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ABSTRACT

Climate influence on grapevine physiology is prevalent and this influence is expected to
increase with climate change. Climate influence on grapevine physiology can vary depending
on the terroir. A better understanding of these local terroir variations is likely to be achieved
with analyses that use local data; i.e., farm/vineyard data. Thus, the challenge lies in exploiting
farm data to enable grape growers to understand their own terroir and consequently adapt their
practices to the local conditions. In such a context, this article proposes an analytical process
to site-specifically study climate influence on grapevine physiology by focusing on time series
of the weather data often contained in farm data sets. This article focuses on temperature and
precipitation influence on yield in the form of a case study. The analytical process includes
the Extended Growing Degree Days (eGDD) and the Bayesian functional Linear regression
with Sparse Steps functions (BLiSS) methods in order to detect site-specific periods of strong
climate influence on grapevine yield. It uses data from three commercial vineyards situated in
the Bordeaux region (France), California (USA) and Israel. In general, the periods of climate
influence on grapevine yield detected for the three vineyards identified the same stages of
yield development, which have already been studied in the scientific literature. However, some
vineyard differences were observed, including: i) different periods of influence associated with
a given stage of yield development between the vineyards, ii) different influential weather
variables between the three vineyards for a given period, and iii) differing duration of the period
of influence associated with a given stage of yield development between the vineyards. These
results show the potential of the proposed analytical process for analysing the time series of
farm weather data in order to extract site-specific climate indicators of grapevine yield.

m extended Growing Degree Days [eGDD), Bayesian functional linear regression

with Sparse Steps functions (BLSS), yield development, farm data, operational conditions, weather
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INTRODUCTION

Climate influence on grapevine physiology is prevalent
and is expected to increase with climate change (Lobell
et al., 2006; van Leeuwen and Darriet, 2016; Naulleau et al.,
2020; Naulleau et al., 2022). Climate influence on grapevine
physiology can vary depending on the terroir (Matese et al.,
2014; Fraga et al.,2016; Neethling et al., 2019; de Rességuier
et al.,2020; Laurent et al., 2020; Ohana-Levi et al., 2022). A
better understanding of these local terroir variations is likely
to be achieved with analyses that use local data; i.e., farm/
vineyard data. Thus, a real challenge lies in exploiting these
farm data to enable grape growers to better understand their
own terroir and consequently adapt their practices to the local
conditions (Laurent et al., 2021).

This challenge is particularly true when addressing climate
influence on yield. Temperature plays an important role
in defining yield potential and precipitation, through
water availability, is one of the main yield limiting factors
(Van Ittersum et al., 2013); although this influence decreases
when the vineyard is irrigated. In addition, both temperature
and precipitation can have a reducing influence on yield
development during extreme events. Finally, temperature and
water availability are known to be particularly influential on
yield during specific phenological periods (Ojeda et al., 2001;
Petrie and Clingeleffer, 2005; Keller et al., 2010; Guilpart
et al., 2014; Pagay and Collins, 2017; Triolo ef al., 2019).
These periods of sensitivity are related to the successive
implementation of yield components (Laurent et al., 2021)
and their timing and duration is hypothesised to vary
depending on the terroir, including vineyard management
factors.

Farm data include, and will be enhanced by, data collected
on-farm for management purposes. Farm data sets generally
contain time series of weather data that can be analysed
against yield. However, when analysing time series of farm
data three issues are encountered.

Firstly, time series data expressed according to the Gregorian
calendar are not necessarily consistent with grapevine
phenology for different blocks within the same year or
different years for the same block. In other words, the same
date may not correspond to the same phenological stage for
different blocks or years. Therefore, the time series cannot
be directly compared according to the Gregorian calendar
timeline. To overcome this limitation, this paper proposes
to synchronise the time series of farm data according to
extended Growing Degree Days (eGDD) thermal index to
account for grape site-specific phenology (Laurent, 2021).

Secondly, time series data are defined as a set of observations
sequentially organised in time as a realisation of a stochastic
process; i.e., the observations are considered as outputs of
a succession of random variables (Brockwell and Davis,
2009). Consequently, temporally (and potentially spatially)
neighbouring observations are correlated (i.e., they are not
independent data points), which leads to a violation of the
assumptions around classical methods of analysis, such as

multivariate linear regression. To circumvent this issue, most
literature studies have focused on using weather variables at a
few known key phenological stages (Buttrose, 1974; Pouget,
1981; Pagay and Collins, 2017) or time steps (Guilpart et al.,
2014; Molitor and Keller, 2017), which can be considered
as independent. However, these classical approaches have
limitations: i) they depend on choices of climate variables
and timing, and ii) it is often necessary to suppress data or
to analyse only parts of a time series. Therefore, information
about climate influence on grapevine may potentially be
missed. In this article, it is assumed that i) time series of
weather data can reveal further information to advance the
understanding of grapevine physiology if they are analysed
with adapted methods and ii) a site-specific analysis of
these time series data can detect local climate covariates
that will even better explain yield variability than general
ones. However, although time series do need to be explored
in a more comprehensive way, their use as covariates, for
example in a yield model, will still require some reduction in
the dimensionality of the information they contain. Thus, this
paper proposes to use a Bayesian functional Linear regression
with Sparse Step functions (BLiSS, Grollemund et al., 2019)
to identify parsimonious and site-specific climate indicators
in the form of periods of influence within time series of
weather data (Laurent ef al., 2019).

Thirdly, the use of (operational) farm data, rather than the
use of research-collected data, presents some limitations:
i) these data are characterised by heterogeneous measurement
quality, ii) their sampling design is often intended for other
purposes, especially management purposes, rather than the
current analysis and iii) data sets present overlapping and
missing data issues. It is therefore assumed that the volume
of farm data available and the use of proper statistics can
compensate for these limitations and still lead to the detection
of relevant results; i.e., in terms of climate influence on yield
here.

Therefore, this paper aims at validating the ability of an
analytical process, which includes the eGDD and the BLiSS
methods, to explore and reduce the information contained in
time series of farm weather data. To achieve this, this article
focuses on the case study of temperature and precipitation
influence on grapevine yield. It investigates whether relevant
periods of temperature or precipitation influence on yield can
be found through the analysis of time series of farm weather
data from commercial vineyards, and whether these periods
are defined differently from one vineyard to another. The
three commercial vineyards used in the paper are situated in
the Bordeaux region (France), California (USA) and Israel.

MATERIAL AND METHOD

1. Data description

Data was collected from three commercial vineyards
situated in the Napa Valley (California, USA), Israel and the
Bordeaux region (France). They are noted as Vineyard A,
B and C respectively in this paper. Vineyards A and B were
composed of different estates; i.e., different groups of blocks

302 | volume 56-2 | 2022

OENO One | By the International Viticulture and Enology Society


https://oeno-one.eu/
https://ives-openscience.eu/

TABLE 1. Characteristics of the Vineyards A, B and C and their data sefs.

