Local information transfer as a spatiotemporal filter for complex systems
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We present a measure of local information transfer, derived from an existing averaged information-
theoretical measure, namely transfer entropy. Local transfer entropy is used to produce profiles of
the information transfer into each spatiotemporal point in a complex system. These spatiotemporal
profiles are useful not only as an analytical tool, but also allow explicit investigation of different
parameter settings and forms of the transfer entropy metric itself. As an example, local transfer
entropy is applied to cellular automata, where it is demonstrated to be a novel method of filtering for
coherent structure. More importantly, local transfer entropy provides the first quantitative evidence
for the long-held conjecture that the emergent traveling coherent structures known as particles
(both gliders and domain walls, which have analogues in many physical processes) are the dominant
information transfer agents in cellular automata.
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I. INTRODUCTION

Information transfer is widely considered to be a vi-
tal component of complex nonlinear behavior in spa-
tiotemporal systems, for example in: particles in cellular
automata (CAs) [I 2, B, [4, Bl [6 [7], self-organization
caused by dipole-dipole interactions in microtubules [§],
soliton dynamics and collisions [9], wave-fragment prop-
agation in Belousov-Zhabotinsky media [10], solid-state
phase transitions in crystals [I1], influence of intelligent
agents over their environments [I2], and inducing emer-
gent neural structure [I3]. The very nature of informa-
tion transfer in complex systems is a popular topic itself,
for example in the conflicting suggestions that informa-
tion transfer is maximized in complex dynamics [14} [15],
or alternatively at an intermediate level with maximiza-
tion leading to chaos [Bl [16]. Yet while the literature con-
tains many measures of complexity (e.g. [0 [17]), quanti-
tative studies of information transfer are comparatively
absent.

Information transfer is popularly understood in terms
of the aforementioned recognized instances, which sug-
gest a directional signal or communication of dynamic
information between a source and receiver. Defining in-
formation transfer as the dependence of the next state
of the receiver on the previous state of the source [I§] is
typical, though it is incomplete according to Schreiber’s
criteria [I9] requiring the definition to be both directional
and dynamic. In this paper, we accept Schreiber’s defi-
nition [I9] of (predictive) information transfer as the av-
erage information contained in the source about the next
state of the destination that was not already contained
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in the destination’s past. This definition results in the
measure for information transfer known as transfer en-
tropy [19], quantifying “the statistical coherence between
systems evolving in time” in a directional and dynamic
manner.

We derive a measure of local information transfer from
this existing averaged information-theoretical measure,
transfer entropy. Local transfer entropy characterizes the
information transfer into each spatiotemporal point in
a given system as opposed to a global average over all
points in an information channel. Local metrics within a
global average are known to provide important insights
into the dynamics of nonlinear systems [20]: here, the
local transfer entropy provides spatiotemporal profiles of
information transfer, useful analytically in highlighting
or filtering “hot-spots” in the information channels of the
system. The local transfer entropy also facilitates close
study of different forms and parameters of the averaged
metric, in particular the importance of conditioning on
the past history of the information destination, and the
possibility of conditioning on other information sources.
Importantly, through these applications the local trans-
fer entropy provides insights that the averaged transfer
entropy cannot.

We apply local transfer entropy to cellular automata
(CAs): discrete dynamical systems consisting of an ar-
ray of cells which each synchronously update their state
as a function of the states of a fixed number of spatially
neighboring cells using a uniform rule. CAs are a clas-
sic example of complex behavior, and have been used
to model a wide variety of real world phenomena (see
[3]). In particular, we examine elementary CAs (ECAs):
1D CAs using binary states, deterministic rules and one
neighbor on either side (i.e. cell range r = 1). (For more
complete definitions, including that of the Wolfram rule
number convention for describing update rules, see [21]).
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CAs are selected for experimentation here because they
have been the subject of a large body of work regarding
the qualitative nature of information transfer in complex
systems [II, 2, 3, [4] 5] 6, [7]. As will be described here,
there are well-known spatiotemporal structures in CAs
which are qualitatively widely-accepted as being informa-
tion transfer agents; this provides us with a useful basis
for interpreting the quantitative results of our applica-
tion. The aforementioned studies revolve around emer-
gent structure in CAs: particles, gliders and domains. A
domain may be understood as a set of background con-
figurations in a CA, any of which will update to another
such configuration in the absence of a disturbance. Do-
mains are formally defined within the framework of com-
putational mechanics [22] as spatial process languages
in the CA. Particles are qualitatively considered to be
moving elements of coherent spatiotemporal structure,
in contrast to a background domain (see [23] for a dis-
cussion of the term “coherent structure” referring to par-
ticles in this context). Gliders are particles which repeat
periodically in time while moving spatially (repetitive
non-moving structures are known as blinkers). Formally,
particles are defined as a boundary between two domains
[22]; as such, they can also be termed as domain walls,
though this is typically used with reference to aperiodic
particles. It is widely suggested that particles form the
basis of information transmission, since they appear to
facilitate communication about the dynamics in one area
of the CA to another area (e.g. [5]). Furthermore, their
interactions or collisions are suggested to form the basis
of information modification, since the collisions appear
to combine the communications in some decision process
about the dynamics. In particular, these metaphor are
found in studies of Turing universal computation with
particles used to facilitate the transfer of information be-
tween processing elements (e.g. Conway’s Game of Life
[24] and see general discussion in [3]); analyses of CAs
performing intrinsic, universal or other specific computa-
tion [T}, 2, 22], 25]; studies of the nature of particles and
their interactions (i.e. collisions) [I []; and attempts to
automatically identify CA rules which give rise to par-
ticles, e.g. [0} [26], suggesting these to be the most in-
teresting and complex CA rules. Despite such interest,
no study has quantified the information transfer on av-
erage within specific channels or at specific spatiotempo-
ral points in a CA, nor quantitatively demonstrated that
particles (either in general, or gliders or domain walls as
sub-classes) are in fact information transfer agents. (A
rudimentary attempt was made via mutual information
in [B], however we show that this is a symmetric measure
not capturing directional transfer).

