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Abstract We propose and analyze a nonparametric region-

based active contour model for segmenting cluttered scenes.

The proposed model is unsupervised and assumes pixel in-

tensity is independently identically distributed. Our pro-

posed energy functional consists of a geometric regulariza-

tion term that penalizes the length of the partition bound-

aries and a region-based image term that uses histograms of

pixel intensity to distinguish different regions. More specif-

ically, the region data encourages segmentation so that local

histograms within each region are approximately homoge-

neous. An advantage of using local histograms in the data

term is that histogram differentiation is not required to solve

the energy minimization problem. We use Wasserstein dis-

tance with exponent 1 to determine the dissimilarity between

two histograms. The Wasserstein distance is a metric and

is able to faithfully measure the distance between two his-

tograms, compared to many pointwise distances. Moreover,

it is insensitive to oscillations, and therefore our model is

robust to noise. A fast global minimization method based on

(Chan et al. in SIAM J. Appl. Math. 66(5):1632–1648, 2006;

Bresson et al. in J. Math. Imaging Vis. 28(2):151–167, 2007)
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is employed to solve the proposed model. The advantages

of using this method are two-fold. First, the computational

time is less than that of the method by gradient descent of

the associated Euler-Lagrange equation (Chan et al. in Proc.

of SSVM, pp. 697–708, 2007). Second, it is able to find a

global minimizer. Finally, we propose a variant of our model

that is able to properly segment a cluttered scene with local

illumination changes.

Keywords Image segmentation · Unsupervised ·
Wasserstein distance · Image processing · Computer

vision · Nonparametric

1 Introduction

Image segmentation plays an important role in computer vi-

sion. It involves a process that simplifies an image by par-

titioning the image domain into several regions. Many ex-

isting methods segment an image according to edge infor-

mation and/or region information. Examples of edge-basded

methods are snake (Kass et al. 1991), balloon (Cohen 1991),

and geodesic active contours based (Caselles et al. 1997;

Kichenesamy et al. 1996) methods, which use edge detec-

tion functions and evolve contours towards sharp gradients

of pixel intensity. This classic active contour approach is

widely used in medical image processing. Although these

methods are quite effective, they are usually not robust to

noise because noise also has large gradients. One way to

process a noisy image is to add a smoothing step prior

segmentation, but doing this also smoothes image edges.

Region-based active contour models incorporate region in-

formation so that image within each segmented region has

a uniform characteristics, such as intensities and textures.
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These methods are therefore robust to noise and further-

more able to detect objects with either sharp or smooth

edges. One of the first region-based active contour mod-

els is the Mumford-Shah model (Mumford and Shah 1989),

which approximates an image by a piecewise smooth func-

tion, with a length penalizing term of the edge set of the

piecewise smooth function. However, this model is dif-

ficult to solve in practice because of the unknown edge

set, in addition to the unknown smooth function. Ambro-

sio and Tortorelli (1990) approximates the Mumford-Shah

functional by approximating the edge set by smooth func-

tions, and this is easier to solve. The active contours without

edges (ACWE) model (Chan and Vese 2001) is a variant

of the piecewise constant Mumford-Shah model. It approx-

imates an image by a two-phase piecewise constant func-

tion and is based on a level-set implementation (Osher and

Sethian 1988). The solution is easily obtained by the min-

imizing flow derived by computing the variation of the en-

ergy with respect to the level set function. Region compe-

tition (Zhu and Yuille 1996) is a statistical and variational

model based on minimizing a generalized Bayes and Mini-

mum description length criterion. This model penalizes the

boundary length and the Bayes error within each region, in

which appropriate probability distributions are chosen. The

ACWE, region competition, and other parametric region-

based active contour models, such as (Yezzi et al. 1999;

Paragios and Deriche 2002), had the assumption that the

probability density function (pdf) of the pixel intensity in

each region is up to a few parameters. For example, often

a Gaussian distribution is assumed with mean and variance

the only unknowns. However, many natural images are not

necessarily described by Gaussian distribution.

Nonparametric region-based active contour models, such

as (Aubert et al. 2005; Herbulot et al. 2004, 2006; Kim et

al. 2005; Michailovich et al. 2007), use the entire pdf, or

histogram, to drive the segmentation. Therefore, they do not

suffer from the above limitations. Our model is related to,

yet different from, existing models. In (Aubert et al. 2005;

Herbulot et al. 2006), the segmentation model is super-

vised, and the data descriptors directly depend on the re-

gions, which consequently involves histogram differenti-

ation in the evolution equations. Unsupervised segmenta-

tion models in (Herbulot et al. 2004; Kim et al. 2005)

take an information-theoretic approach and their data de-

scriptors also directly depend on the regions and there-

fore also requires histogram differentiation. The model in

(Michailovich et al. 2007) maximizes the Bhattacharyya dis-

tance between the histogram inside the segmentation curve

and the histogram outside the curve. In our work, the data

descriptors do not directly depend on the regions and there-

fore our model does not involve histogram differentiation.

This is achieved through the use of local histograms. The

local histogram of a pixel is defined as the total number of

each gray level on a local region of that pixel. The local re-

gion of a pixel, for instance, may be chosen to be a square

patch centered at that pixel. These local histograms of in-

tensity are used as the image feature. The proposed model

finds a partition such that the local histograms in each region

are similar to one another. Local statistics have also been

used for segmentation in (Zhu et al. 2005), but the model is

parametric, in which intensity statistics are assumed to be

Gaussian distributions.