Vineyard A Vineyard B Vineyard C
Location California, USA Israel Bordeaux, France
Lafitude [°) 38 32 45
Type of climate Semi-arid Semi-arid Oceanic
Irrigation yes yes no

. Cabernet-Sauvignon, Merlot,
Varieties

Petit Verdot
Number of estates 4
Number of weather stations 4
2008 to 2018
Years of weather data for each 2007 10 2018
weather station 2012 t0 2018
201010 2018
Number of blocks with phenological 3,20,5,5
observations per estate (33 in total)
Mean number of years with phenological 75
observations per block :
Number of blocks with yield observations 3,23,8,5
per estate (39 in total)
Mean number of years with yield 56

observations per block

Cabernet-Sauvignon, Cabernet-Sauvignon,

Merlot, Syrah Merlot, Petit Verdot
3 1
1 1
2001 to 2011
2008 to 2019
and 2014 to 2015
6,17,15
(38 i fotal) 79
4.5 13
58, 32, 42
(132 in fofal) 79
52 13

spaced a few kilometres apart. Both vineyards were irrigated.
Vineyard C was a single estate and was rain-fed (Table 1).
For each vineyard, the achievement dates of 50 % budbreak,
bloom and veraison were routinely recorded by the vineyard
staff according to the Gregorian calendar.

Vineyard A was divided into 4 estates. Each estate was
equipped with its own weather station and comprised 3,
20, 5 and 5 blocks respectively. Yield and phenological
observations were recorded from 2008 to 2018 for each
block. Temperature data was recorded at a daily time step
of 2008 to 2018, 2007 to 2018, 2012 to 2018 and 2010 to
2018 respectively for each weather station. The years when
phenological and yield observations were made differed
from one block to another. Therefore, Vineyard A data set
contained missing data (missing blocks and years).

Vineyard B was divided into 3 estates serviced by only a
single central weather station. Each estate had 58, 32 and
42 blocks respectively with yield observations, but only had
6, 17 and 15 blocks with phenological observations. Yield
and phenological observations were recorded from 2000 to
2019. Temperature was recorded at a daily time step in 1999-
2012 and 2014-2019. The years when phenological and yield
observations were made differed from one block to another.

Therefore, the Vineyard B data set also contained missing
data (missing blocks and years).

Vineyard C had 79 blocks in a single estate. All blocks had
phenological and yield observations for the years 2002-11 to
2014-15. Weather data was recorded from 2001-11 and 2014-
15. The blocks presented phenological and yield observations
for the same number of years and the same years.

The main characteristics of the data sets of the three vineyards
are summarised in Table 1.

2. Theory

2.1. Theory about the Extended Growing Degree days
(eGDD) method

The eGDD method (Laurent, 2021) computes site-specific
thermal indices by integrating a Phenological Advancement
Speed as a function of Temperature (PAST function). This
PAST function represents the operational relationship that
links farm temperature data to the vine response in terms of
phenology. In the form used here, it includes four temperature
thresholds that represent the base temperature from which
the vine starts developing (7)), two optimal temperatures
between which the vine develops at its highest speed (7' and
T'?) and a critical temperature (7, ) above which the vine stops
developing (Figure 1) respectively.
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FIGURE 1. Example of PAST function obtained with the eGDD method. Tb corresponds to the base temperature,
T and T2 to the bounds of the interval of optimal temperatures, and T to the critical temperature.

These temperature thresholds are site-specifically optimised
using a constrained optimisation approach. The optimisation
criterion is designed to serve the purpose of Prediction
of the achievement date of phenological stages or of
Synchronisation of time series of data based on the vine
phenology. In the second case, the criterion to be minimised
relates to the respective variance of the dates of budbreak,
bloom and veraison of all the years for a site when they are
expressed in a thermal index and is normalised according to
the mean length of the time series (Eq. 1). In this equation,
the user is given the opportunity to weight the components
of Eq. 1 corresponding to each phenological stage. This
allows the user to drive the optimisation towards the best
results for a particular phenological stage; e.g., if he/she
has more confidence in the observations of each particular
phenological stage.

The site-specifically optimised PAST function is then
weighted by the photoperiod and integrated over the season
to result in a thermal index for each year for the given site as
in Eq. 2.

The resulting thermal indices are expressed in Thermally
Optimal Daylight Hours (TODH). For further details,
interested readers are directed to Laurent (2021).

2.2. Theory about the Bayesian functional Linear
regression with Sparse Step functions (BLiSS method)

A functional linear model relates a time series of data taken
as a functional covariate X to a scalar response variable
y. In this paper, x refers to a time series of temperature or
precipitation data taken as a functional covariate and y
to the yield response (Eq. 3). Each functional covariate X,
corresponds to a linear combination of unitary functions so
as to generate a mathematical description of a complex time
series (e.g., temperature or precipitation time series), based
on a set of basic functional building blocks.

The BLiSS method (Grollemund et al. 2019) proposes a
Bayesian approach to estimate the [ function and most
importantly its support (e.g., time). In Bayesian statistics, it is
assumed that a certain understanding of f is available. It will
be defined by the user and it is called a priori information.
The principle of Bayesian statistics is to update this a priori
information by processing the newly considered observations,
which leads to produce a posteriori information. Both a priori
and a posteriori information are formalised as probability
distributions. In this sense, the focus is never on the exact
value of £, which is assumed to be inaccessible anyway, but
on the information available on f, thanks to the collected
data, represented by a distribution of possible values for this
parameter.

The BLiSS method is based on a hierarchical Bayesian
model. In this model, the support of the coefficient function
is taken as a union of possibly overlapping time intervals
I, - Eachinterval is defined by two parameters: its position
(centre) and its half-length. The prior associated with the
position parameter corresponds to a uniform law over the
entire time series and the prior of the length parameter is an
exponential law. Given these intervals, the functional linear
model becomes a multiple linear model involving the partial
integrals of the coefficient function over the intervals as

covariates as in Eq. 4.

In this way, the BLiSS method leads to the detection of
periods during which a covariate (e.g, temperature or
precipitation) influences a quantitative response variable
(e.g., yield performance). These periods correspond to the
intervals /, during which the BLiSS estimator takes non-
null values; i.e., the periods during which temperature or
precipitation has a real impact on yield development. The
sign of the b, coefficient indicates whether the covariate is
negatively or positively correlated to the response variable
during each time interval 7, i.e., whether an increase in
temperature or precipitation promotes or hinders yield.
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The number of intervals [/, is constrained by the
hyperparameter K. In parallel, the probability for a given
time to be in the B function support (i.e., the probability
for a given time to be included in a period of influence) is
established. Its posterior distribution provides an assessment
of the reliability with which the intervals /_are detected. In
other words, a probability distribution of the possible effect
on yield is given for each period within the time series of
a weather variable such as temperature or precipitation.
Therefore, the most interesting periods to study are those for
which the a posteriori distribution is very close to a value
different from 0. For further details on the BLiSS approach
applied in this context, interested readers are directed to
Laurent (2021) and Laurent et al. (2019).

