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To test the local-isotropy predictions of Kolmogorov’s (1 941) universal equilibrium 
theory, we have taken hot-wire measurements of the velocity fluctuations in the test- 
section-ceiling boundary layer of the 80 x 120 foot Full-Scale Aerodynamics Facility 
at NASA Ames Research Center, the world’s largest wind tunnel. The maximum 
Reynolds numbers based on momentum thickness, R,, and on Taylor microscale, R,, 
were approximately 370000 and 1450 respectively. These are the largest ever attained 
in laboratory boundary-layer flows. The boundary layer develops over a rough surface, 
but the Reynolds-stress profiles agree with canonical data sufficiently well for present 
purposes. Spectral and structure-function relations for isotropic turbulence were used 
to test the local-isotropy hypothesis, and our results have established the condition 
under which local isotropy can be expected. 

To within the accuracy of measurement, the shear-stress cospectral density E&J, 
which is the most sensitive indicator of local isotropy, fell to zero at a wavenumber 
about a decade larger than that at which the energy spectra first followed -t power 
laws. At the highest Reynolds number, E,,(k,) vanished about one decade before the 
start of the dissipation range, and it remained zero in the dissipation range. 

The lower wavenumber limit of locally isotropic behaviour of the shear-stress 
cospectra is given by k,(s/S3)4 x 10 where S is the mean shear, aU/tly. The current 
investigation also indicates that for energy spectra this limit may be relaxed to 
k,(e/P)i M 3 ;  this is Corrsin’s (1958) criterion, with the numerical value obtained 
from the present data. The existence of an isotropic inertial range requires that this 
wavenumber be much less than the wavenumber at the onset of viscous effects, k,  7 4 1, 
so that the combined condition (Corrsin 1958; Uberoi 1957), is S(v/e)i 4 1. 

Among other detailed results, it was observed that in the dissipation range the energy 
spectra had a simple exponential decay (Kraichnan 1959) with an exponent prefactor 
close to the value /3 = 5.2 obtained in direct numerical simulations at low Reynolds 
number. The inertial-range constant for the three-dimensional spectrum, C, was 
estimated to be 1.5f0.1 (Monin & Yaglom 1975). Spectral ‘bumps’ between the -: 
inertial range and the dissipative range were observed on all the compensated energy 
spectra. The shear-stress cospectra rolled-off with a -$ power law before the start of 
local isotropy in the energy spectra, and scaled linearly with S (Lumley 1967). 

In summary, it is shown that one decade of inertial subrange with truly negligible 
shear-stress cospectral density requires S(v/e)f of not more than about 0.01 (for 
a shear layer with turbulent kinetic energy production approximately equal to 
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dissipation, a microscale Reynolds number of about 1500). For practical purposes 
many of the results of the hypothesis may be relied on at somewhat lower Reynolds 
numbers. 

1. Introduction 

The local-isotropy hypothesis, which states that at sufficiently high Reynolds 
numbers the small-scale structures of turbulent motions are independent of large-scale 
structures and the mean deformation rate (Kolmogorov 1941, 1962), has been used in 
most approaches to understanding turbulence, be they theoretical, modelling, or 
computational methods like large-eddy simulation. The importance of Kolmogorov’s 
ideas arises from the fact that they create a foundation for turbulence theory by 
defining the nature of the singular limit of vanishing viscosity. 

Basically two methods - experiment and direct numerical simulation (DNS) - have 
been employed to study the statistical properties of the small scales of turbulence. The 
most powerful present-day computers permit DNS of shear flows only at low Reynolds 
numbers. Since the high-Reynolds-number requirement is an intrinsic part of the local- 
isotropy hypothesis, experiments appear to be the only way to investigate this concept 
- at least for now. This is not an easy task. To overcome the resolution limitations of 
present-day instruments, high Reynolds numbers must be achieved under controlled 
conditions in very large facilities. 

This report represents a part of a major experimental study of the concept of local 
isotropy in shear flows at high Reynolds numbers. Acquisition of reliable small-scale 
experimental data has been of prime concern. It is hoped that the analysis of these data 
will enhance our understanding of the local-isotropy hypothesis. 

1.1. Theoretical background 

Local isotropy greatly simplifies the statistics of turbulence. Consider for example the 
average turbulent energy dissipation rate per unit mass e, which is given by (e.g. Hinze 
1975, p. 218) 

using tensor notation and summation on repeated indices, where v is the kinematic 
viscosity. Here we use a Cartesian coordinate system .xi = (x, y, z )  with x-axis along the 
flow direction, y-axis normal to the solid surface and z-axis in the spanwise direction. 
The respective mean-velocity components in these directions are Ui = ( U ,  V,  w) and 
the fluctuating components are ui = (u,  o, w). Overbars denote time averages. If the 
dissipating range of eddy sizes is statistically isotropic, (1) reduces to (Taylor 1935) 

At sufficiently high Reynolds numbers and sufficiently small scale, Kolmogorov’s 
universal equilibrium hypothesis (of which local isotropy is a part) states that 

E(k) = (tv5)a @(ICY), (3) 

where E(k) is the three-dimensional energy spectrum, k is the wavenumber magnitude, 
‘1 = ( v ‘ / e ) ~  is the Kolmogorov lengthscale and @ is a dimensionless universal function 
of the non-dimensional wavenumber ky. 
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If the motion is isotropic, the transverse spectra E2,(k,) and 
determined by the longitudinal spectrum E,,(k,) (e.g. Batchelor 
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E,,(k,) are uniquely 
1953) : 

where k, is the longitudinal wavenumber and the components of spectra satisfy 

JOm Ell(kl) dk, = 2, E,,(k,) dk, = 2, E,,(k,) dk, = q. (5 )  

In an inertial subrange, where by definition the viscous effects are small, the three- 
dimensional spectrum takes the form (Kolmogorov 1941) 

E(k) = C&&, (6) 

E,,(k,) = C,ek,t (7) 

and E,,(kl) = E,,(k,) = C; $ky% (8) 

and, assuming isotropy, the one-dimensional longitudinal and transverse spectra are 

respectively. The Kolmogorov constant C is equal to gCl (Monin & Yaglom 1975), 
and (4) evaluated in the inertial subrange gives CJC, = 4/3. 

In isotropic flow the shear-stress cospectrum, E12(kl), which satisfies 

is equal to zero. This indicates that for local isotropy the correlation-coefficient 
spectrum, 

should fall to zero at high wavenumbers. Also, the spectral coherency, or cross- 
spectrum modulus, defined by 

where Q,,(k,) is the quadrature spectrum (see e.g. Bendat & Piersol 1986), is zero in an 
isotropic flow. 

Kolmogorov (1941) proposed scaling laws in the inertial subrange for structure 
functions, which are moments of the velocity differences evaluated at points separated 
by distances r (for the present study r corresponds to longitudinal distances). The 
second-order longitudinal and transverse structure functions are given by 

(12) 

(1 3 )  

2 2  

Dll (r )  = [u,(x, + r) - ul(x,)l2 = C, ezrz 

and 

respectively in isotropic flow, where C, z 4C, (Monin & Yaglom 1975) and C;/C, = 

4/3. This structure-function behaviour is also known as ‘Kolmogorov’s 5 law ’. 

D3,(r) = D,,(r) 3 [u,(x, + r) - U~(X,)I~ = C; e G  
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The third-order longitudinal structure function for homogeneous isotropic tur- 
bulence was derived from the Navier-Stokes equations by Kolmogorov, without any 
appeal to self-similarity (Landau & Lifshitz 1987, p. 140). In the inertial subrange 
( r  + 9 and the viscous effects are small) this takes the form 

Dlll(r) = [u,(x, + r )  - u,(xl)13 = -+. (14) 

Note that there is no arbitrary constant in this equation, which provides an easy way 
to estimate the dissipation in an isotropic flow. 

The above relations can be used to experimentally investigate the concept of local 
isotropy. The accuracy to which these relations are satisfied in a given flow is a measure 
of the accuracy of the local-isotropy hypothesis. 

1.2. A brief review of previous work 

Since Kolmogorov proposed his theory, there have been many experiments, conducted 
in wakes, jets, mixing layers, a tidal channel, and atmospheric and laboratory 
boundary layers, in which attempts have been made to verify - or refute - the local- 
isotropy hypothesis. However, a review of the literature over the last five decades 
indicates that, despite all these experiments in shear flows, there is no consensus in the 
scientific community regarding this hypothesis. Excellent reviews of this situation 
already exist. Examples include the articles in the Proceedings of the Royal Society, 
dedicated to the 50th anniversary of Kolmogorov’s ideas (Hunt, Phillips & Williams 
1991) (in particular those by Van Atta 1991 and Sreenivasan 1991, which directly 
address the concept of local isotropy). See also the reviews by Champagne (1978), 
Mestayer (1982) and Browne, Antonia & Shah (1987). To show the extent of 
disagreement, conclusions from a few experiments and recent theoretical and 
computational studies will be cited here. 