We hypothesize that application of a measure of lo-
cal information transfer into each spatiotemporal point in
CAs would reveal particles as the dominant information
transfer agents. Our results would have wide-ranging im-
plications for the real-world systems mentioned earlier,
given the power of CAs as model systems of the real
world and the obvious analogy between particles in CAs

and coherent spatiotemporal structures and hypothesized
information transfer agents in other systems (e.g. known
analogues of particles in physical processes such as pat-
tern formation and solitons [4 27]; also waves of confor-
mational change are said to perform signaling in micro-
tubules [8]). Where no CA model exists for a given sys-
tem, our presentation of local transfer entropy is generic
enough to still be directly applicable for investigation of
that system, guided by the method of application to CAs.

Finally, several methods already exist for filtering the
important structural elements in CAs [6, 22, 23, 28],
which provide another important basis for comparison
of our spatiotemporal local information transfer profiles
(which can also be viewed as a method of filtering). These
methods include: finite state transducers to recognize the
regular spatial language of the CA [22] 25]; local infor-
mation (i.e. local spatial entropy rate) [28]; displaying
executing rules with the most frequently occurring rules
filtered out [6]; and local statistical complexity and local
sensitivity [23]. All of these successfully highlight parti-
cles. Hence, filtering is not a new concept; however the
ability to filter for information transfer could provide the
first thoroughly quantitative evidence that particles are
the information transfer elements in CAs. Additionally,
it would provide insight into information transfer in each
specific channel or direction in the CA allowing more
refined investigation than the single measures of other
methods, and should reveal interesting differences in the
parts of the structures highlighted.

We begin by providing background on required
information-theoretical concepts, and subsequently in-
troduce transfer entropy and derive the local transfer
entropy from it. We also derive two distinct forms of
the transfer entropy, namely apparent and complete, to
be studied from a local viewpoint. The local transfer
entropy is then applied to ECAs, highlighting particles
(both gliders and domain walls) as expected, and so
providing the first quantitative evidence for the widely-
accepted conjecture that these are the dominant informa-
tion transfer entities in CAs. The profiles also provide
insights into the parameters and forms of the transfer
entropy that its average is shown to be incapable of pro-
ducing. We conclude with a summary of the important
findings, compare our spatiotemporal profiles to other
CA filtering methods, and describe further investigations
we intend to perform with this metric.

II. INFORMATION-THEORETICAL
QUANTITIES

Information theory (e.g. see [29]) has proved to be a
useful framework for the design and analysis of complex
self-organized systems (for example, see an overview in
[30] and specific examples in [6, 12}, 13, 17, B1]). This suc-
cess, in addition to the highly abstract nature of informa-
tion theory (which renders it portable between different
types of complex systems), and its general ease of use, are



reasons underlying its position as a leading framework for
the analysis and design of complex systems.

The fundamental quantity is the Shannon entropy,
which represents the uncertainty associated with any
measurement x of a random variable X (logarithms are in
base 2, giving units in bits): H(X) = - p(z)logp(z).
The conditional entropy of X given Y is the average
uncertainty that remains about x when y is known:
H(X[Y) = -3, ,p(z,y)logp(z|y). The mutual infor-
mation between X and Y measures the average reduc-
tion in uncertainty about x that results from learning the
value of y, or vice versa:

1Y) = S pla) o PEU (1a)

I(X;Y) = H(X) — HX|Y) = H(Y) — H(Y|X). (1b)

The conditional mutual information between X and
Y given Z is the mutual information between X and Y
when Z is known:

I(X;Y|Z) = H(X|Z) — H(X|Y, Z). (2)

The entropy rate (denoted as h,) [32] is the limiting
value of the conditional entropy of the next state ;41
of X given knowledge of the previous k — 1 states :cSZ“‘”
(up to and including time n, i.e. &,_gi2 to ,) of X:

hy, = lim H(z,]zFY). (3)
k—o0

n

III. LOCAL INFORMATION TRANSFER

It is natural to look to information theory for the con-
cept of information transfer. As such, we adopt trans-
fer entropy from this realm and subsequently derive lo-
cal transfer entropy from it. Additionally, we provide
comment on the parameters of the transfer entropy, and
present the concepts of apparent and complete transfer
entropy, and self-information transfer.

A. Transfer Entropy

As alluded to earlier, mutual information has been
something of a de facto measure for information transfer
in complex systems (e.g. [0, 14, B33]). A major problem
however is that mutual information contains no inherent
directionality. Attempts to address this include using
the previous state of the “source” variable and the next
state of the “destination” variable (known as time-lagged
mutual information). However, Schreiber [19] points out
that this ignores the more fundamental problem that mu-
tual information measures the statically shared informa-
tion between the two elements. (The same criticism ap-
plies to equivalent non information-theoretical definitions
such as that in [18]).