3. Data analysis strategy

The analytical process proposed in this paper comprises
three steps in chronological order: Step 1 corresponds
to the implementation of the eGDD method in order to
obtain synchronised time series, Step 2 corresponds to the
discretisation of the weather data time series according to
an optimised time step and, finally, Step 3 corresponds to
the implementation of the BLiSS method to detect periods
of influence on yield. These three steps are summarised in
Figure 2.

The eGDD method is preliminary used to compute a timeline
consistent with grapevine phenology. This time-series
synchronisation is needed to unequivocally detect periods of
weather influence on yield with the BLiSS method. The BLiSS
method requires each time series to be discretised at a given
time step as an input parameter. This time step corresponds
to the minimal time step based on which the time series will
be passed into a functional data; i.e., the maximum number

of basic functions whose linear combination will lead to the
functional data. The time step will be henceforth termed as
the discretisation time step. The discretisation time step was
defined according to the eGDD thermal indices. However,
several discretisation time steps were possible for each time
series; for example, a time series could be discretised into
periods of 200, 250, 300, etc. TODH. Therefore, to further
the synchronisation of the time series according to grapevine
phenology at the vineyard scale, the discretisation time step
was optimised so that there was at best a unique discretised
period or at least two successive discretised periods for the
respective scores of budbreak, bloom and veraison across
all years and all blocks for a given vineyard. Once this was
achieved, the shortest discretisation time step was chosen
for the time series of each block (or groups of blocks for
vineyard B). By way of example, for Vineyard A, all time
series were discretised into 17 periods. Budbreak, bloom and
veraison unfolded in periods of rank 2 or 3, 4 or 5 and 7
respectively for all years and blocks of Vineyard A. However,
these periods lasted 300 TODH for block 1 and 320 TODH
for block 2. This corresponds to the initial hypothesis that
each block has its own rhythm; i.e., its own phenology.

A minimum of five years of phenological and weather
data has been empirically identified to ensure a correct
implementation of the eGDD method (convergence of the
optimisation problem). Consequently, it was possible to
apply the eGDD method at the block, estate or vineyard scale.
Thus, the eGDD method was applied at the finest spatial
scale possible, depending on the available data: blocks for
Vineyard A and C and groups of the same estate and planted
with the same variety for Vineyard B. In contrast, the BLiSS
method implementation requires the largest data set possible
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FIGURE 2. Description of the proposed analytical process aiming at identifying periods of climate influence on
yield for each vineyard. Time series of weather data are synchronised according to thermal indices computed with
the extended Growing Degree Days approach (eGDD method). Then, the synchronised time series are discretised
according to an optimised time step and they are analysed with the BLiSS method.

to limit estimation problems. Therefore, it could only be
computed at the vineyard scale.

3.1. Step 1: implementation of the eGDD method

The eGDD method with Synchronisation option (cf. Eq. 2) was
employed to compute site-specific thermal indices. A eGDD
thermal index was computed for each block in Vineyards A
and C. Regarding Vineyard B, some of its blocks only had a
low number of years with phenological observations, which
prevented the eGDD method from being applied at the block
scale. To address this issue, a eGDD thermal index was
computed by groups of blocks localised in the same estate
and planted with the same variety for Vineyard B. Therefore,
the computed PAST functions were likely to integrate inter-
estate differences that were modulated by the variety. Equal
a, b and c coefficients were used (Eq. 1).

3.2. Step 2: Discretisation of the weather data time series

For each block (or estate for Vineyard B) and each year,
the time series of the daily mean, maximum and minimum
temperature and precipitation were expressed according to
the corresponding eGDD thermal index. A discretisation time
step was optimised (minimised) in a block or in an estate-
specific way with the constraint that the respective scores
of budbreak, bloom and veraison were preferably defined in
different intervals within a year and within a block (or estate),
but that each phenological stage for a given vineyard was
synchronised into the same interval across blocks (or estates)
and years. In the cases where a solution could not be found,
this constraint was relaxed to permit the possibility of having

two consecutive intervals assigned to a specific phenological
stage.

Each time series was then discretised according to its site-
specific time step by averaging the mean, minimum and
maximum daily temperature over each period for the two
years before harvest (noted years n-1 and n) so as to cover
the assumed duration of yield development cycles (Carmona
et al., 2008; Vasconcelos et al., 2009; Guilpart et al., 2014;
Bonada et al., 2020).

3.3. Step 3: Implementation of the BLIiSS method

For each vineyard, the discretised time series of all blocks
and years were regressed to the yield data using the BLiSS
method. The K hyperparameter, which defines the number of
influence periods searched for in the time series, was tuned
using a Bayesian selection approach based on a Bayesian
Information Criterion (BIC) (Grollemund et al., 2019).

RESULTS

1. The three vineyards were characterised by
different temperature profiles

The daily mean temperatures in each vineyard for the whole
year are given in Figure 3 for all years. The four weather
stations in Vineyard A (Figures 3a to 3d) showed the
same annual pattern of mean daily temperatures. The sites
corresponding to Figure 3b and 3c appeared to be slightly
cooler, with temperatures of around 7° C rather than 10 °C in
winter and temperatures of around 20 °C rather than 22 °C in
summer. Considering the number of years, the temperature
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FIGURE 3. Daily mean temperatures in each estate of Vineyard A (a, b, ¢ and d), in Vineyard B, which has a single
weather station for the 3 estates (e), and in Vineyard C, which is composed of a single estate with a single weather
station (f). The years displayed are 2008 to 2018 (a), 2007 to 2018 (b), 2012 t0 2018 (c), 2010 to 2018 (d), 1999
fo 2012 and 2014 to 2019 (e), 2001 to 2011 and 2014 to 2015 (7 respectively.
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dispersion in Figures 3a, 3¢ and 3d was comparable and
seemed lower in the case of Figure 1b. Vineyard B showed
a large temperature dispersion during the year, but this was
probably due to the number of years considered. (Figure 3d).
The daily temperature profile of Vineyard B showed winters
with temperatures of between 5 and 10 °C and with a long hot
season: the average daily temperatures were generally higher
than 20 °C from DOY 120 to 300; i.e., from before bloom until
well after veraison. Vineyard C presented the most temperate
thermal profile (Figure 1f), with winter temperatures ranging
from 5 to 10 °C and summer temperatures of around 20 °C.
The hot season was the shortest season for all three vineyards,
with temperatures exceeding 20 °C only between DOY 170
and DOY 230; i.e., between flowering and veraison. The daily
dispersion of temperatures in Vineyard C was the lowest of
the three vineyards.

