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1Dipartimento di Fisica, Università della Calabria, I-87036 Cosenza, Italy
2Dipartimento di Fisica and CNISM, Università di Pisa, 56127 Pisa, Italy
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Using direct numerical simulations of a hybrid Vlasov-Maxwell model, kinetic processes are inves-

tigated in a two-dimensional turbulent plasma. In the turbulent regime, kinetic effects manifest through a

deformation of the ion distribution function. These patterns of non-Maxwellian features are concentrated

in space nearby regions of strong magnetic activity: the distribution function is modulated by the magnetic

topology, and can elongate along or across the local magnetic field. These results open a new path on the

study of kinetic processes such as heating, particle acceleration, and temperature anisotropy, commonly

observed in astrophysical and laboratory plasmas.
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Turbulence, a complex problem in fluid dynamics, is an

even more challenging subject in a plasma, since cross-

scale couplings and kinetic effects are present [1]. In a

collisional (fluid) description of plasmas, regions in be-

tween coherent structures are expected to be sites of en-

hanced dissipation, where processes such as magnetic

reconnection and plasma heating may be at work [1]. On

the other hand, in collisionless plasmas, as, for example,

the solar wind, kinetic processes may lead to phenomena

such as temperature anisotropy, heating, particle energiza-

tion, entropy cascade, and so on [1–4]. A robust and

quantitative description of these nonlinear features, com-

monly observed in nature, has not been proposed yet.

Kinetic turbulence in plasmas represents an unresolved

problem, and analytical treatments such as linear and

quasilinear simplifications of the Vlasov-Maxwell equa-

tions may be of some help [5]. On the other hand, since

plasmas are commonly subject to turbulence, the above

simplified models may fail to provide a valid description.

In general, a valid support is given by kinetic direct nu-

merical simulations, in which the time evolution of the

particles distribution function (hereafter DF) is described

self-consistently. In turbulent systems such as the solar

wind [6,7], for example, it is of crucial relevance to quan-

tify the role of kinetic effects in the turbulent cascade, since

they may explain the energy dissipation mechanisms. Non-

Maxwellian features of the DF represent one of the most

direct manifestations of these complex kinetic processes.

In simplified kinetic descriptions of the plasma, it is

expected that the DF deforms manifesting enhanced tem-

perature in the direction parallel (or antiparallel) to the

global mean magnetic field. This may be due, for example,

to resonant ion-cyclotron interaction [2,8] or to the gen-

eration of field-aligned beams [9]. It is not trivial that the

above statements still hold in a fully turbulent regime. In

turbulence, moreover, one may ask if kinetic effects are

homogeneous in space, or if they are concentrated in

certain regions of the turbulent field—in the sense that

they manifest as spatial patches. The scenario can also

depend on parameters such as the system size or the level

of turbulence. In the present work we provide some an-

swers to the above questions.

In this Letter we propose an alternative point of view on

the description of plasma turbulence, showing that the ion

DF is modulated by the local mean magnetic field, in a

complex way. We solve numerically the hybrid Vlasov-

Maxwell system, using a Eulerian algorithm [10], in a

2D-3V geometry (two dimensions in physical space and

three in velocity space), to investigate the link between

spatial magnetic structures, such as magnetic vortices, and

the formation of non-Maxwellian features. The latter will

be quantified computing moments of the DF, at each

position of the turbulent field. A statistical description of

the link between the magnetic skeleton of turbulence and

the velocity subspace of the DF will be presented.

