
Local Learning for Mining Outlier Subgraphs from Network Datasets

Manish Gupta Arun Mallya Subhro Roy Jason H. D. Cho Jiawei Han

Microsoft, India University of Illinois at Urbana-Champaign (UIUC), IL, USA

Abstract

In the real world, various systems can be modeled using

entity-relationship graphs. Given such a graph, one may

be interested in identifying suspicious or anomalous sub-

graphs. Specifically, a user may want to identify suspicious

subgraphs matching a query template. A subgraph can be

defined as anomalous based on the connectivity structure

within itself as well as with its neighborhood. For exam-

ple for a co-authorship network, given a subgraph contain-

ing three authors, one expects all three authors to be say

data mining authors. Also, one expects the neighborhood

to mostly consist of data mining authors. But a 3-author

clique of data mining authors with all theory authors in the

neighborhood clearly seems interesting. Similarly, having

one of the authors in the clique as a theory author when all

other authors (both in the clique and neighborhood) are data

mining authors, is also suspicious. Thus, existence of low-

probability links and absence of high-probability links can

be a good indicator of subgraph outlierness. The probabil-

ity of an edge can in turn be modeled based on the weighted

similarity between the attribute values of the nodes linked by

the edge. We claim that the attribute weights must be learned

locally for accurate link existence probability computations.

In this paper, we design a system that finds subgraph outliers

given a graph and a query by modeling the problem as a lin-

ear optimization. Experimental results on several synthetic

and real datasets show the effectiveness of the proposed ap-

proach in computing interesting outliers.

1 Introduction

With the ever-increasing popularity of entity-centric appli-

cations, it has become very essential to study the interac-

tions between entities, which are captured using edges in

entity-relationship (or information) graphs. For example, co-

authorship graphs capture the co-authorship association be-

tween various authors. Similarly, social networks, protein-

protein interaction networks, employee networks, etc. also

capture a variety of rich associations.

Query Based Subgraph Outliers

Given such an entity-relationship graph, data analysts

may be interested in finding anomalous portions of the graph.

For example, a security officer may like to find some tiny but

suspicious activity clubs from a massive social network, such

as Facebook or LinkedIn. Similarly, network security com-

panies might be interested in discovering a group of com-

puters running malicious software as botnets. Besides these,

interesting applications of anomalous sub-networks exist in

the bio-medical domain too [6]. Often times, a user can ex-

press the type of suspicious subgraph she wants to discover

in the form of a query. For example, based on the intelligence

obtained so far, an analyst would like to gather information

about a terrorist ring with particular features. Thus, a query

based outlier sub-network detection mechanism becomes a

critical piece for any network monitoring system. Given a

query, the mechanism is expected to return the matching sub-

graphs from the original graph ordered by their outlierness

score. Instead of taking a general global perspective, the pro-

posed system aims at giving the user a flexibility to find out-

liers following a particular schema and predicates encoded

in the form of a query.

Brief Overview of the Proposed Approach

A subgraph can be considered as an outlier based on

its connectivity structure. An outlier subgraph is one which

has many unexpected edges and missing many expected

edges within itself, and between itself and its neighborhood.

Usually the features of two entities in a graph can be used to

predict the existence of an edge between these two entities.

For example, in a social network, the affiliation, the interests

and the age of the person entities are some of the important

features that can help predict the probability of a link’s

existence. The degree to which each of these features

determines the link existence probability differs from one

part of the network to the other. For example, in some parts

of a social network, age is an important factor while for

other parts of the network (which deal with people in well

known universities), affiliation might be the most important

factor. To capture these local correlations of features with

link existence, we propose an optimization model which

uses the knowledge within a 1-hop neighborhood to infer the

feature weights. Besides learning the feature weights, the

optimization also helps us to compute the outlier score of a

subgraph.

Subgraph Outlier Examples

Subgraph outliers are interesting because they can help

identify suspicious or rare subgraphs in the network.

Computer Science Research Example. Consider a co-

authorship graph such that two authors are connected if they

have collaborated on some paper. Also, assume that we

have a community distribution associated with each author

which specifies the probability that the author belongs to

a research area. Consider a user query containing four

author nodes all connected to each other. A normal match

to such a query would consist of authors that belong to a

single research area with collaborators in the neighborhood

belonging to the same area. But a subgraph containing all

data mining authors who mostly have theory authors in their

neighborhood denotes an interesting region much different

from its neighborhood.

Students Network Example. Consider a recently gradu-

ated batch of students from some school. Most of them will

be connected to others from the same country. Now if say

3 of the students from this batch move to another country

for higher studies, (1) most of the edges in their neighbor-

hood will still be between nodes from their origin country,

and (2) they will form new friends in their new country and

so will have a few inter-country edges. Thus, this group of

3 students will be a subgraph outlier with connectivity very

different from their neighborhood.

Comparison with Previous Work

Quite different from existing work which only considers

outlier detection of single vertices from networks [7, 9, 10],

the proposed work aims at discovering subgraph outliers.

Moreover, existing outlier detection work for network data

sets has focused on finding outliers for the entire network

or in the context of a community. Instead of taking a gen-

eral global perspective, the proposed system aims at giving

the user a flexibility to find outliers following a particular

schema and predicates encoded in the form of a query. Com-

pared to our recent work [11, 12] on query based outliers

discovered using anomalous associations, the proposed work

focuses on query based outliers using neighborhood infor-

mation. Query based outlier detection on networks can be

considered as a special application of graph query process-

ing. Compared to recent work on answering graph queries

on networks [21] which provide unranked results, the pro-

posed method attempts to rank such results based on the out-

lier scores.