2. The three vineyards obtained different site-
specific eGDD thermal indices

Figure 4 presents the PAST functions obtained with the
eGDD method. They were described according to the values
of 7,, T', T* and T, that were optimised block by block for
Vineyards A and C, and by estate and variety for Vineyard
B. The eGDD thermal indices of Vineyards A and B were
more dispersed than those of Vineyard C. For Vineyard A,
the PAST functions showed a large range of values for each
temperature threshold for 7' I and T, from -4 to 13 °C and 25 to
50 °C respectively. The values of 7''and 7'’ were consistent
between the blocks of the same estate and ranged from 18 to
25°C, and the [T'', T'*] interval ranged from a single value to
a 4 °C interval depending on the blocks. The slope between
T'and T? was relatively constant for the whole vineyard.
The values of T, and consequently the slope between T'*
and T, varied significantly between blocks; the decrease in
phenological advancement speed for temperatures above
25 °C varied between blocks. For Vineyard B, the values of

1.08 100

0.75 0.75
% %
< 0.50- < 0.50
o o
0.25- 0.25-
0.00; 0.00-
-20 0 20 40 -20 0

Temperature (°C)

Temperature (°C)

the temperature thresholds ranged from -10 to 6 °C for T,
from 21 to 32 °C for 7'and T, whose interval ranged from
a single value to 3° C, and from 30 to 4 °C for T. The slope
between 7, and T'!, as well as between 7 > and T, were different
between the different estates. Overall, the PAST functions
in Vineyard B showed the highest intra-vineyard variation.
For Vineyard C, the values of temperature thresholds ranged
from 8 and 11 °C for 7}, from 19 to 21 °C (with an exception
at 27 °C) for T'' and 7> and from 31 to 45 °C for T. The
values of 7,, 7' and T?, as well as the slope between 7, and
T', were very similar between blocks, while the values of
T, and therefore the slope between 7° and T, presented
significant differences between the blocks. However, this
part of the PAST function related to only a few temperature
observations actually recorded in the field (Figure 3).

3. The three vineyards obtained different
discretisation time steps

Table 2 presents the results of the optimisation of the
discretisation time steps for each vineyard. The maximum
number of periods that could be discretised for Vineyards A,
B and C was 17, 18 and 19 respectively. For some vineyards,
phenological stages were assigned to two consecutive time
periods to account for inter-block and inter-annual variations;
e.g., budbreak in Vineyard A. 10 and 7 blocks for Vineyard
A and C respectively were excluded at this stage, because
the periods in which budbreak, bloom and veraison were
positioned showed at least two periods of difference to the
optimised fits in Table 2. For example, a block of Vineyard
C with time period ranks of 2 and 5 for budbreak and bloom
respectively would be excluded, because most blocks reached
budbreak in the rank 1 period and bloom in the rank 3 period.
No blocks were excluded from Vineyard B since the eGDD
thermal indices were already computed for groups of blocks.

The discretisation time steps differed between vineyards in
accordance with the differences in the eGDD thermal indices.

1.068
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|_

2 0.50-
o

0.25+
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FIGURE 4. Phenological Advancement Speed as a function of Temperature (PAST function) computed with the eGDD
method for each block of Vineyards A and C (a and c respectively) and for each estate of Vineyard B (b).

308 | volume 56-2 | 2022

OENO One | By the International Viticulture and Enology Society


https://oeno-one.eu/
https://ives-openscience.eu/

TABLE 2. Results of the time series discretisation for Vineyards A, B and C. The rank of the harvest time period is
given as an indicator of the length of the time series (number of discretised periods).

Numbgr of . Number of blocks/ ~ Time period rank  Time period rank  Time period rank ~ Time period rank
: discretised ~ Mean time step ; ; ; .
Vineyard - : estates excluded from  corresponding o corresponding to  corresponding to  corresponding to
periods over the  (in TODH) - A .
the BLiSS analysis Budbreak Bloom Veraison Harvest
years n-1 and n
A 17 354.2 10 2,3 4,5 7 9,10
18 252.4 0 1 2,3 6,7 8,9,10,11
C 19 191.5 7 1 3 7 9,10

However, they allowed a similar number of discretised
periods over the time series of weather data. It should be noted
that the position of budbreak, bloom and veraison was more
consistent for Vineyard C than for the other two vineyards.
Veraison occurrence was consistent between vineyards: it is
always positioned in the 6™ or 7" rank. However, budbreak
and bloom were positioned in the 1* and 2™ or 3" periods for
vineyards B and C respectively, while they were positioned
in later periods for Vineyard A.

4. The three vineyards were characterised
by different periods of weather influence on
yield

Figure 5 shows the results of the BLiSS analysis of the
discretised time series of weather data for the three vineyards.
Theresults correspond to the detection of periods when Tmean,
Tmin, Tmax or Precipitation influence yield development. The
timing and duration (expressed in discretised time periods)
of the detected periods, as well as their correlation direction
(sign of the BLiSS estimator), were interpreted. The actual
values taken by the BLiSS estimator were not interpreted
between vineyards, and were considered in a relative sense
between periods of influence for each vineyard. The colour
gradient in Figure 5 corresponds to the distribution of the
posterior distribution of the  estimator. It is interpreted as
a confidence indicator for the detection of influence periods
with the BLiSS estimator. Therefore, a period of influence
corresponding to a non-null BLiSS estimator, but with a well
spread or light colour gradient, was detected with very low
reliability and could not be considered.

The confidence in the estimation of the B coefficient was
lower for Vineyard A (Figures 5a, d and g and j) than for
Vineyards B (Figures 5b, e, h and k) and C (Figures 5S¢, f, i
and 1); i.e., periods of influence were more strongly detected
for Vineyards B and C than for Vineyard A, which is related
to the number of available analysed individuals. This was
illustrated by the wider colour gradient that tended toward
lighter colours around each period in the case of Vineyard A,
compared to the other two vineyards.

4.1. Tmean influence on yield

For Vineyard A (Figure 5a), only one period of Tmean
influence on yield could be reliably identified for periods
12 to 14; i.e., around bloom of year n. Two other periods
could be presumed from periods 1 to 5 (involving budbreak
and bloom of year n-1) and 9 to 11 (around harvest of year
n-1). Regarding the periods 12 to 14, the value of the BLiSS

estimator was positive; i.e., the daily mean temperature
observed during this period was positively correlated with
the yield performance (the higher the temperature, the higher
the yield).

