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Local Heat Transfer Coefficients
Induced by Piezoelectrically
Actuated Vibrating Cantilevers
Piezoelectric fans have been shown to provide substantial enhancements in heat transfer
over natural convection while consuming very little power. These devices consist of a
piezoelectric material attached to a flexible cantilever beam. When driven at resonance,
large oscillations at the cantilever tip cause fluid motion, which in turn results in im-
proved heat transfer rates. In this study, the local heat transfer coefficients induced by
piezoelectric fans are determined experimentally for a fan vibrating close to an electri-
cally heated stainless steel foil, and the entire temperature field is observed by means of

an infrared camera. Four vibration amplitudes ranging from 6.35 to 10 mm are consid-
ered, with the distance from the heat source to the fan tip chosen to vary from 0.01 to 2.0
times the amplitude. The two-dimensional contours of the local heat transfer coefficient
transition from a lobed shape at small gaps to an almost circular shape at intermediate
gaps. At larger gaps, the heat transfer coefficient distribution becomes elliptical in shape.
Correlations developed with appropriate Reynolds and Nusselt number definitions de-
scribe the area-averaged thermal performance with a maximum error of less than
12%. �DOI: 10.1115/1.2740655�

Keywords: local heat transfer, piezoelectric fan, electronics cooling, vibrating
cantilever, heat transfer enhancement

Introduction

A piezoelectric fan consists of a piezoelectric material bonded

to a flexible cantilever blade. An alternating input signal causes

the piezoelectric material to contract and expand, generating

bending moments on the blade at the edges of the piezoelectric

material. These moments produce oscillations at the free end of

the cantilever blade, and when driven at the resonance frequency

of the structure, the oscillations become large and serve to agitate

and move the surrounding fluid, which enhances heat transfer

when compared to natural convection alone. These fans consume

very little power and can be built to meet different geometric

constraints for many applications while remaining relatively

noiseless. Because of this, piezoelectric fans offer an attractive

electronics thermal management solution.

Various aspects of piezoelectric fans have been studied in the

literature. A detailed analysis of the two-dimensional flow field

generated from a vibrating cantilever beam was presented by Kim

et al. �1�. Vortices were observed to be shed each time the beam

passed the position of zero displacement, i.e., at twice the vibra-

tion frequency. The maximum fluid velocity was found to be

roughly four times that of the maximum tip velocity. Açıkalın

et al. �2� developed analytical models describing the streaming

flow induced by a single vibrating piezoelectric fan and found

good qualitative agreement between the predicted flow patterns

and experimental visualizations for small displacements. Feasibil-

ity studies for implementing piezoelectric fans in electronic sys-

tems were conducted by Açıkalın et al. �3� and Wait et al. �4�,
where piezoelectric fans were placed within a laptop to further

enhance the heat transfer performance of the rotary fan by increas-

ing the fluid mixing in stagnant regions normally not accessed by

the rotary fan. A simulated cell phone enclosure was also consid-

ered for which enhancements over natural convection were quan-

tified for various piezoelectric fan orientations. Numerical model-
ing of the fluid flow and heat transfer induced by a piezoelectric
fan has also been conducted �5�. The flow field generated by these
fans was found to be extremely complex and highly dependent on
the distance from fan tip to the heat source, as well as other
boundary conditions.

The two-dimensional flow field generated from two flexible
cantilevers was analyzed experimentally by Ihara and Watanabe
�6�. They investigated the behavior for in-phase and out-of-phase
vibration at three different pitches. The cantilevers were sand-
wiched between two large plates, thereby approximating a two-
dimensional flow field. The results were compared to the flow
field generated by a single cantilever in the same experimental
setup, and the volumetric flow rate for in-phase vibration of two
cantilevers was found to be approximately double that of a single
cantilever. Mass transfer experiments on a vertical surface tar-
geted by two piezoelectric fan blades were conducted by Schmidt
�7� using the naphthalene sublimation technique. The fan blades
vibrated out of phase and the fan pitch was kept constant. Power-
law correlations were found to reasonably describe both maxi-
mum and surface-averaged Sherwood numbers for three separate
distances from the vertical surface. In each case the Sherwood
numbers formed contours symmetric about the midpoint of fan
separation. Fluidic coupling between multiple fans was observed
by Kimber et al. �8�, who showed that as two fans operate in close
proximity, their vibration characteristics are modified. Under in-
phase vibration, this can lead to a decrease in viscous drag seen by
the fans and yield a further increase in vibration amplitude; this in
turn provides enhancement in the overall heat transfer. They con-
sidered multiple fan pitches for both in-phase and out-of-phase
vibration, and discovered an optimal fan pitch to maximize the
average heat transfer rates; this optimum was roughly equal to the
vibration amplitude.

