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Abstract—We propose a new adaptive filtering framework for
local image registration, which compensates for the effect of local
distortions/displacements without explicitly estimating a distor-
tion/displacement field. To this effect, we formulate local image
registration as a two-dimensional (2-D) system identification
problem with spatially varying system parameters. We utilize a
2-D adaptive filtering framework to identify the locally varying
system parameters, where a new block adaptive filtering scheme
is introduced. We discuss the conditions under which the adaptive
filter coefficients conform to a local displacement vector at each
pixel. Experimental results demonstrate that the proposed 2-D
adaptive filtering framework is very successful in modeling and
compensation of both local distortions, such as Stirmark attacks,
and local motion, such as in the presence of a parallax field.
In particular, we show that the proposed method can provide
image registration to: a) enable reliable detection of watermarks
following a Stirmark attack in nonblind detection scenarios,
b) compensate for lens distortions, and c) align multiview images
with nonparametric local motion.

Index Terms—Adaptive filtering, image registration, local image
registration, nonparametric image registration, stirmark recovery,
watermark synchronization.

I. INTRODUCTION

I
MAGE registration plays a critically important role as a pre-

processing step in many image processing and computer vi-

sion applications. A large number of techniques have been de-

veloped to solve different variants of this problem. Zitova et al.

[1] present a survey of recent image registration techniques cov-

ering different application areas. One of the important factors

to achieving accurately registered images is the model that de-

scribes the (spatial) mapping between the images to be regis-

tered. We can classify image registration techniques into two

main groups: 1) global image registration methods that employ

parametric spatial transformations and 2) local image registra-

tion methods that can handle spatially varying deformations.

Global parametric transformations include translation, affine,

pseudoperspective and perspective (homography) mappings [2],
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[3]. These global transformations are valid under restrictive as-

sumptions on the images being registered. For example, in mul-

tiview images the popular 8-parameter perspective mapping can

accurately model only planar three-dimensional (3-D) scenes

in the presence of arbitrary camera motion or arbitrary static

scenes in the presence of only rotational camera motion (no

translation) [4]. Parameters of these transformations can be es-

timated using either image gradients (direct methods) [5], [6] or

feature-based methods [7], [8]. The accuracy of global registra-

tion methods proves insufficient when the underlying assump-

tions are not valid; hence, the globally modeled parametric mo-

tion shows systematic local deviations. In these scenarios, an

alternative local registration method is required.

Local image registration methods are motivated by two main

applications: 1) correction of locally varying image distortions,

such as random bending attacks, e.g., Stirmark [9] and spa-

tially-varying lens distortions, and 2) compensation of locally

varying motions in the presence of a parallax field. Local image

registration methods include dense motion estimation (optical

flow) approaches [10]–[12], two-dimensional (2-D) mesh-based

approaches [13], and methods based on an underlying 3-D scene

representation [14]. Dense motion estimation methods make

no assumption about the scene geometry and camera model,

and rely only on image gradients for local registration using

a motion (optical flow) field. 2-D mesh based approaches seg-

ment the image into triangular or quadratic patches, where a

single parametric model is assumed to be valid for each patch

[15]. Methods employing a 3-D scene representation include

the plane parallax framework [16]. These methods tend to be

computationally complex and sensitive to errors in motion field

estimation. Local image registration methods have also been

employed to compensate for geometric distortion attacks, such

as those intended to disable watermarks. These include trans-

form-domain approaches [17], feature-based methods [18], and

direct techniques [19]. In the context of image restoration, re-

cently Šroubek et al. [20] have also proposed integration of reg-

istration into the restoration process for translational misregis-

tration.

In this paper, we present a new local image registration

technique based on adaptive filtering, for both space-varying

distortion and motion compensation, which does not require

explicit estimation of the local distortion/displacement field.