To address these inadequacies Schreiber introduced
transfer entropy [19], the deviation from independence
(in bits) of the state transition (from the previous state
to the next state) of an information destination X from
the (previous) state of an information source Y:

T pl@ari|zd, yd)
TY—»X - p(un) IOg (k)
Uy, p(l‘n+1|$n )

(4)

Here n is a time index, u,, represents the state transition
tuple (2,41, x%k), y,(f)), 2% and yg) represent the & and [
past values of z and y up to and including time n (with
k,l1 =1 being default choices). Schreiber points out that
this formulation of the transfer entropy is a truly dynamic
measure, as a generalization of the entropy rate to more
than one element to form a mutual information rate. The
transfer entropy can be viewed as a conditional mutual
information [34] (see Eq. (2)), casting it as the average
information contained in the source about the next state
X'’ of the destination that was not already contained in
the destination’s past:

Ty_x =1(YV; X'|X) = HX'|X) - HX'|X,Y). (5)

This could be interpreted (following [30] and [33]) as the
diversity of state transitions in the destination minus as-
sortative noise between those state transitions and the
state of the source. Importantly, as an information the-
oretic measure based on observational probabilities, the
transfer entropy is applicable to both deterministic and
stochastic systems.

Transfer entropy has been used to characterize infor-
mation flow in sensorimotor networks [I3] and with re-
spect to information closure [35] in two recent studies.
We note the alternative perturbation-based candidate in-
formation flow for quantifying information transfer from
the perspective of causality rather than prediction; we
intend to compare transfer entropy to this measure in
future work. Furthermore, a separate notion of informa-
tion flow in CAs was introduced in [28] (connected to the
local information though not used for filtering). There
are several fundamental problems with this formulation
however: it is only applicable to reversible CAs, only has
meaning as information flow for deterministic mechanics,
and is not able to distinguish information flow any more
finely than information from the left and the right.

In this paper, we accept Schreiber’s formulation of
transfer entropy (Eq. ) as a theoretically correct quan-
titative definition of information transfer, from a predic-
tive or computational perspective. However, this quanti-
tative definition has not yet been unified with the ac-
cepted specific instances of information transfer (e.g.
particles in CAs); these instances are local in space and
time and to be investigated require a local measure of in-
formation transfer. In presenting local transfer entropy
here, we seek to unify the apparently correct quantitative
formulation of information transfer (i.e. transfer entropy)
with accepted specific instances of information transfer.



B. Local Transfer Entropy

To derive a local transfer entropy measure, we first note
that Eq. is summed over all possible state transition
tuples u, = (xn+1,x% ),yr(L)), weighted by the probabil-
ity of observing each such tuple. This probability p(u.,)
is operationally equivalent to the ratio of the count of
observations ¢(uy,) of u,, to the total number of observa-
tions N made: p(u,) = c(u,)/N. To precisely compute
this probability, the ratio should be composed over all re-
alizations of the observed variables (as described in [36]);
realistically however, estimates will be made from a fi-
nite number of observations. Subsequently, we replace

the count by its definition ¢(u,) = ZZ(:“{L) 1, leaving the
substitution p(u,) = (Zg(:"f) 1) /N into Eq. :

Un)

Ty—x = N Z Z

The log term may then be brought inside this inner sum:

(k) (1)
p($n+1|l‘n s Yn ) (6)

p(m7z+1‘x$7,k))

c(un) (k) (1)
xn Tn
Ty . x = N g E +1l (k?)J ) (7)
Uy a=1 l’n+1|[L' )

This leaves a double sum running over each actual ob-
servation a for each possible tuple observation u,,, which
is equivalent to a single sum over all N observations:

N (k) (D)
1 2 : p(xn+1|$n s Yn )
Ty*,X = — lo (8)
NZ T plansalal?)

It is clear then that the transfer entropy metric is an
global average (or expectation value) of a local transfer
entropy at each observation:

Ty_x = {tyox(n+1,k,1)); (9a)
p(mn+1|xn ’y(l))
p(@npafal’)

The measure is local in that it is defined at each time
n for each destination element X in the system and each
causal information source Y of the destination. This
method of forming a local information-theoretic measure
by extracting the log term from a globally averaged mea-
sure is used less explicitly for the local excess entropy[36],
the local statistical complexity [23] [36], and the local in-
formation [28]. It is applicable to any such information-
theoretic metric: we form the local (time-lagged) mutual
information between the source and destination variables

from Eq. as:

ty‘}X(n + 17k7l) = log

(9b)

0}
n , T
(s an41) = log 2 nt) g
P(Tnt1)p(yn’)

and similarly rewrite Eq. as the expectation value

of a local conditional mutual information:
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FIG. 1: Local transfer entropy (i, j,n+1, k, 1) is the informa-
tion transfered from an [ sized block of the source cell X;_;
to the destination cell X; at time step n + 1, conditioned on
k past states of the destination cell. Note: |j| < r for CAs.

For lattice systems such as CAs with spatially-ordered
sources and destinations, we represent the local transfer
entropy to cell X; from X;_; at time n + 1 as:

k) (1
p( Ty n+1|x£727 E )j n)

k)

t(7’7.]an+ 17k7l) = log
p(xi7"+1|xi,n)

(11)

Similarly, the local (time-lagged) mutual information can
be represented as: m(i,j,n + 1,1) = m(xgjn;xnﬂ).
Fig. [I] shows the local transfer entropy in a spaﬁiotempo-
ral system. The metrics are defined for every spatiotem-
poral destination (i,n), forming a spatiotemporal profile
for every information channel or direction j where sen-
sible values for CAs are within the cell range, |j| < r.
Notice that j represents the number of cells from the
source to the destination, e.g. j = 1 denotes transfer
across one cell to the right per unit time step. We use
T(j, k,1) to represent the average over all spatiotemporal
points on the lattice.