For Vineyard B (Figure 5b), four periods of Tmean influence
on yield could be identified from periods 1 to 2 (around
budbreak of year n-1), 7 to 9 (between veraison and harvest
of year n-1), 10 to 14 (involving budbreak and bloom of
year n) and 17 to 18 (after veraison of year n) respectively.
A fifth period could even be detected in period 16 (beginning
of veraison of year n), although it had not been selected
by the sparse step of the BLiSS estimator. The 2™ and 4™
mentioned periods were positively correlated with the yield
performance, while the 1%, 3* and 5™ periods were negatively
correlated with it.

For Vineyard C (Figure 5c), four periods of Tmean influence
on yield were also detected but with differences to Vineyard
B. These were periods 1 to 2 (after budbreak of year n-1),
6 to 8 (around veraison of year n-1), 12 to 14 (around bloom
of year n) and 18 to 19 (between veraison and harvest of
year n) respectively. The 2™ and 3™ periods were positively
correlated with yield performance, while the 1% and 4" were
negatively correlated with it.

4.2. Tmin influence on yield

For Vineyard A (Figure 5d), three periods of 7Tmin influence
on yield could be detected: from periods 1 to 3 (before
and around budbreak of year n-1), periods 7 to 9 (during
and after veraison of year n-1) and periods 10 to 12 (after
harvest of year n-1 and until budbreak of year n) respectively.
The 1**and 2" periods of influence were negatively correlated
with yield (i.e., a high Tmin favoured low yield), and the 3%
one was positively correlated with yield (i.e., high Tmin
favoured high yield).

For Vineyard B (Figure 5e), five periods of Tmin influence
on yield could be detected: in periods 4, 5 to 7 (before and
during veraison of year n-1), 8, 10 (after harvest of year
n-1) and 17 to 18 (after veraison and until harvest of year n)
respectively. It was not clear whether the 4" period could be
extended to periods 11 and 12, because the colour gradient
was very diffuse. It seemed to be more concentrated around
null values of the BLiSS estimator. The 1 and the 3™ periods
were positively correlated with yield, while the other three
periods were negatively correlated to yield.
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For Vineyard C (Figure 5f), four periods of Tmin influence on
yield could be detected: periods 3t0 9, 10to 11, 16 to 18 and
19 respectively. The 1% and the 3™ periods of influence were
positively correlated with yield, while the 2™ and 4™ periods
of influence were negatively correlated with yield.

4.3. Tmax influence on yield

For Vineyard A (Figure 5g), only one period of Tmax influence
on yield could reliably be detected from periods 2 to 5;

i.e., around budbreak and bloom of year n-1. It corresponded
to a positive correlation; i.e., high Tmax favoured high yield.

For Vineyard B (Figure 5h), 7max influence was characterised
by short periods of influence with a colour gradient clearly
favouring non-null values for the BLiSS estimator, but
these periods were within longer ones with colour gradients
closer to 0. It was decided to consider the short periods
only as periods of highest influence of Tmax on yield.

a * Ty ade -_ —
- © -
o= 5 s — _— = —_— — T—
T~ B 8
S £ ‘ ' —
o — s ¥
3 - —_— —_ $
£ s I 8
H L 4 9 | -
e | | L
| 1 1 I . I | I I | 1 1 |
1 s 10 15 1 5 10 15 1 5 10 15
Time (in discretized periods) Time (in discretized periods) Time (in discretized periods)
“©1d < |e T f—
- - — . — = —_
5 o o - - ——— —
2
: E e S — — —_ e |
o £ N 8
Y © 1 — T —— < — —_— » —_—
€ = . .
H Oy f— =0 Sl |
i 2
=}
- 8
i 1 T I T | 1 1 1 T 1 T
1 - ] 10 15 1 5 10 15 1 s 10 15
Time (in discretized periods) Time (in discretized periods) Time (in discretized periods)
< =] e
g s |h — - | —
- _— - =
—_
5 ~ - 2. o - - ———— -
X B [ ‘
S £ 1 8 1
7 = =] .
E a 1 S e— 18 g 4
& 4 8
L ] T [ T I I T i T T T
1 5 10 15 1 5 10 15 1 5 10 15
Time (in discretized periods) Time (in discretized periods) Time (in discretized periods)
< D e [
9 . :

0.00
L
|

tat
B estimator

Cipi
|
|

1 | | |
1 s 10 15 1 5

Pre

Time (in discretized periods)

Time (in discretized periods)

| | | 1 I |
10 15 1 5 10 15

Time (in discretized periods)

P 1 Posterior distribution of the
probabiility to be in the B support
0

FIGURE 5. BLiSS estimation for the synchronised time series of averaged daily mean (Tmean), minimum (Tmin),
maximum (Tmax) temperature data and cumulated daily precipitation (Precipitation) data for Vineyards A, B and
C. The discretised periods that graduate the X-axis correspond to a segmentation (discretisation) of the site-specific
eGDD thermal indices that were used as a timeline to express the temperature time series. Positive, null or negative
values of the B estimator on the Y-axis indicate that the daily mean temperature promotes, does not affect or hinders

yield during the considered period.
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Thus, four periods of Tmax influence on yield could be
detected: in periods 1 (during budbreak of year n-1), 13 to 14
(after bloom of year n), 15 to 16 (before and during veraison
of year n) and 18 (during harvest of year n) respectively. The
3" period corresponded to a positive correlation of Tmax with
yield while the others corresponded to a negative correlation
with yield.

For Vineyard C (Figure 51), four periods of 7max influence
on yield could be detected: periods 6 to 8 (around veraison
of year n-1), 10 to 12 (around budbreak of year n), 16 to
18 (around veraison of year n) and 19 (during harvest of
year n) respectively. The 1*, 2" and 3™ periods of influence
corresponded to a positive correlation of Tmax with yield,
whereas the 4™ corresponded to a negative correlation with
yield.

4.4. Precipitation influence on yield

For Vineyard A (Figure 5j), only one period was detected
with a colour gradient in favour of non-null BLiSS estimator.

TABLE 3. Timing, duration and direction of correlation with the yield response | - :

It covered periods 3 to 5 (from budbreak to bloom of year
n-1) and corresponded to a positive correlation; i.e., high
Precipitation favoured high yield.

For Vineyard B (Figure 5k), two periods of Precipitation
influence on yield were detected: periods 1 to 3 (during
budbreak and bloom n-1) and 6 to 11 (from veraison of year
n-1 until budbreak of year n) respectively. They corresponded
to a positive and negative correlation with yield respectively.
The 2™ period of influence included a shorter period of
increased negative influence of Precipitation during period 8
(after veraison of year n-1).

