
Local in Time Existence for the Complete Maxwell Equations 
with Monotone Characteristic in a Bounded Domain (*). 

ALBERT MIL• (Torino) 

S u m m a r y .  - The complete system o] the quasi.linear Maxwell equations with monotone char- 
acteristic in a bounded domain is studied. Eollowing Kato's theory in [14] /or quasilinear 
hyperbolic systems, existence and uniqueness o] a local regular solution is established. 

l .  - I n t r o d u c t i o n .  

In this paper we are concerned with studying the complete system of Maxwell's 
equations with nonlinear magnetic characteristic in a bounded region of space: we 
are in front of a nonlinear hyperbolic evolution problem in a bounded domain of R 3. 
Resorting to the usual vector and scalar potentials for the electric and magnetic 
fields, Maxwell's equations can be transformed into a second order quasi-linear 
hyperbolic system. For such systems many results have recently been obtained 
when the problem is set in the whole space (see for instance KATO [12, 13], ttUGm~S- 
I~ATO-I-'V[ARSDEN [9], FisctLER-IV[ARSDEN [5], I-IuGttES-]~[ARSDEN [10]); results on the 
problem in a bounded domain were first obtained by KATo in [14]. I t  is the aim 
of this work to show that  under physically reasonable assumptions on the behavior 
of the magnetic characteristic Kato's method can be applied to Maxwell's equations; 
more precisely, we consider a homogeneous ferro-magnetie medium and neglect 
hysteresis phaenomena, so tha t  the nonlinear characteristic can be assumed of 
monotone type with asymptoticMly linear behavior; we also assume that  eddy 
currents are everywhere present, that  is the conductivity is stricly positive. The 
hyperbolic evolution equation into which Maxwell's equations are transformed is 
solved using Kato's theory in [14]: the solution we obtain is local in time, though 
regular in space; we hope in the future to investigate the problem of global existence 
(general results at this regard can for instance be found in MATS~U~A, [17]) and 
study the existence and behavior of weaker solutions. Our motivations in estab- 
lishing these results lie also in the study of a related singular perturbation problem: 
since in tlle study of electromagnetic devices it is usual to neglect the effect of 
displacement currents, the Maxwell equations describing the electromagnetic field 
reduce to a parabolic system, which, as it happens in other physical situations (for 

(*) En~rata in Redazione il 5 febbrMo 1982. 
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instance with compressible and incompressible fluids, see KLAI~ER~N-MMDA~ [16]) 
ma y  therefore  be seen as ~ " l i m i t  s y s t e m "  of the  complete system at  the  vanishing 
of the  dielectric constant .  Such convergence is fair ly easy to s tudy in the  l inear 
case (see [18]); we hope in the  ~uture to give some results for the  non linear case 
too. The corresponding quasi-s tat ionary equutions have been considered in [20] in a 
more complex kind of domain under  slightly different boundary  conditions, and 
the  convergence process may  be controlled wi th  tecniques analogous to  those used 
by  KLAI~ER~A~W and ~/[AJDA in [15]. 

The au thor  wishes to  express his grateful  thanks  to Professor Tos lo  KAT0 for 
his kindness in very  helpful discussions. 

2. - The differential system and the electromagnetic potentials. 

Let  /2 _c R ~ be a bounded open domain with a sufficiently smooth boundary  ~/2, 
and n be the outward  normal  to ~Y2. We consider the  complete system of Maxwell's 
equations 

(2.1) ~D ~--y + ] -  curl H ---- 0 

OB 
(2.2) ~--~- + curl E = 0 

(2.3) div B = 0 i n / 2 .  

(2.4) div j : 0 

(2.5) j = ~ E  D = ~ E  H = ~ ( B )  

(2.6) B(0) : Bo E(0) : Eo 

(2.7) n •  = 0 on ~ 2 ,  

where a and s are posit ive constants  and ~: R a -> R a is a non linear funct ion;  the  
to ta l  charge in Y2 is supposed to be null. I t  is well known tha t  if as usual div B0 = 0 
and n ' B o =  0 t hen  (2.2) and (2.7) imply (2.3) and the  condit ion 

(2.8) n . B  -~ 0; 

also, (2.4) is a consequence of (2.1) if div E0 = 0. 
I t  is well known as well t ha t  (2.2) and (2.3) imply  the  existence of vector  and 

scalar potentials  P and  ~ such tha t  

(2.9) I B = curl P 

[ E = - -  P ' - -  V~ 
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(we set P ' =  ~P/3t and similarly); we notice t h a t  the  boundary  condit ion 

n •  

should be imposed in accordance to (2.8), and tha t  P and 9 can be so chosen t h a t  

(2.10) d i v P  + e~'-}- ~ = O; d i v P  = 0 on ~/2 

(we shall give in Appendix A a more detailed account  on how P and ~0 can be 

determined in the  frame of suitable Sobolev type  spaces). 
Subst i tu t ion of (2.9) into (2.1) yields, recM]ing (2.5) and (2.10), the hyperbolic 

sys tem of equations 

(2.11) sP" + P' + curl ~(curl P)  -- V div P = 0 

together  with the b o u n d a r y  conditions 

(2.12) 

and initial conditions 

(2.13) 

n •  = 0 

div P ---- 0 
on ~ 

_P(0) = P0 where curl -Pc= Bo 

P ' (0)  = P1 where P1 = - -  Eo .  