Adaptive filters have been successfully applied to a number of

one-dimensional (1-D) system-identification problems, such as

echo-cancellation [21]. In these applications, adaptive filters

not only allow for the estimation of an unknown system but also

incorporate the capability to track smoothly varying changes in

the system. In this paper, we formulate local image registration

as a 2-D system identification problem with spatially varying

system parameters. Since the successive update procedure in
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the adaptive filtering is inherently 1-D, we map the 2-D image

plane into a 1-D sequence using space-filling curves. This

ensures spatial contiguity in the 2-D image plane, which is a

prerequisite for filter convergence and tracking. The proposed

method is computationally simpler than other approaches for

local image registration. Image distortion/motion compensation

using an adaptive filtering framework is presented in Section II.

Section III discusses the conditions under which adaptive filter

conforms to an underlying local displacement field. Application

scenarios are discussed in Section IV together with extensive

experimental results. The application scenarios include: 1) cor-

rection of Stirmark random bending attacks [22], 2) correction

of camera/lens distortions, 3) registration of multiple views of a

scene with local motion that is not representable as a parametric

model. Conclusions are presented in Section V.

II. DISTORTION/MOTION COMPENSATION

BY ADAPTIVE FILTERING

A. Local Distortion Modeling

Consider a pair of images and with overlap-

ping views of the same scene, but with the underlying geometry,

i.e., spatial coordinates, of one image locally distorted or

warped with respect to the other. Such images can be encoun-

tered in a number of applications; for instance, a watermarked

image and a warped version obtained by applying random geo-

metric distortions in order to attack the watermark (e.g., using

Stirmark [9]). Other examples include scenes with peripheral

overlap captured for the purpose of mosaicking where camera

lens distortions induce different distortions in the geometry of

overlapped regions [5], multiple views of a 3-D scene under

(small) camera displacements, and a reproduction of an image

captured through a print and scan process [23].

In image registration problems, the relation between the two

images, over the region of overlap, is traditionally represented

by

(1)

where is a subpixel-valued

spatially varying displacement field. The image registration

problem can then be regarded as estimation of this spatially

varying subpixel displacement field and mapping of image

onto the coordinate system of image .

In this work, we present an alternative model to represent

local image distortions, where the mapping between

and is expressed by means of a spatially varying linear

filter , over the region of overlap as

(2)

The problem of image registration can now be regarded

as a system identification problem, where the system re-

sponse needs to be determined in order to map image

onto the coordinate system of image . In

the following, we propose an adaptive filtering frame-

work for the estimation of without explic-

itly estimating the subpixel-valued local displacement field

.

B. Local Image Registration as a 2-D System

Identification Problem

Adaptive filters have been used extensively for system identi-

fication for 1-D (temporal) systems [21, Ch. 14]. Thus, they are

good candidates for use with our proposed model of (2). In order

to establish the context and to highlight the differences in our

subsequent development, first consider adaptive filtering for 1-D

temporal signals, which typically consists of a two step process:

1) a filtering step, where the filter coefficients, are con-

volved with the input signal, , to produce an estimate of

the desired response, , and 2) an adaptive process where

the set of filter coefficients are adjusted using the resulting esti-

mation error, . For the commonly used least-mean-square

(LMS) [21, Ch. 5] adaptation algorithm, the adaptive filtering

process is given as

(3)

(4)

(5)

where and denote the adaptation step-size and the support

of the 1-D filter, respectively.

Consider the scenario where the desired response is re-

lated to the input signal , through a system model ,

as . Under appropriate conditions,

the adaptive filter coefficients closely approximate and

track slow variations in . The adaptation step-size de-

termines the speed of convergence, tracking capability, and the

closeness of the approximation [21, Ch. 5–6].

Based on the model of (2), an adaptive filtering framework

can be readily extended to our image registration problem. For

2-D images, the adaptive filter takes the form of a 2-D finite im-

pulse response (FIR) filter. Just as in the 1-D case, the adaptive

filtering process consists of a prediction step and a filter adapta-

tion step as shown in Fig. 1. Assuming that the LMS adaptation

algorithm is used for the update, the process can be mathemati-

cally expressed as follows.

1) Filter output (Prediction step)

(6)

2) Estimation error

(7)

3) Filter adaptation (Update phase)

(8)
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Fig. 1. Overview of 2-D adaptive filtering for images.