Bürmann et al. �9�, Basak et al. �10�, and Kim et al. �11� have
explored the structural dynamics of these devices, particularly
with regard to optimization by considering the mechanical work
and maximum tip displacement that can be achieved, as functions
of the geometric and material properties of the piezoelectric fan.
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Açıkalın et al. �5� investigated a single piezoelectric fan vibrating
near a small heat source to determine the conditions under which
the average heat transfer could be optimized. The factors consid-
ered were fan length, vibration amplitude, frequency offset and
distance from the heat source.

The present work aims at describing the behavior of the local
heat transfer coefficients of flows generated from a piezoelectric
fan. A detailed treatment of this topic is essential to providing
insight into the underlying phenomena related to these fans, as
well as to help in their implementation into practical designs.

Experimental Setup and Procedures

Details of the experimental setup for measurement of local tem-
perature distributions are first presented, followed by methods for
calculating the heat transfer coefficients and a description of the
parameters of interest.

Experimental Setup. The experimental setup includes a flat,
constant heat flux surface mounted in a vertical position on an
optical table. Both sides of the heat source are exposed to ambient
conditions. A piezoelectric fan is mounted normal to the heat
source on one side �the “front” side� on a linear stage enabling
precise positioning of the distance from the heat source. Only
vibration in the horizontal direction is considered, and a laser
displacement sensor �Keyence LK-G157� is positioned to capture
the vibration signal of the fan tip. The heat source is coated on
both sides with a thin layer of Krylon #1602 black paint having a
known emissivity of 0.95 �12�, and a thermal image of the back
side of the heat source �i.e., side opposite from the fan� is captured
with an infrared camera �ThermaCAM Merlin�. A plexiglass en-
closure is built around the entire setup to isolate it from extrane-
ous flows within the room.

The constant-flux heat source design is similar to those in Refs.
�13,14�, and a schematic illustration is shown in Fig. 1. It consists
of an electrically heated thin stainless steel �Type 302� foil

stretched over two 25.4 mm diameter copper rods acting as busbar

terminals. The foil is 0.051 mm thick and 101.6 mm wide. A
power supply provides the required potential drop across the cop-

per rods. The copper rods are located a distance of 203.2 mm

apart, thereby providing a heated surface area of 101.6 mm

�203.2 mm. The unheated portions of the foil extending beyond
the copper rods are clamped between two pieces of steel held
together by three bolts traveling through holes in both the clamp
and foil. The clamped foil is then attached to a mounting plate by
means of spring-loaded bolts. The bolts are tightened to eliminate
any slack at room temperature, and as the foil is heated, the
springs accommodate the thermal expansion to maintain the

heated foil in tension. A thick �25.4 mm� plexiglass frame holds

the heater assembly together and also provides electrical isolation

between the two extreme sides of the heater.
Due to the absence of an interface material or mechanical bond

between the copper and stainless steel foil, the electrical contact
resistance proved to be appreciable compared to the electrical re-

sistance of the heated foil ��0.03 ��. To account for this, voltage

measurements are taken directly on the unheated ends of the foil
as shown in Fig. 1, whereas the current input from the power
supply is simultaneously monitored. Because current only flows
through the portion of the foil between the busbars, no voltage
drop occurs along the unheated length. Measuring voltage using
contacts in the unheated portion avoids the problem of local cool-
ing that would be caused if the probes were in contact with the
heated portion of the foil. This method of voltage and current
measurement adequately describes the power input to the heated
portion of the foil without disturbing the heat transfer behavior of
the heated surface.

Although the resistivity of stainless steel is temperature depen-

dent �temperature coefficient of resistance measured to be 1.6

�10−4 � / °C�, measurements of the voltage at multiple points
along the length of the heater revealed that this has no effect on
the linearity of the voltage drop across the heater. As the voltage
drop across the heater and the current supplied to the heater are
used to calculate the local heat flux, any nominal change in resis-
tance is accounted for, and will not have an adverse effect on the
accuracy of the local heat flux estimation.

Lateral conduction effects leading to thermal smearing are es-
timated by analyzing the respective magnitudes of each mode of
heat transfer �radiation and convective heat losses to both sides of
the foil, and conduction heat transfer through the foil� compared
to the overall heat generated at a specified location. Such an esti-
mation revealed the heat transfer by lateral conduction to be less
than 2% of the heat generated; smearing by lateral conduction is
therefore negligible.