Importantly, note that the destination’s own historical
values can indirectly influence it via the source, which
may be mistaken as an independent flow of information
from the source. This is only possible in systems such as
CAs with bidirectional information transfer. Such self-
influence is a non-traveling form of information (in the
same way as standing waves are to energy); it is essen-
tially static and can be viewed as the trivial part of infor-
mation transfer. This non-traveling information is elimi-
nated from the measurement by conditioning on the des-
tination’s history x( ) Yet any self-influence transmitted
prior to these k values will not be eliminated; we general-
ize comments on the entropy rate in [19] to suggest that
taking the asymptote k — oo is most correct for agents
displaying non-Markovian dynamics (when considering
their time-series in isolation). As such, we formalize the



local transfer entropy as:
k) (1
@i |z 22 )

P($i>n+1|$£—,}2)

t(i,j,n+ 1,1) = klim log b (12)

and similarly ty_,x(n+1,1) = limg ooty x(n + 1, k,1)
for a single source-destination pair. Computation at this
limit is not feasible in general, so we retain ty_, x (n, k, )
and (i, j,n, k,[) for estimation with finite k.

Also, we drop ! from the notation (e.g. t(¢,j,n) and
t(i,j,n, k)) where the default setting of | = 1 is used to
measure transfer from the single previous state only.

C. Complete and Apparent Transfer Entropy

The averaged transfer entropy is constrained between
0 and logb bits (where b is the number of possible states
for a discrete system): as a conditional mutual infor-
mation, it can be either larger or smaller than the cor-
responding mutual information [29]. The local transfer
entropy however is not constrained so long as it aver-
ages into this range: it can be greater than logb for a
significant local information transfer, and can also in
fact be measured to be negative. Local transfer en-
tropy is negative where (in the context of the history
of the destination) the probability of observing the ac-
tual next state of the destination given the value of the

(k) .0

source p(x; ny1]; T, ), is lower than that of observ-

ing that actual next state independently of the source
P(Tin+1 |xz(k72) In this case, the source element is actually
misleadingﬁbout the state transition of the destination.
It is possible for the source to be misleading in this con-
text where other causal information sources influence the
destination, or in a stochastic system. (Similarly a local
mutual information, Eq. , can be negative).
Importantly, the transfer entropy may be conditioned
on other possible information sources Z [19] (becoming
I(Y; X'|X, Z)), to eliminate their influence from being
mistaken as that of the source Y. To be explicit, we
label calculations conditioned on no other information
contributors (e.g. Eq. ) as apparent transfer entropy.
For ECAs, conditioning on other possible information
sources logically means conditioning on the other cells
in the destination’s neighborhood, which we know to be
causal information contributors. Firstly, we represent the
joint values of the neighborhood of the destination x; p41,
excluding the source for the transfer entropy calculation
Zi—jn and the previous value of the destination x; ,, as:

Vi i = ATignlVe: —r < g < +rq# —5,05,  (13)

where r is the range of causal information contributors
(i.e. the cell range for CAs). We then derive local com-
plete transfer entropy as the information contained in the
source about the next state of the destination that was
not contained in the destination’s past or in other causal

information sources vy ; :
J»

k
Pl i vl ) (14)

te(d, j,n+1) = lim log
c k—o0 p($i7n+1|$§,krz’vg,j’n)

Again, t.(4,j,n,k) denotes finite k estimates. Eq. (14))
specifically considers systems where only immediately
previous source values can be causal information con-
tributors: here under complete conditioning ! > 1 can-
not add any information to the source. In other systems
Eq. could be adjusted accordingly. In determin-
istic systems (e.g. ECAs), complete conditioning ren-
ders t.(i,j,n) > 0: it is not possible for the information
source to be misleading when all other causal information
sources are being considered. T.(j) represents the aver-
age over all spatiotemporal points on the lattice. Com-
plete transfer entropy can be constructed for any system
by conditioning out all causal information contributors
apart from the information source under consideration.

D. Summed Information Transfer Profiles

We label the case j = 0 as self-information transfer,
where the “source” is the immediate past value of the
destination. We condition this calculation on the k& val-
ues before the [ source values so as not to condition on
the source. Self-information transfer computes the infor-
mation contributed by the previous state of the given cell
about its next state that was not contained in its prior
history; this can be thought of as traveling information
with an instantaneous velocity of zero. This is not a par-
ticularly useful quantity in and of itself, however it helps
to form a useful profile with transfer entropies for j # 0
in the summed local information transfer profiles. These
are defined for apparent and complete transfer entropy
respectively as:

T

ta(i,n k1) = > (i, j,n, k1), (15a)
j=-r

toc(isn k) = > te(i,j,n, k). (15b)
j=—r

IV. RESULTS AND DISCUSSION

The local transfer entropy metrics were studied with
several important ECA rules. We investigate the varia-
tion of the profiles as a function of k, examine the chang-
ing nature of the profiles with ECA type, and compare
the apparent and complete metrics. Each instance was
run from an initial randomized state of 10 000 cells, with
the first 30 time steps eliminated to allow the CA to set-
tle, and a further 600 time steps captured for investiga-
tion. All results were confirmed by at least 10 runs from
different initial randomized states, and periodic bound-
ary conditions were used. We fixed [ at 1: values of [ > 1



are irrelevant for the complete metric when applied to
CAs, and for the apparent metric we are interested in
information directly transfered at the given local time
step only. For spatially-ordered systems with homoge-
neous agents such as CAs, it is appropriate to estimate
the probability distributions from all spatiotemporal ob-
servations (i.e. from the whole CA) of the corresponding
channel rather than only the source-destination pair un-
der measurement.