Many existing nonparametric segmentation models are

quite effective for many natural images. Among the pop-

ular distances used for comparing two histograms are the

χ2 statistics, Kullback-Leibler divergence, and the Bhat-

tacharyya distance (Georgiou et al. 2007). A common fea-

ture of these distances is that they are pointwise with re-

spect to histogram bins. As addressed in our previous work

in (Chan et al. 2007), this may not be reliable for histogram

comparison even under simple circumstances. For example,

a pointwise distance between two delta functions with dis-

joint supports is the same no matter how close or how far

the supports are from each other. This is a situation that

arises often in segmentation applications, since for exam-

ple an image, which consists of two objects with approx-

imately constant intensities within each region but distinct

intensity means, would fall into this category. The above

mentioned existing nonparametric methods commonly use

the Parzen window method (Parzen 1962) to approximate

and smooth histograms. The smoothing operation may al-

leviate the above issue with pointwise distances. However,

the degree of smoothness is generally a user-selected para-

meter and is often crucial for segmentation. To overcome

the issue with pointwise distances, we use an optimal trans-

port distance, which extends as a metric to measure such

as the delta functions and does not require histograms to be

smoothed. For this reason, we believe this to be the more

natural and appropriate way to compare histograms for seg-

mentation. The optimal transport ideas has been employed

in other contexts in image processing, such as image regis-

tration (Haker et al. 2004) and classification (Rubner et al.

1998).

The optimal transport, or the Monge-Kantorovich, prob-

lem is to find the most efficient plan to rearrange one proba-

bility measure into another. We will describe Kantorovich’s

version (Kantorovich 1942) here. Let (X,μ) and (Y, ν)

be two probability measure spaces. Let π be a probabil-

ity measure on the product space X × Y and �(μ,ν) =
{π ∈ P(X × Y) : π[A × Y ] = μ[A] and π[X × B] = ν[B]
hold for all measureable sets A ∈ X and B ∈ Y } be the set

of admissible transference plans. For a given cost function

c : X × Y → R, where c(x, y) means the cost of moving

from location x to location y, the total transport cost associ-
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ated to plan π ∈ �(μ,ν) is

I [π] =
∫

X×Y

c(x, y)dπ(x, y). (1)

The optimal transport cost between μ and ν is

Tc(μ, ν) = inf
π∈�(μ,ν)

I [π]. (2)

More detail can be found in (Rachev and Rüschendorf 1998;

Villani 2003). In the case when X and Y are the real line,

R, and the cost function is c(x, y) = |x − y|p , the optimal

transport cost has a closed-form solution,

Tp(μ, ν) =
∫ 1

0

|F−1(t) − G−1(t)|pdt, (3)

where F and G are the cumulative distribution functions of

μ and ν, respectively, and F−1 and G−1 represent their re-

spective inverse functions. The optimal transport distance,

commonly called the Wasserstein distance with exponent p,

is Wp(μ, ν) = Tp(μ, ν)1/p and defines a metric. Further-

more, if the cost function is the Euclidean distance c(x, y) =
|x − y|,

W1(μ, ν) =
∫ 1

0

|F−1(t) − G−1(t)|dt

=
∫

R

|F(x) − G(x)|dx, (4)

where the last equality is obtained by Fubini-Tonelli Theo-

rem and the proof is provided in the Appendix.

Finally, note that the proposed model shown in this paper

is based on the statistics of image intensity, but can certainly

be replaced by other features, such as gradient, curvature,

orientation and scale. To conclude this section, we list the

main contributions of this paper in the following:

1. the novelty of using the Wasserstein distance to properly

compare histograms without a smoothing approximation

for histograms,

2. a segmentation model that does not need to differentiate

histograms to find a solution,

3. the use of the fast global minimization method (Bresson

et al. 2007) to solve the proposed model, which signifi-

cantly improves the previous model (Chan et al. 2007) in

two ways, the computational time is less than the stan-

dard method and initialization can be arbitrary,

4. mathematical properties of the proposed model are pre-

sented.

2 Related Works

Kim et al. (2005) took an information-theoretic approach

and proposed a nonparametric region-based active contour

model. Given an image I : � → [0,L] with two regions, in

each of which pixel intensities are independently identically

distributed, a curve �C is evolved towards the boundary. De-

note the region inside (resp. outside) the curve �C by � (resp.

�c). Define the region labels associated with curve �C by

L �C(x) =
{

L1 if x ∈ �,

L2 if x ∈ �c.

The proposed model maximizes the mutual information be-

tween the image pixel intensities and region labels, subject

to a constraint on the total length of the region boundaries:

inf
�C

∮

�C
ds − λ|�|M(I (X);L �C(X)), (5)

where λ is a positive parameter, | · | is the 2-dimensional

Lebesgue measure, i.e. area, and M stands for mutual infor-

mation, defined as:

M(I (X);L �C(X)) = h(I (X)) − h(I (X)|L �C(X)). (6)

Since entropy of image h(I (X)) is constant, maximizing the

mutual information between I (X) and L �C(X) minimizes

the conditional entropy h(I (X)|L �C(X)). The curve �C is

evolved so that knowing which region a pixel belongs to de-

creases the uncertainty of the pixel intensity. The conditional

entropy is

h(I (X)|L �C(X))

= − 1

|�|

(∫

�

logP1(I (x))dx +
∫

�c

logP2(I (x))dx

)

,

(7)

where the probability density functions P1(I (x)) and

P2(I (x)) of each region are approximated using the Parzen

window method (Parzen 1962),

P1(I (x)) = 1

|�|

∫

�

K(I (x) − I (x̂))dx̂, (8)

P2(I (x)) = 1

|�c|

∫

�c

K(I (x) − I (x̂))dx̂. (9)

The Gaussian function K(z) = (1/
√

2πσ 2)e−z2/2σ 2
is used

as a smoothing kernel, where σ is a scalar parameter that

controls the smoothness of the approximation. The mini-

mization problem (5) is solved by the following gradient

flow:

∂ �C
∂t

= λ

[

log
P1(I ( �C))

P2(I ( �C))
+ 1

|�|

∫

�

K(I (x) − I ( �C))

P1(I (x))
dx

− 1

|�c|

∫

�c

K(I (x) − I ( �C))

P2(I (x))
dx

]

�N − κ �N, (10)

where �N is the outward normal and κ is the curvature of �C.