Summary

We make the following contributions in this paper.

• We propose and study the problem of identifying sub-

graph outliers that adhere to an input subgraph query

template.

• We propose a methodology to compute the outlierness

of a subgraph match based on a max-margin framework.

The margin for the linked versus non-linked node pairs

in the neighborhood of a subgraph match is used as an

indicator of its outlier score.

• Using several synthetic datasets, we compare a local,

a partition-wide and a global strategy and show that

a local learning strategy provides consistently good

accuracy in extracting the injected outliers across a wide

variety of experimental settings.

• We also show interesting and meaningful outliers de-

tected from the Four Area and DBLP co-authorship

graphs, and the Yeast protein interaction graph.

The paper is organized as follows. In Section 2, we de-

fine the subgraph outlier detection problem. In Section 3, we

discuss the proposed algorithm to compute the outlier score

for a subgraph match. We present results on several synthetic

datasets, the Four Area and DBLP co-authorship graphs, and

the Yeast protein interaction network with detailed insights

in Section 4. We discuss related work and summarize the

paper in Sections 5 and 6 respectively. We present interest-

ing discussions related to the proposed approach, subgraph

matching algorithm details and details of the real datasets in

the supplementary material.

2 Problem Definition

In this section, we formalize the problem definition and

present an overview of the proposed system. We start with

an introduction to some preliminary concepts.

Definition 1 (An Entity-Relationship Graph). An entity-

relationship graph is an undirected graph G = 〈V , E, A〉
where V is a finite set of vertices (representing entities) and

E is a finite set of edges each being an unordered pair of

distinct vertices. Each vertex v has an associated attribute

vector which we will denote by A(v). A is a function defined

on the vertex set as A : V → [0, 1]D where D is the

dimensionality of the attribute vector.

For this work, we assume numeric attributes. However,

the methodology can be used for any type of attributes as

long as a dis-similarity function between the two attribute

vectors can be defined.

Given a co-authorship graph, each author can be asso-

ciated with a probability distribution which represents the

probability with which the author belongs to a particular re-

search area. Thus the dimensionality is equal to the number

of research areas.

Definition 2 (Subgraph Query on a Network). A subgraph

query Q on a network G is a connected subgraph consisting

of node set VQ and edge set EQ such that |VQ| > 1. The

subgraph query Q can be answered by returning all exact

matching subgraphs from G.

Definition 3 (Subgraph Isomorphism). A graph g = 〈Vg ,

Eg〉 is a subgraph of another graph g′ = 〈Vg′ , Eg′〉 if there

exists a subgraph isomorphism from g to g′. A subgraph

isomorphism is an injective function F : Vg → Vg′ such

that (1) ∀v ∈ Vg , F (v) ∈ Vg′ , and (2) ∀e =(u, v) ∈ Eg ,

e′ =(F (u), F (v))∈ Eg′ .

Definition 4 (Match). The mapping function F in the sub-

graph isomorphism definition, with g = Q and g′ = G iden-

tifies a match for a query Q in G which is an occurrence of

Q in G. G may contain multiple such matches of Q. We will

denote a particular match by F = (VF , EF) where VF is the

set of vertices in F and EF is the set of edges in F .

So as to be able to define the outlierness of a subgraph

match in terms of node pairs in the neighborhood of a match,

we need to consider the induced match rather than the actual

match.

Definition 5 (Induced Match). An induced match M =
(VM , EM) corresponding to the match F is the subgraph of

the graph G induced by the nodes in F . Thus it contains

the same nodes as in F but it contains more edges, i.e.

VM = VF . Also, for any pair of vertices u and v of M ,

(u, v) is an edge of M if and only if (u, v) is an edge of G.

For simplicity, we will refer to the induced subgraph

match as simply “match” in this paper.

Definition 6 (Neighborhood of a Subgraph Match). Let

N(v) denote the vertices and the connecting edges in the

neighborhood for a vertex v in graph G, i.e., N(v) contains

vertices at hop 1 from v and the edges linking v to those

vertices. Let M = (VM , EM) be a subgraph match. Thus,

VM ⊆ VG and EM ⊆ EG. We define the neighborhood

for a match M as the union of the neighborhoods of all

its vertices, along with the edges in VG incident on the

vertices in this union. Thus N(M) =
⋃

v∈VM
N(v) =

(VN(M), EN(M)). Note that VM ⊆ VN(M) and EM ⊆
EN(M).

Definition 7 (Dis-similarity for a Node Pair). Each entity

in the graph has an attribute vector associated with it. We

assume the probability of existence of an edge (and hence the

dis-similarity) to be a linear function of the difference in the

attribute values of the entities on which the edge is incident.

Let wM denote the feature weight vector for a subgraph M .

Also let |A(v) − A(u)| represent the difference vector such

that each element is non-negative, i.e., |A(v) − A(u)|i =
|A(v)i − A(u)i|. Then we define the dis-similarity for the

unordered node pair (u, v) with respect to this weight vector

as follows.

DisSim(u, v) = wT
M |A(v)−A(u)|(2.1)

Note that we restrict the weight values to be in the

range [0, 1]. This ensures that the vector wM can cap-

ture the weighted importance of various feature values in

determining the dis-similarity between node pairs. Thus

0 ≤ wM (i) ≤ 1 ∀i = 1 . . . D. This also ensures that

0 ≤ DisSim(u, v) ≤ D for each node pair (u, v).