Fig. 2. Hilbert curve on a 16� 16 square.

4) Initializing the filter for the next pixel,

(9)

where denotes the 2-D adaptive filter, denotes the

support of the filter, and is the adaptation step-size. The

subscripts and denote before and after adaptation, re-

spectively.

Now, if the adaptive filter converges to the

system model of (2) and tracks changes in this

system model, then the algorithm above provides us a mecha-

nism for registering one image to the other. Though the mathe-

matical formulation above bears a strong similarity with the 1-D

adaptive filtering process, there are some key differences due to

which the convergence and tracking behavior does not imme-

diately follow in the 2-D case. We, therefore, consider this be-

havior next.

C. Contiguity Preservation Using Space-Filling Curves

The update step in the 1-D adaptive filter of (5) is along the

natural sequence of temporal progression defined by the con-

straint of causality. For our formulation of the 2-D spatial adap-

tive filter; however, the scan order, i.e., the sequence in which

the image pixels are visited is not inherently defined. The scan-

ning order plays a very important role in determining the be-

havior of the adaptive filter. Since the filter-adaptation is ca-

pable of tracking only “relatively slow” variations, its perfor-

mance is best when smooth variations in the underlying system

appear smooth along the scan-order path. This

is clearly not assured if the scan-order is discontinuous in the

2-D spatial domain. For this reason, the conventional raster scan

order (moving from left to right and moving from top to bottom

along successive horizontal lines of image pixels) is not appro-

priate for the filter adaptation. In addition to spatial continuity,

it is also desirable (for the same reasons) to have a scan order

that maps local neighborhoods in the 2-D spatial coordinates to

localized regions in the scan sequence, i.e., to preserve spatial

contiguity in the scan order (to the extent possible).

The desired property of contiguity preservation can be ob-

tained in two dimensions through the use of suitable space-

filling curves, which provide a mapping from multidimensional

space into 1-D space. Because of its contiguity-preserving prop-

erties, Hilbert curves [24] are used to determine the scanning

order of pixels. Fig. 2 shows a Hilbert curve for a 2-D region of

size 16 16. As can be seen in the figure, traversal of the image

pixels in the order indicated by this curve ensures that there are

no jumps between spatially separated pixels.

D. Block-Based Adaptive Filtering

If unconstrained variations in filter coefficients on a pixel-by-

pixel basis are allowed, the use of the current pixel information

in the update step yields infinitely many solutions to the system

identification problem, which can be overcome by regulariza-

tion approaches. In the following, a regularization by block-

based, as opposed to pixel-based, adaptation of the coefficients

is proposed, whereby system response is assumed to remain

constant over a block of pixels around the current pixel. To this

effect, we first define a new optimization criterion, ,

which is the sum of estimation errors over a block of

pixels

(10)
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Fig. 3. Block-based adaptive filtering: On the reference image, I (x; y) filter support is shown for the adaptive filters that correspond to pixels within the block,
B , in the current image, I (x; y).

where is the block around the current pixel, , as

shown in Fig. 3. When we integrate (6) and (7) with (10), we

obtain

(11)

(12)

where is the support of the adaptive filter for the pixel,

, defined on the first image, , as shown in Fig. 3. As

a regularization constraint, we impose the uniform system re-

sponse (i.e.,

) into (12), and obtain the following equation for

(13)

The updated adaptive filter coefficients are

then computed by taking the derivative of with re-

spect to the filter coefficients, and using the derivative in the least

mean square formulation. Equation (14) denotes the updated

filter coefficients, , which is very similar to (8),

except that a block of pixels over which the system response is

uniform for each pixel within the block, [see (14), shown at

the bottom of the page] where denotes the spatial lo-

cation where the adaptive filter is convolved with the reference

image, , for the corresponding pixel, .

E. Implementation Issues

The implementation of the algorithm requires a number of

additional choices. To prevent the amplification of gradient

noise and to increase the convergence rate, the normalized LMS

adaptation algorithm [21, Ch. 6] is used. This results in a 2-D

adaptive filter closer to the system model, and, therefore, better

image registration.