The implementation for (10) is by the level-set method with

narrow band approach.
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Herbulot et al. (2004) also took a nonparametric region-

based active contours approach and used information en-

tropy as competition between two regions:

inf
�C

∮

�C
ds + λh(I (X),�) + λh(I (X),�c), (11)

where entropy of pixel intensities in each region is

h(I (X),�) = −
∫

�

P1(I (x)) logP1(I (x))dx (12)

h(I (X),�c) = −
∫

�c

P2(I (x)) logP2(I (x))dx. (13)

The probability density functions P1(I (x)) and P2(I (x))

are approximated using the Parzen window method as de-

scribed in (8) and (9). The minimization is solved by the

following gradient flow:

∂ �C
∂t

= λ

[

−(P1(logP1 + 1) − P2(logP2 + 1))

− 1

|�|

(

h(I (X),�) − h(I (X),�c)

+
∫

�

K(I (x) − I ( �C)) logP1(I (x))dx

+
∫

�c

K(I (x) − I ( �C)) logP2(I (x))dx

)

− κ

]

�N,

(14)

The curve evolution is implemented by using smoothing B-

splines.

3 Proposed Model I

In this section, we discuss an unsupervised segmentation

model proposed in our previous work (Chan et al. 2007)

for cluttered images. Suppose the observed gray-scale image

I : � → [0,L] is measurable and has two regions of inter-

ests. Let Nx,r be the local region centered at x with radius

r . Define the local histogram of a pixel x ∈ � by

Px(y) := |{z ∈ Nx,r ∩ � : I (z) = y}|
|Nx,r ∩ �| , (15)

for 0 ≤ y ≤ L. Define the corresponding cumulative distrib-

ution function by

Fx(y) := |{z ∈ Nx,r ∩ � : I (z) ≤ y}|
|Nx,r ∩ �| , (16)

for 0 ≤ y ≤ L. These are the image data used in the follow-

ing proposed segmentation model:

inf
�,P1,P2

{

E1(·, ·, ·|I ) = Per(�)

+ λ

∫

�

W1(P1,Px)dx + λ

∫

�c

W1(P2,Px)dx

}

, (17)

where Per(�) is the perimeter of the set �. This minimiza-

tion problem finds an optimal region � ⊆ � and approxi-

mates the local histograms inside � (resp. �c) by a constant

histogram P1 (resp. P2). Recall that W1 is the Wasserstein

distance with exponent 1, described in the introduction:

W1(P1,P2) =
∫ L

0

|F1(y) − F2(y)|dy. (18)

The energy functional (17) can be formulated in terms of

the level set method (Osher and Sethian 1988). The bound-

ary between � and �c is represented by the 0-level set of a

Lipschitz function φ : � → R.

inf
φ,F1,F2

{

E1(·, ·, ·|I ) =
∫

�

|∇H(φ(x))|dx

+ λ

∫

�

H(φ(x))

∫ L

0

|F1(y) − Fx(y)|dy dx

+ λ

∫

�

[1 − H(φ(x))]
∫ L

0

|F2(y) − Fx(y)|dy dx

}

, (19)

where H is the Heaviside function,
∫

�
|∇H(φ(x))|dx rep-

resents Per(�), and H(φ) (resp. 1 − H(φ)) defines � (resp.

�c).

The minimization of (19) can be achieved by a two-step

scheme, which gives a local minimum. First, we fix φ and

minimize with respect to F1 and F2, respectively. Variations

with respect to F1 and F2 yield the following optimality con-

ditions that should be held for all 0 ≤ y ≤ L,

∫

H(φ(x))
F1(y) − Fx(y)

|F1(y) − Fx(y)|dx = 0 (20)

and
∫

[1 − H(φ(x))] F2(y) − Fx(y)

|F2(y) − Fx(y)|dx = 0, (21)

respectively. The solutions to (20) and (21) are

F1(y) = median of Fx(y), over {x : φ(x) ≥ 0} (22)

and

F2(y) = median of Fx(y), over {x : φ(x) < 0}. (23)

To see this intuitively, for a fixed y, the quotient in (20) is

equal to +1 if F1(y) > Fx(y) and is equal to −1 if F1(y) <

Fx(y). The factor H(φ(x)) in front of the quotient is equal

to 1 or 0, depending on whether x is inside � or outside �,

respectively. Since equation (20) requires the integral of +1
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and −1 over all x inside � equals zero, the unknown F1(y)

has to separate the higher half values from the lower half,

and therefore is the median.

Next, with fixed F1 and F2, the gradient descent of Euler-

Lagrange equation for φ gives

φt = δ(φ)

[

∇ ·
( ∇φ

|∇φ|

)

− λ

∫ L

0

(|F1(y) − Fx(y)|

− |F2(y) − Fx(y)|)dy

]

, (24)

where δ is a regularized Dirac function and ∇ · ( ∇φ
|∇φ| ) is the

curvature of the level sets. In implementation, δ is a non-

compactly supported approximation as in (Chan and Vese

2001) and steps (22), (23), and (24) are iterated alternately,

until convergence to a steady state solution. Note that for

computational efficiency, Fx is treated only dependent on

the pixel location x and is computed only once before min-

imization. Near the boundary of the regions, this is not ac-

curate because the local region of x may across over both

regions. However, in our experiment, when the size of the

local region is properly chosen, the final contours seem to

be quite accurate. Another issue regarding the size of the lo-

cal region is that it depends on the location in the image and

the size of textures and/or clutters. In this paper, a constant

size for all pixel locations is given by the user.