We expect the dis-similarity to be high for node pairs

which are not linked by an edge, and to be low for node pairs

linked by an edge.

Definition 8 (Discriminating Hyperplane). Given a set of

node pairs, some of them may be connected to each other via

an edge, while others may not be. Given node pairs (u, v),
one can plot them as points in the space of attributes. In

such a space, one can learn a weight vector that can act as a

separator to discriminate between node pairs connected by

edges versus not. Such a weight vector will be referred to as

a discriminating hyperplane.

Definition 9 (Margin). Consider a set of node pairs (u, v)
plotted in the space of attributes. Let H be the maximum

dis-similarity for any node pair which is connected by an

edge. Let L be the minimum dis-similarity for any node pair

which is not connected by an edge. Then, the value L−H is

called the margin of separation.

Definition 10 (Max-Margin Hyperplane). The discriminat-

ing hyperplane w that separates the edge-connected node

pairs from the node pairs not linked by an edge with the max-

imum margin is called as the max-margin hyperplane w∗.

Definition 11 (Outlier Score of a Subgraph Match). Let M
be a subgraph match. Let SL be the set of node pairs in the

neighborhood of M that are linked by an edge. Let SNL be

the set of node pairs in the neighborhood of M that are not

linked by an edge. Let w∗
M be the max-margin hyperplane

for the points SL ∪ SNL in the attribute space, such that the

margin is LM −HM . We define the outlier score for match

M as the negative margin of the max-margin hyperplane.

OS(M) = HM − LM(2.2)

If the match is not an outlier, the margin between linked

node pair instances and non-linked node pair instances will

be high. On the other hand, if the match is an outlier, the

margin between linked node pair instances and non-linked

node pair instances will be low. In fact, when the match is an

outlier, the set of linked node pair instances may not even be

separable from the non-linked node pair instances, leading to

a negative margin value. Thus, this definition of the outlier

score of a subgraph match is intuitive.

Note that in the case when the subgraph and its neigh-

borhood is highly homogeneous, i.e., A(u) for all nodes u
in the subgraph and its neighborhood is the same, we cannot

find a separating hyperplane. In that case, we set the outlier

score to 0, i.e., this subgraph is considered extremely normal.

Subgraph Outlier Detection Problem

Given: An entity-relationship graph G, a query Q.

Find: Top few matching subgraphs with highest outlierness

scores.

3 Subgraph Outlier Detection

Given an entity-relationship graph G and a query Q, the first

step is to identify all the matches of the query Q in the graph

G. Let F be the set of all matches and M be the set of the

corresponding induced matches. Next, an outlier score can

be computed for each of these induced matches M ∈ M.

The matches could then be ranked in the non-ascending order

of their outlier scores and the top few can be returned as

outliers. We use SPath [21] to efficiently compute all the

matches for a query Q in graph G. We discuss details

of SPath in the supplementary material. We discuss the

outlier score computation for every match in Subsection 3.1.

This involves estimation of the feature weights for each

match M . Based on these, in Subsection 3.2 we present

a local subgraph outlier detection algorithm which learns

customized feature weights for each match based on the

information observed in the local neighborhood of the match.

3.1 Estimating the Weight Vector An SPath-based solu-

tion provides us the set of all matches F for query Q. By

simply identifying all the edges in the graph covered by each

match, it is straightforward to compute the set of all induced

matches M. The next step is to compute the outlier score

for each match M ∈ M. As described in Section 2, the out-

lier score of a match can be computed in terms of the margin

for the max-margin hyperplane, i.e. the best fitting feature

weight vector w. In this subsection, we would make some

very intuitive observations and encode these observations as

an optimization problem which would in turn help us to esti-

mate w, and thereby help in computing the margin.

The max-margin hyperplane should be ideally able to

separate the node pairs linked by edges from the node pairs

not linked by edges. Also, such a hyperplane should be

able to achieve the maximum possible margin for the input

dataset. Thus, the objective function to be optimized is as

follows.

max LM −HM(3.3)

Here HM is the higher bound on the dis-similarity

between node pairs linked by edges and LM is the lower

bound on the dis-similarity between the node pairs not linked

by edges.

Observation 1. Consider a node pair (u, v) such that u ∈
VN(M) and v ∈ VN(M) and (u, v) ∈ EN(M), i.e., node u
and node v are linked by an edge. Thus, (u, v) is an edge

in the local 1-hop neighborhood of the match M . The dis-

similarity between the attributes of nodes u and v should not

be greater than HM .

The above observation can then be expressed in terms of

constraints as follows.

For each edge (u, v) ∈ EN (M)

wT
M |A(u)−A(v)| ≤ HM(3.4)

Observation 2. Consider a node pair (u, v) such that u ∈
VN(M) and v ∈ VN(M) and (u, v) /∈ EN(M), i.e., node u
and node v are not linked by an edge. Thus, (u, v) is a node

pair in the local 1-hop neighborhood of the match M but not

linked by an edge. The dis-similarity between the attributes

of nodes u and v should not be less than LM .

The above observation can then be expressed in terms of

constraints as follows.