We concentrate on rule 110 (a complex rule with sev-
eral configurations of regular particles, or gliders) and
rule 18 (a chaotic rule with irregular particles, or domain
walls); the rule classification here is from [21I]. The selec-
tion of these particular rules allow comparison with the
results of other filtering techniques. We expect local in-
formation transfer profiles to highlight both regular and
irregular particles, the important elements of structure in
CAs which are conjectured to be the information transfer
agents.

A. Base comparison cases

For rule 110 the raw states of a sample CA run are
displayed in Fig. (all figures were generated using
modifications to [37]). As base cases we measured (time-
lagged) local mutual information m(i, j,n), and local ap-
parent and complete transfer entropies with the default
value of k = 1: t(i,5,n, k = 1) and t.(i,j,n,k = 1). The
base comparison case of local mutual information is anal-
ogous to that with globally averaged measures in [19], yet
the local profiles yield a more detailed contrast here than
averages do. Note that £ = 1 is the only value used in
[19] (in less coupled systems) and the later applications
of the transfer entropy in [13, B4, B5]). The local profiles
generated with j = 1 (i.e. one cell to the right per unit
time) for these base cases are shown in Fig. These
measures are unable however to distinguish gliders from
the background here with any more clarity than the raw
CA plot itself. (The negative components of m(i,j,n)
and t(%,j,n,k = 1), not shown, are similarly unhelpful).
These basic metrics were also unsuccessful with other val-
ues of j and with other CA rules; this provides explicit
demonstration that they are not useful as measures of
information transfer in complex systems.

B. Gliders as dominant information transfer agents

Experimentally, we find our expectation of gliders be-
ing highlighted as dominant information transfer against
the domain once k > 6 for ECA rule 110 (for both the
complete and apparent metric, in both channels j = 1
and —1). Fig.|3| displays the local complete transfer en-
tropy profiles computed here using k¥ = 6 (we return to
examine the apparent metric in Section [[VDJ). Note that
higher values of local complete transfer entropy are at-
tributed by each measure to the gliders moving in the
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FIG. 2: Base comparison metrics incapable of quantifying
local information transfer (one cell to the right). Application
to raw states of ECA Rule 110 shown in [@] (86 time steps
displayed for 86 cells, time increases down the page for all CA
plots): [(b)] Local (time-lagged) mutual information m(i,j =
1,n), positive values only, (all figures scaled with 16 colors)
with max. 0.48 bits (black), min. 0.00 bits (white); [(c)] Local
complete transfer entropy t.(i,7 = 1,n,k = 1), max. 1.28 bits
(black), min. 0.00 bits (white); [(d)] Local apparent transfer
entropy t(i,7 = 1,n,k = 1), positive values only, max. 0.67
bits (black), min. 0.00 bits (white).

same macroscopic direction of motion as the direction of
information transfer being measured, as is expected from
such measures. Also, the summed local complete transfer
in Fig. gives a filtered plot very similar to that found
for rule 110 using other techniques (see [0 23]). Simply
relying on the average transfer entropy values does not
provide us these details (see Section .

Fig. displays a close-up example of a right mov-
ing glider in ECA rule 110, which application of the
local complete transfer entropy in Fig. reveals is
composed of a repeating series of two consecutive infor-
mation transfers to the right followed by a pause. Al-
though one may initially suggest that the glider struc-
ture includes the points marked “x”, careful considera-
tion of exactly where a source can add information to
that contained in the past of the domain suggests oth-
erwise. Consider the point one cell to the left of those
marked “x”, the second of the two consecutive trans-
fers to the right. To compute t.(i,j7 = 1,n + 1,k = 6)
(one cell to the right) at this point, we first compute



FIG. 3: Local transfer entropy with & = 6 highlights glid-
ers. Application to raw states of ECA Rule 110 in @ (86
time steps for 86 cells): [@] Summed local complete trans-
fer entropy profile tsc(i,mn,k = 6), max. 8.22 bits (black),
min. 0.00 bits (white); Local complete transfer entropy
te(i,j = 1,n,k = 6) (one cell to the right), max. 4.95
bits, min. 0.00 bits; @ Local complete transfer entropy
te(i,7 = —1,n,k = 6) (one cell to the left), max. 6.72 bits,
min. 0.00 bits.

k=6 .
p(azi_’n+1|x§7n ),$i71,m d; j=1,rn) = 1.0 (since the system

is deterministic) and p(mi’n+1|x§kn:6),di’jzlmn) = 0.038.
The local transfer entropy will be high here because the
probability of observing the actual next state of the des-
tination is much higher when the source is taken into ac-
count than when it is not; correspondingly using Eq.
we have t.(i,j = 1,n+ 1,k = 6) = 4.7 bits at this point.
The points marked “x” are effectively predictable from
the temporal pattern of the preceding domain however,
and so do not contain significant information transfer. In-
terestingly, the points containing significant information
transfer are not necessarily the same as those selected
as particles by other filtering methods; e.g. finite state
transducers (using left to right scanning by convention
[25]) would identify points two cells to the right of those
marked “x” as part of the glider.