Numerically, (24) has a serious time-step restriction, in

addition to being a second-order equation. The curvature

term, the first term of (24), is approximated by

∂

∂x

(

φx
√

φ2
x + φ2

y + ǫ2

)

+ ∂

∂y

(

φy
√

φ2
x + φ2

y + ǫ2

)

, (25)

where ǫ > 0 so that the denominators are not zero but small

enough to stay close to the solution. By the CFL condi-

tion, the time-step restriction of the explicit scheme for

(24) as in (Osher and Fedkiw 2002) is �t ≤ c · ǫ · (�x)2,

where c is a constant. The factor ǫ comes from (25) when

φ2
x + φ2

y = 0. This time-step restriction can be improved to

�t ≤ c ·(�x)2 with Chambolle’s method (Chambolle 2004),

where c = 1/8. The application of Chambolle’s method on

the proposed model is presented in Sect. 4.3.

4 Fast Global Minimization of Model I

4.1 Global Minimization of Model I

Like many variational segmentation models, model (17)

suffers from being non-convex (with respect to �) and

is therefore sensitive to initializations. The requirement

of reasonable initializations conflicts the purpose of au-

tomatic segmentation. Numerically, a non-compactly sup-

ported Dirac function is used in (Chan and Vese 2001) to in-

crease the chances of finding global minimizers of the piece-

wise constant segmentation model. Theoretically, based on

the framework of (Bresson et al. 2007; Chan et al. 2006;

Mory and Ardon 2007), we propose the following global

minimization of Model I:

min
0≤u≤1,P1,P2

{

E2(·, · , · |I ) =
∫

�

|∇u(x)|dx

+ λ

∫

�

W1(P1,Px)u(x)dx

+ λ

∫

�

W1(P2,Px)(1 − u(x))dx

}

. (26)

This model is closely related to model (17) but overcomes

the non-convexity. Let 1S denote the characteristic function

of set S. Model (26) extends the original minimization over

the non-convex set {u ∈ BV (�) : u = 1� , for some set �

with finite perimeter} to the convex set {u ∈ BV (�) : 0 ≤
u ≤ 1}. Thus, (26) is convex with respect to u and, unlike

(17), does not have (non-global) local minima with respect

to the geometric unknown.

The major advantage of (26) is that initializations can be

arbitrary. The relation between (17) and (26) is that, for fixed

F1 and F2, a global minimizer of (17) can be found through

a global minimizer of (26). This relation is stated in the fol-

lowing theorem, which is based on the geometric properties

of total variation.

Theorem 1 (Global Minimizers) Suppose I (x) ∈ [0,1].
If P1, and P2 are fixed, and u(x) is any minimizer of

E2(·,P1,P2|I ), then for a.e. ρ ∈ [0,1], 1{x:u(x)>ρ}(x) is a

global minimizer of E1(·,P1,P2|I ).

Proof Based on (Chan et al. 2006), by the coarea formula

and setting �(ρ) := {x : u(x) > ρ}, we can write E2 in

terms of E1

E2(u,P1,P2|I )

=
∫ 1

0

{

Per(�(ρ)) + λ

∫

�(ρ)

W1(P1,Px)dx

+ λ

∫

�−�(ρ)

W1(P2,Px)dx

}

dρ

=
∫ 1

0

E1(�(ρ),P1,P2|I )dρ, (27)

Therefore, if u is a minimizer of E2(·,P1,P2|I ), then for

a.e. ρ ∈ [0,1], �(ρ) is a minimizer of E1(·,P1,P2|I ). �
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4.2 Existence of Global Minimization Solutions

In this section, we show the existence of minimizers for (26)

and convexity of (26) with respect to each variable.

Theorem 2 (Existence of Solutions for u) For fixed P1 and

P2,

min
0≤u≤1

{

E2(·,P1,P2|I ) =
∫

�

|∇u(x)|dx

+ λ

∫

�

W1(P1,Px)u(x)dx

+ λ

∫

�

W1(P2,Px)(1 − u(x))dx

}

(28)

has a solution u ∈ BV (�) with 0 ≤ u ≤ 1.

Proof Let {un} ∈ BV (�) with 0 ≤ u ≤ 1 be a minimiz-

ing sequence. Then,
∫

�
|Dun| is uniformly bounded. Since

every uniformly bounded sequence in BV (�) is relatively

compact in L1(�), there exists a subsequence {unk
} con-

verging to some u ∈ BV (�). Since unk
→ u in L1(�), we

have unk
→ u in measure, i.e. |{x : |unk

(x) − u(x)| ≥ ǫ}| →
0 as ǫ → 0. Since we also have 0 ≤ unk

≤ 1, u satisfies

0 ≤ u ≤ 1. Finally, one can check easily that u is indeed

a minimizer by the lower semicontinuity of BV (�) and Fa-

tou’s lemma. �

For fixed u, the minimizer for F1 (resp. F2) has an ex-

plicit solution. Variations of E2 with respect to F1 and F2

yield the following optimality conditions that should hold

for all 0 ≤ y ≤ L:

∫

u(x)
F1(y) − Fx(y)

|F1(y) − Fx(y)|dx = 0 (29)

and

∫

[1 − u(x)] F2(y) − Fx(y)

|F2(y) − Fx(y)|dx = 0, (30)

respectively. Therefore,

F1(y) = weighted (by u(x)) median of Fx(y), (31)

and

F2(y) = weighted (by 1 − u(x)) median of Fx(y), (32)

We will next show that E2[u,P1,P2|I ] is convex with

respect to each variable. First, E2 is convex with respect

to u because
∫

�
|Du(x)|dx is convex in u and the set {u ∈

BV (�) : 0 ≤ u ≤ 1} is convex. Second,

Theorem 3 The minimization problem

min
P1∈P(�)

E2[u, ·,P2|I ]

is convex, where P(�) denotes the set of Borel probability

measures on �.