The dimensionless hybrid Vlasov-Maxwell equations

(kinetic ions and fluid electrons) are given by [10]

@tfþr � ðvfÞþrv � ½ðEþv�BÞf�¼0; @tB¼�r�E;

E¼�u�Bþj�B=n�rPe=nþ�j; (1)

where fðx;vÞ � fðx; y; vx; vy; vzÞ is the ion distribution

function, E the electric field, B ¼ bþ B0 the total mag-

netic field (B0 ¼ B0ẑ is the mean field), and j ¼ r� b

the total current density. The ion density n and the ion bulk

velocity u are obtained as the velocity moments of f, while
an isothermal equation of state for the electron pressure Pe

has been assigned. In Eq. (1) times are scaled by the

cyclotron time ��1
ci , velocities by the Alfvén speed VA,

lengths by the ion skin depth di ¼ VA=�ci, and masses

by the ion massmi. In order to suppress spurious numerical

effects due to the presence of strong current sheets, a

resistive term in the Ohm’s law has been added as a

standard (numerical) Laplacian dissipation. The resistivity

� is given small values to achieve both high Reynolds

numbers and to ensure adequate spatial resolution
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(�� 10�2 for the runs reported here). The latter choice is

not intended to mimic any specific plasma kinetic process,

but rather to damp out numerical instabilities that may

strongly damage the genuine properties of small-scale

turbulence [11]. Electron inertia effects have not been

included in Eq. (1) [12].

The initial condition consists of a Maxwellian plasma

perturbed by a 2D spectrum of Fourier modes, imposed for

both the velocity and the magnetic field. To avoid an

artificial compressive activity, neither density perturba-

tions nor parallel variance (bz, vz) are imposed at t ¼ 0.

Energy has been injected, with random phases, in the range

2 � m � 6, wherem ¼ ðL0=2�Þk, and L0 ¼ 2��di being
the system size (� is a positive real number). Periodic

boundary conditions have been employed. The ion plasma

beta is � ¼ 2v2
ti=V

2
A ¼ 2 (vti is the ion thermal speed),

while the electron to ion temperature ratio is fixed at

Te=Ti ¼ 1. The limits of the velocity domain in each

direction are fixed at vmax ¼ �5vti. For all runs, 5122

mesh points in physical space and 513 in velocity space

are used. To investigate the influence of both turbulence

and system size, we performed different runs varying

�b=B0 (�b ¼ hb2x þ b2yi and h	i represents spatial aver-

ages) and L0=di. Simulations are reported in Table I.

In analogy with fluid models, in decaying turbulence

there is an instant of time, let us say �?, at which the

turbulent activity is maximum [13]. This time can be

estimated measuring the average out-of-plane squared cur-

rent density hj2zi. At �
?, summarized for each run in Table I,

we perform our analysis (a study of the time evolution will

be presented in future works.) As follows, we give a brief

overview on turbulence, analyzing Run II (all the simula-

tions give qualitatively similar results). As represented in

Fig. 1(a), turbulence manifests through the appearance of

coherent structures, exhibiting a sea of vortices (islands)

and current sheets. This can be seen in contour maps of jz
and az, where az is the magnetic potential of the inplane

magnetic field b? ¼ raz � ẑ. In between islands jz be-

comes very intense, being a signature of the intermittent

nature of the magnetic field [6]. In these regions of high

magnetic stress, reconnection locally occurs at the X points

of az [crosses in Fig. 1(a)] [14,15]. From a qualitative

analysis, the size of these current sheets is of the order of

few di’s (note that these also manifest a bifurcation, typical

signature of the Hall effect).

To quantify turbulence, we computed the power spectra

for the density n, the ion bulk velocity u, the magnetic b,

and electric E fields. These power spectra reveal several

features commonly observed in space plasmas and that are

shown in Fig. 1(b). As observed in solar wind turbulence

[6], the large scale activity is essentially incompressible,

namely jnkj
2 is negligible for low k’s [6]. The Alfvénic

correlation between the magnetic and the velocity field,

typical of magnetohydrodynamic turbulence, is broken at

kdi � 1 [10,16]. At small scales, comparable or smaller

than di, the spectra become steeper, due mainly to the

presence of kinetic effects. As in previous works

[7,10,16], it is worth noting that the electric activity at

higher k’s is more intense than the magnetic one.

The concentration of current in sheetlike structures,

observed in Fig. 1, suggests that also kinetic effects may

nuzzle locally as well. To get more insight in this intriguing

phenomenon, we will quantify kinetic effects looking

directly at the high-order velocity moments of the DF.