To understand why k£ > 6 was useful in this case, we
consider an infinite temporally periodic domain, with pe-
riod say p. (This serves as an extension of the demon-
stration in [I9] of zero average transfer in a lattice of
spatial and temporal period 2 using £ = 1 to a domain
of arbitrary period). For the time-series of a single cell

(b) (c)

FIG. 4: Close-up example of a glider in ECA Rule 110 (x’s
and o’s used only for visual alignment). 18 time steps dis-
played for 12 cells: [@] Raw CA; [@] Local complete transfer
entropy tc(i,j = 1,n,k = 6) (one cell to the right), maxima in
view 4.70 bits (gray), minima 0.00 bits (white); [(c)| Local ap-
parent transfer entropy t(i,5 = —1,n,k = 6) (one cell to the
left), negative values only, minima in view -2.04 bits (gray),
maxima 0.00 bits (white).

there, the number of states an observer must examine
to have enough information to determine the next state
is limited by the period p (as per the synchronization
time 7 in [38]). Local transfer entropy measurements
with & > p — 1 would therefore not detect any additional
information from the neighbors about the next state of
the destination than is already contained in these k pre-
vious states (correctly inferring zero transfer). Using
k < p — 1 on the other hand may attribute the non-
traveling self-influence of the destination to the source.
Taking k > p—1 provides a sufficient (Markovian) condi-
tion for eliminating this non-traveling information in an
infinite periodic domain, rather than requiring the full
asymptote k — oco. Establishing a minimal condition is
related to the synchronization time 7 for the entropy rate
[38], though is slightly more complicated here because we
need to consider the source cell.

However, a minimal correct value for k does not exist
for a given system with bidirectional communication in
general. The above argument was only applicable for do-
mains which are periodic and infinite, and the existence
of any gliders prevents a periodic domain from being in-
finite. Where the history of a given destination includes
encountering gliders at some point, this partial knowl-
edge of nearby glider activity is an important compo-
nent in the probability distribution of the next state of
that destination. Yet there is no limit on how far into
the future a previous glider encounter may influence the
states of a destination (because of the system’s capacity
for bidirectional communication). That is to say, there is
no Markovian condition for eliminating the non-traveling
information in general in such systems; as such the limit
k — oo should be taken in measuring the transfer en-
tropy. While using only the condition £ > p — 1 is not
completely correct, it will eliminate the non-traveling in-
formation in the domain pertaining to the periodic struc-



ture only. Where this part is dominant in the domain,
as in for ECA rule 110 here, the gliders are likely to be
highlighted against the periodic domain with & > p — 1.
(This could be considered a rule of thumb for determining
a minimum useful k).

While the results for & = 6 visually correlate with pre-
vious filtering work, using the limit & — oo would be
more correct. Achieving this limit is not computation-
ally feasible, but reasonable estimates of the probability
distributions can be made: Fig. [f]displays the local com-
plete transfer entropy profiles computed for ECA rule 110
using k = 16. These plots highlight information trans-
fer almost exclusively now in the direction of the macro-
scopic glider motion, which is even more closely aligned
with our expectations than was seen for k = 6. Impor-
tantly, much less of the gliders are highlighted than for
k = 6 or other techniques, and the larger values of trans-
fer entropy are concentrated around the leading time-
edges of the gliders. This suggests that the leading glider
edges determine much of the following dynamics which
then comprise mainly non-traveling information. Note
also that the “vertical” glider (at the left of Fig. [3(b)
with spatial velocity zero) is not highlighted now. Its
cell states are effectively predictable from their past, ob-
servable once k becomes greater than its vertical period.

Another interesting effect of the existence of gliders is
that the next state of a cell in the domain is not com-
pletely determined by its periodic history. The neigh-
boring information sources have the capability to add in-
formation about the next state of that destination, by
signaling whether a glider is incoming or not. That is
to say, it is possible to measure a non-zero information
transfer inside finite domains, effectively indicating the
absence of a glider (i.e. that the domain shall continue).
For ECA rule 110 in Fig. 3] we do in fact measure small
but non-zero information transfer at certain points in the
periodic background domain (small enough to appear to
be zero). These values tend to be stronger in the wake
of real gliders: since gliders are often followed by others,
there is a stronger indication of their absence. Consider
the points in the periodic domain marked by “o0” in Fig.
these have the same history as the previously discussed
points of high information transfer; their neighborhood
(excluding the source on the left) is also the same. Here,

(k=6)
we compute p(:ci7n+1|xi7n yTicims dij=1,rn) = 1.0 and

p(xi,n+1|xz(-i:6), d; j=1,rn) = 0.96: the probability of ob-
serving the actual next state of the destination becomes
slightly higher when the information source on the left is
taken into account. As such, we havet.(i,j = 1,n+1,k =
6) = 0.057 bits to the right at this point, demonstrating
the possibility for small non-zero information transfer in
the periodic domain. This effect occurs for both the com-
plete and apparent measures and is not a finite k effect.

Also, note in Fig. [5] there is some information trans-
fer in the orthogonal direction for each glider. Some is
expected to vanish as £ — oo, yet some will remain for
a similar reason to the non-zero transfer in domains, i.e.
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FIG. 5: Estimating local transfer entropy profiles for k — oo
with & = 16 for the raw states of ECA Rule 110 in Fig. (86
time steps for 86 cells): @ Summed local complete transfer
entropy profile tsc(i,n,k = 16), max. 14.7 bits (black), min.
0.00 bits (white); @Local complete transfer entropy t.(i,7 =
1,n,k = 16) (one cell to the right), max. 9.99 bits, min. 0.00
bits; Local complete transfer entropy tc(i,7 = —1,n,k =
16) (one cell to the left), max. 10.1 bits, min. 0.00 bits; [(d)]
Local apparent transfer entropy t(i,j = —1,n,k = 16) (one
cell to the left), positive values only, max. 10.4 bits, min. 0.00
bits.

considering the source does add information about the
next state of the destination. Importantly, this orthogo-
nal transfer is not as significant as that in the macroscopic
glider direction in terms of magnitude and coherence.