As the thermal conductivity of the copper busbars is much
larger than that of the stainless steel, the copper can act as a local
heat sink. This localized cooling effect is confined to a region
close to the busbars; therefore, all the heat transfer results are
reported for the portion of the heated foil sufficiently remote from

the busbars. A span of foil 25.4 mm in length adjacent to each
copper rod is excluded from the analysis, leaving a heated surface

area of 101.6 mm�152.4 mm that is considered in the measure-
ments.

Local Heat Transfer Calculations. The electrically generated

heat flux �qgen� � is uniform across the entire heated surface, and is

computed according to

qgen� =
VsIs

Aheat

�1�

A local flux balance is used to determine the convection coeffi-
cient due to the piezoelectric fans, as illustrated in Fig. 2. Radia-

tion losses �qrad� � on both sides of the heater are computed from

the measured temperature field as

qrad� = ���Ts
4 − T

�

4 � �2�

and the heat loss by natural convection �qnc� � on the side opposite

the fans is found by first performing detailed experiments to de-

termine the local natural convection coefficients �hnc� and using

them in:

qnc� = hnc�Ts − T�� �3�

The remaining component of the heat generated is dissipated as

qmix� by mixed convection with contributions from both forced
convection �due to the piezoelectric fan� and natural convection.
The relationship in such a regime can be expressed according to
�15�:

Fig. 1 Schematic diagram of constant heat flux surface
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Numix
3 = Nupz

3 + Nunc
3 �4�

Taking each of these Nusselt numbers to be based on the same
length scale, the convection coefficient attributed to the piezoelec-

tric fan �hpz� can be extracted according to

hpz = �hmix
3 − hnc

3 �1/3 �5�

where hmix is directly found from:

hmix =
qgen� − 2qrad� − qnc�

Ts − T�

�6�

The convection coefficients reported in the results below exclu-
sively represent the forced convective contribution from the pi-

ezoelectric fan �i.e., hpz�.

Experimental Parameters. The commercially available fans
used in these experiments are made from a flexible mylar blade.

As shown in Fig. 3, the overall fan length �L� is 64.0 mm, width

�w� is 12.7 mm, and the fundamental resonance frequency of the

fan is 60 Hz. Also illustrated in Fig. 3 are the two parameters
varied during the heat transfer experiments: vibration amplitude

�A�, which is half the peak-to-peak amplitude, and gap distance

�G� from fan tip to heater surface. Four different amplitudes are

investigated ranging from 6.35 to 10 mm, where the lower num-

ber is half the fan width �w /2� and the higher number is the

amplitude corresponding to the maximum input to the piezoelec-
tric element below the depoling voltage �i.e., the voltage that
causes a permanent change in polarization�. It has previously been
shown by Kimber et al. �16� that for small amplitudes and large
gaps, the behavior is fundamentally different when compared to
that seen at the opposite extreme �i.e., large amplitude and small

gap�. In light of this fact, the nondimensional quantity G /A is
used to describe the gap distance. The range of this parameter and
the four amplitudes considered within the experiments are given
in Table 1. There are 21 different gaps for each amplitude, yield-
ing a total of 84 experiments. The excitation frequency for each

experiment is 60 Hz and the input signal magnitude was adjusted
to obtain the desired vibration amplitude for each experiment; it
may be noted that due to fluidic damping, a larger input voltage is
required for fans vibrating close to a surface �small gaps�. The
power required to drive the fans varies across the experiments as

a result, and ranges from 10 to 40 mW depending on the vibration
amplitude. The tests thus compare performance for specified am-
plitude rather than for a given power consumption.

The uncertainty associated with the determination of convec-
tion coefficients has two primary contributions: Errors in tempera-
ture measurement and estimation of the generated heat flux. The
uncertainty in the latter is caused by the resolution of the voltage
and current measurements as well as uncertainties in the measure-
ment of the heat source dimensions. The largest source of error is
in the temperature measurement, which affects the estimation of
the radiation flux, natural convection flux, and the mixed regime
flux. The experimental error induced by the infrared camera was
quantified using a blackbody emitter �SBIR 2004� with a tempera-

ture control within ±0.02°C. This revealed a temperature mea-

surement error of ±1°C over a temperature range of 20–80°C.
For the experiments, the heat input to the heater was chosen such
that during forced convection, the minimum temperature observed

was approximately 40°C, causing a worst-case error of ±2.5% in
the temperature reading on the heated surface. Based on this
analysis, the estimated uncertainty in forced convection coeffi-

cients is approximately ±8%.