TABLE I. Initial amount of magnetic fluctuations (second

column), system size (third column), and time of the peak of

the turbulent activity (last column).

�b=B0 L0=di �? ð��1
ci Þ

Run I 1=7 2�� 30 150

Run II 1=3 2�� 20 50

Run III 1=3 2�� 10 20

FIG. 1 (color online). (a) Shaded contours (zoom) of jz to-

gether with az (isolines) and its X points (black crosses).

(b) Power spectra of ion density (green dotted), ion bulk velocity

(red dashed), magnetic field (black solid), and electric field (dot-

dashed blue). The Kolmogorov expectation k�5=3 (gray dashed)

is reported as a reference, while the vertical dashed line repre-

sents the ion skin depth wave number.
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In particular, we will concentrate on the temperature and

the kurtosis of f, that, for a Maxwellian, must be 1 and 3,

respectively. The preferred directions of f in the velocity

space, for each x, can be obtained from the stress tensor

AijðxÞ ¼
1

n

Z

ðvi � hviiÞðvj � hvjiÞfd
3v: (2)

This tensor can be studied in a diagonal form computing

its eigenvalues f�1; �2; �3g. The respective normalized ei-

genvectors fê1; ê2; ê3g represent a proper reference frame,

namely, the minimum variance frame (MVF) [17]. Note

that �i are the temperatures (for convention we choose

�1 > �2 > �3) and êi the anisotropy directions. For a

Maxwellian, the tensor in Eq. (2) is diagonal and degen-

erate (�i ¼ 1 and no preferred direction). Using the eigen-

system, the temperature anisotropy is given by �1=�3.

The probability distribution functions (PDF) of �1=�3 in

Fig. 2(a), evaluated sampling over the entire domain of the

simulation at �? (see Table I), show that f is mostly

isotropic, while only few events manifest strong anisotropy

(�1=�3 � 1:7). A comparison between the simulations re-

veals that higher level of turbulence (Runs II and III)

produces patches with higher anisotropy. Moreover, also

the system size influences the anisotropy phenomenon—

smaller systems (Run III) are slightly more anisotropic.

The latter is due to the fact that kinetic effects are more

active when the system size is comparable to di. We would

like to point out that the main ingredient that enhances

anisotropy is turbulence.

The anisotropy, whose shaded contour is represented in

Fig. 2(b), is confined in sheetlike structures (with the size

of a few di), modulated by the local magnetic field: anisot-

ropy is low inside magnetic islands while is high in be-

tween them. These are regions of strong magnetic stress,

shifted away from the X points. To further investigate these

kinetic effects, we inspected the normalized kurtosis

(fourth-order moment):

�iðxÞ ¼
1

n

R
ðvi � hviiÞ

4fd3v

½1
n

R
ðvi � hviiÞ

2fd3v�2
: (3)

We projected the above vector in the MVF, obtaining

f�1; �2; �3g. The projected kurtosis manifests opposite

behavior with respect to temperatures: the strongest kurto-

sis is along the maximum variance frame ê3, namely �3 (�3

correlated with �1, not shown here.) The distributions

of kurtosis manifest strong variations from Maxwellian

(�i ¼ 3), suggesting that in turbulence the velocity distri-

butions are leptokurtic [Fig. 2(c)]. Similarly to anisotropy,

patterns of �3 are localized in narrow layers in between

magnetic vortices (not shown here). All the runs behave

similarly.

The comparison between Fig. 2(b) with Fig. 1(a) sug-

gests that these distortions are concentrated in sheetlike

regions, located near the peaks of jz. Therefore these

patterns are characterized by intense jr2b?jð¼ jrjzjÞ—
in a fluid model these would correspond to regions where

collisional dissipation takes place. To quantify this corre-

lation, we computed the joint PDF of current gradients and

anisotropy, gðjr2b?j; �1=�3Þ, shown in Fig. 2(d). This

analysis further confirms the correlation, demonstrating

that kinetic effects are nonhomogeneous and concentrated

in high magnetic stress regions.