Given these effects, we describe gliders as the domi-
nant, as opposed to the only, information transfer agents
here. (These findings have also been verified for ECA
rule 54, another complex rule containing gliders.) While
these profiles appear similar to other filtering work in
some respects, it is only local transfer entropy profiles
that provide quantitative evidence that gliders are the
dominant information transfer agents in CAs.

C. Domain walls as dominant information transfer
agents

We also investigated ECA rule 18, known to con-
tain domain walls against the background. Application
of local complete transfer entropy to the sample run
in Fig. highlights the domain walls as containing



(b)

(c) (d)

FIG. 6: Local transfer entropy profiles for raw states of ECA
Rule 18 in @ (55 time steps for 55 cells displayed) highlight
domain walls: @ Summed local complete transfer entropy
profile t.c(i,n, k = 16), max. 13.5 bits (black), min. 0.00 bits
(white); Local complete transfer entropy (i, = 1,n,k =
16) (one cell to the right), max. 14.9 bits, min. 0.00 bits; @]
Local apparent transfer entropy t(i,7 = 1,n,k = 16) (one cell
to the right), positive values only, max. 11.9 bits, min. 0.00
bits;

strong information transfer in each channel (e.g. see
t.(i,7 =1,n,k = 16) in Fig. . A full picture is given
by the summed profile in Fig. @ as expected, our
results quantitatively confirm the domain walls as domi-
nant information transfer agents against the domain. We
have observed similar results for ECA rule 146.
Importantly, the domain contains a significant level of
information transfer here. In fact, there is a pattern to
the transfer in the domain of spatial and temporal period
2 which corresponds very well to the period-2 spatial e-
machine generated to recognize the domain of rule 18 in
[22]. Every second site of the domain in the raw CA
is a “0”, and the alternate site is either a “0” or a “1”
(depending on the neighborhood configuration). At ev-
ery second site with the “0” values, there is vanishing
local complete information transfer (for either incoming
channel j = 1 or —1) because the state of the cell is
completely predictable from this temporal periodic pat-
tern in its past. At the alternate sites, the local com-
plete information transfer is approximately 1 bit from
both incoming channels j = 1 and —1 (by limited in-
spection the measurements were between 0.96 and 1.04
bits with £ = 16). At these points, (in an infinite do-

main) both alternative next states are equally likely (in
the context of the destination’s past and the rest of the
CA neighborhood) before considering the source; when
it is considered, the next state is determined and 1 bit of
information is added.

Domain walls involve the meeting of two domains
which are out of phase: motion of the wall can be viewed
as one domain intruding into the other. At such points,
we observe high transfer entropy in the direction of move-
ment because the information source (as part of the in-
truding domain) adds much information about the next
state of the destination that was not in the destination’s
past or the rest of the CA neighborhood. This high-
lighting of the domain walls is somewhat similar to that
produced by other filtering techniques, although an im-
portant distinction to [6, 22] 28] is that this technique
highlights the domain wall areas as only being a single
cell wide: as described above, a single cell width is all
that is required to explain the meeting of two domains of
rule 18 from a temporal perspective.

We also applied these measures to ECA rule 22 (not
shown), plots of whose raw states appears similar to rule
18 at first glance. However, this rule has not been found
to contain structure such as domain walls [23]. Similar to
those results, local transfer entropy measures significant
information transfer at many points in the CA, but does
not find any coherent structure to this transfer.

D. Apparent transfer entropy

Profiles generated with the local apparent transfer en-
tropy contain many of the same features as those for
the complete metric: gliders and domain walls are high-
lighted as the dominant information transfer agents in
their direction of motion; large values of k are required
to reasonably approximate the probability distribution
functions; and non-zero information transfer is still pos-
sible in domains and in orthogonal directions to macro-
scopic glider motion.

For ECA rule 110, Fig. displays the positive val-
ues for ¢(i,j = —1,n,k = 16) (one cell to the left), which
appears almost identical to the corresponding profile for
the complete metric in Fig. The summed apparent
profile (not shown) is also very similar to the summed
complete profile in Fig. A major distinction is ob-
served however when examining negative values for the
apparent profiles: when measured in a directional orthog-
onal to macroscopic glider motion, it can report negative
as well as positive values (see Fig. . Negative val-
ues occurs where the source, still part of the domain, is
misleading about the next state of the destination.

As an example, consider the glider in Fig. At
the positions to the left of those marked “x”, we con-
firm a strong positive value for the local apparent trans-
fer entropy t(i,7 = 1,n + 1,k = 6) (2.65 bits), as per
the complete metric. However, Fig. displays large
negative values of ¢(i,j = —1,n + 1,k = 6) (the orthog-



onal channel to glider motion) at these same positions.
There we compute p(xi,n+1|a:§ﬁl:6),xi,17n) = 0.038 and

p(xi,7l+1|m£’;:6)) = 0.16. The local apparent transfer en-
tropy negaﬁve here because the probability of observing
the actual next state of the destination is much lower
when the source on the right is taken into account than
when it is not (i.e. the source is misleading). As such,
Eq. gives t(i,j5 = —1,n + 1,k = 6) = —2.05 bits at
this point. Compare this to the complete metric for this
channel, t.(i,j = —1,n 4+ 1,k = 6), which measures 0.00
bits here because the source at the right (still in the do-
main) cannot add any information not contained in the
other neighbor (which drives the glider). Note that the
local apparent transfer entropy in the direction of glider
motion was more informative than that in the orthogonal
direction was misleading. Also, note that negative val-
ues of the local metric are not found for the orthogonal
direction at every point in the glider.