Proof E2[u, ·,P2|I ] is convex in P1 because the Wasser-

stein distance is a metric and in particular satisfies the tri-

angle inequality. Since P(�) is a convex set, minimization

with fixed u and P2 is a convex problem. �

Similarly, the minimization minP2∈P(�) E2[u,P1, ·|I ] is

convex. Therefore, E2[u,P1,P2|I ] is convex with respect to

each variable.

4.3 Fast Minimization Scheme

Minimizing the proposed energy E2 in (26) with respect to

u can be efficiently solved by applying methods in (Aujol et

al. 2006; Bresson et al. 2007). The regularization and data

terms in (26) can be decoupled by using a new variable v

to replace u in the data term and adding a convex term that

forces v and u to be close to each other:

min
u,0≤v≤1

∫

�

|∇u(x)|dx + 1

2θ

∫

�

(u(x) − v(x))2dx

+ λ

∫

�

r(x,F1,F2)v(x)dx, (33)

where

r(x,F1,F2) =
∫ L

0

|F1(y) − Fx(y)| − |F2(y) − Fx(y)|dy,

and θ > 0 is a small parameter. Minimizing the convex vari-

ational model (33) can be approached by alternately solving

the following coupled problems:

min
u

∫

�

|∇u(x)| + 1

2θ
(u(x) − v(x))2dx (34)

and

min
0≤v≤1

∫

�

1

2θ
(u(x) − v(x))2 + λr(x,F1,F2)v(x)dx. (35)

The minimization problem in (34) can be efficiently achiev-

ed by Chambolle’s method (Chambolle 2004), based on the

dual formulation of the total variation norm. The derived so-

lution is

u(x) = v(x) − θ divp(x), (36)

where p = (p1,p2) solves ∇(θ divp − v) − |∇(θ divp −
v)|p = 0 and is solved by a fixed point method,

pn+1 = pn + δt∇(divpn − v/θ)

1 + δt |(divpn − v/θ)| . (37)



Int J Comput Vis (2009) 84: 97–111 103

Table 1 Properties of the

proposed model and Kim et al.

(2005) and Herbulot et al.

(2004) models

Our model Kim et al. (2005) Herbulot et al. (2004)

existence of solution � � �

global minimum/convexity � x x

fast minimization � x �

insensibility to noise � – –

no need to smooth histograms (noiseless case) � x x

local change of lighting � x x

complexity for one iteration O(Lmn) O(M) O(LM)

time-step restriction 1
8

· (�x)2 c · ǫ · (�x)2 c · ǫ · (�x)2

computational time 1 mins 3 mins 4 mins

handle topological changes � � x

The solution of (35) is found as in (Bresson et al. 2007):

v(x) = max{min{u(x) − θλr(x,F1,F2),1},0}. (38)

The proposed fast minimization scheme is to iterate (31),

(32), (37), (36), and (38) alternately, until convergence.

5 Properties of Proposed Models and Comparison with

Other Models

The proposed model has several desired mathematical prop-

erties as shown in Table 1. In Sect. 4.2, we show the

existence of solution and the convexity of the model in

each variable. Based on Chambolle’s dual method regard-

ing the length-penalizing term, the solution converges af-

ter a small number of iterations, compared to directly solv-

ing the associated Euler-Lagrange equation. Moreover, since

the Wasserstein distance is insensitive to oscillations, our

model is intrinsically robust to noise. On the other hand,

it does not require histograms to be smoothed, which has

to be done for many segmentation models even for noise-

less images. For instance, the Wasserstein distance is able to

distinguish the distance between any pair of delta functions

with disjoint supports. Many distances do not tell apart the

distance between two disjointly supported histograms un-

less the histograms are smoothed. The complexity of com-

puting one iteration is O(Lmn). The time-step restriction is

�t ≤ 1
8

· (�x)2, as discussed in Sect. 3. For a 144 × 144

image as in Fig. 1, the computational time for a solution to

converge is approximately one minute. Since the partition

is implicitly embedded in function u, the model is able to

handle topological changes.

Kim et al.’s model (Kim et al. 2005) also has existence of

solution and minimizes over a non-convex set {u ∈ BV (�) :
u = 1�, for some set � with finite perimeter }, thus does

not guarantee to get a global minimizer. The gradient flow

(10) has a curvature term and the convergence can be slow,

due to the CFL condition discussed in Sect. 3. The proba-

bility density functions are estimated by the Parzen window

method. This enables their model to handle noise but intro-

duces a user-selected parameter, i.e. kernel width. They use

the fast Gauss transform to compute probability densities,

which reduces the complexity of computing one iteration to

O(M), where M is the size of the narrow band. The time-

step restriction is �t ≤ c · ǫ · (�x)2, for some small ǫ and a

constant c. Typically, ǫ is taken to be about 0.01. The level-

set method is used for curve evolution and thus allows topo-

logical changes.

Herbulot et al. (2004) use smoothing B-splines to imple-

ment their derived evolution equation instead of the usual

level-set method to avoid extensive computational time. The

complexity of each iteration is O(LM), where L is the num-

ber of gray levels and M is the size of the narrow band. The

time-step restriction is �t ≤ c · ǫ · (�x)2. The parametric

method using B-splines does not handle topological changes

of the contours. They further use smoothing B-splines in or-

der to be more robust to noise. The tradeoff between the

smoothness and interpolation error is controlled by a para-

meter that has to be chosen by the user. Their model also

minimizes over a non-convex set, thus does not guarantee to

get a global minimizer.