For Vineyard C (Figure 51), three periods of Precipitation
influence on yield were detected: periods 2 to 6 (a large period
around bloom of year n-1), 12 (between bloom and veraison
of'year n) and 13 to 14 (after veraison of year n) respectively.
The 1% and the 3" periods of influence corresponded to a
positive correlation with yield and the 2™ period of influence
corresponded to a negative correlation with yield.

negative, + : positive) of the

periods of influence detected with the BLiSS method for the time series of daily mean (Tmean), maximum (Tmax)
and minimum (Tmin) temperature and Precipitation data of each vineyard. The green colour gradient represents the
periods of budbreak, bloom and veraison respectively in year n-1 and year n for each vineyard.There was a different
number of discretised periods within the time series of Vineyards A, B and C: 17, 18 and 19 respectively. Therefore,
the grey cells complete the rows in the table but do not correspond to periods because the optimisation of the time
step to discretise the time series data resulted in a smaller number of periods.

Periods number over the year n-1 Periods number over year n

Vineyard | Weather variable | 1

A Tmean

A Tmin

A Tmax

A Precipitation

B Tmean

B Tmin

B Tmax

B Precipitation +

C Tmean

C Tmin

C Tmax

C Precipitation
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The results of the BLISS analysis of discretised time series of
Tmean, Tmin, Tmax and Precipitation data are summarised
in relation to the vine phenology of the three vineyards in
Table 3.

DISCUSSION

1. Contribution of the analytical process to
investigating climate influence on grapevine
yield contained in a time series of weather
data

1.1. The results in terms of climate influence on grapevine
yield were coherent with the literature but were site-
specific

The periods of climate influence on grapevine yield presented
in Table 3 for the three vineyards globally identified the
same stages of yield development, which have already been
identified and studied in the scientific literature. However,
vineyard differences were observed including: i) different
periods of influence associated with a given stage of yield
development between the vineyards, ii) different weather
variables (Tmin, Tmean, Tmax or Precipitation) found to be
influential between the three vineyards for a given period,
and 1iii) the duration of the period of influence associated
with a given stage of yield development differed between the
vineyards.

A first grouping of periods of climate influence was found
around budbreak of year n-1 (Table 3) and this was coherent
with the existing literature that was reviewed by Vasconcelos
et al. (2009). For Vineyard A, Tmin and Tmax were found to
be negatively and positively correlated to yield respectively,
meaning that during this period, high 7min was correlated to
low yields, while high Tmax was correlated to high yields.
In addition, the Tmin influence seemed to occur before or
during budbreak, while the Tmax influence seemed to occur
during or after budbreak until bloom. A greater sensitivity
of the developing inflorescences to temperature during the
period before budbreak was found, compared to the period
after budbreak (Vasconcelos et al., 2009). The flower
number, the flower size and subsequent berry size (Petrie
and Clingeleffer, 2005) are supposed to be programmed after
budbreak following the branching process of inflorescences.
In this way, the two periods of influence may correspond
to two successive stages of the branching process. These
stages may be sensitive to a different temperature variable
between the two periods, because they unfold during periods
with different temperature conditions. In addition, during
the period before and around budbreak, temperatures were
reported to favour the number of inflorescences per vine, but
to reduce the number of flowers per inflorescence (Pouget,
1981, Dunn and Martin, 2000, Petrie and Clingeleffer, 2005).
In this way, the negative correlation of 7min with yield found
during this period may imply that the temperature influence
on yield during this period is more related to the flower
formation than to the inflorescence formation in Vineyard A.
This may be explained by the fact that primary branching
had already been completed without any limitation by that

time and/or by the fact that the bunches were thinned after
this period. Indeed, the variability of bunch number per
vine may be smoothed between blocks and years by the
practice of bunch thinning. Therefore, bunch thinning may
reduce the capacity of the period related to the bunch number
development to explain the yield variability. Furthermore, it
seemed surprising that influences of 7min and Tmax were
detected without a Tmean influence being detected during
the period around budbreak of year n-1. This suggests that
night temperatures may be more influential before and during
budbreak and that day temperatures may be more influential
during and after budbreak than overall temperatures. This
may be related to the coexistence of two physiological
processes during the period: one driven by photoperiod and
influenced by moderate temperatures, and another driven by
abiotic stresses, such as low temperature conditions (Tanino
et al., 2010). For Vineyards B and C, a period of negative
correlation of 7mean was found during budbreak and bloom
of year n-1. Following the same logic as for Vineyard A,
this seems to suggest that flower rather than inflorescence
formation was impacted by temperature during this period.
Both vineyards also underwent bunch thinning.

A Precipitation influence was found for the three vineyards.
It was concomitant with budbreak and bloom of year n-1
for Vineyards A and B while the period of influence lasted
longer, until veraison, for Vineyard C. This influence was
coherent with the results of Guilpart et al. (2014) who found
an increased influence of water constraint on yield centred
around bloom of year n-1. In addition, it seems coherent
that the Precipitation influence stopped around bloom in
Vineyards A and B, because irrigation may then take over,
whereas the Precipitation influence lasted longer in Vineyard
C, which was non-irrigated and only rain-fed.

A second grouping of periods of climate influence on yield
was found from bloom to after veraison of year n-1 (Table 3).
For Vineyard C, Tmin, Tmean and Tmax were all positively
correlated to yield meaning high daily temperatures generally
favoured high yields. In contrast, for Vineyard B, only Tmin
was correlated to yield during this period. Tmin presented a
positive correlation with yield after bloom and after veraison,
but a negative correlation around veraison, during the
warmest days. This may highlight a threshold effect: cold
night temperatures may reduce yield, i.e., the higher the Tmin,
the higher the yield (positive correlation), but too high night
temperatures may also reduce yield (negative correlation).
Vineyard B experienced warmer temperature conditions than
Vineyard C (Figure 3) and may have reached a threshold for
Tmin during the summer. The impact of a high Tmin on yield
during this period could be explained by a poorer carbohydrate
export from the grapevine leaf, which could affect the
photosynthetic activity during the day (Sawicki et al., 2015;
Tombesi et al., 2018). A period of negative correlation of Tmin
to yield was also found for Vineyard A after veraison. It can be
noticed that a weak negative correlation of 7min with yield was
detected by the BLiSS method before and around veraison, but
with a lot of uncertainty. Perhaps it would have been detected
with more certainty if the Vineyard A data set had been larger.
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A third grouping of periods of influence was found from
harvest of year n-1 to budbreak of year n (Table 3). For
Vineyard A, Tmin was positively correlated with yield. For
Vineyard B, Tmean was negatively correlated with yield. For
Vineyard C, Tmin and Tmax were negatively and positively
respectively correlated to yield. Again, these differences may
be explained by the negative influence of temperature on
the number of flowers and berries per bunch reported in the
literature (Pouget, 1981; Dunn and Martin, 2000; Petrie and
Clingeleffer, 2005; Jones et al., 2009; Keller et al., 2010), and
the positive influence of temperature on berry weight found
by others (Keller et al., 2010). However, they could also be
partly explained by the temperatures experienced in each
vineyard and particularly the risk of late frost or even early
water stress that could go with high temperatures before and
around budbreak.