RE~A~I; 1. - Condition (2.10) relat ing potentials  P and ~ is ra ther  a rb i t ra ry  
and, as a ma t t e r  of fact,  is not  sufficient to characterize ei ther  P or 99 (see Ap- 
pendix A). In  [20] the  condit ion div P ~- 0 in all of Y2 was imposed; here  however  
such condition would give rise to unnecessary tecnieM difficulties. 

We shall t r y  to  solve Problem (2.11)+(2.12)+(2.13) making use of Kato ' s  theory  
of integrat ion of quasilinear hyperbolic equations of evolution (see [14]). To this 
aim we t ransform (2.11) into a first order equat ion in t ime:  let  T be the non linear 

operator  defined by  

and A the  mat r ix  

Yw : --  curl ~(curl w) -- V div w 

where g-~ l/s; equation (2.11) is then  equivMent to 

(2.14) u '  + A U = 0 
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where U = {y, ~} is a vector  unknown. The init ial  condition 

(2.15) ~(o) = Yo 

is added to (2.14), where Uo = {Po, P~}, while conditions (2.12) will be accounted 
for in the  request  t ha t  P ( t ) e  ~)(A). 

3. - Functional spaces, assumptions and the main theorem. 

We shall consider the  following spaces: 

Ho = L~(f2) = (L~(/2))~; H ' ( f2)  = (H~(9))3; 

H1 = {u e Hl(.O)[n x u = O} 

H , ~ - - - - { u z ( H ~ ( D ) ) ~ l n •  d i v u = O  on ~ ) ,  m - = 2 , 3 , 4 .  

We have then  (DuvAu~-LIo~s, [3]) t h a t  

{ u e ( ~ ( E ) ) ) 3 ] n •  0} is dense in Hi;  

H1 ---- (u e L2(gO)]eurl u e L2(.(2), div u ~ Z~(~2) ; n •  = 0} 

(we recall t ha t  if u E L~(9) is such tha t  curl u ~ L2(f2) too, then  n • u is well defined 
as an element  of (H- �89 and by  Friedrichs '  inequal i ty  (Fn~ED~ICHS, [7]) 

[u[~ -= i]curl u]t~(~)+ I[ div q~]lL.(.(3)2 

is a norm in //1 equivalent  to the  H ~ one; not ing then  for m > 1[. [~ the  usual H ~ 
norm in H~, we shall assume tha t  

]u]j<Iu]j+~, j = 0, 1, 2, 3 .  

We define then  for j ---- 0, 1, 2~ 3 

x~= H~+~• II~][~= I~l~+l+ typic, ~ = { ~ , ~ } e x ~  

Y j :  H j + I •  j = 1, 2, 3 

(we shall occasionally write X = Xo, Y = :Y~). 

~:EMakRK 2. - -  We have chosen the  scale of Hi lber t  spaces Ho, ..., H~ in accordance 
wi th  Kato ' s  theory,  in which the  highest  index s -~ 1 (here s ~ 1 = 4) is related 
to  the  space dimension n (here n = 3) so t h a t  s > n/2 -p 1. In  par t icular  this means 
t ha t  H~-~(~J) is an algebra under  pointwise multiplication. 
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We make the following assumptions on the function ~: R3--> R3: 

a) $ is a strongly monotone, asymptotical ly linear function, and the derivative 
of a convex function F: R3--> R, t ha t  is 

(3.1) Vx ~ R ~ , ~(x) ---- (~V)(x) 

(3.2) Vx, V y e R  3, (~(x)--$(y),x--y)>lix--y]2 , l > 0 ;  

b) ~ has continuous uniformly bounded derivatives up to the  4th order at  
least, and ~' is nniformley positive definite, t ha t  is 

(3.3) Vx e R~, il~<~'(x)ll <a~ ,  ~ = 1, 2, 3, 4 

(3.4) Vx, Vy eR~,  (~'(x)y, y)>rlyl 2, 7 > o ,  

(so t ha t  actually (3.2) is a consequence of (3.4)). As an example of such ~, in FAS- 
SILO, [4], the following was considered: 

x 

r = ~(txI) 

where for t ~ R, a(t) ~- t -~ arctan t. 
As for the initial conditions (2.13) we shall assume the following: 

(3.5) Uo = {Po, P~} e ~ ;  

also, defining 

/)~ = %[curl ~(curl Bo) -- V div Bo -~ 6/~] 

/)3 = g[curl ~'(curl Po) curl _P~-- V div Pa + aP~] 

2~---- % curl[~"(curl Po)(curl/)~) curl/)~ -~ ~'(curl Po) curl P2] -]- ~[-- V div/)2 -~ aP~] 

we require t ha t  

(3.6) n • : 0 ,  j < 4 

(so t ha t  by  (3.5) _Pj~H,_j, 0 < j < 4 ) .  

R ~ A ~  3. - Conditions (3.6) are the so called ((compatibility conditions ~>; 
though rather  awkward, t hey  are natural ,  in the sense tha t  if P were ~ regular solu- 
t ion of (2.11)-~(2.12)~(2.13), then  _P~: [-- d(J)~/dt~](O), 0 < j < 4 ,  so tha t  (3.6) are a 
consequence of the  first of (2.12). 

We are now ready to show tha t  under the above made assumptions the system 

1 6  - A n n a l i  di  Malemal ica  
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of ~[axwell 's equations described in section 2 admi t s  a regular  solution at  least  for a 

short  t ime  (local existence);  more  precisely we s ta te  the  following 

T~EOnE~ 1. - Under  the  hypotheses  (3.1), ..., (3.6) there  exists a posi t ive nmn- 

be t  ~ such t h a t  p rob lem (2.11)-~(2.12)q-(2.13) has u unique solution P ~  C~ ~; 
~,)  r~ r ~; H~). 