6 Description of Model II

We propose a variant of Model I that properly handles seg-

mentation when the captured scene is under uneven lighting

exposure, due to reasons such as the location of the light

source and camera. The original model considers the data

term globally, i.e. compares all the local histograms within

each region. Therefore, when the local lighting changes sig-

nificantly, local histograms of the same feature may have

similar shapes but are far apart by a translation in the inten-

sity axis. As a result, the Wasserstein distance between them

is large and thus the original model is not designed to deal

with uneven lighting. To model this variation, we introduce
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a function a(x), representing the translation in the intensity

axis, and propose a new model:

inf
�,a,F1,F2

{

E3(�,a,F1,F2|I ) = Per(�)

+ α

2

∫

|∇a(x)|2dx

+ λ

∫

�

∫ L

0

|F1(y) − Fx(y − a(x))|dy dx

+ λ

∫

�c

∫ L

0

|F2(y) − Fx(y − a(x))|dy dx

}

. (39)

This model allows local histograms to translate on the

intensity axis in order to find a best fit among one another

within each region. A regularity constraint
∫

|∇a(x)|2dx is

imposed to ensure smoothness of a.

To solve the minimization, we have the following three-

step scheme. The evolution equations for F1, F2 and φ can

be derived similarly as in Sect. 3:

F1(y) = median of Fx(y − a(x)), over {φ ≥ 0}, (40)

F2(y) = median of Fx(y − a(x)), over {φ < 0}, (41)

φt = δ(φ)

[

∇ ·
( ∇φ

|∇φ|

)

− λ

∫ L

0

(

|F1(y) − Fx(y − a(x))|

− |F2(y) − Fx(y − a(x))|
)

dy

]

. (42)

The minimization with respect to a(x) is to solve:

inf
a

E3(�, ·,F1,F2|I )

= α

2

∫

|∇a(x)|2dx

+ λ

∫

�

∫ L

0

|F1(y) − Fx(y − a(x))|dy dx

+ λ

∫

�c

∫ L

0

|F2(y) − Fx(y − a(x))|dy dx. (43)

Without the first term, a(x) can be solved explicitly by

a0(x) =
{

F−1
1 (0.5) − F−1

x (0.5) if φ(x) > 0,

F−1
2 (0.5) − F−1

x (0.5) if φ(x) ≤ 0.

Therefore, the problem of (43) can be transformed into

the following:

inf
a

1

2

∫

|a(x) − a0(x)|2dx + α

2

∫

|∇a(x)|2dx. (44)

The solution to (44) is a(x) − α△a(x) = a0(x), which

can be easily solved, for example, by the fast Fourier trans-

form. We may also employ the fast global minimization

technique for Model II, instead using (42).

7 Experimental Results

7.1 Comparison with Other Methods

As explained in Sect. 5, our model does not require his-

tograms to be smoothed for proper segmentation. In con-

trast, previous methods use Parzen window method (Parzen

1962) to estimate pdfs, which requires a smoothness para-

meter selection. If the bandwidth of the kernel is too small,

point-wise metrics cannot detect similar intensities. Fig-

ure 1(a) is a synthetic image with three regions, in each of

which the pixel intensity is independently identically dis-

tributed (b). The pixels in the inner region take intensities

3,110,140, and 247, with probability about 0.25 each. The

pixels in the middle region take intensities 85,110,140, and

165, with probability about 0.25 each. The pixels in the outer

region take intensities 80,115,135, and 170, with probabil-

ity about 0.25 each. The middle and outer regions are per-

ceptually similar and so are their corresponding intensity

histograms, (d) and (e), respectively. A desired partition is

to distinguish the inner region from the rest. The initial con-

tour is shown in (f). Our model does not have the smoothing

parameter and correctly segments the inner region from the

rest because of the use of the Wasserstein distance.

On the other hand, Kim et al.’s model (Kim et al. 2005)

needs a careful selection of the smoothness parameter σ

(variance of the Gaussian kernel) in order to segment cor-

rectly. Figure 2(a) is the final contour with σ = 5, which in-

correctly groups the inner and middle regions together. This

is because the histograms of the inner and middle regions

overlap 50% but the histograms of the middle and outer re-

gion do not overlap. In (b), the segmentation with σ = 10

is correct because the intensity pdf is greatly smoothed and

thus mutual information is able distinguish the inner region

from the rest. When σ = 50, the final contours (c) incor-

rectly separate pixels with intensity = 3,247 from pixels

with intensity = 110,115,135,140.

We emphasize here that nonparametric models are able to

deal with a greater variety of images than parametric mod-

els. In this experiment, the object and background have the

same intensity mean and variance. In Fig. 3(a), we show the

boundaries of the objects in red curves and the correspond-

ing histograms in each region. Figure 3(c) and (b) are the

final contours of our proposed model and ACWE, respec-

tively. The proposed model is able to distinguish the objects

from the background. On the other hand the ACWE model

cannot handle this case due to its parametric nature.

7.2 Comparison between Original Model and Fast Global

Minimization

The proposed fast global minimization in Sect. 4 improves

the original minimization in (Chan et al. 2007) described in
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Fig. 1 The given image (a) has three regions (b), in each of which

pixel intensity is independently identically distributed. (c), (d), and

(e) are the intensity histograms of the pixels in the inner, middle, and

outer regions, respectively. The pixels in the inner region take intensi-

ties 3,110,140, and 247, with probability about 0.25 each; the pixels

in the middle region take intensities 85,110,140, and 165; and the

pixels in the outer region take intensities 80,115,135, and 170. The

middle and outer regions look similar, as well as their corresponding

histograms. Wasserstein distance does not require histograms to be

smoothed in order to compare histograms in a reasonable manner. The

final contour of proposed model I, in (g), correctly distinguish the inner

region from the rest

Fig. 2 Kim et al.’s model (Kim et al. 2005) needs a proper selection

of the smoothness parameter σ in order to segment correctly. (a) is the

final contour with σ = 5, which incorrectly groups the inner and mid-

dle regions (see Fig. 1(b)). The segmentation with σ = 10 (b) is correct

because the intensity pdf is greatly smoothed and thus mutual informa-

tion is able distinguish the inner region from the rest. When σ = 50 (c),

the final contours separate pixels with intensity 3 and 247 from pixels

with intensity 110, 115, 135, and 140

Sect. 3 of model I. Figure 4 is a downsized 175 × 135 image

of cheetah. In Sects. 4.1 and 4.2, we explain that the global

minimization model is convex and therefore all local min-

ima are global minima. A gradient descent method is guar-

anteed to find a global minimizer. We experiment with sev-

eral images with different and arbitrary initializations and
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Fig. 3 Objects and background regions have the same intensity mean