For each node pair (u, v) such that u ∈ VN(M) and

v ∈ VN(M) but (u, v) /∈ EN (M)

wT
M |A(u)−A(v)| ≥ LM(3.5)

Observation 3. wM represents the weight vector for the

max-margin hyperplane to be estimated. The elements of

this weight vector need to be bounded and constrained so

as to be meaningful. Thus, we constrain the {wM (i)}Di=1’s

to be between 0 and 1, and also to sum to 1. The “sum to

1” constraint allows us to interpret w as relative weights

assigned to each feature. Constraining the elements between

0 and 1 ensures that the LP does not get biased towards a

particular feature (or attribute).

The above observation can then be expressed in terms of

constraints as follows.

0 ≤ wM (i) ≤ 1 ∀i = 1 . . . D(3.6)

D∑

i=1

wM (i) = 1(3.7)

A few highly outlier node pairs can lead to zero or

negative margin in the non-separable case. To avoid such

a situation, we introduce a slack variable for each constraint.

Overall, the entire optimization problem with slack variables

can be written as follows. C in the objective function

is a constant and the second term ensures that the max-

margin hyperplane is robust to a few outlier node pairs (i.e.,

constraints). Recall that SL is the set of node pairs in the

neighborhood of M that are linked by an edge and SNL is

the set of node pairs in the neighborhood of M that are not

linked by an edge.

max LM −HM −
C

|SL ∪ SNL|

|SL∪SNL|∑

i=1

ξi(3.8)

subject to the following constraints

For each edge (u, v) ∈ EN (M)

wT
M |A(u)−A(v)| ≤ HM + ξ(u,v)(3.9)

ξ(u,v) ≥ 0(3.10)

For each node pair (u, v) such that u ∈ VN(M) and v ∈
VN(M) but (u, v) /∈ EN (M)

wT
M |A(u)−A(v)| ≥ LM − ξ(u,v)(3.11)

ξ(u,v) ≥ 0(3.12)

0 ≤ wM (i) ≤ 1 ∀i = 1 . . . D(3.13)

D∑

i=1

wM (i) = 1(3.14)

The above optimization denoted by the Equations 3.8 to

3.14 is a linear optimization problem which can be solved

using the Simplex algorithm. Note that this optimization

is very similar in spirit to the soft margin SVM optimiza-

tion [4].

Values of HM and LM

Clearly, if M is an outlier subgraph, i.e., it has unex-

pected or missing edges within the match or between the

match and the neighborhood, then (1) HM will be very high,

and (2) LM will be very low. In other words, the margin will

be very small, indeed it could become negative. Thus, the

outlier score, i.e., the negative margin HM−LM will be very

high. On the other hand, if the match M is not an outlier, (1)

HM will be very low, and (2) LM will be very high. In other

words, the margin will be wide, mostly positive. Thus, the

outlier score, i.e., the negative margin HM−LM will be very

low.

3.2 Subgraph Outlier Detection Algorithm We summa-

rize the overall subgraph outlier detection algorithm in Al-

gorithm 1. For query Q, first all matches M are computed

using SPath (Step 1). Next, for each match M , compute the

feature weight vector and the margin (Step 3). The margin is

then used to compute the outlier score (Step 4). Finally the

matches with very high outlier scores are returned as outliers

(Step 6).

Computational Complexity

Let |M| be the number of matches, D be the dimension-

ality of attribute vectors and |VQ| be the number of nodes in

the query. Algorithm 1 is clearly linear in |M|. Let B be

the average number of neighbors for any node. Assuming

that the neighbor sets for the nodes in the set VM are dis-

joint, the maximum number of nodes in the neighborhood of

VM is B|VQ|. So, the maximum number of node pairs in

the neighborhood of match M is (B|VQ|)
2. Thus, the opti-

mization consists of O(2(B|VQ|)
2 +D+ 1) constraints and

O((B|VQ|)
2+D+2) variables for every match. Solving the

optimization is the most expensive step. Linear optimization

is polynomial in the number of variables (for interior point

methods) or exponential in the number of constraints (for

the simplex method) in the worst case. However, in practice

Algorithm 1 Subgraph Outlier Detection Algorithm

(SODA)

Input: (1) Graph G, (2) Query Q, (3) Parameter δ.

Output: Top subgraph outliers.

1: Compute set of all matches M for query Q on graph G
using SPath(G, Q).

2: for each match M ∈ M do

3: Compute wM using the optimization specified in

Equations 3.8 to 3.14.

4: Compute outlier score OS(M) using Equation 2.2.

5: Compute the mean µ and the variance σ2 for the outlier

scores for all matches.

6: Find subgraph outliers as the subgraphs with outlier

score > µ+ δσ.

simplex takes time linear in the number of constraints for

convergence. Also, note that since the computation for each

match is independent of those for any other match, these can

be done in parallel. In presence of multiple processors, the

matches can be distributed evenly among available proces-

sors with a shared memory to store the graph.

Choice of Parameters

The proposed algorithm contains two parameters: the

outlier deviation δ and the margin versus slack trade-off

parameter C in Eq. 3.8. δ is a typical parameter that is used in

almost every outlier detection algorithm and has traditionally

been set to a value in [1.5,3]. Setting it to a higher value

results in higher quality and less number of outliers. Setting

it to a lower value results in poor quality and more number of

outliers. The parameter C controls the degree to which we

want to make the optimization soft. A higher C implies that

slack variables can take very small values while a smaller C
implies that the constraints can be very soft with high values

for slack variables.