4. - Proof  o f  Theorem 1:  general  out l ine .  

The opera tor  T defined in section 2 has the  explicit  expression 

3 

id = 1 

where ~ , =  ~/~x~ and ~ j u  = {~3~ua}, h = :l, 2, 3; the  a ,  are 3 X3 real va lued  
matr ices ,  depending on curl ~, which can be explicit ly wr i t t en  by  a s t ra ight forward  

calculation: se t t ing  f~ -=  ~- (curl ~) : =  ~,/~yj](y = curl u), we have  

0 l ~ - l = l  & o I~,] & - l ~ l  

0 /~ -/~ 

a21 = --  1 0 , a22  : 

- & 0 &  [ ! & - & ~  

0 --1 0 , a23=  _0 0 --1 

i1~ o - t l~ l  & G o 

asl = 

o - & & t & o - & 

o f l ~ - &  , ~ 3 ~ = [ - &  o /11 

--i 0 0 0 --i 0 

,:2 ,:1 :L 
a~3 = ]12 - -  ]11 

o o - 1  f 

We notice t h a t  by  (3.1) ] ,  : ]j~, so t h a t  a~ j=  tail. 
2" is therefore  a quasiqinear  operator ,  which we can write 

3 

T(curl  u)u : ~ a . ( eu r l  u) ~i~ju �9 
i f i = l  

Let  now W_cX3 be a bounded  open set and  for w = {a, a} a W consider the  
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linear operators (depending on w) 

3 

Lu  = L(curl 6)u : =  ~ a~.(curl a) 3~ ~ u .  
i , j = l  

I] L -1  X = X(w) :=  

The theory of integration of the quasi-linear equation 

~ ' +  A(U) u = o 

is based upon a fixed point tecnique: more precisely one first solves for each fixed 
w e W the linear equation 

v '  + A(w) U = 0 

therefore constructing a correspondence u = r then  sufficient conditions are 
seeked to assure tha t  r have a fixed point (in a suitable metric space) which is the 
solution of (2.14). To achieve this, KATo has shown in [14] tha t  it  is sufficient to 
prove the following properties of the operators A(w): 

Tm~o~E~ 2. - A(w) e g ( X ~ ,  1, fl), where f l > 0  is a suitable constant  and X .  
is the space X with  an equivalent norm depending Lipsehitz continuously on w in 
the X2 norm. 
(We recall tha t  ~(X, 1, fl) is the family of generators of Co qua.si-contractive semi- 
groups on X,  see [11]). 

TItEOI~E~ 3. -- :For k ~ 1, 2, 3, there exist strongly continuous ~nd locally 
bounded maps 

3--/c 3 - - k  

F~: W• F[x~-+U~(y~+j ,  xj)  
J - 2  J=O 

such tha t  whenever w e E~(O, T) and w(t) = {~r(t), 5(t)} e W, 

d~ 
(4.3) ~ A(w(t)) = F~(~(t),..., ~ ( t ) ) .  

Moreover the following est imate holds: 

(4.4) Vw, Vwre W, IlA(~)- A(wr)lls ~l]iw-- ~'lf0. 

Here we have set, given a positive number T: 

E~(O, T) = {vlv(J)eL~(O, :F; X3_j)}, j = 0, ..., k .  
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T~EORE~Z 4. -- Vw ~ W, A(w) is elliptic in the  sense tha t  ~ ) ( A ( w ) ) =  Y and 
Vj = 0, 1, 2, if r  Y and A ( w ) r  then  r eX,+~ and 

(4.5j) [!r162 [lr u >  o.  

We shall therefore prove Theorem I by  proving Theorems 4, 2 and 3 subsequently.  

5. - P r o o f  o f  T h e o r e m  4. 

Let  w e W and L = L(curl  a) be defined as in the  previous section (from now 
on we shall not  write the  correspondence on curl a explicitly). We claim thut  

L E n A  1. - Vw E W, L is s trongly elliptic in the  sense t h a t  

3 

i , j= l 

(matr ix inequali ty).  Moreover, the boundary  conditions (2.12), t h a t  is n X u  = 0 
and div u = 0 on ~Y2, are complementing.  
(See MORREu [21], or AG~Io~-DOUGLIS-:NZRE~ERG, [2], for the  terminology.)  

PROOF. - We write 
$ 

2~ l.(x, a)u; 
i , j ~ l  

ZU = 
i = 1, 2, 3 

and recall t ha t  (5.1) is equivalent  to 

3 

(5.2) ~ = - ~ ~.(x, $ )~d ;>~ , [~ l , l $ t~ ,  
~,J=l 

A straightforward calculation shows tha t  

V2, V$ e R a .  

= ($'(curl a)(2 x$) ,  ;L• + [;l.$[ ~ 

so tha t  by  (3.4) we get (5.2) with N I =  rain (y, 1). 