It is now interesting to examine the structure of the DF in

the presence of turbulence. Since Eulerian Vlasov models

do not suffer from any lack of statistics in velocity space,

here we provide an example of f, at a given x. In Fig. 3(a)

the isosurfaces of f reveal that the DF is strongly affected

by the presence of turbulence, resembling a potatolike

structure elongated in the ê1 direction (ê3 and the direction

FIG. 2 (color online). (a) PDF of the temperature anisotropy

�1=�3 for all runs (arrows represent averages); (b) shaded-

contour (zoom) of the anisotropy together with the inplane

magnetic field lines (black); (c) PDF of the kurtosis �3;

(d) joint distribution of current gradients and anisotropy

gðjr2b?j; �1=�3Þ. In (a) and (c) the statistical error bars are

also reported.

FIG. 3 (color online). (a) Isosurfaces of the velocity distribu-

tion function fðx?;vÞ, at a given spatial position x
 ’
ð60; 119Þdi. (b) Two-dimensional cut of f in the minimum

variance frame. Thin (red) and thicker (blue) axis indicate ê1
and ê3, respectively. The magnetic field direction B̂ is repre-

sented with a thick (magenta) tube.
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of the local magnetic field B̂ ¼ B=jBj are reported as

well). In the same figure [panel (b)], a slice in the ê1-ê3
plane is reported, showing that elongation along ê1 is bal-

anced by a squeezing (depression) along ê3. This modula-

tion is due to the conservation of probability in phase

space: the DF reacts as a balloon to the perturbations of

the turbulent electromagnetic fields, producing complex

deformations.

Surprisingly enough, as can be immediately noticed

from Fig. 3(a), the preferred axis ê1 may strongly depart

from the magnetic field direction B̂, suggesting that in a

fully nonlinear regime departures from linear expectation

are unavoidable. Since turbulence is a cross-scale effect, a

statistical approach is required. To establish how the DF

chooses its main axis, we computed, at each spatial posi-

tion x, the cosine angle between ê1 and the unit vectors of

the magnetic field [18],

cos	ðxÞ ¼ ê1ðxÞ � B̂ðxÞ: (4)

Note that if ê1 and B̂ were spatially random and uncorre-

lated, PDF( cos	) would be a constant �0:5. The PDF is

bounded by cos	 ¼ �1. For all the runs, the PDF’s of

Eq. (4) are reported in Fig. 4, showing that they are not

just peaked at cos	 ¼ 1. Another significant population, in

fact, is present at cos	 ¼ 0 (see Fig. 3). This interesting

behavior suggests that the main axis of f is determined by

the magnetic field in a complex way: ê1 can be both along

or across B.

To summarize, hybrid Vlasov-Maxwell simulations re-

veal that, in turbulence, kinetic effects manifest as snake-

like patches of high anisotropy and kurtosis, nearby

patterns of intense jr2b?j, where cyclotron and/or

Landau resonances may be at work. Here, the distribution

function is strongly modulated by the turbulent electro-

magnetic field, and elongates mainly along or across the

local magnetic field. This work supports the new idea that

kinetic effects in plasmas are strongly inhomogeneous,

property related to the intermittent character of the mag-

netic field. Our results shed new light on the theory of

Vlasov-Maxwell plasmas demonstrating that, when the

distribution function is free to explore the entire velocity

subspace, new features appear as complex interactions

between the DF and the turbulent background. This statis-

tical description of ‘‘kinetic intermittency’’ may challenge

scientists to work on nonlinear (realistic) models of plasma

dynamics, since plasma in nature is generally turbulent.

Further work is needed on this path, to include important

effects such as the 3D geometry, and kinetic electrons [19].

Moreover, to investigate any possible contribution of mod-

elike fluctuations to turbulence (such as Alfvén, whistler,

and kinetic-Alfvén waves), it would be important to carry

out a space-time analysis in the presence of a driving [20].
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