The choice of adaptation step-size, , is crucial in the 2-D

LMS adaptation algorithm. This is because the adaptive filter

coefficients are updated at a speed that is deter-

mined by . If the variation in the system model

from one pixel to the next one is significant, then filter adapta-

tion from one pixel to the next one through LMS may not be

possible unless the right adaptation step-size is chosen. On the

other hand, if the chosen is too large, then the optimum filter

coefficients may never be achieved due to gradient estimation

noise [21, Ch. 5].

While scanning the images with a Hilbert curve, the input im-

ages are divided into overlapping squares, because the Hilbert

(14)
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Fig. 4. Motion modeling through adaptive filtering. (a) P = (x ; y ) in the second image I corresponds to P + d = ((x + d ); (y + d )) in the first
image I . (b) Corresponding weights for the bi-linearly interpolation of gray-level value at P + d in I .

Fig. 5. Registration example under Stirmark attack. (a) Original flower image. (b) Distorted image after applying Stirmark. (c) Difference image between (a) and
(b). (d) Registered image with the proposed registration technique. (e) Difference image between (a) and (d). (f) Difference image by applying the registration
algorithm in [17].

curve requires the 2-D region to be a square. A Hilbert curve

is computed for each square, and the proposed 2-D adaptive fil-

tering technique is performed on each square consecutively. The

estimated adaptive filter on one square is used as the initial adap-
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Fig. 6. Watermark detection setup for registration evaluation on Stirmark attacked images.

tive filter on the next square in such a way that the scanning

order of the whole input image is guaranteed to be contiguity

preserving. Since the adaptive filter requires a number of itera-

tions (pixel-visits) for the initial convergence, the initial region

(in the scan-order) may show a relatively large registration error.

This is, however, readily handled by revisiting this region in a

second pass originating from a region in which convergence has

been achieved (for instance, by reversing the scan-order for the

small initial region).

The “size” of the adaptive filter should be large enough to

represent the spatially varying system model at

each point. This clearly requires a rather large filter in situa-

tions where there are large displacements between the images.

A simple increase in filter size would adversely affect the con-

vergence behavior in addition to the increased computational

burden for adaptation. We, therefore, keep track of large shifts

independently as integer pixel shifts in and . This is achieved

by adjusting these values at each pixel to ensure that the central

peak of the adaptive filter coefficients is located near the center

of the filter support.

Since the proposed registration technique handles only

local misregistration, in scenarios where the images exhibit

large global misregistration, we use an initialization step that

positions the support of the adaptive filter in the appropriate

neighborhood. This is achieved by setting the initial values of

integer pixel shifts to a crude estimate of the displacement for

the first pixel in the scan order (with filter coefficients set to

an impulse). Parametric models for global registration (e.g.,

affine/pseudoperspective [2]) may be utilized for this purpose.

Model parameters may be estimated using feature correspon-

dences between images [25] or using hierarchical estimation

methods [11].

III. MODEL VALIDATION: CONFORMANCE TO

A LOCAL DISPLACEMENT FIELD

In this section, we discuss the conditions under which the

adaptive filter coefficients in (2) conform to an underlying local

displacement field in (1).

If, for the moment, we assume that the displacement vector

at pixel is integer valued, i.e., does not

have a fractional part, then the coefficients of the adap-

tive filter should converge to an impulse at

.

In the more realistic case, when the displacement vector

is subpixel valued, i.e., it includes both an integer and a

fractional part, the adaptive filter should take the

form of an interpolation filter. More specifically, let us assume

that there is subpixel displacement

where

(15)

Fig. 4(a) denotes the spatial location of a point in

the second image and its corresponding location in

the first image . As shown in Fig. 4, the closest (integer) pixel

locations to in the first image are denoted as , ,

, and .