Experimental Results

Accurate determination of the forced convection coefficient

�hpz� requires a thorough analysis of the setup under natural con-

vection conditions. Natural convection heat transfer coefficients
are first characterized followed by the forced convection coeffi-
cients.

Natural Convection. The temperature field in a representative
natural convection experiment is shown in Fig. 4 where tempera-

tures range from approximately 50°C at the leading edge �y
=−50.8 mm� to 66°C at the top �y=50.8 mm� for a power input

to the heater of 16 W. The near-horizontal nature of the isotherms
is consistent with the behavior expected of natural convection on
a heated vertical surface �17�. The temperature profile under such

conditions is predicted to increase with vertical position to the 1/5

Fig. 2 Flux balance on foil „neglecting lateral conduction…

Fig. 3 Geometric parameters of fan: length „L… and width „w….
Also shown are the parameters varied throughout experiments:
vibration amplitude „A… and gap distance from heat source „G….

Table 1 Variable parameter values in the experiments

Parameter Units Values tested

Amplitude �A� mm 6.35, 7.5, 8.5, 10

G /A — 0.01–2.0 �21 values�

1170 / Vol. 129, SEPTEMBER 2007 Transactions of the ASME
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power. The measured temperature profile is shown in Fig. 5 to
conform to this dependence very well. The measured average con-

vection coefficient is 5.3 W/m2 K, which is also comparable with

predicted value of 6.4 W/m2 K from the Vliet and Ross correla-
tion �17�.

The left and right edges near the top of the heater show slightly

higher temperatures �by �3°C� than at the center of the top edge.
This is attributed to the disruption of the natural convection
boundary layers by the copper rods, which is more pronounced as
the boundary layers grow towards the top of the heated surface.
However, the central area of the heater is isolated from these
effects, and provides a robust experimental vehicle for the char-
acterization of piezoelectric fan heat transfer.

Forced Convection. Local forced convection coefficient �hpz�
maps are presented in Fig. 6; the same scale is used in all the
images to enable direct qualitative and quantitative comparison
between the different cases. Twelve unique cases are shown �out
of the total of 84 experiments conducted�, with rows and columns
representing changes in amplitude and gap, respectively. For each

amplitude, results are shown at G /A values at which the tempera-
ture contours show a significant change in distribution. The fan is
located in the middle of the heater and the vibration envelope is
superimposed on each image. The solid vertical line in the center

represents the fan at its zero �undisplaced� position with the re-
maining lines illustrating the extent of the vibration envelope,
whose overall dimensions are twice the vibration amplitude in the
horizontal direction, and equal to the width of the fan in the ver-

tical direction. The heater size shown is 101.6 mm�152.4 mm.

The largest amplitude considered �A=10 mm� is shown along the

top row of Fig. 6 for gaps of G /A=0.01, 0.5, and 2.0. A lobed
pattern is generated when the fan vibrates close to the surface, and
these lobes appear to be symmetric in both the vertical and hori-
zontal directions, suggesting that the fluid agitation is roughly
similar in the vibration direction and its orthogonal direction. This
behavior transitions to a nearly circular �or rounded square� shape
for the intermediate gaps, while the largest gap results in a dis-
tinctly different distribution of heat transfer coefficients. The fluid
agitation at this gap is less influential in the vertical direction
�orthogonal to the direction of vibration�, yielding elliptical con-
tours. The cooling effect is felt over a larger area in the horizontal
direction in contrast to the somewhat localized behavior seen at
small gaps. Although the magnitude of the heat transfer coeffi-
cients is lower for the largest gap, the horizontal extent over
which the influence of the fan is felt is greater.

Results for A=8.5 mm and the same three G /A values as above
are shown along the second row of Fig. 6. Again, distinct cooling
regimes are observed and seem to have the same dependence on

G /A as at the larger amplitude, transitioning from lobed contours
at small gaps, to circular contours at intermediate gaps, and finally
to elliptical contours at large gaps. A further decrease of amplitude

�to A=7.5 mm� results in the distributions shown along the third
row of Fig. 6, and show a similar trend. However it is interesting

to observe the small differences in contours for G /A=2.0 between
the three largest amplitudes. Although the behavior is similar in all
three cases, a departure from elliptical behavior begins to appear
as the amplitude decreases. A secondary pattern starts to form at
the two extreme edges of the elliptical contours, forming two,

Fig. 4 Natural convection temperature distribution

Fig. 5 Natural convection temperature profile in the vertical
direction at the heat source center, x=0 mm

Fig. 6 Experimental convection coefficient „hpz… for A
=10 mm „top row…, A=8.5 mm „second row…, A=7.5 mm „third
row…, and A=6.35 mm „bottom row…. Each column represents a
different gap corresponding to G /A=0.01, 0.5, and 2.0. The
heater size shown is 101.6 mmÃ152.4 mm.
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slightly larger circular patterns. This suggests that although simi-

lar behavior is observed for different amplitudes at a given G /A,
this behavior is slowly altered as the amplitude decreases.