One of the earliest studies was by Townsend (1948), whose measurements of 
( a u , / a ~ , ) ~ ,  (au2/dx,)2 and ( a u , / 2 ~ , ) ~  in the wake of a cylinder confirmed local isotropy. 
However, Browne et al. (1 987) measured the nine mean-square velocity derivatives in 
(1) in the wake of a cylinder at low R, ( M 40 to 80), and found that local isotropy was 
not satisfied in the dissipation range. 

Uberoi (1957) found that the mean-square vorticity fluctuations measured in a 
boundary layer did not satisfy the local-isotropy hypothesis, but Mestayer (1982), who 
presented u- and v-spectra ( no w-spectrum was measured) for only one position 
(y/6=0.33) in a boundary layer at R, M 616, concluded that the local-isotropy 
criterion was satisfied in the dissipation range but not in the inertial subrange. Mestayer 
had to use Wyngaard’s (1 968) correction for his spectra, because the hot-wire spatial 
resolution was poor; the hot-wire length was 4.5 times greater than Kolmogorov 
lengthscale, which resulted in the attenuation of the high-wavenumber part of the 
spectra. 

Grant, Steward & Moilliet (1962) and Grant & Moilliet (1962) showed that spectra 
of both the streamwise and a cross-stream components of turbulence in a tidal channel 
at high Reynolds numbers displayed more than two decades of -: power law. In 
contrast, Karyakin, Kuznetsov & Praskovsky (1991) concluded that, in a return 
channel of a wind tunnel (R,  M 3000), neither the inertial subrange nor the dissipative 
range were isotropic. Karyakin et al. used only X-wires to measure the longitudinal and 
transverse components of spectra. Wyngaard (1 968) strongly recommends that 
measurements of the longitudinal spectrum should be taken with a single wire, because 
the crosstalk associated with X-wires attenuates the high-wavenumber part of the 
longitudinal spectrum much more significantly -than the transverse spectra. This effect 
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results in a spurious anisotropy, as further emphasized by the recent study of Ewing 
& George (1992). 

There have reccntly been a number of theoretical and computational studies 
stressing the importance of non-local (in Fourier space) interactions in the energy 
cascade process, and this brings into question Kolmogorov's concept of a local self- 
similar cascade. Domaradzki & Rogallo (1988) and Domaradzki, Rogallo & Wray 
(1990) showed that the energy transfer between similar small scales is largest when the 
third leg of the triad is a large scale. Yeung & Brasseur (1991) and Brasseur (1991) also 
demonstrated the importance of non-local transfer in their numerical simulations and 
argued that such interactions are important even in the high-Reynolds-number limit. 
However, Waleffe (1991) showed that if one considers all possible non-local triads, the 
net local transfer due to non-local interactions is not significant, thus local isotropy 
may not be affected by large-scale anisotropy or mean strain. 

Batchelor (1946) introduced the theory of local axisymmetry - invariance with 
respect to rotation about a preferred direction -which was later extended by 
Chandrasekhar (1950). Recently, George & Hussein (1991) and Antonia, Kim & 
Browne (1991) have proposed that in shear flows the local-isotropy assumption should 
be relaxed to one of local axisymmetry about the streamwise direction and showed that 
the derivative moments obtained by experiment and by direct numerical simulation in 
low-Reynolds-number flows supported the local-axisymmetry assumption. 

In simple shear flows, where the basic strain rate is S = aU/ay, the non-dimensional 
shear-rate parameter 

which is the ratio of the large-eddy timescale (q'/e) to the timescale of mean 
deformation ( , T I ) ,  characterizes the effects of mean-strain rate on the energy- 
containing turbulcnce scales (Moin 1990; Lee, Kim & Moin 1990): here q2 (= =) is 
twice the turbulent kinetic energy per unit mass. The shear-rate parameter in a 
simulated turbulent channel flow (Lee et al. 1990), reached a maximum value of about 
35 at y+ "N 10 (y' E y U J v ,  where U, is the wall-friction velocity) in the viscous sublayer 
and decreased to a value of about 6 for y+ > 50. Durbin & Speziale (1991) examined 
the equation for the dissipation-rate tensor and showed that exact local isotropy is 
inconsistent with the presence of mean-strain rate. 

On the other hand, Corrsin (1958) proposed that local isotropy may exist in shear 
flows in the 'mixed range' of spectra (the wavenumber range where both inertial 
transfer and viscous dissipation are important and where most of the dissipation 
occurs), when the ratio of the Kolmogorov to mean-shear timescales 

s* = sq'/€, (1 5)  

s,* = S(v/t)f < 1. (16) 

Note that, for a shear layer with (shear) production of turbulent kinetic energy 
approximately equal to dissipation, S,* - (R$l approximately. Uberoi (1 957) argued 
that, since in wall-bounded flows most of the production and dissipation take place 
near the wall, where they depend only on y+ and are independent of bulk Reynolds 
number, Sz should also be independent of Reynolds number and will have a constant 
value: in the log-layer S,* - (y+)-a. Uberoi also argued that in free-shear flows, such as 
jets, the situation is quite different and S,* is a function of (RJf ,  where R, is the 
Reynolds number based on the half-width of the jet. 

Using the channel-flow DNS data at low Reynolds number, Antonia & Kim (1992) 
found S,* to have a constant value of about 2.5 in the viscous sublayer and a reduction 
to a very small values for y' > 60. Antonia & Kim stated that SF is better behaved than 
S* because at the wall, where S is largest, S,* has a constant value, whereas S* goes to 
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zero. They also suggested that the Corrsin-Uberoi criterion is too restrictive and may 
be relaxed to S: < 0.2 for the small scales to be isotropic. 

1.3. Objectives uf the present investigation 

An experiment to investigate the local-isotropy hypothesis in simple shear flows has to 
satisfy certain conditions. These are examined below. 

It is imperative that the Reynolds number of the flow be high enough to separate the 
dissipating eddies sufficiently from the energy-containing scales. Most of the previous 
laboratory experiments do not satisfy this requirement. We do need to know the large- 
scale parameters governing the development of the shear flow. These are rather difficult 
to determine if the measurements are obtained in an uncontrolled environment. To 
identify the parameters (e.g. S, S,*) governing the degree of anisotropy of the small 
scales, it is important that the measurements be conducted at a variety of Reynolds 
numbers and/or basic mean-strain rates, to cover a range of S,*. 

Spatial-resolution problems, which arise because hot wires can rcsolve only those 
eddies that have lengthscales the same or larger than the hot-wire length, have affected 
most of the previous studies. It has becn shown that accurate measurements can be 
obtained with hot wires having (active) length-to-diameter ratios of about 200 (see e.g. 
Perry 1982; Ligrani & Bradshaw 1987). Very short wires must be extremely thin to 
satisfy this criterion, and the separation between the sensors in an X-wire must also be 
reduced, which in effect increases the crosstalk (and these will be accompanied by a lot 
of other problems, such as manufacturing and operational difficulties). The only 
practical option is to use large facilities where (i) high Reynolds numbers can be 
achieved and (ii) Kolmogorov scales can be resolved by standard hot wires. 
Furthermore, u,-spectra should be measured only by single wires to avoid the severe 
attenuation at the high wavenumbers due to X-wire crosstalk. (Other instrumentation 
requirements will be discussed in $2.) 

In experimental work, Taylor’s hypothesis is used to deduce wavenumber spectra 
from frequency spectra. For small-scale measurements, particularly those in the 
dissipation range, this hypothesis can be used accurately only in flows where the local 
turbulence intensity ($/U) is less than 0.1. Lumley (1965) and Wyngaard & Clifford 
(1977) estimate that at the highest wavenumbers the errors in the longitudinal and 
transverse spectra will then be less than 5 Yo and 3 % respectively. 

The objective of the present study is to investigate the local-isotropy hypothesis in 
a shear flow by conducting a fresh experiment that adheres to all the requirements 
listed above. However, it may be noted that in experimental work it is only possible to 
concentrate on a few measures of isotropy, where undoubtedly some are satisfied 
before others. Therefore, we cannot be certain whether a state offull local isotropy is 
obtained. 

2. Experimental facilities and techniques 

The expcriments described here were conducted in the boundary layer on the test- 
section ceiling of the Full-scale Aerodynamics Facility - commonly referred to as the 
80 x 120 foot wind tunnel - at NASA Ames Research Center. The test section is 
approximately 24.4 m high, 36.6 m wide, and more than 50 m long, which makes it the 
largest wind tunnel in the world. The measurement station was located towards the end 
of the test section on the centreline of the tunnel ceiling. The data recording equipment 
and a small wind tunnel used for calibrating the hot wires were installed in the attic 
above the test-section ceiling. The present measurements were performed in an empty 
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FIGURE 1 .  An aerial view of the Full-scale Aerodynamics Facility at NASA Ames Research Center, 
showing the intake to thc 80 x 120 foot test section. The arrow shows our measurement location in 
the attic. 

tunnel fully dedicated to our experiments. An aerial view of this wind tunnel (figure l), 
which shows the intake to the 80 x 120 foot test section and our measurement location 
in the attic, illustrates the scale of the experiment. 