CANER et al.: LOCAL IMAGE REGISTRATION BY ADAPTIVE FILTERING 3059

Fig. 7. Watermark detection example. (a) Undistorted watermark image. (b) Distorted watermark image after applying Stirmark with a bending factor of 0.3.
(c) Registered watermark image. (d) Estimated motion field in the highlighted area in (a). (e) Difference image between (a) and (b). (f) Difference image after
applying the proposed registration technique.

Using the displacement vector, , we can com-

pute the gray-level value of point in the first image,

by some finite impulse response (FIR) interpolation

filter, e.g., the bi-linear interpolation. Fig. 4(b) denotes

the weights for the corresponding points,

, that are used in bi-linear interpolation. These

weights can be expressed in terms of the displacement vector

as

(16)

Then

(17)

Comparing (17) with (2), we expect that the adaptive filter

should have a small number of significant

(nonzero) coefficients peaked around

.

From these observations, we can state the following two cri-

teria to validate whether the adaptive filter coefficients conform

to an underlying local displacement vector between the images

at each pixel : 1) we expect the filter to have a single

peak within its region of support, 2) if the illumination/exposure

differences between the images are negligible, the filter coeffi-

cients should sum up to unity. We use empirically determined

thresholds to determine if the first criterion holds, assuming a
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Fig. 8. Detector response of the (a) undistorted watermark image, (b) distorted watermark image and (c) registered watermark image.

single peak if all other local maxima were at least 50% below

the global maximum.

In our experiments, we observe that the criteria are not satis-

fied at some pixels under the following situations: a) when the

image region about lacks sufficient texture (the aperture

problem), b) if there is occlusion around , or c) when

there are abrupt changes in the local motion field about .

IV. APPLICATIONS AND EXPERIMENTAL RESULTS

A. Compensation of Random Geometric Distortions (Stirmark)

The effectiveness of the proposed registration scheme is

tested under Stirmark attack [9] by performing two sets of ex-

periments. In the first experiment, performance of the proposed

technique is compared with the registration algorithm given

in [17], which is designed to register geometrically distorted

images for watermark recovery. In the second experiment,

performance of the proposed registration scheme is measured

in terms of watermark detection.

In the experiments, an 8-bit gray scale image of size

640 480 pixels is used as the original image. The following

parameters are utilized in the proposed adaptive filtering-based

image registration algorithm: The size of the adaptive filter is

set to 9, i.e., a 9 9 filter is chosen. The adaptation step-size

and scanning curve are respectively 0.2, and a Hilbert curve.

As a regularization constraint, adaptive filter coefficients are

assumed to be constant over a 3 3 window during the adapta-

tion process. Fig. 5 presents the results for the first experiment,

where performance of the proposed registration technique is

compared with the image registration algorithm given in [17].

The resulting pSNR values for the difference images given in

Fig. 5(e) and (f) are 28.12 and 28.35 dB, respectively. Although

pSNR values of the difference images obtained by the proposed

registration scheme and the registration algorithm presented in

[17] are very close, visual observation of the difference images

reveals that our proposed scheme results in a registered image

of higher quality.

In the second set of experiments, we evaluate the watermark

detection performance with the proposed registration tech-

nique. The original image used in the experiment is shown

in Fig. 5(a). In this image, we embed a spread spectrum water-

mark consisting of a pseudorandom noise sequence, , that

is uniformly distributed between integers 5 and 5. The seed

for the watermark generator serves as the unique watermark

key. As a desynchronization attack, the watermarked image is

then geometrically distorted using Stirmark (a bending factor
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Fig. 9. Registration example with radial distortion and projective motion. A straight line is drawn on top of both images to show the radial distortion. (a) Reference
input image. (b) Current input image. (c) Difference image between (a) and (b). (d) Difference image after applying the proposed registration technique.

of 0.3, which is consistent with real-life attacks is utilized). The

resulting distorted image is then registered to the original image

using the proposed registration technique and the watermark

is extracted from the registered image, using the original

image, in a nonblind detection scenario by correlating the

extracted watermark obtained as the difference of the

original and registered images with a pseudorandom sequence

generated with the watermark key (for the correct key, this is

identical to the embedded watermark ). Fig. 6 summarizes

the experimental setup schematically.