This is even more apparent at the smallest amplitude �A
=6.35 mm� as shown along the bottom row of Fig. 6. Notable

differences relative to the larger amplitudes are seen at both the

smallest and largest gaps. For G /A=0.01, the four distinct lobes
observed at the higher amplitudes are now reduced to two, and the

elliptical patterns typically seen at G /A=2.0 are also significantly
altered. The regions with the greatest cooling are seen to have
shifted from the stagnation region to just beyond the vibration
envelope on either side. This is consistent with the observations in
the literature regarding the fluid domain around a vibrating canti-
lever at small amplitudes �1�, where vortices are shed as the fan
tip passes the point of zero displacement and travel downstream.
The heat transfer results suggest that these vortices are starting to
form and impinge on the heater surface to create the observed
areas of cooling on either side of the fan envelope. Previous re-

sults �16� showed that a further increase in G /A at small ampli-

tudes �G /A=4, A=5 mm� generates two separate circular surface

temperature contours on either side of the fan envelope, with very
little cooling in the stagnation region. It appears that the reason for
the differences observed in behavior between large and small am-
plitudes could be due to a change in flow/heat transfer regime. It
is interesting to note that for various types of fluid flow including
internal, external, and free streams, Bejan �18� has suggested that

the local Reynolds number at which transition from laminar to

turbulent flow occurs is of the order 102, regardless of the type of

flow considered. The local Reynolds number �Rel� for a vibrating

cantilever can be defined as:

Rel =
VrmsA

�
�7�

It is interesting to compare the magnitude of Rel for the two

smallest amplitudes, which is 680 and 940 for A=6.35 and

7.5 mm, respectively. As the magnitude of Rel changes from the

order of 102–103, a transition would therefore be expected as is
the case with the experimental observations. The area-averaged
trends of heat transfer performance also suggest a change in re-
gime, as will be shown in subsequent sections.

Temperature traces along the horizontal centerlines of the

heater surface are analyzed next. These are shown for A=10, 8.5,

7.5, and 6.35 mm in Figs. 7�a�–7�d�, respectively. Each plot in-

cludes five nondimensional gaps ranging from G /A=0.01 to 2.0
as well as the corresponding natural convection distribution for
comparison. Also illustrated by two vertical dashed lines is the
horizontal extent of the vibration envelope, decreasing in size as
the amplitude is reduced. A number of important trends can be
observed from this data. In general, the heat transfer coefficient
near the stagnation region �within the vibration envelope� is
nearly uniform, and drops in value beyond this region. The steep-

Fig. 7 Convection coefficient „hpz… along horizontal direction „y=0… over range of nondimensional gaps „G /A
=0.01,0.25,0.5,1.0,2.0… for: „a… A=10 mm, „b… A=8.5 mm, „c… A=7.5 mm, and „d… A=6.35 mm. For comparison, the natural
convection profile is also shown.
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ness of this drop is dependent on the gap, with the steepest drop
occurring at the smallest gap. Although the magnitude of convec-
tion coefficient is obviously different for the two extreme gaps

�G /A=0.01 and 2.0�, a more localized cooling zone is observed at
smaller gaps in general, whereas the temperature profile flattens at
large gaps. At small gaps, the fluid motion has limited physical
space to diffuse before contacting the heat source, causing the
observed localized cooling effect. Also inferred from these plots is
the existence of an optimal gap that yields the highest stagnation-
region heat transfer. At the largest amplitude �Fig. 7�a��, for ex-

ample, the highest stagnation performance occurs for G /A=0.25,

and decreases beyond G /A=0.5. For A=8.5 mm �Fig. 7�b��, the
optimum gap is more distinct, with the maximum convection co-

efficients being 76.7, 82.0, and 79.2 W/m2 K for G /A=0.01,

0.25, and 0.5, respectively. As the amplitude is decreased to A

=7.5 mm �Fig. 7�c��, the optimal gap is seen to occur at a larger

G /A, where the maximum hpz values are 69.3, 74.3, 76.4, and

68.6 W/m2 K for G /A=0.01, 0.25, 0.50, and 1.0, respectively.

Similar results are observed for an amplitude of A=6.35 mm �Fig.
7�d��, where the maximum performance is 57.8, 67.2, 70.8, and