Consider now the  matrices B(x, $) of the boundary  conditions and Hl~J(x, $)]t 
adjoint  to  lll~j(x, $)ll. We have (for instance) 

0 n3 -~ $3 - -  n~ 

o ~ - -  n 1 

$~ 



AL]3ERT 1V[ILANI: Local in time existence for the complete, etc. 241 

( n j =  j - th  component  of the normal  vector  n to ~D). If now 0 = (0~, 0~, 0) and 
n = (0, 0, 1) are vectors t angent  and normal  to ~D at  a point  xo, to show tha t  the 

boundary  conditions are complementary  it  is sufficient to show tha t  the  ma t r ix  
llQ**(xo; O;z)]l, considered as a polinomial in z, has rank  3, where 

3 

Q~(Xo; 0; z) -= ~ B,j(x0; 0 @ zn)lr 0 + zn ) ,  
j = l  

z ~ C .  

I t  is immedia te  now to check tha t  

det/iQ~il = z a c t  [IZ~ql 

which for z ve 0 cannot  be zero because of (5.2). 
Consider now the elliptic problem 

(5.3)  

L u  --= / in .(2 

O] on ~ 
div u = O ] 

since w e W, curl a e H~(~9) which is continuously imbedded in C1(~) by  Sobolev's 
imbedding theorem (see ADAms, [1]); the  coefficients of L are therefore at  least 
C1(~), so t ha t  by  classical results ([21], [2]) we have tha t  

(5.4) 

(5.5) 

9(L) = Ha 

[ulj+2<<q{ILul~ + lulo} , j = o, 1 .  

We would now also need the es t imate  

(5.6) ful,< c~{{Lu[~ + [u]0} 

for which, to our knowledge, there  exists no proof yet .  In  [19] we give a general 
result  on elliptic systems which would yield (5.6); the  boundary  condition ule ~ = 0 
is considered there,  bu t  i t  is not  difficult to adapt  the proof to the  present  situa- 
t ion as well. In  appendix B we give a brief sketch of such proof. 

The conclusions of Theorem 4 are now an immediate  consequence of (5.4), (5.5) 

and (5.6). 

6. - P r o o f  o f  T h e o r e m  2. 

We shall show tha t  the  strong ellipticity of L is a sufficient condition (in fact ,  
i t  is also necesSary) for the existence of an equivalent  norm in H1 with respect to 
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which - -  A generates  a quasi -contract ive  semi-group on X. As a first step,  a 4irect  

computa t ion  shows t h a t  

LE~g~A 2 (on in tegra t ion  by  parts) .  - For  all p ~ C~(~), Vu ~ H~(~2), Vv a t l l  we 

h a v e  

(6n) 

where 

fL(p)~'v = f r  our'1 u. curl ~ + ~(p ; ep; cur~ ~, ~) +fair u. div v 

f ~-11 
i~(I,P-,3) 

and  a(1, 2, 3) means  the  set {1, 2, 3} modulo 3, t h a t  is 3 + 1 ---- 2 + 2 ~- 1, 3 + 2 -~ 2 

and  so on. 
Le t  now w = {a, (?} ~ W be fixed, and  set p = curl a. Define on H~ the  bil inear 

fo rm 

B(p; ~ ,  ~ ) : -~ f$ ' (p )cur l  ~vl.curl F~ + f d i v  W~. div v~: 
52 

because of (3.5) and  (3A) B is a cont inuous coercive fo rm on H~, t h a t  is there  exist  

posi t ive constants  a and  b such t h a t  

(6.2) 

(6.3) B(p ;  ~, V,)>bly~l~ 

((6.3) is <( Garding 's  inequal i ty  5 which is equivalent  to the  s t rong ell iptici ty o f  L). 

We  define then  a new norm in X,  depending on w, by  

(6.4) i ( % -  yJ)ll~ : =  B(p; yJ, ~f) + elv~]~: 

because of (6.2) and  (6.3), (6.4) defines an equivalent  norm in X, t h a t  is we can find a 

posit ive cons tan t  v (depending on a~ b, s but  not  on w) such t h a t  

(6.5) vii" fl0< 11" i]w <v- i l l  "tl0 �9 

We give now two l emmas  concerning the  regular i ty  of the  dependence of the  

norm on w; for the i r  proof we follow closely [9]. 

I .~2~A 3. - V~ e ~1, Vw = {~, ~} e W, Vv = {e, ~} e W we have 

(6.6) ]B(P; ~, W)-- ~(q; W, w)l<~lllw-- ~I]=t~l~ (q = c~r~e) 
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so that  Vu---- {~, r e X 

(6.7) 

< e~flp - qllcurl ~1' + f l d i v  vl '  
D 

(we recall that $' is Lipschitz continuous). Now [p--q[<][p--qIIvo(~)<c~[p-q[~< 
<c~Ia-~t3,  whence (6.6) with k~----max (1, c2 c3). 

b) IIl~lL~- llult~l = IB(p; w, ~ ) -  B(~; v', w)l<k~ltw - vh lw/~< ,~Jw-  vtl:!l~]t~ and 
therefore, rec~lling (6.5): 

k~ 

whence (6.7) with k~= kl/2P. 