Fig. 7(a) and (b) depicts the watermarked image and distorted

watermarked image, respectively. After applying the proposed

registration technique with the input parameters given at the

start of this section, the registered image, shown in Fig. 7(c)

is obtained. Fig. 7(e) and (f) shows initial difference image and

the resulting difference image, respectively. The pSNR values

of the difference images are 16.11 and 29.46 dB for Fig. 7(e)

and (f), respectively.

We evaluate the efficacy of the registration process for recov-

ering from geometric distortion attacks by considering the dif-

ference between the response to the correct watermark key and

to other random watermark keys. A clear separation between

these is preferable in order to obtain good probability of detec-

tion at a low false alarm rate [26]. Fig. 8 shows the watermark

detection results for the undistorted watermark image, Fig. 7(a),

distorted watermark image, Fig. 7(b) and the registered image,

Fig. 7(c). In each case, the evaluation considers the watermark

detection process utilizing the correct key and 499 other random

keys. As shown in Fig. 8(a), when there is no Stirmark attack and

registration, correlation of the original watermark with itself is

very close to 1, which is 0.995, as expected and the response

to random keys is close to zero. When there is Stirmark attack

and no registration, watermark is extracted from distorted wa-

termark image. Fig. 8(b) shows that correlation of the extracted

watermark with pseudorandom sequences with random water-

mark keys is statistically indistinguishable from the response to

the correct key (indicating that the attack would be effective).

Fig. 8(c) shows the correlation detector responses after the dis-

torted watermark image is registered using the proposed regis-

tration scheme. We see that in this case, the correlation of the

extracted watermark with the pseudorandom sequence gener-

ated with the original watermark key is almost 12 times higher

than the correlation with pseudorandom sequences generated

with arbitrary watermark keys. Therefore, we can conclude that

under Stirmark attack, our proposed registration scheme pro-

vides a very high quality registered image, and helps to detect

the original watermark in a reliable way.

B. Compensation of Camera Lens Distortions

In this section, we test the performance of the proposed

registration scheme under another locally varying spatial geo-

metric distortion, i.e., “radial distortion.” Due to manufacturing

limitations and imperfections, all imaging devices introduce
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Fig. 10. Registration example with radial distortion and affine motion. A straight line is drawn on top of both images to show the radial distortion. (a) Reference
input image. (b) Current input image. (c) Difference image with feature-based global alignment. (d) Difference image by applying the proposed registration tech-
nique.

some nonlinear distortion in captured images. Radial distor-

tion is one of the most severe nonlinear distortions observed,

wherein image points are displaced with respect to their ideal

positions—inward or outward along the radial direction from

a center [27]. If the radial displacement is outward, then the

distortion is called pincushion. Otherwise, it is called barrel

distortion.

We present here two experiments to demonstrate the per-

formance of the proposed local registration technique in the

presence of radial distortion. In the first experiment, we cap-

tured two images by panning a low-end digital camera mounted

on a tripod. Both images contain barrel distortion as shown in

Fig. 9(a) and (b). In the second experiment, we captured two

other images from a different scene by changing roll angle

of the same camera, i.e., by rotating the camera in the image

plane. Fig. 10(a) and (b) shows the input images captured for

the second experiment, which contain less amount of radial

distortion than the ones used in the first experiment, though the

amount of camera motion is larger in this case.

In both experiments, we utilize the following parameters

in the adaptive-filtering based registration technique. Size of

the adaptive filter is set to 13 13. The adaptation step-size

and block size for the block-LMS are respectively, 0.2 and

(3 3). Hilbert curve is utilized to scan the input image as

explained in Section II-E. For the first experiment, Fig. 9(c)

and (d) show the difference image between the input images,

and the resulting difference image after applying the proposed

registration method, respectively. The pSNR of the resulting

error image using the proposed technique is 31.63 dB. When

c-scan (L-R on row 1, R-L on row 2, L-R on row 3, etc.) is used

as the image scan order instead of Hilbert curves in the adaptive

filtering framework, pSNR of the error image decreases to

28.59 dB. As observed from Fig. 9(d), the registration error

is concentrated mainly in the regions of the tree leaves. This

arises primarily because of independent motion of the leaves

between the exposures.