All four walls of the test section are lined with acoustic panelling (perforated metal 
plates, having staggered circular holes of diameter approximately 2.5 mm, placed over 
foam), which produces a rough-wall turbulent boundary layer. These panels, the large- 
scale longitudinal grooves in the contraction walls, and occasional small protrusions 
due to the light ports, produced non-canonical flow close to the wall, but, as will be 
shown later, outside the wall region the Reynolds stresses followed standard zero- 
pressure-gradient turbulen t-boundary-layer behaviour. It is important to emphasize 
that it is desirable, but not necessary, to investigate the concept of local isotropy in a 
canonical boundary layer. 

2.1. Measurement conditions and strategy 

During the course of our feasibility studies (Veerarialli & Saddoughi 1991). we found 
that, owing to the lack of attic ventilation, the temperature in our calibration tunnel 
was higher than the temperature inside the 80 x 120 foot test section. To obtain a fairly 
good temperature adjustment for the calibration, the intake of the blower of the 
calibration tunnel was connected to an air-conditioner via pipes having valves for 
controlling the intake of cold air. To reduce fluctuations of mean temperature at the 
exit of the calibration tunnel, the pipe that connected the output of the blower to the 
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intake of the calibration tunnel was packed with copper wool. The measured mean 
temperature across the exit of the calibration tunnel was uniform to within 0.1 "C. All 
measurements were performed between midnight and mid-morning to minimize the 
difference between the temperature in the attic and that inside the tunnel. The 
temperature differences between the calibrations and the actual experiments were 
generally less than 3 "C. In addition, the hot wires were operated with a resistance ratio 
of 2.0 rather than the usual 1.8 to further reduce the possibility of drift due to 
temperature changes. To reduce the chances for changes in the hot-wire characteristics 
and deviations from the calibration, our traverse mechanism was designed such that 
the same cables and probe holders could be used during both the calibration and actual 
measurements, without disconnecting the hot wires (see Perry 1982). 

In the present experiments we were faced with a limitation of hot-wire anemometry 
that dictated our measurement strategy. During our feasibility studies, which were 
conducted at a free-stream velocity of 40 m s-l, it was noted that, apart from high- 
frequency spikes, a rise with frequency in the tail of the spectra occurred before the 
final role-off due to the low-pass filter (cut-off set at 100 kHz). This rise, which was 
proportional to the square of frequency (f2), was of great concern since it occurred at 
the expected Kolmogorov frequency for that speed. Therefore, we connected all of our 
electronic equipment to a power conditioner (Oneac CB 11 15) and uninterruptible 
power supply (Clary PC 1.25K), which supplied clean power and prevented loss of data 
due to possible power failure. These reduced the background electronic noise, but the 
tails of the spectra were still contaminated by thef2 behaviour. To isolate the source 
of this problem, we conducted extensive tests, which included taking spectral 
measurements at the free stream of our calibration tunnel and in still air at different 
laboratories with a variety of hot-wire filaments using hot-wire bridges manufactured 
by different companies. Under all these different experimental conditions, the f 
behaviour was present in all the spectra (Saddoughi 1992). The conclusion from these 
tests was that the performance of all the hot-wire bridges at high frequencies was 
limited by this fz noise, and that, at a free-stream velocity of 50 m s-l where the 
Kolmogorov frequency near the mid-layer of the boundary layer was of the order of 
60 kHz, this rise in the tail of the spectrum was inevitable. 

Our experiments were therefore divided into two sets. First, to obtain the maximum 
Reynolds number possible, measurements were taken at 50 m s-l, nearly the highest 
free-stream velocity of the tunnel. At this speed we have a fairly well-defined inertial 
sub-range, but owing to the above hot-wire anemometry limitation it is not possible to 
resolve the dissipation range. Our feasibility studies had also shown that at this high 
free-stream velocity spatial resolution in the dissipation range was a problem. Second, 
to allow accurate measurement of the dissipation range, measurements were taken at 
a lower free-stream velocity, 10 m s-l, where the expected Kolmogorov frequency was 
of the order of 5 kHz. T h e y  noise was thus avoided and very good spatial resolution 
was obtained without a large sacrifice in microscale Reynolds number, but with a 
shorter inertial range than that obtained at 50 m s-l. Hereinafter the data sets 
corresponding to free-stream velocities U, M 50 m s-l and 10 m s-l will be referred to 
as the high-speed and low-speed cases, respectively. 

2.2. Instrumentation and procedure 

The hot-wire instrumentation consisted of Dantec models 55P01 single-wire and 55P51 
crossed-wire probes, modified to support 2.5 pm Platinum-plated Tungsten wires with 
an etched length of approximately 0.5 mm, TSI IFA-100 model 150 hot-wire bridges, 
and model 157 signal conditioners. The crossed-wire probes (in UV- and UW-modes) 
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were oriented nominally at & 45" to the mean-flow direction and the separation of the 
sensors of each probe was also approximately 0.5 mm. The square-wave response of 
the anemometers was adjusted for optimum damping. Their frequency response was 
about 90 kHz at 10 m s-l and better than 100 kHz at 50 m s-'. 

One single and two X-wires were calibrated before every measurement. The effective 
wire angles were determined through a +20" yaw calibration (Bradshaw 1971). The 
accuracy of the calibrations of the hot wires was checked at several velocities in the 
calibration tunnel before the start of the measurements. The calibrations were repeated 
whenever the velocities obtained by the hot wires differed from the actual velocities 
(obtained from dynamic-pressure measurements) by more than f 2.5 YO. During the 
boundary-layer measurements the output mean voltages from the hot-wire anem- 
ometers were monitored to detect drift. The hot-wire errors (e.g. due to mis- 
alignment, etc.) can be identified by the spurious flow pitch and yaw angles measured 
by the X-wires in UV- and UW-mode respectively. These were generally less than 2". 

The hot-wire output voltages were digitized on a microcomputer equipped with two 
Adtek AD830 12-bit, sample-and-hold, analog-to-digital converters. Each converter 
supported 8 channels at a sampling rate of 330 kHz per channel (one of the fastest 
available). The high-pass and low-pass filters used were Frequency Devices model 9016 
(Butterwork, 48dB/octave). To obtain the maximum possible signal-to-noise ratio, the 
mean voltages were sampled and removed from the signals (by means of the signal 
conditioners and the high-pass filters) and the remaining fluctuations were amplified by 
a factor of 100 to 200 before they were sampled. All of the analog signals were high- 
pass filtered at 0.1 Hz. During the measurements of the Reynolds-stress profiles ~ but 
not the spectra - signals were low-pass filtered at 10 kHz and 70 kHz for the free- 
stream velocities of 10 m s-l and 50 m s-l respectively. 

To improve the bandwidth of the spectra at low frequencies, the data were obtained 
in three spectral bands. For the low-speed spectral measurements around the mid- 
layer, these three bands were 0.1 Hz-100 Hz, 0.1 Hz-1 kHz, and 0.1 Hz-10 kHz; these 
bands were chosen to resolve the large scales, inertial range and dissipation range 
respectively. As the wall is approached, the Kolmogorov frequency increases and for 
the measurements in this region the low-pass cut-off frequency was increased. The 
corresponding frequency bands for the high-speed case were 0.1 Hz-1 kHz, 
0.1 Hz-20 kHz, and 0.1 Hz-100 kHz. 

For the Reynolds-stress profiles, 50 records of 1024 samples each were taken at a 
sampling frequency of 500 Hz at each point across the layer. In general, for spectral 
measurements, 150 or 200 records of 4096 samples each were recorded in the 
low-frequency band and 300 or 400 such records in the higher-frequency bands. In 
every case, the sampling frequency was three to four times larger than the low-pass cut- 
off frequency in order to avoid aliasing errors. 

The spectral density of each band was computed by a fast-Fourier-transform 
algorithm, and the portion of the spectrum that corresponded to frequencies higher 
than half the low-pass filter-cutoff frequency was deleted. Also, the lowest frequency 
accepted was 0.2 Hz, since the high-pass filter cut-off frequency was always set at 
0.1 Hz. Thus discarding the highest and lowest octaves of the measured spectra ensured 
that none of the spectra was affected by the filter roll-off characteristics. Finally, for 
each point in the boundary layer, the three spectral segments were combined into a 
single spectrum, which retained extensive regions of overlap. Using Taylor's 
hypothesis, the wavenumber, k,, was taken equal to 2nf/U,, where U,, the local 
convection velocity, was assumed to be equal to the local mean velocity at the 
measurement point. 
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For the low-speed experiment, the time series were measured at y = 25,100,300,5 15 
and 900 mm from the wall and for the high-speed case at y = 100, 400 and 800 mm. 
To ensure the repeatability of the data, most of these measurements were taken at least 
twice (at some y positions the data were measured three or four times). As an example, 
Saddoughi (1992) has shown that the day-to-day variation among the spectral data 
taken at the highest Reynolds number with different sets of X-wires having different 
calibrations, was less than 10 YO. This was considered to be fairly good repeatability. 
Note that no correction was applied to the spectral data. 