Another distinction is observed for ECA rule 18. As ex-
pected, the apparent metric identifies high positive trans-
fer entropy in the direction of domain wall motion (see
Fig.[6(d)|for the j = 1 channel), and negative transfer en-
tropy in the orthogonal direction to domain wall motion
(not shown). However, the apparent metric finds van-
ishing transfer entropy throughout the domain (for both
channels j = —1 and 1), in stark contrast to the periodic
pattern found with the complete metric. At every second
site with the “0” values, the state of the destination is
completely predictable from its past, so we have ¢ = 0 bits
as for t.. However, at the alternate sites both possible
next states are equally likely in the context of the destina-
tion’s history and remain so when considering the source:
as such we find ¢ = 0. It is only when including the rest
of the neighborhood in the context (with the complete
metric) that one observes the source to be adding 1 bit
of information. This example brings to mind discussion
on the nature of information transfer in complex versus
chaotic dynamics [5l 14, 15, [16] and suggests that per-
haps in chaotic dynamics, where many sources influence
outcomes in a non-coherent manner, the complete met-
ric may indicate large information transfer whereas the
apparent metric does not (because other sources obscure
the contribution of the source under consideration).

The apparent and complete metrics are clearly capa-
ble of producing different insights under certain circum-
stances, and both viewpoints are valuable. We are cur-
rently investigating an application of the apparent trans-
fer entropy in combination with a measure of information
storage to identify information modification [39].

E. Averaged transfer entropies

We compute the averaged transfer metrics as a func-
tion of k for ECA rule 110 in Fig. [7]so as to check whether
similar insights can be gained from this trend. In fact,
only limited insights are gained here. The average com-
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FIG. 7: Average transfer entropies versus conditioning length
k, plotted for complete and apparent transfer entropies in
channels j =1 and —1 in ECA rule 110.

plete transfer entropies decrease with k: an increase is
impossible because we condition out more of the infor-
mation that appears to come from the source. The aver-
age apparent transfer entropy can show increases with &
however; this is possible with a three-term entropy [29]
where other information sources are not taken into ac-
count. None of these reach a limiting value for the extent
of k measured, suggesting again that & — oo should be
used. Realistically, k is limited (e.g. to k = 16 in previ-
ous sections) by the sample size so as to retain a sufficient
number of observations per configuration to reasonably
estimate the probability distribution functions.

The local metrics clearly reveal much about the infor-
mation dynamics of a system that their averages do not.
In particular, these averages tell us nothing of the pres-
ence of glider particles, not to mention that they would
be clearly highlighted once k > 6. Also, while the average
apparent and complete metrics appear to be converging
to a similar value in each channel, this belies their im-
portant distinctions discussed earlier.

V. CONCLUSION

We have presented a local formulation of the transfer
entropy in order to characterize the information transfer
into each spatiotemporal point in a complex system. Lo-
cal transfer entropy presents insights that cannot be ob-
tained using the averaged measure alone, in particular in
providing these spatiotemporal information transfer pro-
files as an analytic tool. Importantly, the local transfer
entropy allowed us to study the transfer entropy metric
itself, including the importance of appropriate destina-
tion conditioning lengths &k (e.g. that using k — oo is
most correct), and to contrast the apparent and com-
plete forms which were introduced here.

On applying the local transfer entropy to cellular au-
tomata, we demonstrated its utility as a valid filter for
coherent structure. It is novel in comparison to other



filtering methods previously presented for CAs. It pro-
vides continuous rather than discrete values (like [28] and
[23]). It does not follow an arbitrary spatial preference
(unlike [28] and [22]) but rather the flow of time only.
As described for local statistical complexity in [23], local
transfer entropy does not require a new filter for every
CA, but the probability distribution functions must be
recalculated for every CA. Perhaps most importantly, it
provides multiple views of information transfer in each
generic channel or direction (which no other filters do),
and also provides a combined view which matches many
important features highlighted by other filters. Finally, it
highlights subtly different parts of emergent structure to
other filters, i.e.: the leading glider edges facilitating the
information transfer; only the minimal part of domain
walls necessary to identify them; the particles are identi-
fied as consisting of different points due to our temporal
approach; and it does not highlight vertical gliders since
they are not traveling information.

Most significantly, local transfer entropy provided the
first quantitative support for the long-held conjecture
that particles (both gliders and domain walls) are the
information transfer agents in CAs. This is particu-
larly important because of analogies between particles in
CAs and coherent structure or hypothesized information
transfer agents in physical systems, such as traveling lo-
calizations caused by dipole-dipole interactions in micro-
tubules [8] and in soliton dynamics [27]. This formulation
of local transfer entropy is ready to be applied beyond
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CAs to systems such as these (and including stochastic
systems), where it may prove similar conjectures about
information transfer therein.

This result is important in bringing together the quan-
titative definition of information transfer (transfer en-
tropy) with the popular understanding of the concept
through widely-accepted instances (such as particles in
CAs). The result therefore completes the establishment
of transfer entropy as the appropriate measure for (pre-
dictive) information transfer in complex systems. A com-
parison should be made with a localization of the “infor-
mation flow” metric [34] in future work, in order to ex-
plore the differences between its causal perspective and
the predictive or computational perspective of transfer
entropy. In doing so, the limitations of the transfer en-
tropy metric must be considered. These include that the
transfer entropy should consider only causal information
contributors as the source and as other information con-
tributors to be conditioned on (in the complete metric).
Considering non-causal sources (e.g. outside the neigh-
borhood in CAs) has the potential to mistake correlation
for information transfer, and conditioning on non-causal
elements could cause information that was actually part
of the transfer to be disregarded.

Finally, we are building on this investigation to de-
scribe local measures of information storage and modifi-
cation also in a complete local framework for information
dynamics in complex systems (see [39]).
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