In the second experiment, in order to handle the larger camera

rotation, suitable initialization of the adaptive filter support is

required. For this purpose, a pseudoperspective motion model

(i.e., eight parametric model) is estimated using image feature

point correspondences that are determined using a feature detec-

tion and matching algorithm [25]. The estimated motion model

parameters are used to initialize the adaptive filter support as de-

scribed in Section II-E. Subsequently, the adaptive filter is up-

dated by applying the proposed registration technique following

the image scan order. Fig. 10(d) shows the resulting difference

image by applying the proposed registration method. Fig. 10(c)

shows the difference image obtained using the (global) pseu-

doperspective motion model.

The pSNR values for the error images obtained with the

global pseudoperspective model and the proposed technique are

34.0 and 36.53 dB, respectively. This illustrates the advantage
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Fig. 11. Registration example of multiview images with nonparametric local motion. (a) Reference input image. (b) Current input image. (c) Difference image with
gradient-based global alignment. (d) Registered current image with the proposed registration technique. (e) Difference image by applying the proposed registration
technique.

of the proposed method. Furthermore, when c-scan is used as

the image scan order in the adaptive filtering framework, pSNR

of the resulting error image decreases to 34.5 dB, which shows

the improvement provided by the Hilbert curves.

C. Registration of Multiview Images With

Nonparametric Local Motion

In this section, we evaluate performance of the proposed local

image registration technique in a multiview capture scenario

where image motion cannot be modeled by a parametric motion

model. Fig. 11(a) and (b) shows two input images that are cap-

tured by a moving digital camera. The scene consists of multiple

objects at different depths and is, therefore, nonplanar. Con-

sequently, parametric global registration models intended for

planar scenes are inadequate.

We initialize the support of the adaptive filter (see Sec-

tion II-E) at the first pixel in the scan order using a hierarchical

parametric registration algorithm [11].1 The adaptive filter

is then updated following the scan order, using the proposed

registration technique. Fig. 11(d) shows the resulting registered

image using the following set of parameters in the adaptive

filtering framework: 1) adaptation step size is set to 0.2, 2) a

constant size adaptive filter (13 13) is used in the adaptation

process, 3) block size for the block LMS is set to (3 3), and

4) Hilbert Curve is utilized to scan the image.

When the parametric registration algorithm [11] is applied

globally, the registration error image shown in Fig. 11(c) is ob-

tained. The pSNRs of the error images with global alignment

and the proposed registration method are 20.60 and 29.40 dB,

respectively, which demonstrate the improvement with the pro-

posed method. For comparison, the proposed registration tech-

nique is also applied using a c-scan order, which produces a

1Due to the highly textured image content, feature matching performs poorly
here so estimation from feature correspondences is not employed.
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pSNR of 27.39 dB. We also compared the proposed technique

with the hierarchical Lucas–Kanade technique [10]. For this

case, the best pSNR obtained for the registered image is 25.57

dB, which is obtained with a window size of 9 9 (i.e., number

of pyramid levels is 3).

We observe that the filter coefficients do not satisfy the

“single peak” criterion (see Section III), in regions where there

are occlusions. Because this occurs only in a small number of

pixels, the visual and PSNR performance are not significantly

affected.

V. CONCLUSION

In this paper, we propose a new local image registration tech-

nique based on an adaptive filtering framework that can handle

smooth spatial variations in registration. We show the effec-

tiveness of the technique both visually and numerically in a

number of application scenarios. Experimental results demon-

strate that the proposed technique can be used to register im-

ages perturbed using Stirmark (for the purpose of watermark

recovery), images with radial lens distortion, and multiview im-

ages with small camera motion where parametric models are

inadequate. In these applications, the technique offers signifi-

cant improvements over global registration alone and over other

common local registration techniques.
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