3. Results and discussion 

The present experimental results are divided into ‘ large-scale ’ and ‘ small-scale’ 
data. To determine the large-scale characteristics and obtain the parameters governing 
the development of the boundary layer, mean-flow velocity and Reynolds-stress 
profiles are analysed. Some of these data are compared with the results from other 
boundary-layer studies. These large-scale results facilitated the choice of points at 
which the small-scale measurements were taken. 

Among the small scales we first study the dissipation range of the spectra. This is 
followed by an examination of Kolmogorov’s inertial-subrange scaling laws for spectra 
and structure functions. Finally, a few consistency tests are applied to investigate the 
local-isotropy hypothesis more directly. 

3.1. Analysis of large-scale data 

The normalized profiles of the longitudinal mean velocity, U/U,, for both the high- 
speed and low-speed cases are plotted in figure 2 versus distance y from the wall. The 
accuracy of these data is & 3 YO. Also shown in this figure is the least-square polynomial 
fit to the data (solid line), which has been used to obtain the mean-flow integral 
parameters for both cases. The excellent collapse of the two profiles with y indicates 
that the boundary-layer thickness 6 (the point where U/ U, = 0.995) in both cases is the 
same (6 z 1090 mm) at this measurement location. For smooth-wall boundary layers 
at a fixed x, one would expect a 30 % to 40 YO decrease in S for a five-fold increase in 
free-stream velocity. However, it appears that at this streamwise location the layers 
have grown over a rough surface of very great length (more than 60 m of rough-wall 
contraction followed by approximately 50 m of test section), and that the boundary- 
layer integral parameters have become independent of free-stream velocity. The 
displacement thickness, 6*, and momentum thickness, 8, are approximately 156 mm 
and 111 mm respectively. The maximum Reynolds number based on momentum 
thickness is R, M 370000, the highest ever attained in a laboratory boundary-layer 
flow. 

One of the problems in rough-wall boundary-layer experiments is the accurate 
measurement of the local skin-friction coefficient, C,, because in addition to C, there 
are two other unknown variables that must be determined. These are the roughness 
function and the error in origin, e (Perry & Joubert 1963). The latter variable is the 
distance below the crests of the roughness elements that defines an origin that will give 
the profiles a logarithmic distribution of velocity near the wall. Perry & Li (1990) have 
developed a modified Clauser plot to find e that is based on the original method of 
Perry & Joubert. This method was used to estimate the values of the wall-friction 
velocities, U,, for the present experiments. It is important to note that, for the current 
investigations, the U, values are only used to estimate the values of y+ and as a scaling 
parameter when our large-scale mean results are compared to those for other boundary 
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FIGURE 2. Normalized longitudinal mean-velocity profiles measured at two different free-stream 
velocities. 0, U, % 50 m s-' (R,  z 370000); a, U, x 10 m s-l (R,  z 74000). The solid line is the 
least-square polynomial fit to the data. 
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FIGURE 3 .  Mean-velocity profiles measured for two different free-stream velocities. 'Modified Clauser 
chart' method for rough-wall boundary layers (Perry & Li 1990). S* is, the displacement thickness, 
and each of the straight lines corresponds to a constant value of (Cf/2)5.  Error in origin, e = 1 mm. 
For key to symbols see figure 2. 

layers. As far as the scaling of the small-scale data is concerned, the friction velocity 
will not play any role - the only relevant mean-flow parameter is S = aU/ay, which is 
obtained by differentiating the least-square polynomial fit presented in figure 2. 

Figure 3 shows the modified Clauser chart for rough-wall boundary layers and the 
present mean-velocity profiles with an error in origin, e = 1 mm. Each of the straight 
lines corresponds to a constant value of (iCf)i. The profile shapes appear to be typical 
and, as expected from the collapse noted in figure 2, both have the same skin-friction 
coefficient; we estimate (U,/  U,) = (+C$ = 0.0465 2.5 %, since in that part of the plot 
the difference between two straight lines is about 5 %. 

The normalized profiles of the Reynolds normal stresses (q/ e, q/ G, G/ q) and 
the shear stress, -=/ e, are presented in figure 4 for both the high-speed and low- 
speed cases. These profiles also appear to be independent of free-stream velocity. In the 
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FIGURE 4. Profiles of Reynolds stresses measured for two different free-stream velocities. Solid and 
T e n  symbols are f o r g e  x 50 m s-' (R,  x 370000) and U, z 10 m 5-l (R,] zz 74000) respectively. El, 
u i / q ;  0,2/q;  8, u i / q ;  0, G/q. The arrow shows the wall value obtained from the Clauser 
chart (figure 3). 

outer part of the boundary layer, they have the standard shapes, but near the wall there 
appears to be a sharp rise in the values of all the stresses. We will not attempt to explain 
this anomalous behaviour, which presumably resulted from the acoustic panels. 
However, note that the Clauser-plot value of $C, (shown in figure 4 by an arrow) agrees 
reasonably well with the shear-stress data. 

To verify that the outer part of the present boundary layer did follow the standard 
turbulent boundary-layer behaviour, the Reynolds-shear-stress profiles, which are 
known to have the largest measurement uncertainty and are the most difficult to match 
among different experiments, are compared in figure 5 with the rough-wall profiles of 
Perry & Li (1990) and the smooth-wall profile of Morrison, Subramanian & Bradshaw 
(1992). In this figure, 8, is the Hama boundary-layer thickness, (Ue 8*)/(CU,), where 
C = 3.3715. For the present study 8, M 995 mm. The data of figure 5(a) are replotted 
in figure 5 (b) with a logarithmic axis to show the differences between the data sets close 
to the wall. There appears to be fairly good agreement between the present data and 
the other experiments in the outer part of the layer. 

Dimensionless properties of the boundary layer, such as Townsend's structure 
parameter, ~ 

(17) 

are good indicators of the state of the large-scale structure of turbulence. The a, values 
are shown in figure 6. In the canonical smooth-wall flat-plate boundary layer, a, M 0.13 
(Townsend 1976, p. lOS), except near the surface and the outer edge. In the current 
investigations values close to the canonical ones are obtained. 

3.2. Analysis of small-scale data 

The small-scale measurements of the three components of velocity made for the low- 
speed case at y = 100 and 5 15 mm, and for the high-speed case at y = 100 and 400 mm 
are analysed here. These positions are away from the wall, so that the 'bump' in the 

a, = - u, u2/q2, 
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FIGURE 5. Comparison of the measured Reynolds shear stress, -u l  u 2 / q :  0, for R, = 370000 and 
m, for R, x 74000, with the rough-wall data of Perry & Li (1990): 8, for R, = 2243 and A, for 
R, = 2497, and the smooth-wall data of Morrison et al. (1992): for R, = 14500. (a) Linear plot; 
(b) semi-log plot. 
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FIGURE 6. The structure parameter, a, = -uI u2/q2.  The solid line is the canonical smooth-wall 
value (Townsend 1976). For key to symbols see figure 2. 

Reynolds stresses is avoided. Hereinafter, y = 400 and 515 mm will be referred to as 
mid-layer measurement positions and y = 100 mm will be called the inner-layer 
position (since y /6  < 0.2, and y+ z 3000 and z 16000 for the low-speed and high- 
speed cases respectively). The relevant flow parameters at these y positions, including 
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Low speed High speed 

10 50 
1090 1090 
156 156 
111 111 

0.0465 0.0465 
0.465 2.325 

995 995 
74 000 370000 

100 515 100 400 
3200 16 200 16 000 62 000 

6.1 8.95 34.8 43.2 
16.72 2.95 83.5 18.8 
0.87 0.343 26.0 9.5 
0.31 0.174 7.5 4.5 
0.48 0.212 13.0 5.95 
0.213 0.085 4.64 2.31 
0.153 0.065 0.147 0.071 
1.66 0.73 46.5 19.95 
3.1 0.33 342 49 
0.18 0.32 0.055 0.09 

5.5 4.5 100 76 
500 600 1400 1450 

9.0 6.5 11.4 7.6 
0.037 0.02 0.0175 0.0105 
0.026 0.113 0.024 0.086 

TABLE 1. Flow parameters 

2.83 1.57 97 5 3  

the large-scale parameters of the boundary layer at both free-stream velocities, are 
given in table 1. The accuracies of the parameter values are discussed in that section 
pertaining to each parameter. The data measured near the edge of the boundary layer, 
where external-intermittency effects are important, will be presented in another paper. 

The mid-layer position is perhaps the best point at which to analyse the spectral 
results for the following reasons : (a)  the r.m.s. longitudinal velocity fluctuation 
normalized by the local mean velocity, q i / U ,  is less than 0.1, so that errors arising 
from the use of Taylor’s hypothesis are small (Lumley 1965; Wyngaard & Clifford 
1977); (b)  the Reynolds number 

(18) 
- 

R = - ~ 2 ’  1 2 h / V ,  

based on the Taylor microscale 

h = [q/(au,/ax,)”+ (19) 

appears to be close to its maximum value; (c) it is well inside the layer and boundary- 
layer edge intermittency effects are not present. 