A fourth grouping of periods of influence was found around
bloom of year n (Table 3). For Vineyards A and C, Tmean
was found to be positively correlated with yield, whereas
Tmin and Tmax were found to be negatively correlated with
yield for Vineyard B. Again, this difference could highlight
a threshold effect: berry development is globally encouraged
by increasing temperatures, but too high temperatures may
reduce yield (Buttrose and Hale, 1973; Dunn and Martin,
2000; Pagay and Collins, 2017; Gouot et al., 2019). Vineyard
B experienced the highest bloom temperatures (Figure 3) and
may have reached this threshold, which was corroborated by
the fact that Tmin and Tmax, and not Tmean, were detected
as influential during this period. A Precipitation influence
was only detected for Vineyard C; it was found to be initially
negatively (before bloom) then positively (during and after
bloom) correlated with yield. The negative correlation may be
explained by a physical inhibition of the flowering process or
poor phytosanitary conditions due to high precipitation. The
positive correlation may also be explained by water effects on
berry development after bloom (Ojeda et al., 2001; Triolo et
al., 2019), especially since Vineyard C was rain-fed.

A fifth grouping of periods of influence was found around
veraison of year n. For Vineyard B, Tmean and Tmax were
positively correlated with yield. For Vineyard C, Tmean and
Tmax were positively correlated with yield. Both results
seemed coherent with sufficient temperatures generally
favouring berry development without reaching any threshold
effect. No period of influence was detected for Vineyard A, but
this may be due to a low data volume.

Finally, a sixth grouping of periods of influence was detected
at harvest time of year n. Tmean, Tmin and Tmax were
negatively correlated with yield for Vineyards B and C. Thus,
high temperatures at harvest time seemed to reduce yield and
it may be related to a loss of berry weight due to dehydration
(Rogiers and Holzapfel, 2015; Deloire et al., 2021).

1.2. Periods of climate influence on yield were precisely
defined within the time series data

The eGDD method allowed thermal indices to be computed
that were optimised to model consistent scores; i.c., dates
in a thermal index, of budbreak, bloom and veraison over

years for each block of Vineyards A and C or groups of
blocks for Vineyard B (Figure 4). These thermal indices
were optimised to reduce the phenological shift between
the analysed blocks and years. Because these scores were
better synchronised between years than with the Gregorian
calendar or the Growing Degree Days approach (data not
shown, but refer to Laurent 2021 for other examples), the
time series could be split into shorter periods (Table 2) to
enable the BLiSS analysis. Moreover, in the BLiSS method,
the a priori probability distribution used for the half-length of
each period of influence corresponded to an exponential law,
which encouraged the detection of periods of a parsimonious
duration. In this way, relatively short periods could be
detected; for example, for Tmin after veraison of year n-1
for Vineyard B (Table 3). At this time of the year, a period
expressed according to an eGDD thermal index corresponded
to a period ranging from about ten to fifteen days, which
is the finest time step that could be evidenced by Molitor
and Keller (2017) with a Windows Pane approach. At this
time of the year, such a period would also be equivalent to
100-150 Growing Degree Days, which is often the smallest
time step explored in classical analyses (Guilpart et al.,
2014). As such, the information contained in time series of
weather data was considerably concentrated (i.c., reduced in
dimensionality) into site-specific and precisely timed periods
of climate influence on grapevine yield. These dimension-
reduced results could subsequently be used for other analyses
based on statistical methods that do not have to account for
time series characteristics.

2. Contribution of the analytical process to
leveraging farm data

Grapevine response to climate variables, such as temperature
or precipitation, was seen as the result of the integration of
many factors that cannot be dissociated. This point will be
further discussed in paragraph 2.2 and 2.4. Obviously, the
volume and quality of the analysed data also influenced the
results. The following section explains the issues related to
some of these characteristics and how the analytical process
proposed in this paper addresses them.

2.1. Small and heterogeneous data sets can still be
analysed

The number of individuals involved in the analysis (i.e., the
number of time series per block and per year) had a strong
impact on the results. Thus, the results obtained for Vineyard
B and C were more significant than for Vineyard A, with more
periods detected and a greater reliability in their detection.
However, the small number of individuals analysed for
Vineyard A prevented an analysis of the time series with such
a number of discretised periods in a frequentist framework
because of estimation problems (the time series were
discretised into 17 periods for only 140 individuals which
may be too low of a ratio). In contrast, the Bayesian approach
included in the BLiSS method still allowed the analysis of the
data set and provided information on the uncertainty of the
results. Thus, Table 3 only lists the periods of influence that
were unequivocally detected for Vineyard A, but an expert
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analysis of the results could have allowed more periods to
be selected.

2.2. Capturing a constant site effect while analysing a
statistically high enough data volume

The site-specific analysis proposed in this work is based on
the assumption that grapevine response to climate through
its yield performance is determined by a site-specific effect
corresponding to the integration of numerous factors, such
as plant material characteristics, environmental conditions,
cultural practices and vineyard management in terms of
production objectives, logistics and technical specifications
of any label or geographical indication, etc. Therefore, it
implies that the site-specific effect is consistent over time
and for all the studied blocks. The finer the spatial scale, the
more likely the site-specific effect hypothesis will be valid.
For example, it is more likely to be valid at the block scale
than at the regional scale, since the block scale embraces only
one grape variety that will not change over time and cultural
practices that should be planned according to the same logic
every year, etc. This assumption determines the quality of
the final results: the more consistent the site-effect, the more
reliable the detection of periods of climate influence with
the BLiSS method. However, a rigorous implementation
of the analytical process also required a minimum data
volume to statistically detect and consider any site-specific
effect. Ensuring a consistent site-specific effect while having
sufficient amount of data is not trivial, especially given the
variable geometry of vineyards and their data in terms of
estates, blocks and other management units. Therefore, each
step of the analytical process is subject to a trade-off between
the finest spatial scale that can be considered to allow a
consistent site-specific effect over time and the minimum
data volume at this spatial scale needed. In the first step,
grapevine phenology was likely to be consistent over time at
the block scale. However, a limit to the quality of the results
was apparent when less than 5 years were considered for a
site with the eGDD method (data not shown). Therefore,
it was sometimes necessary to find a trade-off in spatial
scale to allow for a sufficient volume of data to be used in
the analysis. For example, there was not enough data to
calculate the eGDD indices at the block scale for Vineyard
B. However, it is known from previous work that the spatial
scale that benefits the most from a site-specific calibration of
thermal indices in terms of synchronising time series is the
vineyard scale, while taking into account the grape variety
(Laurent, 2021). Therefore, applying the eGDD method at
the scale of all the blocks of the same estate and of the same
grape variety was assumed to be an appropriate trade-off.
Secondly, the BLiSS analysis could not be performed at the
block or even at the estate level due to the amount of data
available. Therefore, it was performed at the vineyard scale,
assuming a certain consistency of the effects of, for example,
the environment and cultural practices between the estates of
the same vineyard. However, the validity of this assumption
required the exclusion of some blocks whose phenology was
markedly different from the majority of the blocks or whose
grape variety was poorly represented in the vineyard.