L~,~-v~z)_ 4 (on the Lipsehitz continuity of il" 1t~). - There exist positive constants 
~ / ~  such that  

(6.8) 

(6.9) 

where 

a(ll" L, H" [l~)<~i/v - wL 

m xfsn  II~II~ II~Ll e(il ii. I/ a snp/l lloj 

�9 i ' ! PI~OOF. a) by (6.5), both liull~llu!lo<lfv and [uliolllull~<ll~ whence (6.8) with 
for instance ~ = ]n (l/r). 

b) from (6.7) we get 

whence (6.9) with / ~ = k 3 ,  noticing: thut for y>0 ,  In (1 ~ y)<y .  
We are now reudy to prove Theorem 2 using Hille-Y0sida% Theorem. 
Since O(A(w)) =- :Y is dense in X,  it is sufficient t o  prove t.hut 

(6.10) 

(6.11) 

3fi > o, V), > fl, A(w) -4- )~ h~s a Continuous inverse satisfying 

1 
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To prove the  invert ibi l i ty of A(w) § 4 we consider the  equation 

A(~)u + ~u = r  r = {v, ~} e x ,  u = {v, ~} e ~(A(~)), 

tha t  is the  system 

(6.12) 

Now by  the ellipticity of L the problems 

Lui § ~]#i = 

div u~ --= 
on ~/2 

nXu2 : ~} 

div u2 ----- 
on ~.(~ 

have unique solutions u~ ~nd ~2 if ~ is sufficiently large, say ~ > ~o. 
Taking B = 4(1 + e?O, the  pair  

solve (6.12) and moreover {W, v~} s ID(A(w)). We can therefore conclude that  A(w) § 4 
is invertible if 4 > fl~---- (-- I § V~l § 4s~]o)/2e (for this tecniqne see YOSIDA, [22], 
ch. XIV).  

To prove (6.11) we show tha t  there  exists f12> 0 such tha t  

(6.~3) vw e w, vu e ~(a(w)), V4 > A ,  [!(A(w) § 4) uli,> (4- A) iluL. 

B y  Schwgrtz's inequal i ty we have: 

lJ(A(~) + 4)~LII<I~> ((m~) + 4)~, @~= B(p; (-- ~ + 4V), ~) + 

By (6.1) we have therefore 

= --f~'(p)curl v~. curl W - - f d i v  r  F -~ 
.o 9 

+ 4B(p; % ~) +fLF.(~ + [(ol2o§ s41(v]~. 

Ji (A(w) § 4) uLil uL >/-f~1(p) curl ~. curl ~ § 4B(p; W, W) § 

+fr curl W.curl ~ + ~(p; ep; curl y, 0) § ),elv~]; 



ALBEI~T MILA~I: Local in time existence /or the complete, etc. 2~5 

now by (3.1) ~'(p) is symmetric;  moreover 

1 ~2c 

and therefore, sett ing fl~ = c~c/2~ ~- we get 

whence (6.13). (6.11) is now an easy consequence of (6.10) and (6.13), taking fl ---- 

= max (fl,, fl~). 

I%~ARK 4. -- We emphasize the fact  tha t  hypothesis (3.1), tha t  is ~ ' =  3if, is 
essential in proving Theorem 2. Such hypothesis is n~turally related to the  con- 
servativeness of the physical system, so t ha t  some kind of energy inequali ty holds 
(see section 9). 

7. - Proo f  o f  T h e o r e m  3. 

a) for k = 1, 2 ,a  let D ~ %  := a~ (~ )e  ~(R~; R~), 'r (R~)~§ for v =  (a, ~}eW,  
x = {~o, r e X~, y = (~, ~} E X l ,  ~ = {~, ~} ~ Xo, l e t  ~ = c~r l  ~, r = c u r l  ~, t = c u r l  ~, 

u = curl F; define then  

h(s, r, t) = ~: ~ra(~'~s,j, ,r ,  r) + 4~)(s, t)] 3, 3, 

a (~)~~ t) -b a(~)(s u)] 3,3j t~(s, r, t, ~) = ~: [a'2(~, ~., ~, r) + ,, ,~, ,., ,, , 

and consequently for k = 1, 2, 3 

F k =  0 0 . 

g]l~ 0 

Proof of (4.3) i~ immediate  from the definition of the  F~; to prove tha t  the image 
3--k 

of pk is actually in ~ ~(Yj+~; X~) requires only a lenghty but  straightforward ap- 
~=0 

plication of the chain rule of differentiation and the Sobolev imbedding theorems, 
recalling assumptions (3.3). 

b) let as usual w = {~, if}, w ' =  {r ~o'}, p ----- curl a, q = curl o. For u ----- {W, V ~} ~ Ya 
we have 

I ] A ( w ) u -  A(w')u[!o = [i ~ [ai~(p)-  ai~(q)] ~3j~lo<clc~LID2yJ[]eo(5)I p - qIo• 

whence (4.4) (the first of the ~bove inequalities follows because $' is Lipschitz). 
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8. - P r o o f  o f  T h e o r e m  1: conc lus ion .  

Theorems 2, 3 and 4 above show t h a t  assumpt ions  (Q.1), (Q.2~ and (Q.3) of }i~ATO 

in [14], section 4.1 are met .  Hypotheses  (3.5) and  (3.6) assure t h a t  the  ini t ial  value 
Uo = {Po, P1} satisfies tile compat ib i l i ty  conditions (Uo ~ M in K a t o ' s  terminology).  

To app ly  his Theorem 4.4 and  conclude the  proof of Theorem 1 we still have  to  show 
t h a t  the  set  E defined below is not  e m p t y  (E is the  ac tual  space in which the  fixed 

point  a rgumen t  is carr ied out.). The re fo re  we prove  

L E ~ Y S I A  5 .  - -  The set 

= {v e E l (0 ,  T)lJ[v~k~(t) - -  u~H3_~<c~, k = O, . . . ,  3, v~(O)  = ~ ,  ~ = O, 1, 2}  

where u~r {P~, P7.~+1}, PT~ defined as in section 3, e k ~ R  +, co= dist  (Uo, X3~W) ,  is 

not  empty .  