The position y = 100 mm was also chosen for detailed measurements because we 
wanted to investigate the local-isotropy hypothesis in a region where the mean shear 
was larger than that at the mid-layer position. It is generally accepted (see e.g. Piomelli, 
B a h t  & Wallace 1989; Kim & Hussain 1993) that for wall-bounded flows Taylor’s 
hypothesis is valid beyond the viscous region (say y+ > 100). However, for the present 
measurements at y = 100 mm, where the local turbulence intensity is approximately 



Local isotropy in turbulent boundary layers 347 

0.15, the errors arising from the use of Taylor's hypothesis can be calculated using the 
equations given by Wyngaard & Clifford (1977), which are based on an extension of 
Lumley's (1965) work. The necessary corrections are 

and 

for the longitudinal and transverse spectra in the inertial subrange respectively, and 

and 

-~ 
for the first-derivative variances. The errors in (tlu,/ax,)Z and (i3uz/ax1)2 for the present 
measurements at y = 100 mm were less than 7 YO and 5 YO respectively. However, as will 
be shown later, at this y location most of the data in the dissipation range will be 
discarded owing to hot-wire spatial-resolution and anemometry problems. Therefore 
it is more important here to estimate the Taylor-hypothesis errors in the inertial 
subrange, where they were reduced to very small values : less than 2 % and 1 YO for the 
longitudinal and the transverse spectra, respectively. 

The u,-spectra at the inner-layer positions are shown in figure 7 and at the mid-layer 
positions are shown in figure 8. These spectra are plotted versus frequency, ,f, to more 
easily identify the three spectral bands given in 42.2. Clearly, in each case the agreement 
between the three segments of the spectrum is very good. 

The Kolmogorov frequency, f,[ = U/(2nq)], where 7 was calculated by using the 
isotropic relation (see next section for the estimation of dissipation) changed from 
approximately 100 kHz in the high-speed measurements to 4.5 kHz in the low-speed 
measurements (table 1). Because of t h e y  behaviour of the tail of the spectrum, and 
also owing to lack of sufficient spatial resolution, only frequencies up to about 30 kHz 
could be resolved for the high-speed case. As explained earlier (92.1), the dissipation 
range cannot be resolved for the high-speed case. However, it is important to bear in 
mind that the high-speed results are more appropriate for the investigation of inertial- 
subrange scaling because they are at a much higher R,. It will become clear in the 
following sections that without the measurements at 50 m s-l in the inertial range, one 
might reach erroneous conclusions. The approximate values of R, estimated for the 
inner-layer and mid-layer positions of the high-speed case appear to be very close to 
each other. This is because the inner-layer position is in the vicinity of the 'bump' in 
the Reynolds stresses (see figure 5)  where they start to deviate from the standard 
behaviour. 

For the low-speed measurements five decades of frequency were obtained with no 
contamination from electronics noise. At the inner-layer position, owing to the lack of 
spatial resolution, we can trust our measurements only up to k, 7 z 0.7, but at the mid- 
layer position our best spatial resolution (1.57) is achieved. The dissipation spectra for 
this position are discussed in the next section. 

Figure 9 shows Kolmogorov's universal scaling of the mid-layer one-dimensional 
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FIGURE 7. Longitudinal and transverse power spectra measured in the inner layer, y = 100 mm, for 
two different free-stream velocities. For the low-speed case the measured frequency bands are 
0.1 Hz-200 Hz, 0.1 Hz-2 kHz and 0.1 Hz-20 kHz, and the corresponding bands for the high-speed 
case are 0.1 Hz-1 kHz, 0.1 Hz-20 kHz and 0.1 Hz-100 kHz. (a) u,-spectra; (b) u,-spectra; (c) us- 

spectra. 
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FIGURE 8. As figure 7 but at mid-layer, y = 400 and 515 mm. For the low-speed case the measured 
frequency bands are 0.1 Hz-100 Hz, 0.1 Hz-1 kHz and 0.1 Hz-10 kHz, and the corresponding bands 
for the high-speed case are 0.1 Hz-1 kHz, 0.1 Hz-20 kHz and 0.1 Hz-100 kHz. 

longitudinal power spectra compared to a compilation of previous experimental work 
taken from Chapman (1979) with later additions. Note that the extent of the -: range 
increases with Reynolds number. The present measurements encompass one of the 
largest scale ranges ever attained in laboratory flows. 
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FIGURE 9. Kolmogorov's universal scaling for one-dimensional longitudinal power spectra. The 
present mid-layer spectra for both free-stream velocities are compared with data from other 
experiments. This compilation is from Chapman (1979), with later additions. The solid line is from 
Pa0 (1965). R,:  0, 23 boundary layer (Tielman 1967); 0, 23 wake behind cylinder (Wberoi & 
Freymuth 1969); 7, 37 grid turbulence (Comte-Bellot & Corrsin 1971); 8, 53 channel centreline 
(Kim & Antonia (DNS) 1991); FJ, 72 grid turbulence (Comte-Bellot & Corrsin 1971); 0, 130 
homogeneous shear flow (Champagne et al. 1970); [SI, 170 pipe flow (Laufer 1954); $, 282 boundary 
layer (Tielman 1967); 0,  308 wake behind cylinder (Uberoi & Freymuth 1969); A, 401 boundary 
layer (Sanborn & Marshall 1965); A, 540 grid turbulence (Kistler & Vrebalovich 1966); x , 780 
round jet (Gibson 1963); ., 850 boundary layer (Coantic & Favre 1974); +, - 2000 tidal channel 
(Grant et al. 1962); 0,3180 return channel (CAHI Moscow 1991); 0, 1500 boundary layer (present 
data, mid-layer: U, = 50 m s-l); ., 600 boundary layer (present data, mid-layer: U, = 10 m s-'). 



Local isotropy in turbulent boundary layers 

I " '  'ka .: (4 - : 
. .. .. .. . - - .  

r' .: 
-& -... 
,t 

- - ... - 
Y 

- 
?. - .. 

v 5%. - 
-a%-:. - 

1 1 1 1  I I I I  I I  

0.2 0.4 0.6 0.8 1 .o 
k,77 

351 

0.25 

'2 0.20 

6 0.15 

- 0.10 

0.05 

+ 
2 
N- 

k . 
0 

0 

2 0.3 
W 

8 
3- 0.2 . - 
A 

;2 0.1 
W 

0 

0 

FIGURE 10. Dissipation spectra measured at mid-layer for the low-speed case (y = 515 mm, 
R, z 600). (a) u,-spectrum; (b) u,-spectrum; (c) us-spectrum. 

3.2.1. Dissipation range 

spectra given by the isotropic relation (Batchelor 1953) 
At the mid-layer position of the low-speed case ( y  = 515 mm, R, z 600), dissipation 

cu 

E = 15v locu k; E,,(k,) dk, = v v  lo k; E,,(k,) dk, = v v  lom k: E,,(k,) dk,, (24) 

are plotted in non-dimensional form in figure 10. From the areas (before normalization) 
under the curves (a), (b) and ( c )  the values of (au,/ax,)2, (au,/ax,j2, and (au3/ax,)a, 

respectively, can be calculated. It is clear that for this case the entire significant range 
of the dissipation spectrum is obtained. The scatter of the data around the peak is the 
result of superimposing the three measurement segments. This scatter is about -t- 10 % 
and, as will be shown later, the data for k, 7 > 0.8 may not be reliable. The integration 
over the third-spectral band of this data, which covered the entire frequency range of 
interest, satisfied (24) to within 10 % ; the dissipation value obtained from the single- 
wire data shown in figure lO(a) is E w 0.33 m2 s - ~ .  Similar integrations were performed 
for the inner-layer position of the low-speed case and satisfied (24) to within 15 %. 
There the dissipation value is 6 w 3.1 m2 s - ~ .  

12-2 
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FIGURE 11. Compensated spectra in the dissipation range. (u) u,-spectra; (b) u,-spectrum; (c) ua- 
spectrum. 0, Mid-layer position for the low-speed case ( y  = 515 mm, R, = 600); V, Comte-Bellot 
& Corrsin (1971) for isotropic grid turbulence at R, = 60.7. 

Kraichnan (1 959) proposed that the dissipation range of the three-dimensional 
energy spectrum has a simple exponential decay with an algebraic prefactor of the form 

Since then this form has also been found in direct numerical simulations, but 
necessarily at low Reynolds numbers, by other researchers, who have proposed that for 
0.5 ,< ky 6 3, /3 x 5.2 (Kida & Murakami 1987; Kerr 1990; Sanada 1992; Kida et al. 
1992). Recently Chen et al. (1993) have studied the far dissipation range of isotropic 
turbulence at a very low Reynolds number (R, = 15) by direct numerical simulation. 
They confirmed the above exponential decay, but obtained p w 7.1 for 5 6 ky 6 10. It 
can be readily seen that for locally isotropic turbulence, the form of (25) and the 

E(k) = A(k?l)Y exp [ - P(W1. (25) 
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FIGURE 12. Compensated longitudinal and transverse spectra measured at  mid-layer for the low-speed 
case ( y  = 515 mm, y+ z 16200, R, FS 600). Only the data for wavenumber range k , s  < 0.85 can be 
accepted, Solid lines are the ninth-order, least-square, log-log polynomial fits to the spectral data. (a) 

u,-spectrum; (b) u,-spectrum; (c) u,-spectrum. 

numerical value of p, whatever it may be, should be preserved for all three one- 
dimensional spectra. The exponential form for the u,-spectrum in the dissipation range 
was observed in experiments by Sreenivasan (1985), but he proposed p = 8.8 for 
0.5 < k 7 y  < 1.5. 