4 Experiments

Evaluation of outlier detection algorithms is quite difficult

due to the lack of ground truth. We generate multiple

synthetic datasets by injecting outliers into normal datasets,

and evaluate the outlier detection accuracy of the proposed

algorithms on the generated datasets. We also conduct case

studies by applying the method to real datasets like DBLP,

Yeast-Network and Four Area (a subset of DBLP). We

perform comprehensive analysis to justify that the top few

outliers returned by the proposed algorithm are meaningful.

The data and the code are available at http://dais.cs.

uiuc.edu/manish/LocalLearningOutlier/.

Baselines

We explore three baselines: Uniform Weight Vector

based method, Global Weight Vector based method and

Partition-wide Global Weight Vector method.

http://dais.cs.uiuc.edu/manish/LocalLearningOutlier/
http://dais.cs.uiuc.edu/manish/LocalLearningOutlier/

Uniform Weight Vector

In this approach, rather than estimating w, we fix w
to be a constant vector 1/D. This w means that we give

equal weight to each of the attributes to determine the

dis-similarity between two nodes. No optimization for

estimating w is performed in this approach. HM is computed

as the largest dis-similarity value for any node pair under the

uniform w and LM is computed as the smallest dis-similarity

value for any node pair under the uniform w. The outlier

score is then computed as HM − LM . We refer to this

baseline as UniformW.

Global Weight Vector

For this baseline, we randomly choose a set of matches

S from the set M. We compute the union set of all nodes

in S. Since this set could be quite large, we sample a fixed

number of nodes. For these nodes, we compute the edge-

linked node pairs and node pairs not linked by edges. Using

both these sets of node pairs, we can design a single linear

optimization problem. The solution to this optimization

problem provides the values for a global w vector. Next, for

each match, this w is used to compute HM as the maximum

dis-similarity for any node pair in the neighborhood which

is connected by an edge. Similarly, the w is also used to

compute LM as the minimum dis-similarity for any node

pair which is not connected by an edge. Finally, HM − LM

is used as the outlier score for the match. We refer to this

baseline as GlobalW.

Partition-wide Global Weight Vector

For this baseline, the input graph is split into K par-

titions using a mincut-based graph partitioning algorithm

(METIS [15]). For every partition p, the processing is done

independently as follows. Given all the matches for a user

query, matches that lie completely within the partition are

computed. A match lies completely within the partition iff

each of its nodes belong to the vertex set for that partition.

From this set of matches, we select a random match. The

margin is computed for this match using the same method-

ology as discussed in Section 3. If the margin is sufficiently

high (higher than a threshold), we know that the max-margin

hyperplane w reflects the true feature weights in this region.

Else, another random match is selected. Once a w with mar-

gin greater than the threshold is obtained, this w is then used

to compute the outlier score for each match in the partition

p. For each match in the partition, this w is used to compute

HM as the maximum dis-similarity for any node pair in the

neighborhood which is connected by an edge. Similarly, the

w is also used to compute LM as the minimum dis-similarity

for any node pair which is not connected by an edge. Finally,

HM−LM is used as the outlier score for the match. We refer

to this baseline as PartitionW.

4.1 Synthetic Datasets Here, we will present the results

of extensive experiments on synthetic datasets.

Synthetic Dataset Generation

We generate a variety of synthetic datasets to test mul-

tiple settings of number of entities and relationships in the

network, degree of outlierness, and the number of attributes

associated with the entities. We vary the number of entities

(N) as 1000, 2000 and 5000. The number of attributes per

entity is varied as 4, 6 and 10. The specific dataset genera-

tion details for each such experimental setting are discussed

in the supplementary material. Since the aim is to discover

query-based outliers, we inject query-based outliers them-

selves. Again, the supplementary material contains outlier

injection methodology in detail.

Results on Synthetic Datasets

We run a large number of experiments with a variety

of settings: vary number of objects as 1000, 2000 and 5000;

vary percentage of outliers as 1%, 2% and 5% (percentage of

the number of matches); vary the number of attributes as 4, 6

and 10. Also, we run experiments for the proposed algorithm

(SODA) as well as for the three baselines: GlobalW (GW),

PartitionW (PW) and UniformW (UW). Table 1 shows the

results for all the algorithms and all the experimental set-

tings. For each setting, the accuracy value is the precision

with which the algorithm is able to extract the injected out-

liers. Note that since we use the algorithms to extract only as

many outliers as we injected, the recall is the same as the pre-

cision in this case. The value in each cell of the table is ob-

tained as the average accuracy by running 10 experiments for

the corresponding setting. The results show that for all dif-

ferent experimental settings, the proposed algorithm SODA

beats the baselines by a significant margin.

Note that as expected the local learning-based proposed

algorithm SODA has better accuracy compared to Parti-

tionW, which in turn is better than the global-learning based

GlobalW. SODA is expected to be better than PartitionW be-

cause the w is learned at the match level rather than at the

partition level. GlobalW uses node pairs from multiple par-

titions to learn the optimal max-margin hyperplane. Clearly,

since the multiple partitions have a different weight vector

for attribute importance (i.e., w), therefore, learning a global

w leads to relatively inaccurate results. The UniformW base-

line does better than the GlobalW baseline. UniformW as-

sumes uniform weighting for all the attributes. Though Uni-

formW may intuitively seem to be a poor baseline, based on

the dataset construction method, assigning uniform weights

to all attributes is expected to provide fair results. But clearly

learning accurate w’s using the proposed algorithm SODA

beats all the baselines.