and variance. (a) shows the location of object boundary. (b) shows the

final contours of ACWE model. (c) shows the final contours of pro-

posed model I. (d), (e), and (f) are the histograms of each region for

the contours in (a), (b), and (c), respectively. One can see that a non-

parametric segmentation model is needed for this image in order to dis-

tinguish different regions. This is because the histograms are distinct

but have the same parameters, i.e. mean and variance

Fig. 4 Down-sized cheetah image of Berkeley Segmentation Dataset.

(a) shows the final contours of the method in our previous work in

(Chan et al. 2007) and (b) shows the final contours of the model in (26).

Global minimization scheme improves segmentation result as well as

the computational time, from about two hours to two minutes

all arrive at similar results for each image. This is a nice

consequence of the proposed model being convex with re-

spect to each variable. On the other hand, the original min-

imization is non-convex and thus requires initializations to

be reasonably close to the final contours. Moreover, the fast

global minimization improves the speed from two hours to

two minutes.

7.3 Robustness to Noise/More Results of Model I and

Model II

Figure 5(a) is a clean image of cheetah and (b) is with noise.

The final contour shown in (d) by the global minimization

of Model I is able to segment the cheetah patterns and is

nearly as good as the result in (c) of the clean image. In this

experiment, the radius of the local region is 11.

Figure 6 shows other experiments of Model I. The first

experiment is a 285 × 281 image consisting of two Bro-

datz textures. The final contours are shown in (a) and the

corresponding histograms on each region are plotted in (c).

Model I is able distinguish these two Brodatz textures, even

though their intensity distributions are highly discontinuous.

The second is a 481 × 321 image of tiger; (b) shows the fi-

nal contours by Model I and (d) shows the histograms in

each region. The final contour successfully selects the tiger

patterns.

Figure 7 shows that Model II improves Model I when

there are local lighting changes in the image. The first ex-

periment is a 384 × 223 image of cheetah. In (a), Model I is

able to capture some of the cheetah patterns but not near the

back legs, due to the local lighting difference. Final contours

of Model II, in (b), are more accurate. Another experiment

is a 282 × 218 image of fish. The final contours by Model

I, in (d), do not select the fish patterns accurately, because

the local illumination is significantly uneven. Model II, on

the other hand, is able to overcome this difficulty, as shown

in (e) the final contours separates the fish patterns from the

background.

7.4 Implementation Issues

We show a method to solve the weighted median for F1(y)

in (31) in the discrete case.
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Fig. 5 Experimental results of

Model I. (a) is the original clean

image of cheetah. (b) is the

image of cheetah with added

noise. The final contours of the

noisy image, in (d), is nearly as

good as the final contours of the

clean image, in (c). Model I is

robust to noise because the

Wasserstein distance is

insensitive to oscillations

Fig. 6 Experimental results of

Model I. (a) shows the final

contours of a synthetic image

consisting of two Brodatz

textures. (c) shows the

corresponding histograms of

each region. Notice that they are

highly discontinuous and the

supports of histograms overlap

greatly. (b) shows the final

contours of an image of tiger

from Berkeley Segmentation

Dataset. (d) shows the

corresponding histograms of

each region

For each y = 0,1, . . . ,L,

1. Compute the weighted histogram, Hy , of value Fx(y)

with weight u(x). More precisely, for all pixels x ∈ �,

each value Fx(y) is counted u(x) times. Then, normal-

ize the weighted histogram, Hy , by dividing by the total

count,
∑

x∈� u(x).

2. For each weighted histogram Hy , compute the cumula-

tive distribution Cy .

3. The weighted median is then F1(y) = C−1
y (0.5).

The calculation of F2(y) is similar and with weight 1−u(x).

We empirically demonstrate the segmentation results are

not sensitive to the size of the local histogram region, within

a reasonable range. The experiment is on a 384 × 223 image

of cheetah, shown in Fig. 5(a). Figure 8 shows final contours

by global minimization of Model I with different local re-

gion sizes, radius ranging from 1 to 25. If the size is smaller

than the clutter features, the final contour partitions clutter

features into smaller regions, an undesired result. If the size

is large enough, our results show the cheetah patterns are

segmented correctly.
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Fig. 7 (a) shows the final contours by Model I on the image of cheetah

in Fig. 5(a). (b) shows the final contours by Model II. (c) is the final

function a(x) in (39). This smoothness component allows local illumi-

nation changes and captures more of the cheetah pattern. The second

row is the experiment of an image of fish from Berkeley Segmentation

Dataset. (d) shows the final contours by Model I and (e) is by Model II.

(f) is the final function a(x) in (39). Model II is able to capture more

of the fish pattern for this image

7.5 Limitations and Extensions

Our segmentation model is formulated for gray-scale images

but can be extended to color images. The data term can be

generalized because the Wasserstein distance is defined on

any space of probability measures. However, the implemen-

tation would be much more complicated because there is no

closed form for the Wasserstein distance between two prob-

ability measures on Euclidean spaces with dimensions larger

than one. The Earth Movers Distance between signatures is

equivalent to the Wasserstein distance when signatures have

the same total mass (or normalized discrete pdfs) and the

optimization has been investigated in (Rubner et al. 1998).