To investigate the behaviour of the dissipation range, compensated spectra can be 
defined as &kiEaa(k1), where a = 1, 2 or 3 (no summation over a). Plots of these 
spectra at mid-layer for R, x 600 are shown in figure 11. As can be seen in this figure, 
the u,-spectrum (single wire) in the range k,  7 > 0.8 is affected by noise and/or lack of 
resolution; however, this behaviour does not appear in the u,- and u,-spectra (crossed- 
wire). The present u,-spectrum is compared to the data of Comte-Bellot & Corrsin 
(1971) for isotropic grid turbulence at R, = 60.7. In the dissipation range fork, y < 0.5 
the agreement between the two u,-spectra appears to be good, but they deviate for 
k , ~  > 0.5. However, it appears that all three components of spectra for the current 
boundary-layer measurements show an essentially exponential decay and follow 
reasonably well the (DNS) straight lines with B = 5.2 for 0.5 6 k ,  y 6 1. 
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FIGURE 13. Compensated longitudinal and transverse spectra measured at mid-layer for the high- 
speed case ( y  = 400 mm, y+ % 62000, RA w 1450). Only the data for wavenumber range k, < 0.25 
can be accepted. Solid lines are the ninth-order, least-square, log-log polynomial fits to the spectral 
data. (a) u,-spectrum; (6) u,-spectrum; (c) u,-spectrum. 

3.2.2. Inertial subrange 

To investigate the validity of (7) and (8) in the inertial subrange, we again analyse 
the compensated spectra Edk; EJk,). In the inertial subrange, these should be 
independent of wavenumber and equal to the Kolmogorov’s constants for one- 
dimensional spectra. 

In figure 12 the compensated longitudinal and transverse spectra at the mid-layer 
position in the low-speed case, are plotted against k ,  7. The compensated ninth-order, 
least-square polynomial log-log fits of E,(k,) presented in this figure prove to be very 
instructive in analysing the data. Here the dissipation value ( E  z 0.33 m2 sP3) obtained 
in the previous section is used. 

For the u,-spectrum there is slightly less than one decade of -g range, and in that 
wavenumber range the classical value for the Kolmogorov constant, C = 1.5 (i.e. 
C,  = 18C/55 = 0.491) (Monin & Yaglom 1975) agrees very well with the present data. 
Noting that our dissipation accuracy was -1- lo%, this gives C = 1.5kO.1. The u3- 
spectrum exhibits more than half a decade of -: range, with an amplitude equal to $ 
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FIGURE 14. Compensated longitudinal and transverse spectra measured in the inner-layer for the low- 
speed case ( y  = 100 mm, y+ r 3200, R, x 500). Only the data for wavenumber range k,  71 < 0.45 can 
be accepted. Solid lines are the ninth-order, least-square, log-log polynomial fits to the spectral data. 
(a) u,-spectrum; (b) u,-spectrum; (c) u,-spectrum. 

times that of the u,-spectrum (the difference between the flat region of the u,-spectrum 
and the isotropic line is within the accuracy range of the dissipation value). However, 
it appears that in this low-speed case, the u,-spectrum does not show a perfectly flat 
region. It will be shown later that, at this y/S position, this is a Reynolds-number effect. 

All three compensated spectra have a ‘bump’ between the inertial subrange and the 
dissipation range. These bumps have also been observed in other experiments 
(Williams & Paulson 1978 and Champagne et al. 1977 for temperature variance 
spectra; Mestayer 1982 for velocity spectra) and in theoretical predictions such as 
Eddy-Damped Quasi-Normal Markovian (EDQNM), as discussed by Mestayer, 
Chollet & Lesieur (1984). We believe that they are real. 

For the high-speed data, a good direct estimate for dissipation is not possible. 
Therefore, we plotted k~E, , (k , )  versus k,  (not shown here). From (7) we can see that 
in the inertial subrange the flat region should be equal to C1$. Since our low-speed 
data indicated that C = 1.5 kO.1, we used this value and the above plot to calculate 
F FZ 49 m2 s - ~ .  Using this value for the dissipation, the compensated spectra and their 
ninth-order polynomial fits at the mid-layer position in the high-speed case, are plotted 
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FIGURE 15. Compensated longitudinal and transverse spectra measured in the inner-layer for the 
high-speed case ( y  = 100 mm, y+ % 16000, R, FZ 1400). Only the data for wavenumber range k,  7 < 
0.15 can be accepted. Solid lines are the ninth-order, least-square, log-log polynomial fits to the 
spectral data. (a) u,-spectrum; (h) u,-spectrum; (c) u,-spectrum. 

in figure 13. It can be seen from this figure that at this higher R,, the compensated ul- 

spectrum exhibits more than one decade of -f range, but less than the log-log plot 
(figure 9) suggested. Here, the u,-spectrum, as well as the u,-spectrum, contain well- 
defined -f ranges. They are, as expected, equal to each other and are larger than the 
u,-spectrum by the $ factor. The 'bumps' again appear on all three spectra, at almost 
the same k, 7 as in the low-speed case. There is no indication that the amplitude of the 
bump reduces with increasing Reynolds number once a well-defined inertial subrange 
is present. 

The spectral data measured at the inner-layer position in the low-speed and high- 
speed cases are shown in figures 14 and 15 respectively. The dissipation value for the 
low-speed case was obtained in the previous section ( E  z 3.1 m2 s -~ ) ,  and the same 
method used to estimate the dissipation value at the mid-layer position in the high- 
speed case was employed here, which gave 8 x 342 m2 s - ~ .  Differences between the low- 
speed and high-speed cases can be clearly seen at the inner-layer position. In figure 15, 
well-defined -8 ranges for the ul- and u,-spectra are evident, whereas in figure 14 no 
such range can be seen. 
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FIGURE 16. Compensated third-order structure functions for longitudinal velocity fluctuations 
measured at mid-layer, (a) Low-speed case ( y  = 515 mm, yf FZ 16200, R, o 600); (b) high-speed case 
( y  = 400 mm, y+ o 62000, R, o 1450). 

The above figures illustrate several important points. They show rather clearly the 
order in which the different velocity component variances deviate from the - f  law at 
low wavenumbers, either when the free-stream velocity is decreased or when the wall 
is approached (u, deviates first, then u3, and then u,). Comparison of the data taken at 
the same y / S  position, but at a different free-stream velocity (figures 14 and 15) shows 
the effects of Reynolds number and Sy on the inertial ranges of the spectra. Perhaps 
a more important comparison is between figures 12 and 15, which are for two different 
y /S  positions and Reynolds numbers (mid-layer of the low-speed run and the inner- 
layer of the high-speed run respectively), but for the same y+ % 16000 and S,* M 0.02. 
The apparent similarity between the inertial ranges of the spectra suggests that their 
behaviour depends only on Sy . These observations indicate that only linear-log plots 
of compensated spectra can clearly show the intricate behaviour in the inertial 
subrange, and any claim for the existence of an inertial subrange should be 
substantiated by that kind of plot. 

The inertial subrange was also investigated for consistency with Kolmogorov's 
scaling laws for the structure functions, given by (12), (13) and (14). A plot of the third- 
order structure function for the longitudinal velocity fluctuations, - Zr-'Dlll(r) versus 
r ,  should be equal to E and independent of r in the inertial subrange. This type of plot 
(not shown) was used to calculate E z 0.26 m2 s - ~  and x 40 m2 s - ~  for the low-speed 
and high-speed cases respectively, which are about 20% lower than those estimated 
from the spectra. The microscale Reynolds numbers obtained using these dissipations 
were approximately 670 and 1500 for the low-speed and high-speed cases respectively. 
Using these dissipation values, the compensated third-order structure functions at the 
mid-layer positions are presented in figure 16. The values of the separation r were 
calculated using Taylor's hypothesis, r = 7U,  where 7 is the time interval and U is the 
local mean velocity. Again it is important that the log-linear plots of these structure 
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FIGURE 17. Compensated second-order structure functions for longitudinal and transverse velocity 
fluctuations measured at mid-layer for the low-speed case ( y  = 515 mm, y+ w 16200, R, % 600). 
Dissipation is from the third-order structure function. (a) u,-structure function; (b) u,-structure 
function; (c) u,-structure function. 

functions be investigated, rather than the customary log-log plots which tend to mask 
the variations that may exist in the inertial subrange. In this figure, as explained in 52.1, 
there are three different data sets corresponding to the three measurement bands used 
for resolving the large scales, the inertial subrange and the dissipation range. Note that 
these are the actual data and not polynomial fits. The low-speed case and the high-speed 
case show about one-and-a-half and two decades of relatively flat regions respectively. 