60.8 W/m2 K for G /A=0.01, 0.25, 0.50, and 1.0, respectively. It
is interesting to note that for this amplitude, the performance for a

gap as large as G /A=1.0 is better than the closest gap. Data from

the two larger amplitudes �A=10 and 8.5 mm� suggest an optimal

gap of G /A�0.25, whereas for the two smaller amplitudes �A
=7.5 and 6.35 mm�, G /A�0.5 appears to be the optimum. Rela-
tive to the closest gap, the benefit of operating at the optimum gap

for the four cases shown in Fig. 7 ranges from only 2% at A

=10 mm to over 20% at A=6.35 mm. A more detailed treatment
of stagnation behavior follows in the next section.

Predictive Correlations for Thermal Performance of Pi-

ezoelectric Fans

In order to generalize the heat transfer performance obtained
from the experiments, correlations are developed based on the key
parameters involved. A number of similarities may be identified
between the behavior of piezoelectric fans and impinging jets.
Factors such as jet diameter, jet velocity, and spacing from the
target are analogous to vibration amplitude, tip velocity, and gap
distance, respectively. Although the flow generated by the oscil-
lating piezoelectric fans is inherently unsteady, the results pre-
sented in this work are time-averaged convection coefficients. The
heat transfer coefficient with piezofans is therefore expected to
correlate with these parameters in a form similar to that in jet
impingement. In the following, the applicable nondimensional pa-
rameters are first defined and predictive correlations then pro-
posed.

Nondimensional Parameters. The appropriate length scale for
the local Nusselt number is chosen to include both the vibration
amplitude and fan width by employing the hydraulic diameter

�Dpz� of the vibration envelope expressed as

Dpz =
4Aw

2A + w
�8�

This is also consistent with the length scale used for noncircular
impinging jets, and captures important behavior expected at the

two extremes of A�w and A�w. For the former extreme where a

very wide fan is used Dpz�4A, and one would expect amplitude
to be the dominant factor in describing heat transfer performance.
In other words, an increase in width would not affect the magni-
tude of the local performance. The latter extreme would be real-

ized for very thin fans with Dpz�2w. An increase in amplitude in
this case would not have as great an effect on the fluid motion as
would an increase in width. The local and area-averaged Nusselt

numbers �Nu and Nu� are given as

Nu =
hpzDpz

k
, Nu =

h̄pzDpz

k
�9�

where h̄pz is determined from the size of an arbitrary heat source
and is given as

h̄pz =
1

Aeq
�

Aeq

� hpzdAeq �10�

where Aeq is the area of the heat source. The stagnation Nusselt

number �Nu0� is the local Nusselt number at the geometric center

of the vibration envelope which is based on the convection coef-

ficient at that location �h0� and is expressed as

Nu0 =
h0Dpz

k
�11�

The Reynolds number for piezoelectric fans �Repz� is given

below and is defined using the maximum tip velocity of the fan, or

the product of frequency and amplitude �	A�, the kinematic vis-

cosity ��� of the working fluid, and the same length scale chosen

for Nu:

Repz =
	ADpz

�
�12�

Although the vibration amplitude appears in both Nu and Repz, a

change in amplitude is manifested to a larger extent in Repz due to
its direct influence in both the magnitude of tip velocity and hy-

draulic diameter. Nominal Repz values for the four amplitudes

considered are 3550, 2810, 2370, and 1860 for A=10, 8.5, 7.5,

and 6.35 mm, respectively.

Area-Averaged Nusselt Number. At small gaps the tempera-
ture contours indicate symmetric behavior in the horizontal and
vertical directions, whereas at large gaps, better cooling is noticed
in the horizontal direction. Thus, the optimum conditions for cool-
ing appear to be strongly tied to the target area over which the
heat transfer is averaged; different target area definitions could
result in different optimal conditions. From the results obtained in
this work, it was found that averaging over a square- and circular-
shaped target area agreed to within 1–2% as long as the averaging
area was identical; thus all the results in the following are area

averaged over a circular area with a diameter of Deq. The impact
of increasing the diameter over which the heat transfer coefficient
is averaged �by considering a larger subset of pixels within the
thermal image� is illustrated in Fig. 8 for the largest amplitude