This can be a possible direction to extend our segmentation

model. Works in (Chartrand et al. 2005; Haker et al. 2004)

numerically solve the optimal maps of the optimal transport

problem on R
2 and may also be applied to our extension.

Another limitation is that our model assumes the given im-

age has two regions of clutters. Many natural images have

more than two regions and requires a multi-phase segmen-

tation model. This limitation can be easily overcome, since

our model has a natural extension to multi-phase segmenta-

tion as in (Vese and Chan 2002). Moreover, since our model

only uses the intensity probability density, it does not take

into account higher-order characteristics, such as gradient,

scale, and orientation. For example, if two textures have the

same intensity probability density, our model is not able to

distinguish them. However, histograms of suitable descrip-

tors can be used instead of or combined with intensity. On

the other hand, our segmentation model can contribute to

segmentation algorithms, such as (Sapiro and Caselles 1997;

Tu and Zhu 2002) that incorporate many image characteris-

tics, including clutter.

8 Conclusions

In this paper, we proposed a fast global minimization of a

local histogram based model using the Wasserstein distance

with exponent 1 to segment cluttered scenes. Our model

is different from previous nonparametric region-based ac-

tive contour models in three ways. The first is the use the

Wasserstein distance, which is able to properly compare

both continuous and discontinuous histograms. We are not

claiming the Wasserstein distance is better than other dis-

tances used for nonparametric segmentation in the literature

but rather raising the fundamental limitations with point-

wise distances. Second, the proposed model does not need

to differentiate histograms to find the solutions. Many ex-

isting models require histograms to be differentiated and

thus rely on a smoothing step, usually the Parzen window

method. The third is the application of the global minimiza-

tion method for a nonparametric model. Consequently, the

segmentation results are not sensitive to initializations. The
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Fig. 8 The size r of the local region in model I, described by (26),

needs to be equal or bigger than the smallest features of interest in

the given image. The images shown here are the final contours with

different sizes r , ranging from 1 to 25. The segmentation results are

not too sensitive to the size of the local region, but are more accurate

when the size is closer to that of the smallest image features of interest

second and third were made possible by the use of local

histograms. We have proved a number of desired mathe-

matical properties of the model and provided experimen-

tal verifications. In the future, we will generalize our model

to color images and multi-phase segmentation. The former

can be achieved by using the fast minimization of vector-

ial total variation in (Bresson and Chan 2007) and adapt-

ing the numerical scheme for computing the optimal trans-

port distance in (Rubner et al. 1998; Chartrand et al. 2005;

Haker et al. 2004). The later can be approached by applying

methods such as the multi-phase level set framework (Vese

and Chan 2002).
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Appendix

Theorem Let μ and ν be two probability measures on R.

Let F : R → [0,1] and G : R → [0,1] be the corresponding

cumulative distribution functions. Then,

∫

R

|F(x) − G(x)|dx =
∫ 1

0

|F−1(t) − G−1(t)|dt.
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Proof Without loss of generality, suppose both F and G are

supported on [0,L]. First, we will show that

∫ L

0

F(x)dm1(x) = L −
∫ 1

0

F−1(t)dm2(t), (45)

where m1 denotes Lebesgue measure restricted on [0,L]
and m2 denotes Lebesgue measure restricted on [0,1].

Let SF = {(x, t) ∈ [0,L] × [0,1] : t ≤ F(x)}. It is easy

to check that SF is B[0,L] × B[0,1]-measurable, where B[0,L]
and B[0,1] denote the Borel σ -algebra restricted on [0,L]
and [0,1], respectively. Then,

m1 × m2(SF ) =
∫

1SF
(x, t)d(m1 × m2)

=
∫ 1

0

(∫ L

0

1SF
(x, t)dm1(x)

)

dm2(t) (46)

=
∫ L

0

(∫ 1

0

1SF
(x, t)dm2(t)

)

dm1(x), (47)

where the last two equalities are by Fubini-Tonelli Theorem

since everything is σ -finite. Next,

Eq. (46) =
∫ 1

0

(∫ L

0

1SF
(x, t)dm1(x)

)

dm2(t)

=
∫ 1

0

(∫ L

0

1{x:F−1(t)≤x≤L}(x)dm1(x)

)

dm2(t)

=
∫ 1

0

(∫ L

0

1[0,L](x) − 1[0,F−1(t)](x)dm1(x)

)

dm2(t)

= L −
∫ 1

0

F−1(t)dm2(t) (48)

and

Eq. (47) =
∫ L

0

(∫ 1

0

1SF
(x, t)dm2(t)

)

dm1(x)

=
∫ L

0

(∫ 1

0

1{t :0≤t≤F(x)}(t)dm2(t)

)

dm1(x)

=
∫ L

0

(∫ 1

0

1[0,F (x)](t)dm2(t)

)

dm1(x)

=
∫ L

0

F(x)dm1(x). (49)

By (48) and (49), we have proved (45). Similarly,

∫ L

0

G(x)dm1(x) = L −
∫ 1

0

G−1(t)dm2(t). (50)

Without loss of generality, we may assume F(x) − G(x) ≥
0, because we can partition [0,L] into a finite subintervals

so that F(x) − G(x) is monotone in each subinterval. Then,

∫ L

0

|F(x) − G(x)|dx

=
∫ L

0

F(x) − G(x)dm1(x)

= L −
∫ 1

0

F−1(t)dm2(t) − L +
∫ 1

0

G−1(t)dm2(t)

=
∫ 1

0

G−1(t)dm2(t) −
∫ 1

0

F−1(t)dm2(t)

=
∫ 1

0

|F−1(t) − G−1(t)|dt. (51)

�
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