PROOF. - I t  is sufficient to show the existence of two functions u and  ~ such t h a t  

(8.1) ~L(~)e C(R+; H~_~) ,  u(~)(0) = u~ k = 0, 1, 2, 3 

with u~eH4_~ and ~eHa-~(a"2). 

a) g iven ~k, k = 0, 1, 2, 3, consider the  l inear  sys tems  

v" ~- curl  2 v - -  V div v = 0 

(8.3) on OD 
~ t X V  

V(0) = Vo, V'(0) = V, 

u" ~- cur> u - -  V div u = v 

div u = O] 
(8.4) o/  on ~D 

n X @ . ~  

u(0) = ~ o ,  u'(0) = u ,  

'w]~ere Vo =-u2 @ eurl"uo-- V div uo~H~, vl = ua @ eurl~ul - V div u , e  H1. 
~- 1 -b Sys tem (8.3) admi t s  a unique solution v ~ C(R; ; H2) c~ C (R o ; H,) so t ha t  sys tem 

i~+ i + (8.4) has a unique solution u e C(, o ; Hi) (3 C (R o ; Ha). We have then 

u"~ e(R~-; ] t~ ) ,  u"(0) = u~ 

d " e  e ( R + ; / q ) ,  u"(o) = ~ 
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tha t  is (8.1). A similar argument  can be used to show the existence of u satisfying 
(8.1) (see KA~ro, [1~]). 

9. - Cont inuous  dependence  on  the  data. 

I t  is not  ye t  known if continuous dependence on the initial data holds from 
//4 •  into itself (for a result in this line see HIJGI{ES-2C[ARSDE:N, [10]). I t  is easy 
however to prove such dependence in the  larger space H1 • H0: this is to be expected, 
in relation to the  val idi ty of an energy inequali ty for systems in conservation form 
such as (2.11). More precisely, noting (-,-) the  usual scalar product  in L~(f2), we 
get  from (2.11) 

e(P' ,  P') @ a(P', P') § (curl C(eurl ]P), P ' )  -- (V d i v P ,  P ' )  = 0 

from which, recalling (3.1) and (2.12): 

1 .  1 d ]/),(t)]o2 § alp,( t ) ]~§ ~ 2 ~ e ~  (curl P(t))  § ]div ~P(t)lg 
D 

and integrating 

= 0 ,  

t 

~lP'(t)l~+ 2@P'(t)lg § 2fF(curl P(t))+ la~ P(t)lX = ~I-~IX§ 2f~'(eurl.o) § Idiv P~I~. 
0 .Q f2 

From (3.2) we can deduce tha t  

in fact,  

_1 llcurl p(t)[o ~ § (C(O), curl P(t))  fF(curlp(t))>fr(o) +2 
x2 

1 1 1 

F(y)--F(o) = f~(czy).y d~ = f ~ (C(~y)--~(O)).~y da + fc(o)'y d~; 
0 0 0 

now (~(0), eurl P(t)) = 0 because ~(0) is constant  and n•  0, so that we get 

e lP'(t) I~ @ llcurl P(t)to ~ @ tdiv P(t)1~ < elPl[~o + 2f(F(curl Pc) -- F(0)) + Idly Po]~ 
$2 

as above we can then deduce that ,  since ~ is Lipschitz continuous, 

@r(curipo) ~'(o))<• 
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so t h a t  we finally come to 

el.P'(t) Io ~ + / I c u r l  P(t)i~o § Idiv P(t)t~ ~< el~x] 2 § L[curl Pol~ § [div Po ]~, 

which shows the  asser ted cont inui ty .  

RE~IARK 5. - I t  would also be possible to consider the  case of non homogeneous 
bounda ry  conditions, or more  complex kinds of domains.  I n  such cases equat ion 
(2.11) would become non homogeneous,  bu t  it  could still be t r ea ted  wi th  the  me thod  
devised b y  KATO in [14]. 

Appendix A. 

1. - We recall here the  definitions and  proper t ies  of some Sobolev t ype  spaces 
in which the  differential  operators  curl and  div can appropr ia te ly  be dealt  with. 

We  res t r ic t  our a t t en t ion  to  the  geometr ical  s i tuat ion considered in this work, t h a t  

is a s imply  connected open set;  more complex kinds of domMns are considered 
in [20]. A satisfying survey  of the  proper t ies  of these  spaces can be found in FOlAS- 
TE~A~, [6] or in GIr~AULT-RAVIART, [8], to which we refer  for details. 

Considering the spaces 

H(curl ,  ~ )  =- {u e L2(/2)]curl u e L2(~9)} 

H(div,  9 )  = {u e L~(/2)t div u e L~(~)} 

R = {u~ L2(9)Idivu----  0, n . u  = 0} 

G -= {u e L~(/2)]u = Vp, p e H1(/2)} 

V ---- {u e H(curl ,  9 )  r H(d iv , /2 )  [n x u = 0} 

the  following results  hold: 

(A.1) 

(A.2) 

(A.3) 

(A.4) 

R, G, V are dense closed subspaces of L2(9);  

R = Ira(curl) ,  G = ker(curl), L2(9) = G •  R;  

v = (~  e Hl ( /2 )  in • ~ = 0} 

itu:I ~ = lenrl uJ~ § fdiv ~l~ 

is a no rm in V equivalent  to the  H 1 norm (this was used in section 3). 
We also have  the  following 

PROPOSITION 1. - V{h, g} e R X L~(9) there  exists  a uniquely de termined u e V 
such t h a t  curl u ---= h, div u = g. 
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(The proof is easy, considering the  elliptic sys tem 

c u r l u  + Vp = h 

d i v u  : g 

n X u  = 0 

and not ing t h a t  Vp ~ 0 since p is a solution of 

A p = 0  in ~ ,  ~ p / ~ n = O  on ~/2.) 