2.3. Temporally and spatially inconsistent samples are
supported by the proposed analytical process

For a variety of reasons, ranging from climatic hazards to
logistical failures, the number of individuals (time series per
year and per block) can commonly vary between estates/
vineyards and years in farm data sets. This issue can lead to
an unbalanced sampling of site and year effects within the
analysis and to non-robust conclusions that are potentially
driven by a small number of individuals. Regarding the
site effect, numerous precautions were undertaken in the
whole analytical process to assume a constant site effect
at the vineyard scale (see paragraph above). Therefore, the
imbalance in the number of individuals representing each
block (i.e., years per block) was not considered to be a major
issue. Each block was considered to be a realisation of the
same vineyard-specific pattern that outweighs variations due
to inter-block differences within the same vineyard.

However, the reverse of this unbalanced sampling is that
the years were also represented with a different number of
individuals (i.e., blocks per year). The analysis of the climate
effect on yield being inherently prone to incorporate year
effects, this unbalanced year sampling was considered to be
a red-flag issue which could lead to erroneous results. This
was especially true for phenological observations, and hence
for the implementation of the eGDD method. As it was not
possible to include a random vintage effect in the analysis,
the individuals were weighted by the inverse of the number
of blocks for their corresponding year. This weighting aimed
at balancing the different years. In the case of Vineyard
B, which presented the more unbalanced year sampling,
performing the eGDD analysis at the estate scale was also a
way to gather more individuals representing the same years.

2.4. The analysis of farm data call for an operational
interpretation of the results

Vineyards A and B were both split into several estates,
whereas Vineyard C comprised a single estate, but with
a higher number of blocks. Each estate of Vineyard A was
equipped with its own weather station, while the same weather
station serviced all the estates of Vineyard B. Vineyard C was
also equipped with a single weather station. Therefore, the
weather stations of the three vineyards were likely to offer
a different representation of the weather conditions actually
experienced in each block. In addition, all private weather
stations can present different metrological and environmental
characteristics. Obviously, these differences may lead to some
noise in the results, hopefully, but not certainly, including a
consistent bias. This is why these results should be used to
draw practical conclusions rather than theoretical ones and
should not be directly compared between vineyards without
taking some precautions for their interpretation.

Regarding the results of Step 1, the eGDD thermal index was
assumed to integrate i) physiological variations in the vine
response temperature depending on plant factors as well as
environmental factors, ii) spatial variations of temperature
conditions between the blocks covered by the same weather
station, and iii) the quality of phenological observations
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and weather data (Laurent et al., 2020; Laurent, 2021). In
the case of Vineyard A, the eGDD method was applied at
the block scale with a weather station being close to each
block. Therefore, it can be assumed that the difference in
eGDD thermal indices between blocks in the same vineyard
mainly correspond to differences in the vine response to
temperature or to the data quality, rather than to spatial
variations of temperature conditions. This hypothesis was
reinforced by the fact that a clear consistency was observed
between the eGDD indices of three out of the four estates
of Vineyard A, with the last estate being the most spatially
extended and comprising the largest number of blocks. In
the case of Vineyard B, the fact that the three estates were
equipped with only one weather station likely implies that
the spatial variations of temperature conditions may play a
more significant role in the differences of the PAST functions
(Figure 4b) and related eGDD thermal indices between
blocks and a fortiori between blocks on different estates. In
addition, the eGDD method was applied at the estate scale
in Vineyard B. Therefore, the resulting indices have to be
interpreted as a trade-off between different vine responses to
temperature. The clustering of blocks according to their estate
and to their variety likely helped with this trade-off. Without
this clustering, the constrained optimisation component of
the eGDD method would have had difficulties in converging
and would have tended to obtain PAST functions with very
close temperature thresholds for mathematical reasons; i.e.,
to cumulate very few heat units (TODH).

Regarding the results of Step 3, the analytical process
presented in this paper highlighted site-specific periods
of Tmean, Tmin and Precipitation for the three vineyards.
These site-specific results do not mean that the physiological
mechanisms of yield development were different between
the vineyards, but that the site-specific conditions of
each vineyard led to some periods (and associated yield
development processes) becoming determining or limiting.
The site-specific conditions of each vineyard were an
integration of plant material characteristics, environmental
conditions, cultural practices and vineyard management
in terms of production objectives, logistics and technical
specifications of any label or geographical indication, etc.
This analytical process did not allow a specific explanation
of which factor(s) caused the detection of a period of yield
sensitivity to temperature or precipitation and its correlation
direction to yield. However, it highlighted periods that should
be taken into account when monitoring yield development.
From a research perspective, these results may reveal
hypotheses to be further explored and validated. The diversity
of site-specific conditions could lead to a generation of new
knowledge on grapevine physiology and ecophysiology.
From an operational perspective, these results indicated
periods that need to be carefully managed. For example, the
period of Precipitation influence during the season in years
n-1 and n for Vineyard C (rain-fed) showed a sensitivity to
water constraint and may advocate for a review of cover crop
and canopy management to increase grapevine resilience
to water stress. Another example is linked to the periods of
negative influence of temperature on yield at harvest time

in year n for Vineyards B and C, which should promote the
advancement of the date of harvest operations if a heat period
is announced by weather forecasts.

CONCLUSIONS

This study proposed an analytical process combining two
statistical methods, the eGDD and the BLiSS methods, as an
exploratory approach to site-specifically extracting relevant
information from time series of farm weather data. The
influence of climate on grapevine yield in three different
commercial vineyards was chosen as a case study. Vineyard-
specific periods of temperature and precipitation influence on
yield were found for six key stages of the grapevine yield
development cycle. Thus, the potential of the analytical
process was shown in terms of i) a site-specific analysis of
time series of weather data in order to extract local climate
indicators with reduced dimensions and ii) feasibility when
working with farm data. The results of such analyses should
be carefully interpreted, since they integrate numerous
determinisms in relation with the operational reality of
commercial vineyards. However, they are of real interest
to commercial vineyards as they give them guidelines to
operationally interpret their own data to better understand
their own vineyards. This analytical process could be applied
to other crops, especially perennial crops, and could also
relate to other time series data and response variables.
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