Repz=3550 over a range of gaps. The heater size is represented in

terms of a nondimensional diameter �Deq /A�, where a value of 2

denotes a heater size with its diameter just inscribed within the
horizontal extent of the vibration envelope. The area-averaged
Nusselt number is approximately equal to the stagnation value for

Deq /A
1; well beyond this region �Deq /A�3�, the behavior tran-

sitions to an exponential decay. This type of behavior is compa-
rable to that seen in jet impingement studies �19,20�. Correlations
in the current work are thus based on the forms of the equations
used in jet impingement studies �14,21� to account for the behav-
ior at the two extremes and the transition in between:

Nu = Nu0�1 + �a exp�b�Deq/A�	�−P�−1/P �13�

where a, b, and P are taken as variable parameters to be deter-

mined from a regression analysis. When the coefficient b takes a
negative value, the appropriate behavior is captured for both small

and large Deq /A values.
The behavior of the average Nusselt number normalized with

the stagnation-region value �Nu/Nu0� is compared for all four

Repz �i.e., amplitudes� in Figs. 9�a� and 9�b� at the smallest

�G /A=0.01� and largest �G /A=2.0� gaps, respectively. For G /A

=0.01, the exponential decay observed for Deq /A�3 seems to

transition to a linear decay as Repz is decreased. The curvature
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�second derivative� of the decay in this region is 0.007, 0.003, and

0.002 for Repz=3550, 2810, and 2370, respectively. The curvature

then becomes negative �−0.002� at the smallest amplitude �Repz

=1860�. The transition from a four-lobe to a two-lobe pattern in

the local heat transfer coefficient distributions in the first column

of Fig. 6 are reflected in the results in Fig. 9 as well. For G /A

=2.0 �Fig. 9�b��, the differences become more stark, where curves

from the largest three Repz are nearly identical, but that for Repz

=1860 exhibits a different behavior. Accordingly, results from the

smallest Repz are not included in the correlations proposed in this
work. However, the correlations developed can still be used for
the smallest amplitude but would result in a somewhat greater
deviation.

Stagnation Nusselt Number. The experimental stagnation

Nusselt numbers for the three largest Repz are shown in Fig. 10
over the full range of gaps considered. A smooth fit is superim-
posed on each set of data to better reveal the trends. As observed
earlier with the horizontal centerline profiles, the stagnation Nus-

selt number increases until an optimum G /A is reached, after

which point, it decreases. For the largest amplitude �Repz=3550�,
the maximum Nu0 occurs in the range of G /A between 0.1 and

0.2. As Repz is decreased, the maximum Nu0 also decreases as is
expected, but the corresponding optimum gap location increases.
In contrast, the optimum spacing in the jet impingement literature

has been suggested to be independent of Repz, with a value of

G /A�10 �15,19,20,22�.
The size of the potential-core region �with an undisturbed ve-

locity profile� in jets becomes smaller with increasing distance
from the jet outlet, and disappears altogether at roughly five jet
diameters, and is responsible for the independence of jet Reynolds
number for the stagnation heat transfer. On the other hand, the
velocity field is extremely complex for a vibrating cantilever
�1,5,6� and its structure is highly dependent on the gap. The ex-
perimental trends suggest that when operating at the optimum gap,
more of the energy of the excited fluid is used for cooling. The
gap where this occurs is smaller for fluid of higher energy �large
amplitudes� when compared to that of lower energy �small ampli-
tudes�. A rigorous analysis of the fluid domain at various gaps and
amplitudes is underway to better understand the apparent trends of
the optimal gap based on the underlying physics. The dependence

of the optimum gap �Gopt� on Repz for the largest three Repz fol-

lows a power law relationship:

Gopt

A
= 5.289
 Repz

1000
�−2.765

�14�

The stagnation Nusselt number Nu0 is correlated to Repz and

G /A using the form:

Nu0 = �Repz�
q�C1
G

A
�r

+ C2
 �15�

where q, r, C1, and C2 are all considered variable parameters. The
only modification introduced here relative to the form usually

seen in jet impingement is the additional parameter �C2�, which

accounts for the differences in the two flow situations. Only the

region beyond the maximum �G /A�Gopt /A� is considered, con-

sistent with jet impingement correlation efforts �22�; 48 experi-
ments are included in the regression.

A least-squares approach was used to estimate the seven vari-
able parameters in Eqs. �13� and �15�, with the results listed in
Table 2, yielding average and maximum deviations of 3.3% and
11.4%, respectively for the area-averaged Nusselt number. The
quality of fit for the stagnation Nusselt number using Eq. �15� is
illustrated in Fig. 11�a� where the correlation has average and
maximum absolute deviations of 2.1% and 5.8%, respectively.