2. - These results allow us to give a more  precise formula t ion  to equat ions (2.9) 

and  (2.10), supposing B and E to be regular  enough. Le t  h0va 0 be a sufficiently 
regular  funct ion null on ~t2 (for ins tance hoeH~(.(2)n H~o(.Q)) and  let  h and  ~ be 
the  unique solutions of 

(A.5) 

~h" + h ' - -  Ah  = 0 

hl~z = 0 

h(O) = ho, h'(O) ---= 0 

(A.6) 
eg '  ~ = h 

r  = o.  

By (2.3) and  (2.8) we have  t h a t  B ~ R, so t h a t  by  Proposi t ion :1 there  exists  a 
unique vector  / )  such t h a t  

cur l2  ~ = B;  div P = - -  h; n •  = 0; 

by  (2.2), P ' +  E e  ker(curl) = G, so t ha t  there  exists a unique F e HI(~2~/R such t h a t  

P ' +  E ~- - -  VF. We cla im t h a t  a ----- ~ - -  ~ is cons tan t ,  so t h a t  V~0 = V~ and  (2.9~, 
(2.10) hold. To achieve this ,  we first show t h a t  ~ is also the  solution of 

(A.7) 

~(o) = o ,  9'(o) = iho; 

the  bounda ry  conditions and  the  ini t ial  ones are immedia te ly  checked; if now ): 
# ] 

is the  sotution of (A.7) and  h i =  e z' + Z we have  t h a t  shl + h~-- ~lh~ = O, h~f~. o = O, 
and hi(0) = eZ'(0 ) + Z(0) = ho, h'l(0) = sZ"(0 ) + Z'(0) = AZ(0 ) = 0, so t h a t  h, is a 
solution of (A.5) and  hence hi = h. Z is therefore  solution of (A.6) and  hence 
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:Now we have:  

- -  A7~ = div (P '  ~ E) = --  h' ~ --  (e~o" ~ ~o') = - -  Aq9 

n x V ~  = n x V g - -  nxV~o = n x ( P ' +  E,) = 0 

so t h a t  6, being harmon/c  in $2 and cons tan t  on ~ ,  is cons tan t  in all of ~ .  We  

define t hen  2P0 and P1 in (2.13) by  

curl P0 : Bo; div Po = --  ho; n • Po = 0 ; P~ : --  Eo �9 

Conversely, if P is n solution of (2.11)~-(2.12)4-(2.13), defining B = curl P ,  
h = - -  div P, ~o solution of (A.6), E ~ --  P ' - -  V% it is easy to see, using the  same 

tecnique,  t h a t  B ~nd E are solutions of Maxwell 's  equat ions (2.1), ..., (2.7). I n  fact ,  

i t  is sufficient to note  t h a t  

sE'@ a E -  curl H = - -  V(div P @ e~ '~-  ~) 

div E = -- d/dt(div P -~ sqY ~- ~) . 

RE~ARK 6. - The choice ho = 0 would lead to the  charac ter iza t ion  div P - -  0, 
E = - -  P ' ,  which was used in [20] (see also R e m a r k  1). The  homogeneous boundary  

condit ion is a rb i t ra ry ,  and could be replaced b y  hI~ ~ ~ cons tan t  wi th  respect  to  x. 

A p p e n d i x  B .  

W e  briefly repor t  the  me thod  followed in [19], wi th  the  modificat ion needed 

to prove  es t ima te  (5.6) for the  solution of (5.3). The idea of the  me thod  is based 

on proving  t h a t  if the  coefficients of L are not  only of class H 3, but  also of class 
C8(~) (as well as ]), t hen  i t  is possible to get e s t ima te  (5.6) wi th  c~ depending at  mos t  

on the  H a norm of such coefficients (which is in general  not  assm'ed b y  classical 
results~ see  [21] or [2]). Then the  conclusion follows by  a s t andard  approx imat ion  

method.  To achieve this  we separa te ly  consider the  prob lem of regular i ty  at  the  
bounda ry  and  regular i ty  ar the  inter ior  of D. We give here  only an outl ine of the  

proof;  for all detai ls  we refer  to [19]. 

1. - Regula r i ty  a t  the  boundary .  
We  es t ima te  u in H~([2 ch U) where U is an open set such t h a t  U (~ ~D =/= 0. Via 

ehangement  of local coordinates y = Tx we flat ten U (h ~s into F_c  {Ya = 0} (y ----- 

= (Yl, Y2, Y~) are the  new coordinates).  Sys t em (5.3) becomes 

Dv := s ~- By(y) = ](y) 

(B.1) vl(y) = v~(y) = 0 1 on /" '  

Pv(y) : =  div v ( y ) -  {gl(y)3,vl(y) -~ cry(y)3~%(y)} = 0 J 



ALB]~I~T h i l L ~ I :  Loca~ in time existence /or the complete, etc. 251 

where ~ ( ~ ) -  q~-~(y)) ,  L = ~ ~.(V)~&, B = ~ A ( ~ ) ~ , ,  ](~)=/(~-~(~)), ~, = [~g/O~d 
(x =fl~-~(y)), g is the  funct ion describing U(~ ~ ;  gi] ~nd fl~ are 3 •  matrices 

which are still of class H a (~ C a if g is sufficiently regular.  
+c 0} be ball centered nt the  origin of the new coordinate :Let now B~_ {y~ > a 

system, and /Y< R. We prove  

a~ most  on the  H a norm of the  coefficients of L. 
(We shall s ta te  this by  writ ing k ~  0).  