Also note that the accuracy of the proposed algorithm

does not degrade with increase in number of attributes or

increase in the size of data. The accuracy remains almost

the same even when the degree of outlierness is varied

from 1% to 5%. The average accuracy of the four meth-

ods across the various experimental settings is as follows.

N Ψ D = 4 D = 6 D = 10
(%) SODA PW GW UW SODA PW GW UW SODA PW GW UW

1000

1 85.7 91.1 12.4 67 86.2 77.2 11.1 76.9 81.4 80.3 19.5 66.2

2 83 82.3 22.5 71.4 89.7 75.4 15.2 73.1 77 79.2 27.8 65.5

5 81.7 75.4 23.6 76.8 92.1 79.3 29.7 84.6 77.3 82.8 31.7 68.9

2000

1 85 78 14 80.1 93.4 76.1 13.3 79.8 87.9 67.6 21.5 69.5

2 90.2 77.1 24.5 79.5 87.9 79 31.6 80.5 92.9 74.3 29.7 77.1

5 91.2 84.7 36.6 84.7 93.6 80.1 40.4 86 96 78 45.7 82.9

5000

1 90 84.7 21.2 87.7 85.6 76.4 19.3 75.3 89.2 69.4 28.8 77.7

2 79.3 82.7 40.3 70.5 90.3 81 24.3 80 91.5 73.9 38.1 79.7

5 92.2 83.7 53.3 86.3 93.7 82.7 32.7 84.2 95 77.4 52.2 86.9

Table 1: Synthetic Dataset Results (SODA=The Proposed Algorithm SODA, GW= GlobalW Baseline, PW= PartitionW

Baseline, UW= UniformW Baseline)

SODA: 88.1%, PartitionW: 78.9%, GlobalW: 28.2%, and

UniformW: 77.7%.

Table 2 shows the execution time for the algorithms for

varying number of nodes and attributes. The experiments

were run on a Linux machine with 4 Intel Xeon CPUs with

2.67GHz each. The code was implemented in Java. As

expected SODA takes more time compared to PartitionW

which is in turn slower than GlobalW. This is because the

most expensive step in the computations is solving the linear

optimization. SODA needs to solve the linear program (LP)

for each match, PartitionW solves a LP for every partition

while GlobalW solves only one LP. UniformW takes slightly

more time compared to GlobalW but less than PartitionW.

Overall, all algorithms are very efficient. Of course, the

computations of the LP can be easily parallelized in which

case the execution time would depend upon the number of

processors available.

N D SODA PW GlobalW UniformW

1000

4 1.72 1.29 0.64 0.88

6 4.89 2.63 1.10 1.63

10 48.03 24.03 3.79 6.51

2000

4 3.13 2.00 0.98 1.38

6 6.69 5.37 1.54 2.22

10 104.55 82.06 11.67 17.57

5000

4 4.14 1.23 1.16 2.30

6 10.00 4.12 2.69 3.81

10 106.51 76.59 14.76 23.11

Table 2: Execution Time in seconds (SODA=The Proposed

Algorithm SODA, GW= GlobalW Baseline, PW= Parti-

tionW Baseline, UW= UniformW Baseline)

4.2 Real Datasets We experiment with three real datasets:

Four Area, DBLP and Yeast Network. The details for the

datasets are presented in Table 3. Further details about the

construction of these datasets can be found in the supple-

mentary material. For experiments on real datasets, we use

clique and subgraph queries with 3–5 nodes.

Four Area: This is a co-authorship graph from DBLP for the

four areas of data mining (DM), databases (DB), information

retrieval (IR) and machine learning (ML) and consists of

papers from 20 conferences (5 per area) till 2008. Each

author node is associated with the community distribution

Four Area DBLP Yeast Network

Nodes 27199 30599 3112

Edges 66832 146647 12519

Attributes 4 14 400

Table 3: Data Set Details

Four Area DBLP Yeast Network

3 Clique 86390 153336 6590

4 Clique 130389 112851 3134

5 Clique 272900 352389 1937

5 Subgraph 4082687 9472728 264593

Table 4: Number of Subgraph Template Matches

Four Area DBLP Yeast Network

3 Clique 89 385 76

4 Clique 140 265 35

5 Clique 269 796 22

5 Subgraph 4524 23314 3045

Table 5: Execution Time for SODA (in seconds)

vector, i.e., the belongingness of the author to each of the

four research areas.

DBLP: This is a co-authorship graph based on collaborations

in computer science. Each author node is associated with the

community distribution vector, i.e., the belongingness of the

author to each of the 18 research areas.

Yeast Protein Interaction Network: The Yeast protein inter-

action network dataset consists of proteins as nodes. Two

proteins are connected if they interact with each other. Each

node is associated with dipeptide percentage distribution in

the FASTA format sequence.

Each dataset has its own unique characteristics. Four

Area and yeast networks are small in size, while DBLP

is large. Yeast network has large number of attributes

compared to the other two. DBLP is much more dense

compared to the other two graphs. Thus our choice of

datasets covers a good variety of graph characteristics.

Results on Real Datasets

We present a few case studies corresponding to the top

outlier discovered by the proposed algorithm for different

queries for each dataset. The number of subgraph matches

for various queries on the real datasets are shown in Table 4.

Table 5 shows the execution time for all the real datasets.