Using the dissipation values obtained from the third-order structure functions, the 
compensated second-order structure functions are plotted in figures 17 and 18 for the 
low-speed and high-speed cases respectively. The three components of the second- 
order structure functions exhibit inertial subranges, although the u,-component for the 
low-speed case shows the least extent. At a given Reynolds number, the u2- and u3- 

structure functions in the inertial subrange are equal to each other and are larger than 
the u,-structure function by the factor 4, to within the measurement accuracy. For the 
low-speed case the data agree very well with the Kolmogorov constant C, = 2.0, which 
corresponds to C = 1.5. For the high-speed case, the deviation of the horizontal lines 
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FIGURE 18. Compensated second-order structure functions for longitudinal and transverse velocity 
fluctuations measured at mid-layer for the high-speed case ( y  = 400 mm, yf x 62000, RA % 1450). 
Dissipation is from the third-order structure function. (a) u,-structure function; (b)  u,-structure 
function; (c) u,-structure function. 

from the plateau regions is equivalent to a 10 % change in the dissipation. Therefore, 
we estimate C, = 2.0 f 0.1. 

3.2.3. Tests of the local-isotropy hypothesis 

The main aim of the present investigation has been to study the effects of mean- 
strain rate (S = aU/ay) on the local isotropy. The parameters characterizing these 
effects were identified as S* = Sq2//e and S: = S(V/E);. In general, there is some degree 
of uncertainty associated with the experimental estimations of S* and S: because they 
involve gradients calculated from data points that are widely spaced and, at best, the 
dissipation values for the present cases are accurate to 20 %. However, it is clear that 
the uncertainty in S,* is less than that in S*. 

To calculate these parameters, we have used the dissipation values obtained from the 
spectral measurements and values of S obtained by differentiating the least-square 
polynomial fit to the mean-velocity profiles (figure 2) .  The values of these parameters 
are given in table 1. By virtue of the fact that our experiments were conducted at high 
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Reynolds numbers and all of the measurement points were beyond the sublayer 
(minimum y+ > 3000), the Corrsin-Uberoi condition S: < 1 is satisfied and we should 
expect local isotropy at high wavenumbers in the mixed range of spectra. However, the 
question is, once the above condition is satisfied, over what wavenumber range can one 
expect local isotropy in the inertial subrange? These issues are addressed here. 

Onsager (1 949) used dimensional arguments to define the characteristic inertial 
transfer time per stage as 

Corrsin (1958) proposed that in thin shear flows where $5’ is a good approximation to 
the principal mean-strain rate, a necessary condition for the existence of local isotropy 
is that r, should be much smaller than the characteristic mean-strain time, (:s>-’. 
Therefore, local isotropy can be expected when 

r,(k) = 1 /[k3E(k)]i. (26) 

I/[PE(k)]t  < l/(is>. (27) 

kg $, &-is, (28) 

In an inertial subrange T#) then decreases monotonically as e - k g ,  and (27) becomes 

which gives the condition for local isotropy within an inertial range in terms of 
wavenumber. The above relation can be rewritten in terms of non-dimensional 
wavenumber as 

k(e /S ) i  B (3”. (29) 

using the lengthscale (e/S3)i. The above arguments are applicable for one-dimensional 
spectra, but the numerical value in (29) will be different. 

Based on dimensional analysis, Lumley (1967) argued that when k is much larger 
than (,S3/c)i, but small compared to the Kolmogorov wavenumber, the shear-stress 
cospectrum should scale linearly with S as 

-El&) = c,ek~s, (30) 

where C, is a constant. Wyngaard & Cote (1972) expanded the above arguments and 
included the effects of buoyancy and potential temperature gradient in (30). For one- 
dimensional cospectra, the same power-law relation as (30) should apply. Measure- 
ments in atmospheric boundary layers (see e.g. Pond et al. 1971; Caughey, Wyngaard 
& Kaimal 1979) have shown agreement with the above power law. 

Shear-stress cospectra measured at different location in the boundary layer for both 
free-stream velocities are shown in figure 19. Parts (a)  and (b) of this figure show the 
raw data for mid-layer and inner-layer positions respectively, and part (c) shows the 
collapse achieved by using (e /P)i  and (t/S)+ as length and velocity scales respectively. 
At the low-wavenumber end for a given y/S, the data collapse independent of Reynolds 
number and y+. The cospectra do apparently exhibit the - f law and scale with S in the 
inertial subrange. Part (c)  also indicates that the -I range starts at a non-dimensional 
wavenumber k,(e/S3)i x 1. The value of the constant for one-dimensional cospectra 
obtained by Wyngaard & Cote (1972) was approximately equal to 0.15, which agree 
very well with the present measurements. 

Note that only data for the low-wavenumber range and parts of the inertial subrange 
are shown in figure 19 because at high wavenumbers, where local isotropy is 
approached, the values of these cospectra become very small and experimental values 
occur with both signs. These are best discussed in terms of the correlation-coefficient 
spectra R,,(k,) given by (10). If spectra contain well-defined inertial subranges, such 
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FIGURE 19. Shear-stress cospectra measured at different locations in the boundary layer for two 
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515 mm, R, z 600 (mid-layer, low-speed); (c) y = 100 mm, R, x 1400 (inner-layer, high-speed); (d )  
y = 100 mm, R, % 500 (inner-layer, low-speed). 

that both ul- and u2-spectra have -% ranges and the cospectrum exhibits a -3  power 
law, then the correlation-coefficient spectrum should decay towards isotropy as k;:. 
Based on their dynamical model, Nelkin & Nakano (1983) suggested that the decay of 
anisotropy should be no more rapid than k;!, but could be slower. 

Log-linear plots of the R,,(k,) spectra are shown in figure 20. Each part of this figure 
contains data for one location in the boundary layer at one free-stream velocity. As 
mentioned earlier, both positive and negative values are inferred from the 
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FIGURE 21. Ratios of the measured u,-spectra to u,-spectra at different locations in the boundary 
layer for two different free-stream velocities. For key to captions for (a)-(d) see figure 20. 

measurements in the high-wavenumber ranges for all the measurement stations. This 
has been also observed in previous experiments by Champagne, Harris & Corrsin 
(1970), Antonia et al. (1992) and Henbest, Li & Perry (1992). While Champagne et al. 
attributed this to hot-wire spatial resolution problems and differences between the 
phase shifts of the two channels, Antonia et al., who also noticed this phenomenon in 
a direct numerical simulation of turbulent channel flow, suggested that the positive 
values of El&) corresponded to negative production of turbulent energy in the high- 
wavenumber range. However, based on their model for Taylor-hypothesis correction, 
Wyngaard & Clifford (1977) suggested that the convection velocity fluctuations would 
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alias enough spectral content into the measured cospectrum to make it appear to change 
sign at large k,.  For the present measurements, data for all channels were sampled 
simultaneously at sampling rates four times the low-pass filter cut-off frequencies, and 
there was a very good spatial resolution for the dissipation range at the mid-layer 
position for the low-speed case up to k,g < 0.8. Figure 20 indicates that in the 
dissipation range (k,  71 0.1) at both the mid-layer (see also figure 11) and @e inner- 
layer positions, local isotropy is satisfied, since (average) R,,(k,) = 0. 



Local isotropy in turbulent boundary layer3 365 

2.5 

0 

Start of -7/3 range on cospectra 

L Isotropic d 

Start of -713 range on cuapectra 

-- 
L 

I- Isotropic 
- 

- - - 
I I l l  I I I I 1  1 1 1  I I I 1 I I l l  I 

1 10 102 

c1'2S-3'2kl 
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In the low-wavenumber range the correlation-coefficient spectra start their roll-off 
before the beginning of the -; ranges of longitudinal and transverse spectra. Figure 
20(a) suggests that only in the range 3 x < k,,u/ < lop2 does the correlation- 
coefficient spectra decay as k;:, since only for k, 3 > 3 x lo-' do the ul- and u2-spectra, 
and the shear-stress cospectra simultaneously exhibit the expected inertial-subrange 
power laws. However, for k , ~  > lo-', there is still about one decade of R,,(k,) M 0, 
before the start of the dissipation range. 

The ratio of the measured u,-spectrum to u,-spectrum, ~ ~ " s ( k l ) / E ~ a s ( k l ) ,  should be 
unity, if the turbulence is isotropic. These ratios are shown in figure 21 for 7 x lop4 < 
k,  q < 1, which covers the entire inertial and dissipation ranges. It appears that, to 
within the accuracy of measurement, for the mid-layer high-speed case (figure 21 a), the 
u,-spectrum becomes equal to u,-spectrum at a higher wavenumber than the start of the 
-$ range of the transverse spectra. However, for the other measurement locations, this 
occurs somewhat below the start of the spectral bumps. 

