f

f

H h

h
I r  term in Eq. (B.4) 

is added only where it is defined. Elsewhere the coarse 

grid right-hand side is simply given by discretization 

of the continuous right-hand side. 

Similarly, after solving the coarse-grid problem,  

the correction  c cf f

c f

ˆˆ( )H Hh h

H h
I u I u  is computed only  

wherever the finer grid exists. Additionally, the values 

of the Dirichlet boundary conditions on the grid 
f

h  

interface points are updated with the newest coarse- 

grid solution. 

Appendix D: Choice of grid resolution 

The effect of grid resolution is checked without using 

LGR for a polycrystalline anisotropic material. Figure D1 

shows the results using two types of finest grid 

resolutions, i.e., 10/512 and 10/1024, under dry contact 

and lubrication conditions. For grid resolutions of 

10/512 and 10/1024, there are approximately 50 and 

403 discretized grid points, respectively, inside each 

grain which describe its displacement behavior. The 

distributions of pressure, deformation, film thickness, 

and stress obtained with both types of finest grid 

resolutions agree well. In Table D1, the numerical 
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Fig. D1 Pressure, deformation, film thickness, and stress field distribution calculated with different grid resolutions under (a–d) dry 
contact and (e–h) lubricated conditions (polycrystalline anisotropic material). 
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values of the maximum pressure, deformation, VMS, 

and minimum film thickness on the central XZ and 

YZ planes are given. The maximum percentage errors 

between the two grid resolutions were 2.67857% and 

2.84587% for dry contact and lubrication, respectively. 

Owing to the small difference between the results 

using two different mesh sizes, the grid resolution of 

10/512 is used in this study. 
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