The Reynolds number exponent �q� ranges between 0.39 and 0.47,

which is comparable to those seen for jet impingement typically

Fig. 8 Area-averaged Nusselt number „Nu… versus nondimen-
sional diameter of circular heater „Deq /A… for Repz=3550 „A
=10 mm… over range of nondimensional gaps „G /A=0.01–2.0…

Fig. 9 Normalized area-averaged Nusselt numbers for four dif-
ferent Reynolds numbers „Repz=3550, 2810, 2370, and 1860
corresponding to A=10, 8.5, 7.5, and 6.35 mm, respectively…
with „a… G /A=0.01 and „b… G /A=2.0
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between 0.3 and 0.5 �14�. The quality of fit for the average Nusselt
number is found using the estimated stagnation Nusselt number
from Eq. �15� as an input into Eq. �13�; Fig. 11�b� shows that the
correlation agrees quite well with the experimental data yielding
average and maximum deviations of 3.3% and 11.4%. This corre-

lation is valid for G /A�Gopt /A �Eq. �14�� and for 2400
Repz


3500 with the heater size Deq /A
9. The correlations can also

be used for Repz as low as 1860 �the smallest amplitude consid-
ered�; however the resulting accuracy is somewhat lower, yielding
average and maximum deviations of 3.71% and 23.4%, respec-
tively.

Conclusions

Local heat transfer coefficients are investigated for a single pi-
ezoelectric fan at various vibration amplitudes and gaps. The ther-
mal maps exhibit a lobed-contour behavior at large gaps, transi-
tioning to nearly circular �or rounded square� contours at
intermediate gaps, and finally elliptical contours at small gaps. An
optimal gap is noted both in the horizontal centerline profiles of
local heat transfer coefficient and in the stagnation-region perfor-
mance; the value of optimum gap is dependent on the vibration
amplitude. Specifically, the optimum gap is small for large ampli-
tudes and increases as the amplitude decreases. Predictive corre-
lations are proposed for stagnation-region and area-averaged local
Nusselt numbers. The experiments in this work were conducted
with a single fan at a fixed fundamental resonance frequency, for

different amplitudes and fan tip to heat source gap distances. The
applicability of the Reynolds number definition in this work in
describing flow conditions at higher �or lower� frequencies re-
mains to be verified. Additional studies are currently underway to
account for the additional factors not considered in this work such
as the presence of additional fans, and the use of fans with differ-
ent geometries and structural characteristics.
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Nomenclature
A � vibration amplitude �1/2 of peak to peak

amplitude�
Aheat � area of heat source

Deq � diameter of equivalent heat source

Dpz � hydraulic diameter of vibration envelope

G � gap distance

Fig. 10 Stagnation Nusselt number „Nu0… behavior versus
nondimensional gap „G /A… for three separate Reynolds num-
bers „Repz… corresponding to vibration amplitude of 10 mm
„Repz=3550…, 8.5 mm „Repz=2810…, and 7.5 mm „Repz=2370…

Table 2 Correlation coefficients from Eqs. „13… and „15… found
from least squares analysis

Parameter Value

a 1.132

b −0.0899

P 25.13

q 0.440

r 1.451

C1 −0.168

C2
1.358

Average
deviation �%�

3.3

Maximum
deviation �%�

11.4

Fig. 11 Correlations with experimental data for „a… stagnation
Nusselt number „Eq. „15…… with average and maximum devia-
tions of 2.1% and 5.8%, respectively, and „b… area-averaged
Nusselt number „Eq. „15… substituted in Eq. „13…… with average
and maximum deviations of 3.3% and 11.4%, respectively
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h̄ � area-averaged forced convection coefficient

h � local forced convection coefficient

h0 � stagnation forced convection coefficient

Is � current from power supply

L � piezoelectric fan length

Nu � area-averaged Nusselt number
Nu � local Nusselt number

Nu0 � stagnation Nusselt number

q� � heat flux

Rel � local Reynolds number

Repz � reynolds number for vibrating cantilever

Ts � surface temperature

T� � ambient temperature

Vrms � root mean square velocity of fan tip

Vs � voltage drop across heater

w � piezoelectric fan width

Greek Symbols

� � surface emissivity

� � kinematic viscosity

� � Stefan-Boltzmann constant

	 � vibration frequency

Subscripts
gen � energy generation
mix � mixed regime convection

nc � natural convection
pz � forced convection �under piezoelectric

actuation�
rad � radiation
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