The transverse spectra, Ec,~"(k,) and E$;"(k,), can be calculated from the measured 
longitudinal spectrum, q",es(kl), using (4). An anisotropy measure may be defined as 
E ~ ' c ( k , ) / ~ ~ " s ( k l ) ,  where a = 2 or 3 corresponds to u2 or u, respectively. These 
anisotropy measures should be equal to 1 .O in an isotropic flow. We have used the least- 
squares fit data in figures 12, 13, 14 and 15 to calculate these measures, which are 
shown in figure 22. For the inertial ranges, the trend in figure 22 almost matches figure 
21. It appears that (4) can predict (to i 10 %) the transverse spectra from the measured 
longitudinal spectrum for the entire inertial subrange of the transverse spectra. For the 
low-speed mid-layer position (figure 22 b), which had the best hot-wire spatial 
resolution, the isotropic value (to 2 10 %) is obtained for the dissipation range as well. 
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Recall from table 1 that the spatial resolution in figure 22 varies from best to worst in 
the order: (b), ( d ) ,  (a)  and (c). Comparison of part (b)  with the other three parts 
suggests that for the latter three cases, the deviations from the isotropic value at the 
high-wavenumber ends are not real, but rather are due to lack of spatial resolution. 

Figure 22 suggests that as the wall is approached and the mean shear is increased, 
the anisotropy penetrates towards higher k ,  7. Therefore, a lengthscale that contains the 
effects of mean shear should collapse these ratios at the low-wavenumber end better 
than the Kolmogorov lengthscale 7. The data plotted in figure 22 are scaled using the 
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FIGURE 25. Spectral coherency measured at different locations in the boundafy layer for two different 
free-stream velocities as a function of non-dimensional wavenumber R1(e /S)z .  For key to captions for 
( a H d )  see figure 20. 

lengthscale (s/S)i obtained from (29) and are shown in figure 23. A good collapse is 
obtained and it appears that, once the Corrsin-Uberoi condition (S,* < 1) for the 
timescales is satisfied, local isotropy - as defined by (4) - is achieved in the inertial 
subrange for non-dimensional wavenumbers k1(s/S3)$ > 3. This is larger than the 
wavenumber (k , (s /S) i  E 1) for which the - f  range begins in the shear-stress 
cospectra. The R,,(kl) data, which were shown in figure 20, are plotted versus k,(s/S3)i 
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in figure 24. It appears that in the inertial subrange strict local isotropy, R,,(k,) w 0 and 
the isotropic relations among component spectra, is satisfied only for wavenumbers 
k,(e/S3)t > 10: for the high-speed mid-layer position this corresponds to k l v  > 0.01, 
which leaves about one decade of isotropic inertial subrange at this Reynolds number. 

The spectral coherencies defined by (11) are shown in figure 25. They reach the 
isotropic value, H,,(k,) w 0, sooner than the correlation-coefficient spectra, but at 
about the same non-dimensional wavenumber as the energy spectra (figure 23). 

4. General discussion and concluding remarks 

The local-isotropy hypothesis (Kolmogorov 1941) - independence of small-scale 
structures from large-scale structures and mean deformations at high Reynolds 
numbers - has been used extensively in most approaches for studying turbulent flows, 
but its range of validity has been a subject of controversy. Of the two methods generally 
employed to investigate the properties of the small scales - direct numerical simulations 
and experiments ~ the latter was chosen for the current study, since present-day DNS 
cannot satisfy the high-Reynolds-number requirement which is an intrinsic part of the 
hypothesis. To over-come the resolution limitations of the instruments, high Reynolds 
numbers were achieved under controlled conditions in the 80 x 120 foot Full-scale 
Aerodynamics Facility at NASA Ames Research Center. At one streamwise location 
and for free-stream velocities of 10 and 50 m s-l, extensive hot-wire measurements of 
the three components of velocity were made in the inner and outer layers of the test- 
section-ceiling rough-wall boundary layer. Acquisition of reliable data for the small- 
scale eddies was of prime concern. At this measurement location, the boundary-layer 
thickness was about 1 m and, at best, the smallest lengthscale resolved was about 1.57. 
The maximum Reynolds numbers based on momentum thickness and on Taylor 
microscale were approximately 370 000 and 1450 respectively, the largest ever attained 
in laboratory boundary layers. By comparing the measured mean-velocity and 
Reynolds-stress profiles with other known data (Perry & Li 1990; Morrison et al. 
1992), it was shown that the large-scale characteristics in the outer part of the boundary 
layer followed the standard behaviour. 

The main aim of the present investigation was to study the effects of a simple mean- 
strain rate (S  = C’U/dy) on local isotropy. The parameter characterizing these effects 
was identified (Corrsin 1958; Uberoi 1957) to be S,* (= S(v/e)f) ,  which is the ratio of 
Kolmogorov and mean-shear timescales. Note that for a shear layer with (shear) 
production of turbulent kinetic energy approximately equal to dissipation, S,* - (RJ l  
approximately. The Corrsin-Uberoi condition, S,* < 1, for the existence of local 
isotropy in the ‘mixed range’ of spectra (the wavenumber range where both inertial 
transfer and viscous dissipation are important and where most of the dissipation 
occurs) was satisfied at all the measurement locations in the boundary layer at the 
Reynolds numbers under consideration. Expressions given by Wyngaard & Clifford 
(1977), based on the work of Lumley (1965), were used to estimate the errors arising 
from the use of Taylor’s hypothesis. For the wavenumbers of interest these errors were 
very small and no correction was applied to any of the present data. 

To obtain the dissipation values, the compensated spectra were first analysed in the 
dissipation range. It was observed that in the dissipation range, spectra had a simple 
exponential decay (Kraichnan 1959) and that the exponent prefactor /j’ = 5.2 obtained 
in low-Reynolds-number direct-numerical-simulations (e.g. Kida et al. 1992) agrees 
reasonably well with the present data for 0.5 < k, 7 < 1. The exponential form for the 
u,-spectrum in the far-dissipation range was also observed in experiments by 
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Sreenivasan (1985) who proposed j3 = 8.8 for 0.5 < k ,  yl < 1.5 and by Chen el al. (1993) 
in numerical simulations who proposed j5’ = 7.1 for 5 < ky 6 10. The u,-spectrum was 
compared with the data of Comte-Bellot & Corrsin (1971) for isotropic grid turbulence 
at R, = 60.7. In the dissipation range for 0.1 < k ,  ‘1 < 0.5 the agreement between the 
two u,-spectra was good, but they deviated for k ,  > 0.5. 

Plots of compensated spectra proved to be a very sensitive test in the inertial 
subrange. The Kolmogorov constants obtained from the one-dimensional data at high 
Reynolds numbers satisfied the isotropic relations for the spectra and the second-order 
structure functions, and the constant for the three-dimensional spectrum, C, was 
estimated to be equal to 1 . S  f 0.1 (Monin & Yaglom 1975). Spectral ‘bumps’ between 
the -$inertial subrange and the dissipative range were observed on all the compensated 
spectra. These have been previously found by Mestayer (1982) for velocity spectra and 
have also arisen in theoretical predictions such as thc Eddy-Damped Quasi-Normal 
Markovian (EDQNM) theory. The shear-stress cospectral density El&), rolled-off 
with a -: power law, before the start of local isotropy in the energy spectra, and scaled 
linearly with S (Lumley 1967). To within the accuracy of measurement, the shear-stress 
cospectra, which are the most sensitive indicator of local isotropy, fell to zero at a 
wavenumber about a decade Zarger than that at which the energy spectra first followed 
-$ power laws. At the highest Reynolds number E,,(kl) fell to zero about one decade 
before the start of the dissipation range, and it remained zero in the dissipation range. 

The lower wavenumber limit of locally isotropic behaviour of the shear-stress 
cospectra is given by k,(t /S3)8 z 10. The current investigation also indicates that for 
the energy spectra this limit may be relaxed to k,(e/S3)i  = 3 :  this is Corrsin’s (1958) 
criterion, with the numerical value obtained from the present data. The existence of an 
isotropic inertial range requires that this wavenumber be much less than the 
wavenumber for the onset of viscous effects, k ,  7 -g I ,  so that the combined condition 
(Corrsin 1958; Uberoi 1957), is S(V/B);  < 1. 

In summary, our results have confirmed the local-isotropy hypothesis and established 
the conditions under which local isotropy can be expected. It is shown that one decade 
of inertial subrange with truly negligible shear-stress cospectral density requires S,* = 
S(v/t): not more than about 0.01 (for a shear layer with production of turbulent kinetic 
energy approximately equal to dissipation, a microscale Reynolds number of about 
1500). For practical purposes many of the results of the hypothesis may be relied on 
at somewhat lower Reynolds numbers. 

The effects of extra mean strain rates on the large-scale structure of shear flows 
(Bradshaw 1973) have been investigated extensively. Presently, the unanswered 
question is: will the above criteria obtained for the existence of local isotropy hold for 
complex non-equilibrium flows? Experiments to address this question are now being 
planned for the 80 x 120 foot wind tunnel. 
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