SK~TCH 0F P~00]~. - We already know tha t  v ~ H~(~), since the coefficients are 

supposed more regular. Le t  ~eCo(B~)  , 0 < $ < 1 ,  ~ ~ 1  on B~,; let  ~ ~ , v ,  
s # 3. We h~ve t ha t  ~ ~ H~(B~) and since ~ is uniformely elliptic 

Proposi t ion 2 is p roved  by  e~reful es t imat ion of the r ight  side oi (B.2), for 
which we sh~ll give brief details. 

a) es t imate  of Ilnx~ll: on 3B~, ~ ~ 0; on F =  {y ~ F' l ly l<R},  v1= v~= 0 ~nd 
n = (0, 0~ 1) so t h a t  nxS~8~v -~ 0 because rs:/: 33. 

b) es t imate  of IIP~ll : P~ = 0 on ~B~, while on F '  we h~ve (since v~ = v~ = 0) 
P~ = ~ 3 , v a - { - $ ~ a ~ v .  The first t e rm is e~sily es t imated wi th  the  H~ norm 
of v, and the  s~me is t rue  for the  second, since _Pv ----- 0 on]" '  ~ ~v~ --= ~,~v~@ a ~ v ~ .  

c) es t imate  of ll~II and I}B~il: there  is no problem in giving est imates wi th  
*he H ~ norm of v, since B is a first order operator.  

g) es t imate  of liLY/l: we have 

the  second and th i rd  terms can be es t imated  wi th  the  H s norm of ~; as for the  first 
we have 

we es t imate  the  second ~nd th i rd  t e rm as before; as for the fourth,  we notice tha t  
since ~,j and v ~re H a, ~ , ~ ,  and 8~Sjr are //*~-~ L% and therefore their  product  
is in /~2 wi th  

II(o.0,~,,)[a,a,v]II. < ell a. ~0%!ILoil a, ~%o< q=J~II~II.~ 

so that the fourth term also can be estimgted with the H a norm of v and a constant, 
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in 0.  To es t imate  ~ v  we have  f rom (B.1) t h a t  

(B.3) 

n O W  

and 

G + G + 

-----0 

since ~ = 0  on ~B, and  n ~ = 0  on F because s # 3 .  By  a similar  a rgumen t  on 

the  r ight  side of (B.3) we eventua l ly  come to the  iden t i ty  

f~%a.Lvl ~ =f~%~d- ~.$v). ~ L v  

whence the  desired es t imate ,  b y  Schwartz '  inequali ty.  

PROOF. - F r o m  (B.1) we get  

where ~ '  means  s u m m a t i o n  over  all indexes except  ij  --- 33. The s t rong ell iptici ty 

of the  opera tor  L assures t h a t  ~33 is inver t ib le ;  moreover ,  i t  is easy  to  check t h a t  a~-~ 1 

is of class H a and  I [~ l / .=e  O. 

Hence,  f rom 

-~ " :r G G-v)l[m(~) (B.4) II ~ : i I - , < , ~ , > =  I1~ (] - By - ~ '  

we conclude the  proof, since b y  Proposi t ion  2 we a l ready have  an  es t imate  of the  

r ight  side of (B.4) (we recall  t h a t  H ~ is an algebra).  

2. - In te r io r  regular i ty  and  conclusion. 
We  es t imate  u in Hd(tP:), where t2' is an  open set such t h a t  (2 ~ cc  ~ .  The pro- 

cedure is identical  wi th  t h a t  of Proposi t ion 2, and even simpler,  since the  values 
of ~ = ~ r ~ u  on ~ are null (~ a Co(tP) , 0 4 ~ < 1 ,  ~ - - 1  on Y2'). The global es t imate  

(5.6) can now be easily obta ined  considering a finite open covering of .C2 and  the  
re la ted par t i t ion  of uni ty .  The final result  is then  proved  considering the  sequence 
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of p r o b l e m s  

(B.5) 

w h e r e  

n x u ~  = 0 1  on ~ 

d iv  u,~-= 0 J 

g~ = 5 l~(x, ~) 

a n d  17}-+ I ,  in  H ~, ]~,-+ ] in  H ~, w ~ - >  u in  H ~ a n d  a r e  such  t h a t  P r o p o s i t i o n s  2 

a n d  3 h o l d  for  u~ s o l u t i o n  of (B.5). T h e n  {u~} is u n i f o r m e l y  b o u n d e d  in  H4($2), 

t h e r e f o r e  c o n v e r g i n g  w e a k l y  t o  a v e c t o r  Z ~ / /4( f2)  w h i c h  is s o l u t i o n  of 

(B.6) 

L z §  ~x = / § ~u 

n x Z = 0 / on 8~2 

div Z = oJ 
l 

Since  u is o b v i o u s l y  a s o l u t i o n  of (B.6), we h~ve  t h u t  X = u so t h a t  u ~ H4($2) 

a n d  (5.6) holds .  
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