0 4

0.5

3 Clique

0.2

0.3

0.4

tl
ie
r!
S
co
re

3 Clique

4 Clique

5 Clique

5 Subgraph

0

0.1

1 8 5 2 9 6 3 0 7 4 1 8 5 2 9

O
u 5 Subgraph

8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7 7
8

8
5

9
2

9
9

Percent!Matches

Figure 1: Outlier Score Variation for the Four Area Dataset

for four Different Queries

Note that the algorithm does not take too long for execution

even on very large and dense datasets. In case, the dataset

gets more dense, one can easily sample node pairs from the

neighborhood, rather than using all the node pairs to compute

w. As mentioned before, another option is to perform outlier

score computation for every match in parallel to get the

results faster.

Figure 1 shows the variation of the outlier score against

the percentage of total matches for the Four Area dataset for

various queries. Scores below 0 have been set to 0 for good

display. Note that for all the queries, a very few matches (<
0.5%) have very high score. Thus, the proposed definition of

outlier score clearly possesses the good discriminative ability

of an ideal outlier score definition. We observed the same

variation for the other real datasets too.

Case Study 1: 3-Clique Query on Four Area Dataset

Top outlier is (Sepandar D. Kamvar, Taher H. Haveli-

wala, Gene H. Golub). We observed that these authors be-

long to the IR and ML communities. Also, their neighbor-

hood mainly consists of IR and ML authors. But the out-

lierness comes in because of anomalous links with some

database authors (Hector Garcia-Molina, Piotr Indyk) and

also a data mining author (Aristides Gionis). Thus, the set

of three authors have inter-disciplinary collaborations which

causes them to be marked as an outlier. Figure 2 shows the

outlier subgraph (green nodes) with its neighborhood (red

nodes).

Case Study 2: 5-Subgraph Query on DBLP Dataset

This query contains 5 nodes and 8 out of the 10 edges.

Top outlier is (Paul Holleis, Seong Bae Park, William D

Smart, Paul E Dunne, Milde M S Lira) with the following

absent edges (Paul E Dunne, Seong Bae Park) and (Paul E

Dunne, William D Smart). Note that in this subgraph, except

Paul Holleis, all other authors work in Artificial Intelligence.

On the other hand, Paul works on HCI, Networks and

Algorithms. Thus, especially the edges (Paul Holleis, Paul

Figure 2: Top Outlier for the 3-Clique Query on Four Area

Dataset

E Dunne) and (Paul Holleis, William D Smart) are highly

abnormal. Further, we analyzed the authors who collaborate

with this set of authors. While a majority of these authors

focus mainly on Artificial Intelligence, a large percent of

their collaborators focus on multimedia and networks. Thus,

the AI core of these four authors (Seong Bae Park, William

D Smart, Paul E Dunne, Milde M S Lira) seems to be

embedded in a region of multimedia and networks folks.

Hence, this case is an interesting outlier.

Case Study 3: 4-Clique Query on Yeast Network

Top outlier is (ydl147w, ydr394w, ydr427w, yfr010w).

These four proteins and other interacting proteins contain a

large percentage of the following dipeptides: LK, LL, EL,

LS, LE, SL, SS, AL, EE, KL, LA, EK, DL, KE, VL, IL, AA,

LI, DE, IS. However, a few proteins (like ydr201w, yhr027c,

yfr052w, ynl250w, ydl147w, ymr308c, ylr106c) contain very

small amounts of these dipeptides. Instead their sequences

contain high percentages of other dipeptides like IE, LD,

KK, KS, LN, NL, AS, DA, EN, LQ. This results in a very

small margin because of these few outlier proteins leading to

a high outlier score.

5 Related Work

The proposed work is most related to the area of outlier

detection for graph data. Work has been done in the data

mining community in this area for both static and dynamic

graphs.

Static Networks: For static networks, outlier detection has

been performed using a variety of techniques discussed in

brief as follows. (1) MDL: The minimum description length

(MDL) principle can help to identify frequent subgraph pat-

terns and hence outliers in graphs. Noble and Cook [17]

propose size of substructure multiplied by its frequency as

a measure of its outlierness. Chakrabarti [3] uses the MDL

principle to spot anomalous edges. (2) Egonets: In [2],

several new rules (power laws) in density, weights, ranks

and eigenvalues that seem to govern the “neighborhood sub-

graphs” (egonets) are discovered and distance to the fitting

line representing the power laws is used as the measure for

outlier detection. MetricForensics [13] uses a collection of

global, local and community level graph metrics to find four

novel phenomena in such graphs: elbows, broken correla-

tions, prolonged spikes, and lightweight stars. (3) Random

walks: In [16, 20] proximity and random walks are used

to assess the normality of nodes in bipartite graphs. (4)

Random Field Models: Using a heterogeneous random field

model, Qi et al. [19] discover outlier links in a network of

users, media objects and tags. Gao et al. [7] perform com-

munity detection on networks and outlier detection together

in an integrated framework using Hidden Markov Random

Fields (HMRFs) to identify community outliers.

Temporal Networks: For temporal graphs, there are three

main lines of work [8]. (1) Graph Similarity based Outlier

Detection Algorithms: Various graph distance metrics can

be used to create time series of network changes by sequen-

tially comparing graphs from adjacent periods. These time

series are individually modeled as univariate autoregressive

moving average (ARMA) processes and then outliers can be

detected [5, 18]. (2) Evolutionary Community Outlier De-

tection Algorithms: Gupta et al. [9, 10] study an interplay of

community detection and temporal outlier detection to dis-

cover evolutionary community outliers and community trend

outliers. (3) Online Graph Outlier Detection Algorithms:

These include identifying anomalous graph linkage struc-

tures [1] from a stream of graphs using reservoir sampling.

Spectral methods [14] have been also been used for the same.

The proposed work is for static networks. Work on iden-

tifying outliers from egonets is the closest to our work. But

egonets based work focused on finding outliers in connec-

tivity structure while we focus on connectivity as well as

attribute values to compute neighborhood-sensitive outliers.

Also, the proposed work follows a query-based paradigm

giving the user a higher level of flexibility in expressing her

need to find outliers following a particular subgraph schema.

6 Conclusion

We proposed the problem of identifying subgraph outliers

that adhere to an input subgraph query template based on

deviations in linkage compared to the neighborhood. We

discussed a methodology to compute the outlierness of a

subgraph match based on a max-margin framework. Using

several synthetic datasets, we observed that a local method

outperforms a partition-wide approach which in turn is more

accurate than a global strategy in extracting the injected

outliers across a wide variety of experimental settings. We

also showed interesting and meaningful outliers detected

from the Four Area and DBLP co-authorship graphs, and

the Yeast protein interaction graph. In the future, we would

like to perform neighborhood-based subgraph outlier query

answering for temporal graphs. Studying the problem for

very high dimensional data could also be an interesting

direction.

7 Acknowledgements

The work was supported in part by the U.S. Army Research

Laboratory under Cooperative Agreement No. W911NF-

11-2-0086 (Cyber-Security) and W911NF-09-2-0053 (NS-

CTA), the U.S. Army Research Office under Cooperative

Agreement No. W911NF-13-1-0193, and U.S. National

Science Foundation grants CNS-0931975, IIS-1017362, and

IIS-1320617.

We would also like to thank the Institute for Genomic

Biology at University of Illinois, Urbana Champaign for

their equipment.

References

[1] C. C. Aggarwal, Y. Zhao, and P. S. Yu. Outlier Detection in Graph Streams. In

ICDE, pages 399–409, 2011.

[2] L. Akoglu, M. McGlohon, and C. Faloutsos. Oddball: Spotting anomalies in

weighted graphs. In PAKDD, pages 410–421, 2010.

[3] D. Chakrabarti. AutoPart: Parameter-free Graph Partitioning and Outlier

Detection. In PKDD, pages 112–124, 2004.

[4] C. Cortes and V. Vapnik. Support-Vector Networks. Machine Learning,

20(3):273–297, 1995.

[5] P. Dickinson and M. Kraetzl. Novel Approaches in Modelling Dynamics of

Networked Surveillance Environment. In Fusion, volume 1, pages 302–309,

2003.

[6] Y. Feng, J. A. Syrkin-Nikolau, and E. S. Wurtele. Creating Subnetworks

from Transcriptomic Data on Central Nervous System Diseases informed by a

Massive Transcriptomic Network. Interdisciplinary Bio Central (IBC), 5(1):1–

8, Jan 2013.

[7] J. Gao, F. Liang, W. Fan, C. Wang, Y. Sun, and J. Han. On Community Outliers

and their Efficient Detection in Information Networks. In KDD, pages 813–

822, 2010.

[8] M. Gupta, J. Gao, C. Aggarwal, and J. Han. Outlier Detection for Temporal

Data. TKDE, 2014.

[9] M. Gupta, J. Gao, Y. Sun, and J. Han. Community Trend Outlier Detection

using Soft Temporal Pattern Mining. In ECML PKDD, pages 692–708, 2012.

[10] M. Gupta, J. Gao, Y. Sun, and J. Han. Integrating Community Matching and

Outlier Detection for Mining Evolutionary Community Outliers. In KDD,

pages 859–867, 2012.

[11] M. Gupta, J. Gao, X. Yan, H. Cam, and J. Han. On Detecting Association-

Based Clique Outliers in Heterogeneous Information Networks. In ASONAM,

2013.

[12] M. Gupta, J. Gao, X. Yan, H. Cam, and J. Han. Top-K Interesting Subgraph

Discovery in Information Networks. In ICDE, 2014.

[13] K. Henderson, T. Eliassi-Rad, C. Faloutsos, L. Akoglu, L. Li, K. Maruhashi,

B. A. Prakash, and H. Tong. Metric Forensics: A Multi-level Approach for

Mining Volatile Graphs. In KDD, pages 163–172, 2010.

[14] T. Idé and H. Kashima. Eigenspace-based Anomaly Detection in Computer

Systems. In KDD, pages 440–449, 2004.

[15] G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for

Partitioning Irregular Graphs. J. on Sci. Computing, 20(1):359–392, Dec 1998.

[16] H. D. K. Moonesignhe and P.-N. Tan. Outlier Detection Using Random Walks.

In ICTAI, pages 532–539, 2006.

[17] C. C. Noble and D. J. Cook. Graph-Based Anomaly Detection. In KDD, pages

631–636, 2003.

[18] P. Papadimitriou, A. Dasdan, and H. Garcia-Molina. Web Graph Similarity for

Anomaly Detection. J. Internet Services and Apps, 1(1):19–30, 2010.

[19] G.-J. Qi, C. C. Aggarwal, and T. S. Huang. On Clustering Heterogeneous

Social Media Objects with Outlier Links. In WSDM, pages 553–562, 2012.

[20] J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos. Neighborhood Formation and

Anomaly Detection in Bipartite Graphs. In ICDM, pages 418–425, 2005.

[21] P. Zhao and J. Han. On Graph Query Optimization in Large Networks. PVLDB,

3(1):340–351, 2010.

